1 Ductile strain rate measurements document long-term strain

- 2 localization in the continental crust
- 3 Emmanuelle Boutonnet^{1,2}, Philippe Hervé Leloup¹, Caroline Sassier³, Véronique Gardien¹,

4 and Yanick Ricard¹

⁵ ¹Laboratoire de Géologie de Lyon, Université de Lyon, Université Lyon 1, ENS-Lyon, CNRS, 2

- 6 rue Raphaël Dubois, 69622 Villeurbanne, France
- 7 ²Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21
- 8 D-55128 Mainz, Germany
- 9 ³Department of Geosciences, University of Oslo, boks 1047, Blindern, 0316 Oslo, Norway
- 10 ABSTRACT

11 Ouantification of strain localization in the continental lithosphere is hindered by the lack 12 of reliable deformation rate measurements in the deep crust. Quartz-strain-rate-metry (QSR) is a 13 convenient tool for performing such measurements once calibrated. We achieve this calibration 14 by identifying the best piezometer-rheological law pairs that yield a strain rate in agreement with 15 that measured on the same outcrop by a more direct method taken as a reference. When applied 16 to two major continental strike-slip shear zones, the Ailao Shan-Red River (ASRR) and the Karakorum, the calibrated QSR highlights across-strike strain rate variations, from $< 1 \times 10^{-15} \text{ s}^{-1}$ 17 in zones where strain is weak, to > 1×10^{-13} s⁻¹ in zones where it is localized. Strain rates 18 19 integrated across the shear zones imply fast fault slip rates on the order of 1.1 (Karakorum) and 4 $cm yr^{-1}$ (ASRR) proving strong strain localization in these strike-slip continental shear zones. 20

21 INTRODUCTION

22	The extent to which deformation in the continental crust is strongly localized in narrow
23	zones, as it is in the oceanic lithosphere, remains debated. Whilst some argue that continental
24	deformation during collision is mostly localized along few narrow discontinuities (e.g.,
25	Tapponnier et al., 2001), the continental crust and lithosphere are commonly modeled as a
26	viscous media in which deformation is pervasive (e.g., Beaumont et al., 2001). This discussion is
27	fundamental to our knowledge of the continent deformation and evolution, but is hindered by the
28	lack of deformation rate measurements in the deep crust. If rates lower than 10^{-15} s ⁻¹ or higher
29	than 10^{-13} s ⁻¹ are used to define "stable" or highly deforming zones (Pfiffner and Ramsay, 1982),
30	they have been effectively measured only in a handful of cases (Christensen et al., 1989; Müller
31	et al., 2000; Sassier et al., 2009). There is therefore a need to validate a method of measuring
32	strain rates that could be easily used in various geological settings.
33	Because quartz is ubiquitous in the continental crust, the quartz-strain-rate-metry (QSR)
34	method, that yields the strain rate from the size of recrystallized quartz grains knowing the
35	deformation temperature, could provide measurements in many geological contexts. However,
36	the QSR results are not reliable because they vary by five orders of magnitude depending on the
37	piezometer-rheological law pair considered. It is therefore necessary to benchmark the QSR
38	using a geological setting where the strain rate is independently known and the thermodynamic
39	conditions accurately defined. This is why we first calibrate the QSR method to determine the
40	most accurate piezometer-rheological law pair, prior to using this calibration to quantify the
41	strain rate variations in two major strike-slip shear zones.

42

43 CALIBRATING THE QSR METHOD

44	Experimental studies show a close relationship (called piezometer) between the average
45	size D of quartz crystals recrystallized during dislocation creep at medium to high temperature
46	and differential stress σ (Shimizu, 2008; Stipp and Tullis, 2003; Twiss, 1977):
47	$\sigma = K D^{-p} $ (1)
48	where p and K are determined experimentally or theoretically.
49	The QSR method combines this equation with the ductile rheological law in the same
50	thermodynamic condition, that links the strain rate ϵ , the differential stress σ , the temperature T
51	(Gleason and Tullis, 1995), and in some studies the water fugacity $f_{\rm H2O}$ (Hirth et al., 2001; Rutter
52	and Brodie, 2004):
53	$\varepsilon = d\varepsilon/dt = A \sigma^n f_{H2O}^m e^{-Q/RT} $ (2)
54	where the activation energy Q, the prefactor A, and the exponents n and m are determined
55	experimentally, and R is the ideal gas constant. Combining Equations (1) and (2) yields the strain
56	rate ϵ^{\cdot} from the grain size D when the deformation temperature T is known (e.g., Stipp et al.,
57	2002).
58	The ~1000 km long Miocene left-lateral Ailao Shan Red River (ASRR) shear zone has
59	been interpreted as a plate-like strike-slip boundary separating Indochina and South China blocks
60	(Fig. 1a) (e.g., Leloup et al., 1995). The shear zone crops out as a ~10 km wide belt of high-
61	grade mylonitic gneiss framed by slightly deformed Mesozoic sediments to the north and schists
62	to the south (Fig. 1b). Within the mylonites the site C1 yielded the exceptional opportunity to
63	measure a strain rate from the deformations and ages of three sets of synkinematic dykes (Sassier
64	et al., 2009). A constant strain rate of $3.5 \pm 0.5 \text{ x}10^{-14} \text{ s}^{-1}$ was recorded between 29.9 and 26.8
65	Ma as well as between 26.8 and 22.6 Ma. This strain rate serves as a reference to calibrate the
66	QSR method applied on two quartz ribbons (YY33 and YY35) sampled 4 m apart at the same

67	site (see Fig. DR1 in the GSA Data Repository ¹ for precise sample location). The two quartz
68	ribbons are parallel to the quartzo-feldspatic mylonitic banding. In these rocks, quartz is weaker
69	than feldspar but stronger than biotite. The absence of clasts or of a load bearing framework
70	suggests that deformation occurred in the deformation regime 2 of Handy (1990) where all
71	minerals participate to the deformation.
72	Grain sizes and shapes of the quartz crystals constituting the two ribbons were measured
73	on thin sections using techniques allowing mapping the grains (electron backscattered
74	diffraction) and their boundaries (optical microscopy). The two samples deformed by dislocation
75	creep accommodated first by grain boundary migration and, later during cooling, by subgrain
76	rotation. The grains recrystallized in the first regime are characterized by amoeboid shapes; in
77	the second regime by angular shapes with angles close to 120°. Average two-dimensional
78	diameters of 62.3 \pm 3.0 µm (YY33) and 58.1 \pm 2.4 µm (YY35) were measured for the grains
79	deformed by subgrain rotation (Fig. 2). In the case of the piezometers based on the three-
80	dimensional diameters we apply a stereographic correction increasing the grain sizes by a factor
81	4/π.
82	The thermodynamic conditions during the recrystallization by subgrain rotation are
83	obtained by combining several methods (Fig. 3):
84	1-The quartz crystallographic preferred orientation suggests an activation of the $\langle a \rangle$
85	basal glide system, with minor contribution from the $\langle a \rangle$ prismatic glide system in both samples.
86	This type of deformation occurs for temperatures between 400 and 500°C (Pennacchioni et al.,
87	2010; Stipp et al., 2002).
88	2-The TitaniQ thermobarometer (Thomas et al., 2010; Wark and Watson, 2006), for an
89	average Ti-content measured by LA-ICP-MS of 14.3±0.4 ppm in YY33 and 14.6±0.9 ppm for

Page 4 of 14

90	YY35, and a Ti-activity $a_{TiO2} = 0.8 \pm 0.2$ yields a possible domain of P-T equilibrium conditions.
91	A Ti activity ≥ 0.6 is appropriate for most rocks containing a Ti rich phase (rutile, illimenite,
92	sphene) (Wark and Watson, 2006) or biotite.
93	3- For YY35, microthermometry of primary and secondary fluid inclusions hosted by the
94	quartz provides a second (isochoric) constraint (Bodnar, 1993) considering the measured
95	homogenization temperatures of $312 \pm 29^{\circ}$ C and salinities of 6.8 ± 1.1 wt% NaCl.
96	For YY35, the thermobarometers intersect at T=425 \pm 38°C and P=130 \pm 80 MPa (Fig. 3).
97	YY33 data are compatible with these P-T conditions, that are also compatible with the P-T-time
98	path previously proposed for the central Ailao Shan (Leloup et al., 2001), suggesting that
99	subgrain rotation recrystallization occurred around 23 Ma when our reference strain rate was
100	effective. In this context, recrystallization occurs during a retrograde evolution after high
101	temperature (≥500°C) deformation, in which case the TitaniQ thermobarometer is more easily
102	reset than during prograde metamorphism (Grujic et al., 2011).
103	Using these grain sizes and P-T conditions, several QSR strain rates are calculated using
104	the four piezometers (sets of K and p paramaters (1)) and six power flow laws (sets of Q, A, n, m
105	parameters (2)) published for quartz, i.e. 24 pairs (Fig. 4). The two samples yield similar paleo-
106	strain rates, but which vary between 2.6 $\times 10^{-18}$ and 4.5 $\times 10^{-13}$ s ⁻¹ depending on the piezometer -
107	flow law pair. Taking the temperature and grain size uncertainties into account as well as those
108	of the piezometers and flow laws, yields relatively large error bars on the final result, the main
109	error source being the uncertainty on the deformation temperature (Fig. 4). Most pairs
110	underestimate the site C1 reference strain rate $(3.5\pm0.5 \times 10^{-14} \text{ s}^{-1})$. The Stipp and Tullis (2003)
111	experimental piezometer corrected for an experimental bias (Holyoke and Kronenberg, 2010)
112	yields satisfactory results when associated with Paterson and Luan (1990) flow law, while

113 Shimizu's (2008) theoretical piezometer give accurate results when combined with Hirth et al.

- 114 (2001) flow law. For applications on natural shear zones we rely on that latter pair because its
- 115 flow law is constrained both by experimental and natural data.

116 STRAIN RATE MEASUREMENTS FOR TWO MAJOR SHEAR ZONES

117 By using the QSR method that we have calibrated, we can address the problem of

118 localization of the deformation on two major shear zones for which fast and slow fault slip rates

119 have both been proposed. For all samples, the average grain sizes were precisely measured. The

120 thermodynamic conditions were constrained by the intersection between TitaniQ

121 thermobarometry and P-T-time paths from previous studies and compared with temperature

122 conditions expected from the crystallographic preferred orientations.

123 The Ailao Shan Red River Shear Zone

124 The Miocene slip rate of the ASRR has been suggested to be to be rather fast, between

125 2.8 and 5.3 cm yr⁻¹ using geological markers, plate tectonic reconstructions and cooling histories

126 (e.g., Leloup et al., 2001), or conversely to be slower than 1.4 cm yr⁻¹ using different geological

127 markers (e.g., Clift et al., 2008). If deformation was homogeneous in space and time within a 10

128 km-wide shear zone, this would correspond to shear rates between 8.9 $\times 10^{-14}$ and 1.7 $\times 10^{-13}$ s⁻¹ or

below $4.4 \times 10^{-14} \text{ s}^{-1}$, respectively. Besides the two samples used to calibrate the QSR method at

130 site C1, six others were taken to estimate the strain rates across the shear zone (Fig. 1b).

- 131 When plotted along a cross-section of the shear zone, strain rates show a progressive 132 increase from 2.5 $\times 10^{-15}$ s⁻¹ in the SW to 1.3 $\times 10^{-12}$ s⁻¹ in the NE (Fig. 5a), that can be 133 approximated as a linear increase of log(ε ⁻). This suggests a strong deformation localization
- along the NE border of the shear zone and corresponds to an integrated fault slip rate on the

Publisher: GSA Journal: GEOL: Geology

Article ID: G33723

135 order of 4 cm yr⁻¹ across it. Such velocity is in the high range of the slip rates proposed for the

136 ASRR. The differential stresses according to (1) range between ~20 and ~52 MPa.

137 The Karakorum Shear Zone

138 The > 800 km long right-lateral Karakorum fault zone bounds Tibet to the west (e.g.,

139 Tapponnier et al., 2001) (Fig. 1a). Its Neogene-Quaternary slip rate is disputed, with values

140 deduced from geological and geodetic data ranging from below 0.5, up to 1.1 cm yr⁻¹ (e.g.,

Boutonnet et al., 2012; Chevalier et al., 2005; Wright et al., 2004). In the Tangtse area (India),

142 deformation was absorbed within the two narrow Tangtse (see cover image) and Muglib

143 mylonitic strands (e.g., Boutonnet et al., 2012) (Fig. 5b). Five QSR measurements confirm this

144 impression with values above $1.6 \times 10^{-13} \text{ s}^{-1}$ in the two mylonitic strands, and below $1.0 \times 10^{-14} \text{ s}^{-1}$

145 elsewhere (Fig. 5b). The large size of recrystallized quartz grains in sample LA42 has been taken

146 to imply a very low deformation rate. However, this large size may also indicate that the grain

147 deformed by grain boundary migration in which case the QSR method that we calibrated for

subgrain rotation, could be less adequate. The measured shear rates correspond to an integrated

149 fault slip rate between 0.9 and 1.3 cm yr⁻¹ close to, but somewhat higher, than previous

150 estimates. The differential stresses according to (1) within the Karakorum shear zone are similar

151 to those of the ASRR ranging between ~24 and ~64 MPa.

152

153 CONCLUSION

We calibrated the QSR method in one outcrop of known strain rate and deformation temperature in which various piezometers-flow laws pairs can be tested. For quartz recrystallization in the subgrain rotation regime, the most accurate results are obtained by combining Shimizu's (2008) piezometer with Hirth et al.'s (2001) power flow law. Whilst the

158	absolute deformation rates must be considered with some caution, their relative variation appears
159	robust. As quartz ribbons are ubiquitous, crustal paleo-deformation rates can now be evaluated
160	with an unprecedented spatial resolution.
161	In the case of the ASRR and Karakorum shear zones, deformation rates appear to be
162	variable across strike in accordance with the qualitative field observations, with narrow (few km
163	wide) zones with strain rates $\ge 10^{-13}$ s ⁻¹ where most of the deformation localizes. The strain rates
164	in these kilometer wide zones are more than 500 times higher than in the other parts of the
165	exposed shear zones and more than 1000 times higher than in the shear zone surroundings. This
166	implies that a 1 km wide zone of localized strain can accommodate as much deformation as a
167	1000 km wide block. For the two studied cases, the shear rates, when integrated across strike, are
168	compatible with the fastest slip rates inferred from geologic and geodetic considerations. More
169	strain rate measurements will be crucial for more thoroughly document the ratio between diffuse
170	and localized deformation, but geodynamic models should account for the strong strain
171	localization that seems to characterizes deformation of the continental lithosphere.
172	
173	ACKNOWLEDGMENTS

We thank 3F INSU-CNRS for funding. We are grateful to C. Lefebvre, L. Menegon, M.
Stipp, M. Montagnat, M. Peternell and A. Agranier for discussions and advices, and to C.
Gerbi, W. Muller for their constructive reviews.

177 **REFERENCES CITED**

178 Beaumont, C., Jamieson, R.A., Nguyen, M.H., and Lee, B., 2001, Himalayan tectonics explained

by extrusion of a low-viscosity crustal channel coupled to focused surface denudation:

180 Nature, v. 414, p. 738–742, doi:10.1038/414738a.

181 Bodnar, R.J., 1993, Revised equation and table for determining the freezing point depression of 182 H₂O-NaCl solutions: Geochimica et Cosmochimica Acta, v. 57, p. 683–684, 183 doi:10.1016/0016-7037(93)90378-A. 184 Boutonnet, E., Leloup, P.H., Arnaud, N., Paquette, J.L., Davis, W.J., and Hattori, K., 2012, 185 Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in 186 a strike-slip shear zone. The case of the right-lateral Karakorum fault: Tectonics, v. 31, 187 TC4012, doi:10.1029/2011TC003049. 188 Chevalier, M.-L., Ryerson, F.J., Tapponnier, P., Finkel, R.C., Van Der Woerd, J., Haibing, L., 189 and Qing, L., 2005, Slip-rate measurements on the Karakorum fault may imply secular 190 variations in fault motion: Science, v. 307, p. 411–414, doi:10.1126/science.1105466. 191 Christensen, J.N., Rosenfeld, J.L., and DePaolo, D.J., 1989, Rates of tectonometamorphic 192 processes from rubidium and strontium isotopes in garnet: Science, v. 244, p. 1465–1469. 193 Clift, P., Lee, G.H., Duc, N.A., Barckhausen, U., Long, H.V., and Zhen, S., 2008, Seismic 194 reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South 195 China Sea: Tectonics, v. 27, TC3008, doi:10.1029/2007TC002216. 196 Gleason, G., and Tullis, J., 1995, A flow law for dislocation creep of quartz aggregates 197 determined with the molten salt cell: Tectonophysics, v. 247, p. 1-23, doi:10.1016/0040-198 1951(95)00011-B. 199 Grujic, D., Stipp, M., and Wooden, J.L., 2011, Thermometry of quartz mylonites: Importance of 200 dynamic recrystallization on Ti-in-quartz reequilibration: Geochemistry Geophysics 201 Geosystems, v. 12, Q06012, doi:10.1029/2010GC003368. 202 Handy, M.R., 1990, The solid-state flow of polymineralic rocks: Journal of Geophysical 203 Research, v. 95, p. 8647–8661, doi:10.1029/JB095iB06p08647.

- Hirth, G., Teyssier, C., and Dunlap, W.A., 2001, An evaluation of quartzite flow laws based on
- 205 comparisons between experimentally and naturally deformed rocks: International Journal of
- 206 Earth Sciences, v. 90, p. 77–87, doi:10.1007/s005310000152.
- 207 Holyoke, C.W., and Kronenberg, A.K., 2010, Accurate differential stress measurement using the
- 208 molten salt cell and solid salt assemblies in the Griggs apparatus with applications to
- strength, piezometers and rheology: Tectonophysics, v. 494, p. 17–31,
- 210 doi:10.1016/j.tecto.2010.08.001.
- 211 Leloup, P. H., R. Lacassin, P. Tapponnier, U. Schärer, Zhong Dalai, Liu Xiaohan, Zhang
- 212 Liangshang, Ji Shaocheng, and Phan Trong Trinh, 1995, The Ailao Shan-Red River shear
- 213 zone (Yunnan, China), Tertiary transform boundary of Indochina: Tectonophysics, V. 251,
- 214 p. 2-84,. doi: 10.1016/0040-1951(95)00070-4.
- 215 Leloup, P.H., Arnaud, N., Lacassin, R., Kienast, J.R., Harrison, T.M., Trinh, P.T., Replumaz, A.,
- and Tapponnier, P., 2001, New constraints on the structure, thermochronology and timing of
- 217 the Ailao Shan–Red River shear zone, SE Asia: Journal of Geophysical Research, v. 106,
- 218 p. 6683–6732, doi:10.1029/2000JB900322.
- Luan, F.C., and Paterson, M.S., 1992, Preparation and deformation of synthetic aggregates of
- quartz: Journal of Geophysical Research, v. 97, p. 301–320, doi:10.1029/91JB01748.
- 221 Müller, W., Aerden, D., and Halliday, A.N., 2000, Isotopic dating of strain fringe increments:
- Duration and rates of deformation in shear zones: Science, v. 288, p. 2195–2198,
- doi:10.1126/science.288.5474.2195.
- 224 Paterson, M.S., and Luan, F.C., 1990, Quartzite rheology under geological conditions, in Knipe,
- 225 R.J., and Rutter, E.H., eds., Deformation Mechanisms, Rheology and Tectonics: Geological
- 226 Society of London Special Publication 360, p. 299–307.

227	Pennacchioni, G., Menegon, L., Leiss, B., Nestola, F., and Bromiley, G., 2010, Development of
228	crystallographic preferred orientation and microstructure during plastic deformation of
229	natural coarse-grained quartz veins: Journal of Geophysical Research, v. 115, B12405,
230	doi:10.1029/2010JB007674.
231	Pfiffner, O., and Ramsay, J.G., 1982, Constraints on geological strain rates: Arguments from
232	finite strain rates of naturally deformed rocks: Journal of Geophysical Research, v. 87,
233	p. 311–321, doi:10.1029/JB087iB01p00311.
234	Rutter, E.H., and Brodie, K.H., 2004, Experimental intracrystalline plastic flow in hot-pressed
235	synthetic quartzite prepared from Brazilian quartz crystals: Journal of Structural Geology,
236	v. 26, p. 259–270, doi:10.1016/S0191-8141(03)00096-8.
237	Sassier, C., Leloup, P.H., Rubatto, D., Galland, O., Yue, Y., and Lin, D., 2009, Direct
238	measurement of strain rates in ductile shear zones: A new method based on syntectonic
239	dikes: Journal of Geophysical Research, v. 114, B01406, doi:10.1029/2008JB005597.
240	Shimizu, I., 2008, Theories and applicability of grain size piezometers, the role of dynamic
241	recrystallization mechanisms: Journal of Structural Geology, v. 30, p. 899-917,
242	doi:10.1016/j.jsg.2008.03.004.
243	Stipp, M., and Tullis, J., 2003, The recrystallized grain size piezometer for quartz: Geophysical
244	Research Letters, v. 30, 2088, doi:10.1029/2003GL018444.
245	Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S.M., 2002, The eastern Tonale fault zone:
246	A 'natural laboratory' for crystal plastic deformation of quartz over a temperature range
247	from 250 to 700°C: Journal of Structural Geology, v. 24, p. 1861–1884, doi:10.1016/S0191-
248	8141(02)00035-4.

- 249 Stipp, M., Tullis, J., Scherwath, M., and Behrmann, J., 2010, A new perspective on
- 250 paleopiezometry: Dynamically recrystallized grain size distributions indicate mechanism
- 251 changes: Geology, v. 38, p. 759–762, doi:10.1130/G31162.1.
- 252 Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Jingsui, Y.,
- 253 2001, Oblique stepwise rise and growth of the Tibet plateau: Science, v. 294, p. 1671–1677,
- doi:10.1126/science.105978.
- 255 Thomas, J., Watson, E.B., Spear, F., Shemella, P., Nayak, S., and Lanzirotti, A., 2010, TitaniQ
- under pressure: The effect of pressure and temperature on the solubility of Ti in quartz:
- 257 Contributions to Mineralogy and Petrology, v. 160, p. 743–759, doi:10.1007/s00410-010-
- 258 0505-3.
- Twiss, R., 1977, Theory and applicability of a recrystallized grain size paleopiezometer: Pure
 and Applied Geophysics, v. 115, p. 227–244, doi:10.1007/BF01637105.
- Wark, D., and Watson, E., 2006, TitaniQ: A titanium-in-quartz geothermometer: Contributions
 to Mineralogy and Petrology, v. 152, p. 743–754, doi:10.1007/s00410-006-0132-1.
- 263 Wright, T.J., Parsons, B., England, P.C., and Fielding, E.J., 2004, InSAR observations of low
- slip rates on the major faults of western Tibet: Science, v. 305, p. 236–239,
- 265 doi:10.1126/science.1096388.

266 FIGURE CAPTIONS

- 267 Figure 1. (a) Ailao Shan-Red River (ASRR) and Karakorum (K) shear zones. (b) Cross-section
- 268 of the ASRR containing site C1 where the QSR method has been calibrated. Adapted from
- Leloup et al. (1995). The shear zone is framed by the Ailao shan fault (AF) and the Red River
- fault (RRF). Other samples for which shear strains are measured (see Fig. 5a) are also located.
- 271

272	Figure 2. Sample YY33 (a) and YY35 (b) quartz microstructures on thin-section
273	microphotographs (top) and grain-size distributions (bottom) (Site C1, Ailao Shan-Red River
274	shear zone). Sum of individual normal distributions (dashed Gaussian curves) yields closest size
275	distribution to measured histogram (gray bars). Recrystallization mechanisms fields: BLG-
276	bulging; SGR-subgrain rotation; GBM-grain boundary migration according to Stipp et al.
277	(2010).
278	
279	Figure 3. Pressure-temperature (P-T) conditions for the quartz recrystallization event by subgrain
280	rotation at site C1 (Ailao Shan-Red River shear zone). Sample YY33 and YY35 recrystallization
281	conditions (T = $425\pm38^{\circ}$ C, P = 130 ± 80 MPa, black cross) are given by the intersection of the
282	TitaniQ thermo-barometer (labeled TiQ) (data in Table DR2) and YY35 fluid inclusions isochors
283	(labeled F.I.) (data in Table DR3). This P-T field is consistent with the quartz deformation
284	temperature indicated by the crystallographic preferred orientation (labeled CPO, details in Fig.
285	DR4), temperature at which α quartz recrystallizes by subgrain rotation and with the central
286	Ailao Shan P-T-time path from Leloup et al. (2001) (ages in Ma in white). Recrystallization
287	mechanisms as in Fig. 2. Temperatures for glide systems activation from Pennacchioni et al.,
288	(2010) and Stipp et al. (2002).

289

Figure 4. Results of the QSR method on samples YY33 and YY35 at site C1 (Ailao Shan-Red
River shear zone). Strain rate measured at site C1 (Sassier et al., 2009) and average shear rates
for ASRR are plotted for comparison. See Table DR5 for piezometers parameters: S&T (Stipp
and Tullis, 2003) ; S&Tc (Stipp and Tullis, 2003) corrected by Holyoke and Kronenberg, (2010)
; T (Twiss, 1977) ; S (Shimizu, 2008). See Table DR6 for rheological parameters: R&B (Rutter

295	and Brodie, 2004); L&P (Luan and Paterson, 1992); G&T (Gleason and Tullis, 1995); G&Tc
296	(Gleason and Tullis, 1995) corrected by Holyoke and Kronenberg, (2010); H (Hirth et al., 2001),
297	P&L (Paterson and Luan, 1990). When needed, the water fugacity was assumed equal to the
298	hydrostatic pressure. The black frames indicate the piezometer-low law pairs that yield strain
299	rates in agreement with the reference value. The thin error bars are the total uncertainties, the
300	bold ones are linked to the uncertainty on the deformation temperature (T) only.
301	
302	Figure 5. Sections across two major shear zones showing the local strain rates measured values
303	with the QSR method (black dots), with respect to the lithology (Sc: schist, M: mylonites, Se:
304	sediments, G: undeformed granite, Me: metamorphic). See Table DR7 for detailed results. Dot-
305	dashed lines: shear rate profiles used for the calculation of the integrated shear rates. (A) Ailao
306	Shan Red River (ASRR) shear zone (see Fig. 1b). Light and dark grey horizontal bands indicate
307	bulk strain rates calculated for a 10 km wide shear zone, respectively inferring fast fault slip rates
308	between 2.8 and 5.3 cm/yr, or slow ones between 0.5 and 1.4. (B) Karakorum shear zone, at the
309	latitude of Tangtse village (India). Light and dark grey horizontal bands indicates bulk strain
310	rates calculated for a 8 km wide shear zone, respectively inferring fast fault slip rates between
311	0.7 and 1.1 cm/yr, or slow ones between 0.1 and 0.5 cm/yr.
312	

¹GSA Data Repository item 2013xxx, Figures DR1 and DR4, and Tables DR2–DR3, DR5-DR7,

314 is available online at www.geosociety.org/pubs/ft2013.htm, or on request from

editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301,

316 USA.

E. Boutonnet - G33723 - Fig. 1 - pdf

E. Boutonnet - G33723 - Fig. 2 - pdf

E. Boutonnet - G33723 - Fig. 3 - pdf

E. Boutonnet - G33723 - Fig. 4 - pdf

E. Boutonnet - G33723 - Fig. 5 - pdf

a) Map of site C1modified from Sassier et al. (2009). Samples YY33 and YY35 are located b) Foliation and lineation geometry at site C1.

YY33 Thin section (polarized light)

YY35 polished slab showing the quartz ribon where the measurements were performed

Fig. DR1

TABLE DR2. TI-IN-QUARTZ MEASUREMENTS

Samples characteristics		Analytical characteristics		Average Ti contents (ppm)						
Name	Matrix TiO2-contents (%) / mineral	Number of points	Accuracy for Ti (% for NIST 612)	Ti from 47Ti (ppm)	err (1σ)	Ti from 48Ti (ppm)	err (1σ)	Ti from 49Ti (ppm)	err (1σ)	Average Ti (ppm)
<u>YY35</u>	0.65 / titanite, oxydes, biotite	10	0,1	14.8	0.4	N.A.*	N.A.*	13.7	0.5	14.3 ± 0.4
<u>YY33</u>	0.65 / titanite, oxydes, biotite	9	0,1	15.0	0.7	N.A.*	N.A.*	14.1	1.0	14.6 ± 0.9
<u>YU29</u>	N.A. /oxydes, biotite	10	0,3	27.4	2.0	N.A.*	N.A.*	24.4	2.1	25.9 ± 2.1
<u>YU73</u>	N.A. /oxydes, biotite	8	0,2	4.8	0.7	4.0	0.4	4.7	0.5	4.5 ± 0.5
<u>YU42</u>	N.A. /oxydes, biotite	8	0,2	10.5	1.7	10.2	2.6	9.5	2.1	10.1 ± 2.1
<u>YU44</u>	N.A. /oxydes	9	0,1	6.3	0.5	N.A.*	N.A.*	5.1	0.3	5.7 ± 0.4
<u>YY54</u>	N.A. /oxydes, biotite	7	0,2	61.9	1.1	61.5	1.3	61.6	2.9	61.7 ± 1.8
<u>YY72</u>	N.A. /oxydes, (biotite)	12	0,2	40.8	4.0	40.8	3.1	40.7	3.8	40.8 ± 3.6
LA26	N.A. /(oxydes)	13	0,2	6.4	0.3	5.9	0.4	6.5	0.5	6.3 ± 0.4
LA30	N.A. /titanite, (oxydes), biotite	17	0,2	5.0	0.5	4.3	0.4	5.0	0.6	4.8 ± 0.5
LA42	N.A. /(biotite)	12	0,2	1.9	0.4	1.4	0.2	1.9	0.3	1.7 ± 0.3
LA59	N.A. /oxydes, biotite	13	0,2	4.6	0.8	3.6	0.6	4.6	0.8	4.3 ± 0.7
<u>LA47</u>	N.A. /oxydes, biotite	14	0,2	4.4	0.5	3.9	0.7	4.5	0.3	4.3 ± 0.5

*N.A. = not available

Ti concentrations in quartz are determined by ICP-MS (Element XR) coupled to a laser ablation system (Microlas platform and Excimer CompEx Laser, spot diameters of 33 microns and repetition rates of 10 Hz) at the Geosciences Montpellier laboratory (France) and at IUEM Brest (France).

The alignment of the instrument and mass calibration is performed before every analytical session using the NIST 612 reference glass. USGS basalt glass reference materials BCR and BIR are used during experiment as standards.

Masses isotopes are analyzed over 20 cycles for each analysis. ²⁷AI, ²⁹Si, ⁴³Ca and ⁷Li isotopes are used to monitor the quartz ablation, and ⁸⁵Rb, ⁸⁶Sr and ¹³⁷Ba to control if other mineral inclusions are also ablated.

The internal standard is measured by assuming that the sum of all quartz elements amount to 100%

	Fluid inclusions types		Temperatures (°C) **		lsochors: P (bar) = aT(°C) +b ***		Salinity ***	
Fluid inclusion group	* Characteristics	Bubble size (%)	melting	Homogenization	а	b	wt% NaCl	mol/kg
<u>G1</u>	Primary F.I.	18.52	-4.3	311.8	10.4	-3195.5	6.8	1.2
11 measurements	isolated		1ơ: 0.5	1σ: 7.7	± 0.9	± 131.8	± 1.1	± 0.3
<u>G2</u>	Secondary F.I.	12.37	-4.2	311.7	10.6	-3195.5	6.7	1.2
88 measurements	aligned along trails		1σ: 0.6	1σ: 30.5	± 0.9	± 131.8	± 1.1	± 0.3

* Inclusion groups assemble inclusions with similar geometry, orientation and composition which we interpret as cogenetic

** Measurements are carried out on a Linkam Inc. Heating-Freezing Stage at the LGL-TPE (Lyon). Calibration is performed from synthetic fluid inclusions containing pure water and a CO₂-H₂O mixing. The phase transitions of the fluid inclusions are observed in thick sections (100 um-thick) with an optical microscope between -100°C and +400°C.

*** Isochor equations and salinities are calculated using Zhang and Frantz (1987) and Bodnar (1993)

Quartz CPO of samples from the ASRR and Karakorum shear zones.

Figure DR4

Table DR5. Experimentally and theoretically derived parameters for piezometers (equation 1) compiled from the literature.

Piezometer	Calibration type	Recrystallization regime	K (Mpa μm ^p)	р
Stipp and Tullis (2003)	Experimental	Bulging	669	0.79
Stipp and Tullis (2003)	Experimental - Corrected by Holyoke and Kronenberg (2010)	Bulging	480	0.79
Twiss (1977)	Theoretical	Subgrain rotation	603	0.68
Shimizu (2008)	Theoretical	Nucleation by Subgrain rotation and Growth by Grain Boundary Migration of $\alpha\text{-}\text{quartz}$	217	0.8

Table DR6. Experimentally derived parameters for deformation power flow-laws (equation 2) compiled from the literature.

Flow law	Calibration type	Conditions	Q (kJ mol ⁻¹)	A (MPa ⁻ⁿ s ⁻¹)	n	m
Luan and Paterson (1992)	Experimental	Dislocation creep	152	4.0 x 10 ⁻¹⁰	4	0
Paterson and Luan (1990)	Experimental	Dislocation creep	135	6.5 x 10 ⁻⁸	3	0
Hirth et al. (2001)	Experimental	Dislocation creep	135	6.3 x 10 ⁻¹²	4	1
Rutter and Brodie (2004)	Experimental	Dislocation creep	242	1.2 x 10 ⁻⁵	3	1
Gleason and Tullis (1995)	Experimental	Dislocation creep	223	1.1 x 10-4	4	0
Gleason and Tullis (1995)	Experimental - Corrected by Holyoke and Kronenberg (2010)	Dislocation creep	223	5.1 × 10 ⁻⁴	4	0

		1	TABLE DR7. QSF	R-S-H STRAIN RAT	E MEASUREME	NTS IN THE ASRR	AND KFZ STRIKE-SLI	P SHEAR ZONES				_
Shear zone/ san	nple Lat/Long	Quartz vein size	Recrystalliza - tion regime ^a	Mean grain size measured (microns)	Mean grain size corrected ^b (microns)	Stress ^c (MPa)	Method of Temperature determination	Temperature (°C)	Pressure (MPa)	Hydrostatic pressure (MPa)		Strain rated (s-1)
ASRR				()	((2)		
YY33	23.55441° N	mm	SGR	62,3	79.3	36.1	Ti-in-Quartz +	425	130	34		2.9E-14
error (1 sigma)	101.91674° E			±1.8	±4.0	±6.7	P-T path	±40	±80	±25	max	2.0E-13
											min	3.1E-15
YY35	23.55441° N	cm	SGR	58,1	74.0	38.1	Ti-in-Quartz +	425	130	34		3.6E-14
error (1 sigma)	101.91674° E			±2.4	±3.5	±7.2	microthermometry	±38	±80	±25	max	2.4E-13
											min	4.1E-15
YU44	23.530007° N	cm	SGR	64,4	82.0	41.0	Ti-in-Quartz +	367	110	22		3.7E-15
error (1 sigma)	101.910773° E			±2.7	±4.0	±6.7	P-T path	±40	±80	±15	max	2.0E-14
											min	5.5E-16
YU73	23.530007° N	mm	SGR	59,9	76.3	45.4	Ti-in-Quartz +	352	100	18		2.5E-15
error (1 sigma)	101.910773° E			±3.0	±4.5	±7.3	P-T path	±40	±80	±13	max	1.3E-14
											min	3.7E-16
YU42	23.530007° N	mm	SGR	79,2	100.9	31.6	Ti-in-Quartz +	402	120	32		7.0E-15
error (1 sigma)	101.910773° E			±2.0	±3.0	±5.5	P-T path	±40	±80	±20	max	4.8E-14
											min	7.9E-16
YU29	23.767183° N	mm	SGR	39,8	50.7	46.6	Ti-in-Quartz +	469	150	50		5.2E-13
error (1 sigma)	101.710783°E			±1.8	±2.7	±9.7	P-T path	±44	±80	±25	max	4.5E-12
											min	3.4E-14
YY54	24.277583°N	mm	SGR	64,9	82.6	27.2	Ti-in-Quartz +	544	180	79		6.5E-13
error (1 sigma)	101.378817°E			±1.8	±2.7	±6.4	P-T path	±51	±80	±32	max	4.8E-12
											min	5.9E-14
YY72	24.43207°N	cm	SGR	32,6	41.5	50.7	Ti-in-Quartz +	507	160	72		2.7E-12
error (1 sigma)	101.25493°E			±1.7	±3.0	±11.5	P-T path	±59	±80	±31	max	2.7E-11
											min	1.8E-13
KFZ												
LA26	34.025028°N	cm	SGR	75,6	96.2	35.5	Ti-in-Quartz +	415	350	80		4.6E-14
error (1 sigma)	78.171832°E			±1.6	±2.3	±5.7	P-T path	±40	±80	±37	max	2.1E-13
											min	8.7E-15
LA30	34.023361°N	mm	SGR	39,5	50.3	55.4	Ti-in-Quartz +	400	350	80		1.6E-13
error (1 sigma)	78.175861°E			±2.3	±3.5	±10.2	P-T path	±40	±80	±37	max	7.6E-13
											min	2.6E-14
LA59	34.052861°N	cm	SGR	91,3	116.3	28.8	Ti-in-Quartz +	393	350	80		9.2E-15
error (1 sigma)	78.245889°E			±2.5	±3.7	±4.9	P-T path	±40	±80	±37	max	4.4E-14
											min	1.6E-15
LA47	34.009139°N	mm	SGR	32.0	40.8	66.6	Ti-in-Quartz +	394	350	80		2.6E-13
error (1 sigma)	78.303111°E			±1.5	±2.2	±11.7	P-T path	±40	±80	±37	max	1.2E-12
											min	4.6E-14
LA42	33.971194°N	cm	SGR or GBM	134,2	170.9	24.1	Ti-in-Quartz +	347	350	80		7.3E-16
error (1 sigma)	78.376750°E			±2.1	±3.1	±3.6	P-T path	±40	±80	±37	max	3.1E-15
											min	1.4E-16

TABLE DRT. OOD O U OTDAIN DATE MEAQUREMENTO IN THE AODD AND KET OTDIKE OUR	0115 4 5 70	
TADLE DR/. QOR-O-FI STRAIN RATE MEASUREMENTS IN THE ASRR AND RFZ STRIKE-OLIP	SHEAR 20	JNEO

Note: ASRR= Ailao Shan Red River ; KFZ= Karakorum Fault Zone; Recrystallization regime: SGR= sub-grain rotation; BLG= bulging.

Uncertainty calculation takes into account: the experimental measurement errors (LA-ICP-MS, microthermometry, grain size, P-T path, EBSD, Fabric analyser), the errors of equations calibration when available (piezometer, flow law, thermo-barometer) and they are propagated to measure the strain rate.

^a The recrystallization regime is determined by the shape of the considered grains following criteria of Stipp et al. (2002). ^b Stereographic correction

Stress calculated using: "Shimizu (2008) piezometer

Strain rates calculated using: ^dHirth et al. (2001) power flow law