Polygones de Newton, Onion Peeling et Problème fg+1

William Aufort

19 Juin 2017

Plan

- Introduction
- 2 Le problème fg + 1
- Un peu d'Onion Peeling
- 4 Conclusion

Plan

- Introduction
- 2 Le problème fg + 1
- 3 Un peu d'Onion Peeling
- 4 Conclusion

Motivations : le mystère fg + 1

 Au départ, une conjecture sur le nombre de racines réelles d'un polynôme creux :

$$f(X) = \sum_{i=1}^{p} \prod_{j=1}^{q} f_{i,j}(X)$$

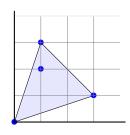
- Motivation : la règle des signes de Descartes donne une borne pour un polynôme avec t monômes.
- On comprend fg, mais fg + 1 est déjà un mystère...
- lci : on va étudier un problème similaire sur des polygones

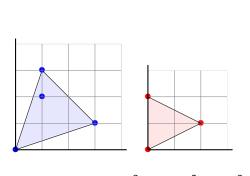
Racines réelles ← Points de l'enveloppe convexe

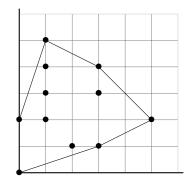
Un corollaire : séparation des classes VP et VNP
un problème intéressant

Polygone de Newton

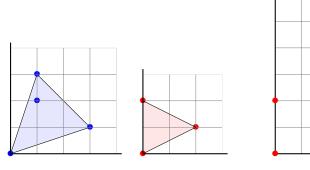
- Soit $f(X, Y) = \sum_{i} \alpha_i X^{a_i} Y^{b_i}$
- Monômes de f: Mon $(f) = \{(a_i, b_i), \alpha_i \neq 0\}$
- Polygone de Newton : Newt(f) = Conv(Mon(f))
- Exemple : $f(X, Y) = 1 + 2X^3Y + XY^2 + XY^3$

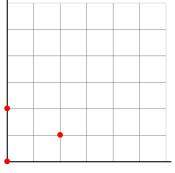




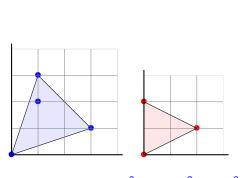


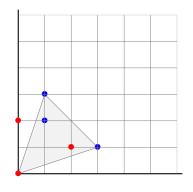
- $f(X, Y) = 1 + X^3Y + XY^2 + XY^3$ et $g(X, Y) = 1 + X^2Y + Y^2$
- $(fg)(X,Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y + 2X^3Y^3 + X^3Y^4 + X^5Y^2$



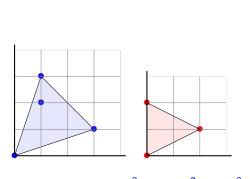


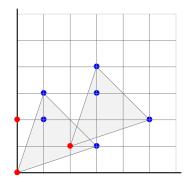
- $f(X, Y) = 1 + X^3Y + XY^2 + XY^3$ et $g(X, Y) = 1 + X^2Y + Y^2$
- $(fg)(X,Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y + 2X^3Y^3 + X^3Y^4 + X^5Y^2$



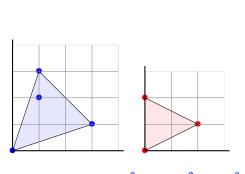


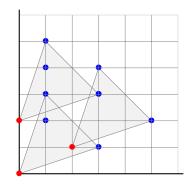
- $f(X, Y) = 1 + X^3Y + XY^2 + XY^3$ et $g(X, Y) = \frac{1}{1} + X^2Y + Y^2$ • $(fg)(X, Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y + X^4Y^4 + XY^5 + X^2Y^4 + XY^5 + X^2Y^4 + XY^5 + X^2Y^4 + XY^5 + X^2Y^5 + X^2Y$
- $(fg)(X,Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y + 2X^3Y^3 + X^3Y^4 + X^5Y^2$



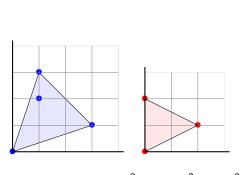


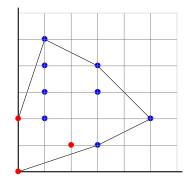
- $f(X, Y) = 1 + X^3Y + XY^2 + XY^3$ et $g(X, Y) = 1 + X^2Y + Y^2$ • $(fg)(X, Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y +$
- $(fg)(X,Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y + 2X^3Y^3 + X^3Y^4 + X^5Y^2$



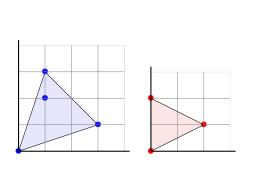


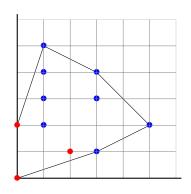
- $f(X, Y) = 1 + X^3Y + XY^2 + XY^3$ et $g(X, Y) = 1 + X^2Y + Y^2$ • $(fg)(X, Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y +$
- $(fg)(X, Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y + 2X^3Y^3 + X^3Y^4 + X^5Y^2$





- $f(X, Y) = 1 + X^3Y + XY^2 + XY^3$ et $g(X, Y) = 1 + X^2Y + Y^2$ • $(fg)(X, Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y +$
- $(fg)(X,Y) = 1 + Y^2 + XY^2 + XY^3 + XY^4 + XY^5 + X^2Y + X^3Y^4 + X^5Y^2$

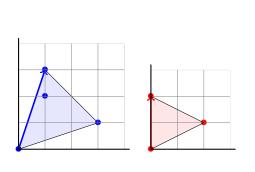


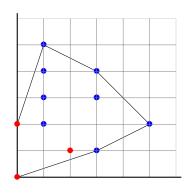


$$P+Q=\{p+q,p\in P,q\in Q\}$$

Lemme (Ostrowski)

Newt(fg) = Newt(f) + Newt(g)

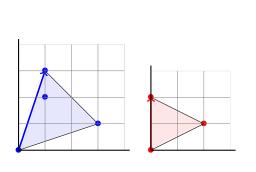


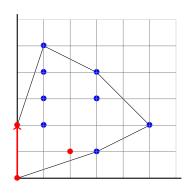


$$P+Q=\{p+q,p\in P,q\in Q\}$$

Lemme (Ostrowski)

Newt(fg) = Newt(f) + Newt(g)

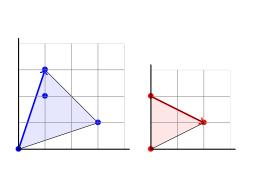


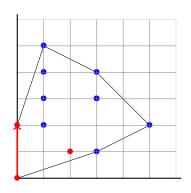


•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemme (Ostrowski)

Newt(fg) = Newt(f) + Newt(g)

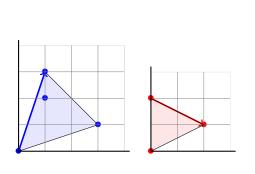


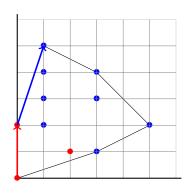


•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemme (Ostrowski)

Newt(fg) = Newt(f) + Newt(g)

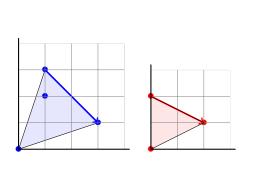


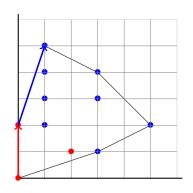


•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemme (Ostrowski)

Newt(fg) = Newt(f) + Newt(g)

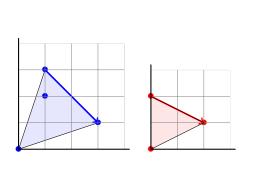


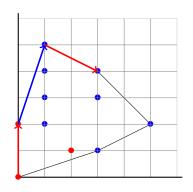


•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemme (Ostrowski)

Newt(fg) = Newt(f) + Newt(g)

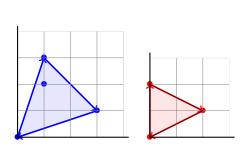


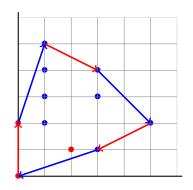


•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemme (Ostrowski)

Newt(fg) = Newt(f) + Newt(g)





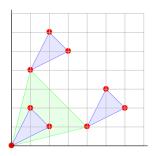
•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemme (Ostrowski)

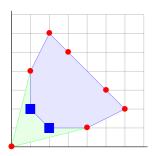
$$Newt(fg) = Newt(f) + Newt(g)$$

- Newt(fg) = Newt(f) + Newt(g)
- Si f et g ont t monômes, alors Newt(fg) a au plus 2t arêtes
- Et si on regarde Newt(fg+1)

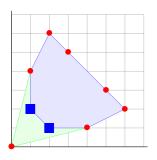
- Newt(fg) = Newt(f) + Newt(g)
- ullet Si f et g ont t monômes, alors $\operatorname{Newt}(fg)$ a au plus 2t arêtes
- Et si on regarde Newt $(fg+1) \Rightarrow$ Annulations
- Ex: $f(X, Y) = -1 + X^2Y + XY^2$ et $g(X, Y) = 1 + X^4Y + XY^4$



- Newt(fg) = Newt(f) + Newt(g)
- ullet Si f et g ont t monômes, alors $\operatorname{Newt}(fg)$ a au plus 2t arêtes
- Et si on regarde Newt $(fg+1) \Rightarrow$ Annulations
- Ex: $f(X, Y) = -1 + X^2Y + XY^2$ et $g(X, Y) = 1 + X^4Y + XY^4$



- Newt(fg) = Newt(f) + Newt(g)
- ullet Si f et g ont t monômes, alors $\mathrm{Newt}(fg)$ a au plus 2t arêtes
- Et si on regarde Newt $(fg+1) \Rightarrow$ Annulations
- Ex: $f(X, Y) = -1 + X^2Y + XY^2$ et $g(X, Y) = 1 + X^4Y + XY^4$



Borne triviale : t^2

Meilleure borne : $\mathcal{O}(t^{4/3})$

On espère une borne linéaire...

Plan

- Introduction
- 2 Le problème fg + 1
- 3 Un peu d'Onion Peeling
- 4 Conclusion

Aperçu

- Rappel : la meilleure borne est en $\mathcal{O}(n^{4/3})$
- ullet On se concentre sur le cas d'une vraie annulation (coefficient constant de fg égal à -1)

Aperçu

- Rappel : la meilleure borne est en $\mathcal{O}(n^{4/3})$
- ullet On se concentre sur le cas d'une vraie annulation (coefficient constant de fg égal à -1)
- Idée principale : on décompose P = Mon(f), Q = Mon(g), et l'ensemble des nouveaux points du polygone de Newton, puis on étudie les différentes « contributions »
- On va utiliser le résultat suivant :

Théorème (García-Marco, Knauer)

Si P est convexe et $S \subseteq P + P$ est convexe, alors $|S| \le 2|P|$

Aperçu

- Rappel : la meilleure borne est en $\mathcal{O}(n^{4/3})$
- ullet On se concentre sur le cas d'une vraie annulation (coefficient constant de fg égal à -1)
- Idée principale : on décompose P = Mon(f), Q = Mon(g), et l'ensemble des nouveaux points du polygone de Newton, puis on étudie les différentes « contributions »
- On va utiliser le résultat suivant :

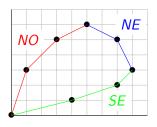
Théorème (García-Marco, Knauer)

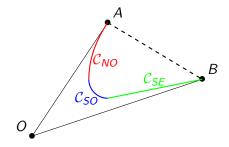
Si P est convexe et $S \subseteq P + P$ est convexe, alors $|S| \le 2|P|$

• Supposons tout d'abord que P et Q sont convexes

Première étape : de la structure!

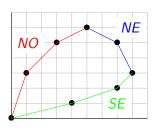
• On décompose P et Q en chaînes convexes : P_{NO} , P_{SE} , etc.

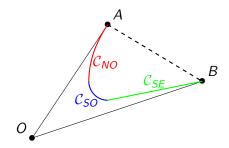




Première étape : de la structure!

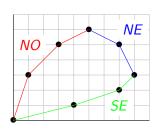
- On décompose P et Q en chaînes convexes : P_{NO} , P_{SE} , etc.
- Quand on supprime l'origine, des nouveaux points apparaissent \Rightarrow forment un ensemble $\mathcal C$ qui a aussi de la structure

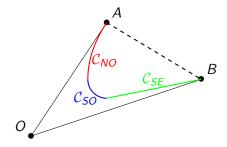




Première étape : de la structure!

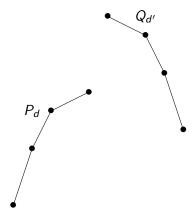
- On décompose P et Q en chaînes convexes : P_{NO} , P_{SE} , etc.
- Quand on supprime l'origine, des nouveaux points apparaissent \Rightarrow forment un ensemble $\mathcal C$ qui a aussi de la structure
- Objectif : borner les $|(P_d + Q_{d'}) \cap \mathcal{C}_{d''}|$ séparément \Rightarrow différents arguments



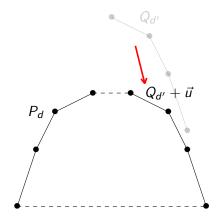


Lemme

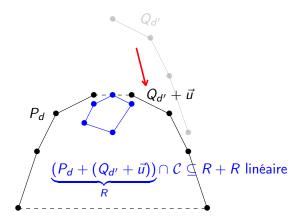
Si $d \neq d'$, alors $|(P_d + Q_{d'}) \cap C| \leq 2(|P_d| + |Q_{d'}|)$



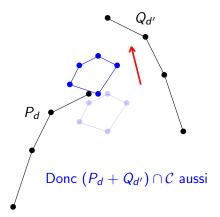
Si
$$d \neq d'$$
, alors $|(P_d + Q_{d'}) \cap C| \leq 2(|P_d| + |Q_{d'}|)$



Si
$$d \neq d'$$
, alors $|(P_d + Q_{d'}) \cap C| \leq 2(|P_d| + |Q_{d'}|)$



Si
$$d \neq d'$$
, alors $|(P_d + Q_{d'}) \cap C| \leq 2(|P_d| + |Q_{d'}|)$



Argument 2 : argument de chaînes

Si
$$d \neq d'$$
, alors $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

Argument 2 : argument de chaînes

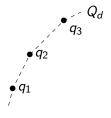
Si
$$d \neq d'$$
, alors $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

- On forme le graphe G=(V,E) où $V=P_d\cup Q_d$ et $(p,q)\in E\Leftrightarrow p+q\in \mathcal{C}_{d'}$
- Si p a trois voisins q_1 , q_2 et q_3 , ils forment une chaîne ...

Lemme

Si
$$d \neq d'$$
, alors $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

- On forme le graphe G=(V,E) où $V=P_d\cup Q_d$ et $(p,q)\in E\Leftrightarrow p+q\in \mathcal{C}_{d'}$
- Si p a trois voisins q_1 , q_2 et q_3 , ils forment une chaîne ...

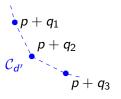


• de type d car $q_i \in Q_d$

Lemme

Si
$$d \neq d'$$
, alors $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

- On forme le graphe G=(V,E) où $V=P_d\cup Q_d$ et $(p,q)\in E\Leftrightarrow p+q\in \mathcal{C}_{d'}$
- Si p a trois voisins q_1 , q_2 et q_3 , ils forment une chaîne ...

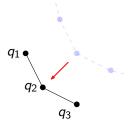


- ullet de type d car $q_i \in Q_d$
- de type d' car translatés d'une sous-chaîne de $\mathcal{C}_{d'}$

Lemme

Si
$$d \neq d'$$
, alors $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

- On forme le graphe G=(V,E) où $V=P_d\cup Q_d$ et $(p,q)\in E\Leftrightarrow p+q\in \mathcal{C}_{d'}$
- Si p a trois voisins q_1 , q_2 et q_3 , ils forment une chaîne ...

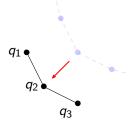


- ullet de type d car $q_i \in Q_d$
- de type d' car translatés d'une sous-chaîne de $\mathcal{C}_{d'}$

Lemme

Si
$$d \neq d'$$
, alors $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

- On forme le graphe G=(V,E) où $V=P_d\cup Q_d$ et $(p,q)\in E\Leftrightarrow p+q\in \mathcal{C}_{d'}$
- Si p a trois voisins q_1 , q_2 et q_3 , ils forment une chaîne ...

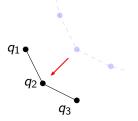


- ullet de type d car $q_i \in Q_d$
- de type d' car translatés d'une sous-chaîne de $\mathcal{C}_{d'}$
- Contradiction car $d \neq d'$

Lemme

Si
$$d \neq d'$$
, alors $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

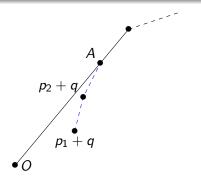
- On forme le graphe G=(V,E) où $V=P_d\cup Q_d$ et $(p,q)\in E\Leftrightarrow p+q\in \mathcal{C}_{d'}$
- Si p a trois voisins q_1 , q_2 et q_3 , ils forment une chaîne ...



- ullet de type d car $q_i \in Q_d$
- de type d' car translatés d'une sous-chaîne de $\mathcal{C}_{d'}$
- Contradiction car $d \neq d'$

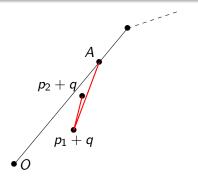
• Note : on peut remplacer P_d par P, ou Q_d par Q, dans cette preuve

Lemme



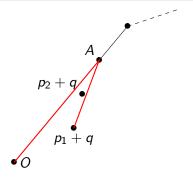
- On reforme le graphe G.
- Si q a deux voisins p_1 et p_2 ...

Lemme



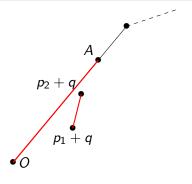
- On reforme le graphe G.
- Si q a deux voisins p_1 et p_2 ...
- ullet pente $(p_1,p_2)> \operatorname{pente}(p_1+q,A)$

Lemme



- On reforme le graphe G.
- Si q a deux voisins p_1 et p_2 ...
- $\bullet \ \mathsf{pente}(p_1,p_2) > \mathsf{pente}(p_1+q,A)$
- $pente(p_1 + q, A) > pente(O, A)$

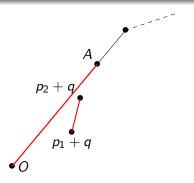
Lemme



- On reforme le graphe G.
- Si q a deux voisins p_1 et p_2 ...
- $pente(p_1, p_2) > pente(p_1 + q, A)$
- $pente(p_1 + q, A) > pente(O, A)$
- $pente(O, A) \ge pente(p_1, p_2)$
- Contradiction

Lemme

 $|(P_d + Q) \cap C_d| \le |Q|$ (Q non nécessairement convexe)



- On reforme le graphe G.
- Si q a deux voisins p_1 et p_2 ...
- $\bullet \ \mathsf{pente}(p_1,p_2) > \mathsf{pente}(p_1+q,A)$
- $pente(p_1 + q, A) > pente(O, A)$
- pente $(O, A) \ge \text{pente}(p_1, p_2)$
- Contradiction

Théorème

 $Si\ Mon(f)\ et\ Mon(g)\ sont\ convexes,\ alors\ |Newt(fg+1)|\ est\ linéaire$

• P convexe : on réutilise les arguments 2 et 3

- P convexe : on réutilise les arguments 2 et 3
- P et Q faiblement convexes : redéfinir A et B, même arguments

- P convexe : on réutilise les arguments 2 et 3
- P et Q faiblement convexes : redéfinir A et B, même arguments
- Newt($fg + c \cdot x^{\alpha}y^{\beta}$) : plusieurs cas selon la position de (α, β) , même arguments

- P convexe : on réutilise les arguments 2 et 3
- P et Q faiblement convexes : redéfinir A et B, même arguments
- Newt $(fg + c \cdot x^{\alpha}y^{\beta})$: plusieurs cas selon la position de (α, β) , même arguments

Théorème

Dans tous les cas précédents, le polygone de Newton du polynôme étudié a une taille linéaire

- P convexe : on réutilise les arguments 2 et 3
- P et Q faiblement convexes : redéfinir A et B, même arguments
- Newt($fg + c \cdot x^{\alpha}y^{\beta}$) : plusieurs cas selon la position de (α, β) , même arguments

Théorème

Dans tous les cas précédents, le polygone de Newton du polynôme étudié a une taille linéaire

- Suppressions de $k \ge 2$ points :
 - ▶ non consécutifs : $\mathcal{O}(n \cdot k)$
 - consécutifs : $\mathcal{O}(n + k \log k)$

- P convexe : on réutilise les arguments 2 et 3
- P et Q faiblement convexes : redéfinir A et B, même arguments
- Newt $(fg + c \cdot x^{\alpha}y^{\beta})$: plusieurs cas selon la position de (α, β) , même arguments

Théorème

Dans tous les cas précédents, le polygone de Newton du polynôme étudié a une taille linéaire

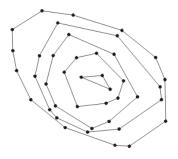
- Suppressions de $k \ge 2$ points :
 - ▶ non consécutifs : $\mathcal{O}(n \cdot k)$
 - consécutifs : $\mathcal{O}(n + k \log k)$
 - Si f et g sont quelconques (k couches), on obtient une borne en $\mathcal{O}(k \cdot n \log n)$ en décomposant les différentes couches en chaînes convexes

Plan

- Introduction
- 2 Le problème fg+1
- 3 Un peu d'Onion Peeling
- 4 Conclusion

Onion Peeling

Décomposer en ensemble de « couches »



Objectifs : Dans le cas P+Q : taille des couches, nombre de couches ou de manière générale, des propriétés structurelles

- Pour *P* + *P*
 - ▶ Notion naturelle de distance entre deux points d'un polygône convexe

- Pour *P* + *P*
 - Notion naturelle de distance entre deux points d'un polygône convexe
 - Si P est régulier, correspondance distance/couche (également une borne sur le nombre de couches de P + P + P)
 - Si P est quelconque, plus une correspondance mais tout de même : la somme de deux points à distance i est au moins sur la (i + 1)-ième couche

- Pour *P* + *P*
 - Notion naturelle de distance entre deux points d'un polygône convexe
 - Si P est régulier, correspondance distance/couche (également une borne sur le nombre de couches de P + P + P)
 - Si P est quelconque, plus une correspondance mais tout de même : la somme de deux points à distance i est au moins sur la (i + 1)-ième couche
 - Mais pas de bornes intéressantes

- Pour *P* + *P*
 - Notion naturelle de distance entre deux points d'un polygône convexe
 - Si P est régulier, correspondance distance/couche (également une borne sur le nombre de couches de P + P + P)
 - Si P est quelconque, plus une correspondance mais tout de même : la somme de deux points à distance i est au moins sur la (i + 1)-ième couche
 - Mais pas de bornes intéressantes
- Pour P + Q, pas de distance convenable trouvée/prouvée
- Si P et Q sont quelconques, on a une borne $\mathcal{O}(k \cdot n \log n)$ en reliant les couches de P, Q et P + Q

Plan

- Introduction
- 2 Le problème fg+1
- Un peu d'Onion Peeling
- 4 Conclusion

Conclusion

- Sur le problème fg + 1 : meilleure borne linéaire, quand l'un des ensembles de monômes est convexe.
- Première généralisation à regarder : si P et Q ont deux couches Ce qui pose problème : $(P_{NO,2} + Q_{NO,2}) \cap \mathcal{C}_{NO}$
- Des bornes inférieures? Même $\alpha \cdot n$, avec $\alpha > 2...$

Questions?

