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Abstract

The small scale heterogeneity of the mantle is mostly due to the mixing of petrological het-

erogeneities by a smooth but chaotic convection and should consist in a laminated structure

(marble cake) with a power spectrum S(k) varying as 1/k, where k is the wavenumber of

the anomalies. This distribution of heterogeneities during convective stirring with negligible

diffusion, called Batchelor regime is documented by fluid dynamic experiments and corre-

sponds to what can be inferred from geochemistry and seismic tomography. This laminated

structure imposes density, seismic velocity and potentially, anisotropic heterogeneities with

similar 1/k spectra. A seismic wave of wavenumber k0 crossing such a medium is partly

reflected by the heterogeneities and we show that the scattered energy is proportional to

k0S(2k0). The reduction of energy for the propagating wave appears therefore equivalent to

a quality factor 1/Q ∝ k0S(2k0). With the specific 1/k spectrum of the mantle, the resulting

apparent attenuation should therefore be frequency independent. We show that the total

contribution of 6-9% RMS density, velocity and anisotropy would explain the observed S

and P attenuation of the mantle. Although these values are large, they are not unreasonable

and we discuss how they depend on the range of frequencies over which the attenuation is

explained. If such a level of heterogeneity were present, most of the attenuation of the Earth

would be due to small scale scattering by laminations, not by intrinsic dissipation. Intrinsic

dissipation must certainly exist but might correspond to a larger, yet unobserved Q. This

provocative result would explain the very weak frequency dependence of the attenuation,

and the fact that bulk attenuation seems negligible, two observations that have been difficult
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to explain for 50 years.
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1. Introduction1

After reviewing laboratory and seismological observations, Knopoff (1964) concluded that2

the seismic quality factor Q (or attenuation Q−1) depended only weakly on the frequency ω.3

This observation was not easily compatible with the theoretical models developped for the4

anelastic behavior. Indeed, these models predicted a frequency dependent behavior with a5

maximum of absorption centered on a frequency related to the relaxation time of a given6

mechanism. Later, Jackson and Anderson (1970) and Liu et al. (1976) proposed to explain7

this quasi frequency-independent behavior by the superposition of standard linear solids8

whose relaxation times covered the observed absorption band.9

In the last 30 years, seismological studies have however identified some frequency depen-10

dence of the attenuation. From normal modes and surface waves (say in the range 0.001-0.0511

Hz), a weak dependence of the attenuation has been proposed with Q−1 ∝ ωα and α ≈ −0.212

(e.g., Lekic et al., 2009). An exponent in the same range (−0.4 ≤ α ≤ 0) has been found us-13

ing body waves up to ≈ 1 Hz (e.g., Choy and Cormier, 1986; Shito et al., 2004). Somewhere14

above 1 Hz there is strong evidence of a corner past which the exponent becomes closer to15

α ≈ −1 (Choy and Cormier, 1986; Cormier, 2011). On the low frequency side, below 0.00116

Hz, the attenuation is likely increasing moderately with α ≈ 0.4 (Lekic et al., 2009). Within17

a large frequency domain, 10−4-1 Hz, the attenuation varies therefore by less than an order18

of magnitude.19

A modest frequency dependence of the attenuation (α ≈ −0.27 ) has also been observed20

in laboratory experiments with polycrystalline aggregates of olivine (Jackson et al., 2002;21

Faul and Jackson, 2005). The similarity of exponents found in laboratory experiments and22

in seismological observations suggests that similar dissipation mechanisms might be present23

in the two situations. The laboratory experiments are however performed under conditions24

that are not identical to the seismologic situation (viscoelastic torsion rather than seismic25

propagation, smaller material grain sizes, larger strain rates, much smaller scale...). Several26

possible micromechanisms of attenuation have been suggested (see Jackson, 2007, for a27

review); it is only by a specific combinations of them, distributed over a large attenuation28
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band that the seismic observations can be accounted for.29

The attenuation in the mantle seems to be mostly due to shear attenuation Q−1µ (µ is30

rigidity) while bulk attenuation Q−1κ (κ is incompressibility) is much smaller (e.g., Romanow-31

icz and Mitchell, 2006). This behavior is surprising for the following reason. Submitting an32

elastic medium to extension results in a perpendicular deformation generally in compression33

and controlled by a positive Poisson’s ratio ν = (3κ − 2µ)/(6κ + 2µ). Therefore, for most34

materials, 3κ > 2µ (this is not a thermodynamic rule but simply an empirical observa-35

tion; some rare materials called auxetic have a negative Poisson’s ratio). For a dissipative36

medium submitted to a slow stretching, one would also expect the perpendicular velocity37

to be similarly in compression. For a linear solid, the correspondence principle relates the38

velocities to the deformations by replacing the real elastic parameters κ and µ by their39

imaginary counterparts κQ−1κ and µQ−1µ . Therefore one would expect 3κQ−1κ > 2µQ−1µ or40

Q−1κ > (2µ)/(3κ)Q−1µ (Morozov, 2013); a Q−1κ of order 0.2 Q−1µ or larger would be expected41

rather than the surprising Q−1κ ≈ 0.42

The attenuation measured by seismologists is in fact a combination of various mecha-43

nisms. Some are really dissipative (i.e., they convert the elastic energy into heat), some are44

due to various non-dissipative effects (i.e., the coherent elastic energy is refracted, scattered45

into incoherent signals, defocused...). In the latter case, the coherent elastic energy is lost for46

a direct observation but remains distributed in the Earth (before being eventually dissipated47

in the fluid and solid envelopes of the Earth). This ”elastic” attenuation is hard to quantify48

and makes the measurements of intrinsic attenuation difficult for body waves and surface49

waves (see review by Romanowicz and Mitchell, 2006; Shearer and Earle, 2008). Attenuation50

can also be derived with normal modes from the width of spectral peaks (Dahlen, 1982).51

Mode coupling by heterogeneities broadens the spectral peaks and again, separating this52

effect from intrinsic attenuation is complex. A similar difficulty for separating intrinsic and53

extrinsic phenomena exists also for anisotropy (Wang et al., 2013; Fichtner et al., 2013).54

In this paper we will estimate the elastic attenuation that can be due to the hetero-55

geneities in density, velocity or anisotropy of the mantle. We show that the specific spec-56

trum of the heterogeneities in the mantle implies, as it is observed, that the P and S elastic57
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attenuations should be frequency independent and that the P attenuation should be likely58

smaller than the S attenuation. These attenuations interpreted in terms of Qκ, Qµ agree59

with Qκ >> Qµ without implying a surprising auxetic rheology for the mantle. In order60

to reach the typical observations of attenuation in the mantle, heterogeneities of 6-9 % in61

density, velocity and anisotropy are needed. These values are very large but might not be62

unreasonable. For a lower level of heterogeneities, intrinsic attenuation would dominate a63

frequency independent elastic attenuation.64

2. Heterogeneities in the mantle65

The smooth large scale heterogeneities of the mantle are likely due to lateral temperature66

variations related to thermal convection. However at small length scale there are more67

certainly related to petrological/compositional anomalies. As thermal diffusivity is much68

larger than chemical diffusivity, the gradients of composition remain indeed much sharper69

than those of temperature. Compositional heterogeneities, like thermal ones, induce density,70

velocity but also anisotropy variations. The origin of compositional variations in the mantle71

could be due to a primordial layering of the mantle and more obviously to the continuous72

injection of oceanic lithosphere in the mantle (Coltice and Ricard, 1999). The difference73

in density or velocity between oceanic crust and depleted harzburgite reaches 10% and74

although these two components undergo various phase changes when the lithospheric slab75

sinks in the mantle, contrasts of several % should remain throughout the mantle (Ricard et76

al., 2005). The presence of localized melt bands (in the upper mantle at least), with 5%77

or more impedance contrasts has also been observed (Kawakatsu et al., 2011; Tauzin et al.,78

2010).79

The mixing of heterogeneities in chaotic convecting fluids has been studied for a long80

time. In situations appropriate for the Earth, when heterogeneities are continuously injected81

on a length scale smaller than that of a flow which is smooth but chaotic, the heterogeneity82

power spectrum should vary like 1/k where k is the wavenumber of the heterogeneity (k =83

2π/λ where λ is the wavelength). This result was obtained by Batchelor (1959) and is84

sometimes called ”Batchelor rule”. These steady state results have been extended and85
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confirmed for initial value problems (Antonsen and Ott, 1991). The basic physics that leads86

to this result is rather simple to explain (Olson et al., 1984). The homogeneization in the87

mantle does not occur by diffusing away the heterogeneities but rather by stirring them.88

Advected by the flow, a heterogeneity of wavelength λ, is stretched and folded (the so-call89

”baker” transformation, where the pastry maker kneads the dough is prototypical of a mixing90

process). A heterogeneity is therefore transformed into a thin sheet mutiply folded. This91

process continuously reduces the wavelength of the heterogeneities and the energy cascades92

down the power spectrum toward the large wavenumbers. The injection replenishes the low93

wavenumber spectrum and in steady state, a 1/k spectrum results.94

Several authors have tried to infer the power spectrum of the mantle from geochemical or95

seismic observations. From isotopic Sr variations of ridge basalts, Gurnis (1986) suggested96

that the power spectrum of the mantle may be rather flat (”white”) which would imply97

a drastic heterogeneity at short wavelength. Using a similar approach but with orders of98

magnitude more data and several isotopic ratios, Agranier et al. (2005) observed a clear 1/k99

spectrum along much of the Atlantic ridge.100

Long wavelength tomography probably maps thermal heterogeneity that may decrease101

faster than a 1/k spectrum (Montagner, 1994). However this decrease is partially due to102

the regularization of the inversion (Ricard et al., 1996) and a spectrum closer to 1/k is also103

obtained by patching together global and regional tomographies (Chevrot et al., 1998). A104

more precise estimate of the short wavelength content of the mantle comes from fitting the105

amplitude of PKP precursors in the mantle. Following the pioneering works of Cormier106

(1995) and Hedlin et al. (1997), a study by Margerin and Nolet (2003) found small RMS107

P velocity (0.1- 0.2%) in the deep Earth. This low level of short wavelength (≈ 10 km)108

heterogeneities has been recently confirmed by Mancinelli and Shearer (2013).109

The view that emerges from our understanding of mantle stirring, of plate tectonics,110

from observations of geochemical heterogeneities and of small scale seismic observations111

is therefore in agreement with a ”marble cake” mantle structure as advocated by Allègre112

and Turcotte (1986). The mantle should consist of a laminated medium with low velocity113

contrasts between layers and a power spectrum decreasing as 1/k. We want now to compute114
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how much seismic energy could be lost by scattering in such a medium.115

3. Apparent attenuation of a seismic S wave propagating in a laminated struc-116

ture117

To illustrate the potential effect of small scale heterogeneities on the amplitude of a118

wave, we consider the simple case of a seismic S wave propagating perpendicularly along119

z (polarized in the xy plane) through layers of different properties. We will discuss the120

case of a P wave, of anisotropy and of non-perpendicular incidences later. The rigidity121

µ(z), or density ρ(z) are only functions of z. An upgoing wave, incident on z = 0, with122

amplitude (Sux(0), Suy(0))t is partly reflected by the laminations as a downgoing wave of123

amplitude (Sdx(0), Sdy(0))t and partly transmitted at the distance z as a wave of amplitude124

(Sux(z), Suy(z))t. Transmission Tu and reflection Ru matrices for the upward propagation125

can be defined as126  Sux(z)

Sux(z)

 = Tu

 Sux(0)

Sux(0)

 (1)

and127  Sdx(0)

Sdx(0)

 = Ru

 Sux(0)

Sux(0)

 = RuT
−1
u

 Sux(z)

Sux(z)

 . (2)

An incident wave of unit amplitude polarized on the x axis and propagating in such a stack128

of anisotropic layers will give rise to two reflected waves polarized on both x and y axis,129

Ruxx and Ruxy, and two transmitted waves, Tuxx and Tuxy. In an isotropic Ru and Tu are130

diagonal.131

Of course if the structure of the propagating medium were perfectly known, the changes132

in amplitude of the propagating wave and the existence of a back propagating wave will be133

correctly interpreted as a purely conservative phenomenon (without dissipation). However if134

the structure is not accurately known, the change in amplitude of the wave will likely be in-135

terpreted as attenuation (scattering attenuation). We will define the equivalent attenuation136

for a seismic wave with wavenumber k0 in our laminated medium as (for the x−polarization)137

Sux(k0, z)

Sux(k0, 0)
= Tuxx = exp

(
− k0z

2Q(k0)

)
. (3)
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For each wavenumber k0, an attenuation Q(k0)
−1 can therefore be computed.138

To obtain the reflection and transmission matrices of a complex medium, we use a method139

related to the ”O’Doherty-Anstey” approach (O’Doherty and Anstey, 1971) and discussed140

in Shapiro et al. (1996). We start from the wave propagation equation transformed in such a141

way to construct the differential system verified by the transmission and reflection matrices142

(see supplementary material A and the differential system (A.12)). This system solved143

by a standard Runge-Kutta algorithm allows the exact computation of the reflection and144

transmission properties. Our results have been checked to be identical to those computed145

by a transfer matrix scheme akin to the Thomson-Haskell method.146

The advantage of the O’Doherty-Anstey approach to the Thomson-Haskell method is147

that we can identify the average propagation (in a homogeneous equivalent isotropic medium148

with rigidity µ0 and density ρ0) and the effects of the perturbations due to the variations of149

rigidity and density along the ray. Assuming that all these perturbations δµ/µ and δρ/ρ0150

are small we can derive an analytical estimate of the exact solution by Taylor expansion (see151

(A.14)). The main result of this cumbersome analytical work is very simple. The equivalent152

attenuation seen by the wave is simply153

1

Q
=

√
2π

4
k0SS(2k0) (4)

where SS is the power spectrum of the quantity.154

δµ

µ
+
δρ

ρ0
, (5)

(the formalism involves δρ/ρ0 = (ρ(z)− ρ0)/ρ0 and (µ−10 − µ(z)−1)/µ−10 = (µ(z)− µ0)/µ0 =155

δµ/µ). The same approach can be used with P waves (see supplementary material B). Not156

surprisingly, we obtain an equivalent attenuation similar to (4) but where the spectrum SS157

(5) is replaced by the spectrum SP that also involves incompressibility K,158

δ(K + 4µ/3)

K + 4µ/3
+
δρ

ρ0
. (6)

This implies that the knowledge of the spectra of heterogeneities in elastic parameters,159

density and (see later) anisotropy, allows the estimate of the scattering attenuation of the160

medium.161
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We assume in this paper that the elastic parameters have small amplitude variations;162

classically the assumption of effective medium (Backus, 1962; Capdeville and Marigo, 2007)163

is that the sizes of the heterogeneities are small compared to the wavelength of the seis-164

mic wave. The two approaches share however the same mathematical tools (perturbation165

formalism) and the same physical goals (averaging the perturbations). Notice also that166

the average equivalent properties of a laminated medium can be obtained numerically by a167

composite elastic medium theory (Kaelin and Johson, 1998). It seems however uneasy with168

this formalism to relate analytically the spectrum of the heterogeneities to the apparent169

attenuation.170

4. Examples of ”elastic” attenuation171

To test the quality of our analytical estimate of the attenuation (4), let us consider the172

propagation of an elastic wave crossing a 1D medium made of layers of identical thicknesses173

h. In each layer the elastic parameters are uniform, isotropic, but the density is ρ0 + δρ(z)174

where δρ is a small perturbation (this applies to both S or P waves, see (5) and (6)). We175

assume that δρ/ρ0 is a random variable uniformly distributed over [−r, r]. Such a medium176

is described in Figure (1a) where we have chosen r =
√

3/100 so that the RMS of δρ/ρ0, σ177

is 1%.178

The autocorrelation R(z) of such a medium (see definition (A.27)) can be easily found179

in the limit of an infinite medium180

R(z) = σ2

(
1− |z|

h

)
for |z| < h

R(z) = 0 for |z| > h.

(7)

The exact autocorrelation of the function shown in Figure (1a) is plotted in Figure (1b)181

with a black line, and its approximation according to (7) with a red line.182

The Wiener-Khinchin theorem (A.28) relates the autocorrelation R(z) to the power spec-183

trum S(k) of the medium184

S(k) =
1√
2π

∫ +∞

−∞
R(z)e−ikz dz =

4σ2

√
2π

sin2(kh/2)

k2h
. (8)
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The power spectrum of the function depicted in Figure (1a) and that given by (8) are shown185

in Figure (1c) (black and red lines).186

The expression (4) (in which SS = S = SP ) indicates therefore that the elastic attenua-187

tion is of order188

1

Q
=

√
2π

4
k0S(2k0) =

σ2

4

sin2(k0h)

k0h
(9)

In Figure (1d) we depict this expression as a function of k0, (red) and the exact elastic atten-189

uation −2 log(Tdxx)/(k0z) (black) obtained by propagating a wave across the 1D structure190

of Figure (1a). The exact propagation has been computed using the equations (A.12) and191

with a modified Thomson-Haskell code, the computations give identical results for S and192

for P waves. We can also generate a series of random laminated structures and average the193

transmission coefficients. This is depicted by the green line of Figure (1d) which averages the194

attenuations of 50 random distributions (arithmetic average of Q−1): the statistical distri-195

bution of attenuation is identical to the prediction. Although the exact transmission is more196

complex than that predicted by the approximate solution, it is obvious that we successfully197

captured the elastic attenuation of the structure.198

A more meaningful exercise can be performed for a medium in which the density has a199

power spectrum in 1/k like what is expected in Earth’s mantle. To do so, we first generate200

Fourier coefficients of the form
√
S0/k exp(iφ(k)) where the phase φ(k) is a random variable201

uniformly distributed over [0, 2π[, S0 a constant and where the wavenumber k is taken202

between kmin and kmax. Then, we perform an inverse Fourier transform of these coefficients.203

By construction, the power spectrum of the resulting function is S0/k for kmin ≤ k ≤ kmax;204

it has a RMS σ, which according to Parseval’s identity is σ2 =
∑

k S0/k ≈ S0 log(kmax/kmin).205

The elastic attenuation (4) between the wavenumbers kmin/2 and kmax/2 can therefore be206

written as207

1

Q
=

√
2π

8
S0 =

√
2π

8

σ2

log(kmax/kmin)
(10)

where 1/Q is expressed as a function of the amplitude of the heterogeneity spectrum or as208

a function of the heterogeneity RMS. The function and its spectrum are depicted in Fig-209

ure 2, panels (a) and (c), where we have chosen a perturbation RMS of 1%. Considering210
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Figure 1: We generate a random density anomaly for a laminated structure. The laminations are 32 km

thick. The density anomalies δρ/ρ0 have a RMS amplitude σ = 1% (panel a). The autocorrelation function

of the density is statistically 0 except for distances smaller than h (black, panel b), the red line is the

theoretical prediction (7). The power spectrum of the density and the prediction (8) are depicted by the

black and red lines of panel (c). The first minimum would correspond to k0 = π/h or typically a period of a

few seconds for a P wave. A wavenumber of 0.01 would correspond to a few 10 s. The apparent attenuation

is shown in panel (d) (black) with the prediction (9) (red). The green attenuation corresponds to the average

of 50 random realizations similar to that of panel (a). It confirms the theoretical prediction.

that Earth’s attenuation is constant over 3-4 frequency decades, we choose kmax/kmin =211

4096 = 103.6. The autocorrelation function (panel b) is shown in black and the theoretical212

one (see A.28) in red (this function is a cosine integral). In the inserted panel we also use a213
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semilogarithmic scale to show that the autocorrelation is indeed very different from an expo-214

nential law (a straight line in semilogarithmic scale). The autocorrelation of heterogeneities215

in the Batchelor regime decreases much faster than the exponential at short distance but216

also maintains a significant correlation at long distance. According to (10), the equivalent217

attenuation (panel d, black) should be flat (wavenumber or frequency independent). This218

is the case and the analytical prediction (panel d, red) gives a good fit to the exact atten-219

uation. In green we average 50 random realizations similar to that of panel (a) to confirm220

the frequency independence of the elastic attenuation. Our analytical estimate seems how-221

ever to slightly underestimate the average attenuation (4×10−6 according to (10), instead of222

≈ 5× 10−6; compare red and green curves in Figure 2d); this may be related to the choice223

of the averaging, here an arithmetic average of the Q−1, geometric or harmonic averages224

of Q or Q−1 give different values also close to the analytical prediction in red). In Figure225

2, there are no units for the horizontal axis and for the power spectrum. There is indeed226

no characteristic length in this situation and only the ratio kmax/kmin = 4096 matters. If227

the distance in panel (a) is in a given unit (m, km...), then the wavenumbers are in unit−1,228

the power spectrum in unit and the same amplitude of attenuation is recovered (but in a229

wavenumber range defined in unit−1).230

Although we only discussed the elastic attenuation, the propagation of seismic waves in231

this laminated mantle is also associated with dispersion; the effective propagation velocity232

is frequency dependent. Our approach implies that attenuation and dispersion are, as they233

should, related by the usual Kramers-Kronig relations (see A.20). Therefore, if our model234

is in agreement with the observed attenuation, it is also in agreement with the observed235

dispersion. For example, assuming a 1/k spectrum of the mantle implies both that the236

apparent attenuation 1/Q is a constant, and that the phase velocity v(ω) is frequency237

dependent with a dispersion deduced from (A.20), 1/v(ω) = 1/v0−2/(πQ) log(ω/ω0), which238

are two assumptions of Prem (Liu et al., 1976). Notice that the heterogeneity spectrum in239

1/k, which is in agreement with the attenuation and dispersion of Prem, is associated with240

an autocorrelation function (see Figure 2b) very different from an exponential which has241

been the hypothesis of several previous studies of mantle scattering.242
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Figure 2: We generate a random density anomaly with power spectrum varying as 1/k in a range of

wavenumbers covering 3.6 decades and with RMS 1% (panel a). The computed (black) and theoretical (red)

autocorrelations are depicted in panel b. The inserted panel shows the theoretical autocorrelation curve in

logarithmic scale to show that it is very different from an exponential (a straight line). The power spectrum

is shown in panel c. The computed (black) and theoretical attenuation (red) are depicted in panel d. The

green attenuation corresponds to the average of 50 random realizations similar to that of panel a.

5. Attenuation of the mantle243

In the lower mantle Q−1s is found between 1/300 (Prem) and 1/700 (Hwang and Ritsema,244

2011; Durand et al, 2013) andQ−1p is of order 4/3(Vs/Vp)
2Q−1s i.e., between 1/600 and 1/1400.245

This last relation results from the observation that the bulk attenuation Q−1κ is very low.246

In the upper mantle the attenuation is about twice larger than in the lower mantle. It247
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is tempting to compare these values to what can be estimated with our model of elastic248

attenuation.249

In Figure 2 we obtained Q−1 ≈ 5.10−6 for a 1% RMS density perturbation, assuming250

that the medium is isotropic, with constant rigidity and with the same 1/k spectrum over a251

wavenumber range of 3.6 decades. This range is the typical range of the seismic frequencies252

over which the observed attenuation seems roughly constant. As this elastic attenuation253

varies like the amplitude of (δρ/ρ0)
2 (see (10)), we would predict that 17% to 26% RMS254

perturbations of density could explain the observed S attenuation in the lower mantle (12%255

to 18% RMS perturbations for the P attenuation). These RMS values for the density are256

certainly not reasonable for Earth’s mantle anomalies. However, it is not only the density257

but also the elastic parameters that influence the elastic attenuation.258

In mineralogical models, (e.g., comparing the properties of basaltic crust and of normal259

mantle at deep mantle conditions, as in Ricard et al. (2005)), the relative contrasts of elastic260

parameters (assuming isotropy) have similar values that those of density and are generally261

closely correlated. The power spectra of δµ/µ+δρ/ρ0 or of δ(K+4µ/3)/(K+4µ/3)+δρ/ρ0262

are therefore close to 4 times that of density alone (it would be 2 times for uncorrelated263

variables with similar amplitudes). This would reduce the necessary perturbations needed264

to explain the whole mantle attenuation by elastic attenuation only, by a factor 2 (i.e., 8-265

13% density and elastic perturbations to explain the S attenuation, 6-9% to explain the P266

attenuation).267

In addition, anisotropy should be considered and in supplementary material (C) we268

discuss the simple case of transverse anisotropy. Even in a medium where the density269

and the isotropic velocity are uniform, the presence of anisotropy also induces an elastic270

attenuation. The shear wave splitting leads to an apparent attenuation estimated from271

pulse widths or spectra because of the arrival of two quasi-S waves in a window assumed272

to contain a single S wave, when the period band of measurement is wider than the time273

separation of the two pulses. This S attenuation is found to be related to the power spectra of274

δµ/µ+ δρ/ρ0 + δa/µ cos(2ψ) and of δa/µ sin(2ψ) where a(z) is the amplitude of anisotropy275

(difference between the two rigidities that characterizes the elasticity in this transverse276
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geometry) and ψ(z) the direction of fast polarization in the xoy plane. Assuming that the277

anisotropy direction is uncorrelated with ρ and µ, the S attenuation becomes related not278

only to the power of δµ/µ+ δρ/ρ0 but also of δa/µ. Taking this effect into account reduces279

the RMS amplitude of the density and elastic anisotropic parameters necessary to explain280

both the P and S attenuations by elastic attenuation only, to around 6-9%.281

In supplementary material D we also consider the case of a non normal incidence θ to the282

lamination, in the simple case of a SH wave (so that S and P waves remain uncoupled). The283

elastic attenuation is now a function of the incidence angle, and differs for density variations284

and for elastic modulus variations. The situation is further complicated because complete285

reflection can occur when θ → π/2. However when density and elasticity heterogeneities are286

proportional, the final elastic attenuation (D.10) is independent of the incidence angle and287

therefore identical to the case with normal incidence.288

The P-SV case coupling P and S waves is much more cumbersome, but the same method289

applies as shown in Shapiro et al. (1996). We do not include a supplementary section for290

this case, as it would be even longer than the 4 supplementary sections already discussed.291

Invariably we found that the attenuation of both P and SV waves are now dependent on292

the combined spectra of density, rigidity and incompressibility, weighted by functions of293

the incidence angle θ. Although we have not explored all the cases (the transmission and294

coupling of a P and general S wave across a lamination with non-normal incidence), we are295

confident that for a laminated medium with 1/k spectrum, the elastic attenuation remains296

frequency independent and with a similar or larger (because the elastic energy can now be297

exchanged between P and S waves) amplitude than with a normal incidence.298

The heterogeneities needed to explain the Earth’s attenuation by scattering only are299

large. They are however comparable to what is proposed in the shallow mantle in terms300

of lateral variations of density (from mineralogy, see Ricard et al. (2005)), seismic velocity301

(e.g., Debayle and Ricard, 2012) or amplitude of anisotropy (e.g., Montagner and Guillot,302

2002; Kawakatsu et al., 2011; Debayle and Ricard, 2013), and various localized reflectors303

with large, positive or negative impedances are observed in the mantle (e.g., Schmandt et304

al., 2011; Tauzin et al., 2010).305
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The large RMS heterogeneity that we estimate assumes that the same 1/k heterogeneity306

spectrum is valid across a wavenumber range of 3.6 decades. It is not directly comparable307

to the RMS heterogeneity estimates obtained for the lower mantle using high-frequency (≈308

1 Hz) PKP precursors which only sample a limited number of wavelengths (Margerin and309

Nolet, 2003; Mancinelli and Shearer, 2013). To compare our model to these PKP precursor310

studies, we consider like in Mancinelli and Shearer (2013) that the small scale 1D structure311

has an exponential autocorrelation with a small correlation length h = 6 km. According to312

the Wiener-Khinchin theorem, (A.28) and the expression of 1/Q, (4), the autocorrelation,313

the power spectrum and the elastic attenuation are314

R(z) = σ2 exp(−z
h

)

S(k) =
2σ2

√
2π

h

1 + k2h2

1

Q
=
σ2

2

kh

1 + 4k2h2

(11)

In Figure 3, we depict a random function with RMS 1% and exponential correlation (panels315

a and b), its power spectrum (d) and the predicted elastic attenuation (d). The result of the316

numerical simulation is in black, the analytical solution in red, the green lines average 50317

random realizations. The maximum of the predicted attenuation corresponds to a wavenum-318

ber k = 1/(2h) = 0.083 (wavelength 4πh ≈ 75 km) and reaches σ2/4 = 1.25× 10−5. Notice319

that this time, as the heterogeneities are localized in a restricted bandwidth, with the same320

RMS they lead to a 2.5 larger attenuation than when we assumed that the heterogeneities321

were distributed over 3.6 decades. Therefore a RMS small scale heterogeneity of 2.4-3.6 %322

would explain the observed P attenuation for periods around a few seconds. This is still323

much larger than what has been suggested for the lower mantle, but would be reasonable324

for upper mantle heterogeneities.325

6. Conclusion326

The short wavelength content of the mantle heterogeneities is mostly due to petrologi-327

cal anomalies multiply folded by convection and with a power spectrum decreasing as 1/k.328
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Figure 3: We generate a random density anomaly with 1% RMS amplitude (panel a) and exponential

autocorrelation (panel b, computed autocorrelation in black, theoretical exponential autocorrelation with

correlation length of 6 km in red). Its power spectrum is shown in panel (c). The computed (black) and

theoretical (red) attenuations are depicted in panel (d). The green attenuation corresponds to the average

of 50 random realizations similar to that of panel (a).

We present simple models of seismic waves traveling perpendicularly across a 1D laminated329

structure with this kind of spectrum and show that it results in multiple reflection and in330

the dispersion of a coherent signal into incoherent noise. The decrease in amplitude of the331

transmitted wave results in an apparent attenuation (elastic attenuation) that we compute,332

first, numerically and exactly, and second, using a simple approximated but analytical ex-333

pression. We show that the elastic attenuation is on average independent of the frequency.334

17



This is true whether the density, the elasticity or the anisotropy (keeping uniform isotropic335

elastic parameters) is the variable varying with a 1/k spectrum. When these quantities vary336

together in an incoherent fashion, the elastic attenuations due to each variable, sum up. A337

larger attenuation is obtained when these variables are correlated which is likely the case,338

at least for density and the isotropic parameters. Similar results should remain valid for a339

non-normal incidence.340

In order to explain the whole attenuation of the mantle by elastic attenuation only and341

over 3.6 decades of frequency, spatial variations in density and elastic parameters of the342

order of 6-9 % are needed. Our model does not discuss the location of these heterogeneities,343

i n the shallow mantle or in the deep Earth. This remains large compared to what is seen in344

tomography; a few % in the upper mantle, less than 1% in the lower mantle, but comparable345

to the heterogeneity level of the lithosphere. If we reduce the range of frequencies over which346

we explain the attenuation, we can decrease the amplitude of heterogeneities to levels similar347

to whose measured in laboratory between different compositions: eclogite/harzburgite have348

density/elasticity differences in most of the mantle of 2 to 4% (Irifune and Ringwood, 1993;349

Ricolleau et al., 2010). Even in this case, the amplitude of these small-scale heterogeneities350

is much larger that what as been inferred in the deep mantle by previous studies (Margerin351

and Nolet, 2003; Mancinelli and Shearer, 2013). In the inner core, a level of heterogeneity352

of a few % between random patches has been invoked to explain the seismic observations353

(Cormier, 2002; Calvet and Margerin, 2008).354

There are many complexities that we have not taken into account. The P-SV conversions355

provide another way to distribute the energy incoherently, and would probably increase the356

apparent attenuation for the same spectrum of heterogeneities. The same would be true357

when a general anisotropic elastic tensor is considered (while we have only consider transverse358

anisotropy). It seems that all these complexities will also lead to a similar expression as (4),359

and a constant attenuation for a medium stirred following Batchelor regime. The fact that360

the heterogeneities are far from parallel as it has been considered here, should also be taken361

into account. It seems it should further increase the elastic attenuation.362

If most of Earth’s attenuation is due to small scale heterogeneities with a 1/k spectrum and a363
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RMS of a few %, then the weak variation of attenuation with frequency would become easy to364

explain. The fact that S waves are more attenuated than P waves would be simply related to365

the fact that anisotropy gives S waves more degrees of freedom to disperse its elastic energy.366

It would be misleading to interpret these QP and QS attenuations in term of Qκ and Qµ,367

as this would wrongly interpret a scattering phenomenon in terms of dissipation. The real368

dissipative attenuation, that must be present, would be hidden by the elastic attenuation,369

and the intrinsic quality factors Qκ and Qµ would simply be higher than what has been370

observed. Their values might then respect the condition 3κQ−1κ > 2µQ−1µ and might not371

imply a strange auxetic rheology for the mantle.372

In principle, the modeling of coda waves could separate the intrinsic and scattering373

effects (Shearer and Earle, 2004). If the amplitude of heterogeneities necessary to explain374

the seismic attenuation by elastic scattering implies unrealistically large and complex codas,375

then it would imply that intrinsic attenuation dominates a frequency independent elastic376

attenuation. Direct simulation of wave propagation (e.g., within an exact numerical scheme,377

Komatitsch and Vilotte, 1998) for a 3D structure including small scale heterogeneities, will378

in a close future be able to model precisely the effect of elastic scattering but computing379

elastic wave fields up to ≈ 1 Hz on a global scale will certainly be a challenge.380
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A. Propagation of a S wave perpendicular to a stratified isotropic medium493

The wave equation for a S wave propagating along z, perpendicularly to a layered struc-494

ture writes495

ρ
∂2ux
∂t2

=
∂σxz
∂z

(A.1)

where ux is the displacement component along ox and σxz the stress component. For a496

periodic wave of angular frequency ω all variables also depend implicitly on time with terms497

in exp(−iωt), and using Hooke’s law, we can recast this second order equation as a first498

order differential system499

d

dz

 ux

σxz/(ρ0ωv0)

 = k0M

 ux

σxz/(ρ0ωv0)

 , (A.2)

where ρ0 and v0 are some characteristic uniform density and velocity, k0 = ω/v0, and where500

the matrix M is501

M = − ρ

ρ0

 0 0

1 0

+
ρ0v

2
0

µ

 0 1

0 0

 (A.3)

In an homogeneous medium, the matrix M becomes the uniform matrix M0 which de-502

scribes the wavefield in a homogeneous medium503

M0 =

 0 1

−1 0

 . (A.4)

The diagonalization of the matrix M0 shows that its eigenvalues are i and −i and its eigen-504

vectors can be taken as the columns of the matrix V505

V =

 1 1

i −i

 . (A.5)

In a homogeneous medium, the system (A.2) thus describes a S wave propagating in one506

direction (wavenumber ik0), and another in the opposite direction (wavenumber −ik0). In507

a heterogeneous medium, the density ρ, and the rigidity µ present in A.3 are function of508
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z. Let us consider the propagation in the reference frame appropriate in the absence of509

perturbations by using the vector g = V −1(ux, σxz/(ρ0ωv0))
t. It verifies510

dg

dz
= k0V

−1MV g = ik0Lg. (A.6)

The 2x2 matrix L = V −1MV can be re-written as511

L =

 M1 M2

−M2 −M1

 , (A.7)

where512

M1 =1 +
1

2
A = 1 +

1

2

(
δρ

ρ0
− δµ

µ

)
,

M2 =
1

2
C =

1

2

(
δρ

ρ0
+
δµ

µ

)
,

δρ

ρ0
=
ρ− ρ0
ρ0

and
δµ

µ
=
µ− µ0

µ
=

1/µ0 − 1/µ

1/µ0

(A.8)

The matrix L becomes indeed diagonal in a homogeneous medium. Eq. (A.6) describes the513

propagation of a down- and an up-going S wave of amplitudes denoted Sdy, Suy. As this514

differential system is linear, there exists a 2X2 propagator P relating the waves amplitudes515

at z, to their amplitudes at z = 0 such that516

(Sdx(z), Sux(z))t = P (0, z)(Sdx(0), Sux(0))t. (A.9)

This propagator also verifies eq. (A.6) so that517

dP

dz
= ik0LP. (A.10)

P contains 4 coefficients that can be interpreted as combinations of the reflection and trans-518

mission matrices of incident waves going down Rd, Td, or up, Ru, Tu. For example an up519

going wave incident at z, is partially refracted as a down going wave with the amplitude520

(Sdx(z), Sdx(z))t = Ru(Sux(z), Sux(z))t and partly transmitted at z = 0 with the amplitude521

(Sux(0), Sux(0))t = Tu(Sux(z), Sux(z))t while (Sdx(0), Sdx(0))t = 0 (we kept the notation con-522

ventions of Shapiro et al. (1996)). Comparing these definitions with that of the propagator523
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(A.9), proves that the rightside column of P is just RuT
−1
u and T−1u . Similarly, by consider-524

ing an incident up going wave at z = 0 we conclude that the matrix P can be interpreted525

as526

P =

 Td −RuT
−1
u Rd RuT

−1
u

−T−1u Rd T−1u

 . (A.11)

Substituting eq. (A.11) into (A.10) we find the system of differential equations527 

dRu

dz
= ik0(M2 +M1Ru +RuM1 +RuM2Ru)

dTu
dz

= ik0(TuM1 + TuM2Ru)

dTd
dz

= ik0(M1Td +RuM2Td)

dRd

dz
= ik0(TuM2Td)

. (A.12)

This is a system of 4 differential equations to be solved (in the case we are dealing with,528

all the terms M1, M2 Ru, Tu are scalars and, e.g., M1Ru + RuM1 = 2M1Ru. Later (see529

supplementary material C), these terms will become matrices and for more generality we530

keep this writing which works for matrices (see Shapiro et al., 1996)). Solving numerically531

this differential system leads exactly to the various transmission and reflection coefficients.532

The two first equations can be separately integrated from 0 with the initial conditions533

Ru(0) = 0 and Tu(0) = 1 and give identical results than a Thomson-Haskell integration.534

The formalism that we used to derive (A.12) is however very useful as it has allowed us to535

set up the problem in the form of a differential form for which classic analytical tools can536

found approximative solutions.537

To do so we consider that A, C, δρ/ρ0 and δµ/µ are small quantities and then solve538

equations (A.12) at various orders. We only consider up going propagation and we only need539

to solve the first two equations of (A.12) to find Ru and Tu, that from now on we will simply540

write R and T . We can therefore write T = T (0) + T (1) + T (2) + ... and R = R(1) +R(2) + ...541

where T (n) and R(n) are of order n in the small quantities A and C. Introducing these542

expansions into equations (A.12) and focussing on T , we get at order (0), (1) and (2)543 
T (0) = exp(ik0z)

T (1) = ik0
2

exp(ik0z)
∫ z
0
A(u)du

T (2) = −k20
4

exp(ik0z)
[∫ z

0

∫ u
0
A(u)A(v) dudv +

∫ z
0

∫ u
0
C(u)C(v)e2ik0(u−v) dudv

] (A.13)
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Similar expressions could also be obtained for the other components of the transmission and544

reflection matrices. The transmission coefficient T , including all the terms up to the second545

order in elastic perturbations is thus T (0) +T (1) +T (2). Noticing that
∫ z
0

∫ u
0
A(u)A(v)dudv =546

1/2
(∫ z

0
A(u)du

)2
(the two expressions have the same z-derivatives and are equal for z = 0)547

and using the expansion of the exponential up to second order, we see that T correct up to548

second order can be written as549

T = exp

[
ik0z +

1

2
ik0

∫ z

0

A(u)du− k20
4

∫ z

0

∫ u

0

C(u)C(v)e2ik0(u−v) dudv

]
. (A.14)

The term at 1st order is imaginary and just affects the phase, at 2nd order amplitude and550

phase are perturbed.551

The transmission coefficient (A.14) is of the form T = exp(iKz) where K is a complex552

wavenumber. The heterogeneity of the medium, by scattering energy and by making the553

direct wave loose coherency, is therefore formally equivalent to an attenuating and dispersive554

medium. We can express the apparent wave number K as555

K = k0 +
k0
2z

∫ z

0

A(u) du+ i
k20
4z

∫ z

0

∫ u

0

C(u)C(v)e2ik0(u−v) dudv (A.15)

The perturbation at first order cancels when A = δρ/ρ0− δµ/µ = δρ/ρ0 + δ(1/µ)/(1/µ0)556

is properly chosen to have a zero average (i.e.,
∫ z
0
A(u)du = 0) which means that the average557

density and the average inverse rigidity are both zero (or that v0 is the average velocity).To558

simplify the integral present in this expression, let us call F (k0):559

F (k0) =

∫ z

0

C(u)

(∫ u

0

C(v)e2ik0(u−v)dv

)
du, (A.16)

so that the apparent wave number is560

K = k0 + i
k20
4z
F (k0). (A.17)

The imaginary part of F (k0) involves a sine, while the real part, G(k0) = Re (F (k0)),561

involves a cosine; they are therefore related by a Hilbert transform. One has Im (F (k0)) =562

−H[G(k0)] where H denotes the Hilbert transform, and563

K = k0 +
k20
4z
H[G(k0)] + i

k20
4z
G(k0). (A.18)
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This expression is a general consequence of the Kramers-Kronig relations that relate in a564

general way, attenuation and dispersion (e.g., Waters et al., 2005). Writing K = k+ ik0/2Q,565

where k and Q are real numbers, the resulting medium is attenuating with566

1

Q
=
k0G(k0)

2z
(A.19)

and dispersive with567

k = k0 +
k20
4z
H[G(k0)]. (A.20)

To compute G(k0) = Re (F (k0)), we change the order of the integrations in the expression568

of F (k0)569

F (k0) =

∫ z

0

C(v)

(∫ z

v

C(u)e2ik0(u−v)du

)
dv. (A.21)

Now by swapping the names of the variables u and v,570

F (k0) =

∫ z

0

C(u)

(∫ z

u

C(v)e−2ik0(u−v)dv

)
du. (A.22)

Therefore, using F ∗ for the conjugate of F , adding the conjugate of (A.16) with (A.22), we571

get572

2G(k0) =F (k0) + F ∗(k0)

=

∫ z

0

∫ z

0

C(u)C(v)e−2ik0(u−v)dudv

=

∫ z

0

C(u)e−2ik0udu

∫ z

0

C(v)e2ik0vdv

=

∣∣∣∣∫ z

0

C(u)e−2ik0udu

∣∣∣∣2
(A.23)

For a stationary signal f , the power spectrum is defined as573

SC(k0) = lim
z→+∞

1

z
√

2π

∣∣∣∣∫ z

0

C(u)e−ik0udu

∣∣∣∣2 (A.24)

(notice that other definitions of the spectrum exist and may introduce different constants in574

the expressions that follow). According to (A.23), G(k0) is related to the power spectrum575

of C by576

2G(k0) ≈ z
√

2πSC(2k0). (A.25)

28



We therefore simplify (A.19) that becomes577

1

Q
=

√
2π

4
k0SC(2k0), (A.26)

i.e., the apparent attenuation is simply related to the power spectrum of C defined in (A.8)578

that contains the heterogeneities in density and rigidity. This is the main result that we use579

in this paper.580

A function can also be characterized by its autocorrelation instead of by its Fourier power581

spectrum. The autocorrelation of a stationary signal is582

RC(x) = lim
z→+∞

1

z

∫ z

0

C(u+ x)C(u)du (A.27)

The Wiener-Khinchin theorem states that the autocorrelation function RC and the power583

spectral density SC are simply related by584

RC(x) =
1√
2π

∫ ∞
−∞

SC(k)eikxdk

SC(k) =
1√
2π

∫ ∞
−∞

RC(x)e−ikxdx

(A.28)

The elastic attenuation can therefore be written as585

1

Q
=

1

4
k0

∫ +∞

−∞
RC(x)e−2ik0xdx, (A.29)

B. Propagation of a P wave perpendicular to a stratified isotropic medium586

Although the algebra was quite long in supplementary material (A), the generalization587

to other cases is now very simple. The wave equation for a P wave propagating along z,588

perpendicularly to a layered structure writes589

ρ
∂2uz
∂t2

=
∂σzz
∂z

(B.1)

that we can recast as a first order differential system. This system can then be diagonalized,590

the equations rewritten in such a way to make explicit the homogeneous system and the591
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perturbations. The matrix L (see (A.6)) can again be written in the form (A.7) where the592

coefficients M1 and M2 (see (A.8)) are now593

M1 =1 +
1

2
A = 1 +

1

2

(
δρ

ρ0
− δ(K + 4/3µ)

K + 4/3µ

)
M2 =

1

2
C =

1

2

(
δρ

ρ0
+
δ(K + 4/3µ)

K + 4/3µ

) (B.2)

Therefore, except that instead of rigidity it is now K+ 4/3µ that appears, the equations are594

similar to (A.8) and of course we also get595

1

Q
=

√
2π

4
k0SC(2k0), (B.3)

where C contains now the density and the K + 4/3µ perturbations.596

C. Propagation of a S wave perpendicular to a stratified transverse anisotropic597

medium598

We can briefly discuss the case of transverse anisotropy (anisotropy in the xy plane with599

an angle ψ(z) with the x-axis), as the method remains close to that discussed in supplemen-600

tary material A. The wave equation for a S wave propagating along z, perpendicularly to a601

layered structure writes602

ρ
∂2

∂t2

 ux

uy

 =
∂

∂z

 σxz

σyz

 (C.1)

where ux and uy are the displacement components and σxz and σyz the stress components,603

all quantities being now coupled by anisotropy. For a periodic wave of angular frequency ω604

and using Hooke’s law accounting for transverse anisotropy, we can recast this second order605

equation under the form of a first order differential system606

d

dz


ux

uy

σxz/(ρ0ωv0)

σyz/(ρ0ωv0)

 = k0M


ux

uy

σxz/(ρ0ωv0)

σyz/(ρ0ωv0)

 , (C.2)
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where ρ0 and v0 are some characteristic density and velocity, k0 = ω/v0, and where the607

matrix M is608

M = − ρ

ρ0


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

+ ρ0v
2
0

L+N

2LN


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

+

ρ0v
2
0

N − L
2LN


0 0 cos 2ψ sin 2ψ

0 0 sin 2ψ − cos 2ψ

0 0 0 0

0 0 0 0

 .

(C.3)

The density ρ, the maximum and minimum elastic constants L, N as well as the direction609

of anisotropy ψ are functions of z. After rotation in the appropriate reference frame, we610

transform (C.2) into an equation similar to (A.6) but where the L matrix is now 4x4 and611

can be re-written in terms of two 2x2 symmetric matrices, M1 et M2 (Shapiro et al., 1996)612

L =

 M1 M2

−M2 −M1

 , (C.4)

that can be expressed from the 2x2 identity matrix Id and from the matrix J613

J =

 cos(2ψ) sin(2ψ)

sin(2ψ) − cos(2ψ)

 (C.5)

by614

M1 =Id+
1

2

(
δρ

ρ0
− δµ

µ

)
Id+

1

2

δa

µ
J

M2 =
1

2

(
δρ

ρ0
+
δµ

µ

)
Id+

1

2

δa

µ
J

(C.6)

which are in agreement with (A.8) in the absence of anisotropy and where δρ/ρ0 = (ρ −615

ρ0)/ρ0, δµ/µ = (2LN − ρ0v
2
0(L + N))/(2LN) and δa/µ = ρ0v

2
0(N − L)/(2LN). In the616
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following we will also use the differents terms of these matrices that we name A, B, C, D617

and M with618

M1 =Id+
1

2

 A M

M B


M2 =

1

2

 C M

M D

 (C.7)

and two of these terms will specifically appear in our final results619

C =
δµ

µ
+
δρ

ρ0
+ cos(2ψ)

δa

µ

M = sin(2ψ)
δa

µ
.

(C.8)

We have therefore succeeded in writing the wave propagation equations as a differential sys-620

tem where the perturbations of density, velocity and anisotropy are explicit. The reflection621

and transmission matrices are verifying the same equations (A.12) that can be approximately622

solved by Taylor expansion to get the apparent quality factor Q as623

1

Q
=
k0
2z

∫ z

0

∫ u

0

(M(u)M(v) + C(u)C(v)) cos [2k0(u− v)] dudv. (C.9)

which can be expressed as a function of the spectra of C and M as624

1

Q
=

√
2π

4
k0 (SM(2k0) + SC(2k0)) , (C.10)

expression equivalent to (A.26) in the absence of anisotropy (δa ∝ L−N = 0).625

D. Propagation of a S-H wave in a stratified medium626

This time, we assume that the displacement is along y and the incidence to the lam-627

inations defined by the angle to the normal θ. All the variables depend implicitly of628

exp(i(k0x sin θ − ωt)) and the amplitudes of the displacement and shear stress are func-629

tion of z only, and are solutions of630

d

dz

 uy

σyz/(ρ0ωv0)

 = k0M

 uy

σyz/(ρ0ωv0)

 , (D.1)
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where the matrix M is given by631

M = − ρ

ρ0

 0 0

1 0

+
ρ0v

2
0

µ

 0 1

0 0

+
µ

ρ0v20

 0 0

sin2 θ 0

 . (D.2)

Only the last term differs from the case of a normal incidence (compare with (A.3)). Follow-632

ing exactly the same approach as in supplementary material (A) we end up with the same633

equation (A.6), where the matrix L (A.7) depends now of the coefficients634

M1 = cos θ +
1

2
A

M2 =
1

2
C

(D.3)

where635

A =
1

cos θ

(
δρ

ρ0
− δµ

µ0

)
+ 2 cos θ

(
δµ

µ0

)2

C =
1

cos θ

δρ

ρ0
+

cos(2θ)

cos θ

δµ

µ0

− 2 cos θ

(
δµ

µ0

)2
(D.4)

(as µ appears both in a numerator and in a denominator in (D.2), we use the variable δµ/µ0636

in this case while in the other cases it was simpler to consider δµ/µ, see (A.8), two quantities637

that only differ at second order). The A and C terms are in agreement to the case with638

normal incidence when θ = 0 (see (A.8)). Solving the propagation at second order gives639

finally640

T = exp

(
i(k0(x sin θ + z cos θ)− ωt)− z

√
2π

4
SC(2k0 cos θ)

)
(D.5)

Calling l the distance along the ray (x = l sin θ and z = l cos θ), the transmitted amplitude641

is therefore642

T = exp

(
i(k0l − ωt)− l cos θ

√
2π

4
SC(2k0 cos θ)

)
(D.6)

and the equivalent attenuation (in agreement with the previous estimate when θ = 0,643

(A.26)), is therefore644

1

Q
=

√
2π cos θ

4
k0SC(2k0 cos θ), (D.7)

where θ is also present in the definition of C. Three cases are easy to describe. When645

δµ/µ0 = 0 and for a spectrum in 1/k, we simply replace SC(2k0 cos θ) by SC(2k0)/ cos θ =646
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Sρ(2k0)/ cos3 θ where Sρ is the density spectrum to obtain647

1

Q
=

√
2π

4 cos2 θ
k0Sρ(2k0). (D.8)

When δρ/ρ0 = 0, SC(2k0 cos θ) = Sµ(2k0) cos2(2θ)/ cos3 θ where Sµ is the rigidity spectrum648

1

Q
=

√
2π cos2(2θ)

4 cos2 θ
k0Sµ(2k0). (D.9)

When δρ/ρ0 = δµ/µ0,649

1

Q
=
√

2πk0Sρ(2k0). (D.10)

Notice that this expression is in agreement with what was obtained for a normal incidence650

(A.26). The absence of a factor 4 (compare (D.10) and (A.26)) is simply due to the fact651

that this last expression assumes a perfect correlation between density and rigidity.652
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