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Buoyancy-driven convection is modelled using the Navier-Stokes and entropy equations.
It is first shown that the coefficient of heat capacity at constant pressure, cp, must in
general depend explicitly on pressure (i.e. is not a function of temperature alone) in
order to resolve a dissipation inconsistency. It is shown that energy dissipation in a
statistically steady state is the time-averaged volume integral of −DPDt and not that of

−αT DP
Dt . Secondly, in the framework of the anelastic equations derived with respect to the

adiabatic reference state, we obtain a condition when the anelastic liquid approximation
can be made, γ − 1 << 1, independent of the dissipation number.
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1. The general expression of dissipation

Convection in the geophysical context is often associated with compressible effects (as
early as in the work of Carnot (1824)) and simultaneously with a significant energy dis-
sipation (see Backus 1975), of the same order of magnitude as the heat flux. In the case
of convection in the Earth’s mantle, it is important to determine the distribution of dis-
sipation as it is strongly coupled with effective viscosity and plays a role in the structure
of convection (see Bercovici 1996; Tackley 1996), while the amount of dissipation in the
liquid Earth’s core is a direct measure of the energy available to the geodynamo (see
Christensen & Tilgner 2004; Buffett 2002). In this paper we shall be interested specifi-
cally in dissipation in ’liquids’, defined as those fluids with a small product αT compared
to unity, where α is the coefficient of thermal expansion at constant pressure and T is the
thermodynamic temperature. This product is unity for perfect and semi-perfect gases,
but is usually very small for liquids, of order 0.05 both in the outer core of the Earth, and
in the mantle which are hence both usually considered as ’liquids’ from the perspective
of convection.

Let us consider a simple configuration of a region of Newtonian fluid with no internal
heat production, bounded with solid walls or stress-free boundaries and prescribed tem-
peratures or heat fluxes within a uniform, constant gravity field g. It might be a simple
Rayleigh-Bénard configuration with an imposed temperature difference. It might also be
more complex, we simply require that the boundary exerts no work on the fluid region
and that a statistically steady state can be reached so that the net heat input is zero.
Density ρ, velocity u, pressure P , temperature T and entropy s satisfy the continuity,
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Navier-Stokes and entropy (or heat transfer) equations

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

ρ
Du

Dt
= −∇P + ρg +∇ · τ, (1.2)

ρT
Ds

Dt
= ε̇ : τ −∇ · φ, (1.3)

where φ = −k∇T is the conduction heat flux (with thermal conductivity k), τ is the
stress tensor and ε̇ is the tensor of the rate of deformation. Rewriting (1.3) using the
thermodynamic relation Tds = cpdT − αT

ρ dP (well-known equation (A 6) re-derived in

the appendix), with cp the specific heat capacity at constant pressure, leads to

ρcp
DT

Dt
− αT DP

Dt
= ε̇ : τ −∇ · φ. (1.4)

A classical expression for the energy dissipation is obtained by integration of equation
(1.4) over the whole fluid domain, under the tentative assumption that cp can be taken as
uniform, and by taking its time-average (see McKenzie & Jarvis 1980; Hewitt, McKenzie
& Weiss 1975):

〈ε̇ : τ〉 = −
〈
αT

DP

Dt

〉
, (1.5)

where 〈.〉 denotes time-averaged volume integral. However, the integration of the dot
product of the Navier-Stokes equation (1.2) with velocity u, assuming no work is done
through the boundary, leads to

〈ε̇ : τ〉 = −〈u · ∇P 〉 = −
〈
DP

Dt

〉
, (1.6)

which is very different from equation (1.5) for liquids as αT << 1. The inconsistency is
resolved when it is recognized that cp can neither be uniform nor a function of tempera-
ture only. As cp = ∂H

∂T

∣∣
P

by definition, with H the enthalpy, the term ρcp
DT
Dt in equation

(1.4) can be integrated as follows〈
ρcp

DT

Dt

〉
=

〈
ρ
DH

Dt

〉
−
〈
ρ
∂H

∂P

∣∣∣∣
T

DP

Dt

〉
. (1.7)

The first term of the right-hand side is always zero (this would be true for any function
of state, not just for H) in the statistically steady case. The second term is expressed
using equation (A 7) of the appendix, so that〈

ρcp
DT

Dt

〉
= −

〈
(1− αT )

DP

Dt

〉
. (1.8)

By making the hypothesis of a uniform cp, an important term has been forgotten, thus
invalidating expression (1.5). The correct averaging of the heat equation, just like the
balance of mechanical energy, leads to (1.6). What we have done is to show that it does
not make sense to assume cp constant when αT << 1. Equation (A 7) imposes that H
depends on pressure, that dependence cannot be made as weak as one wishes and has
consequences on the term of the dissipation budget involving cp treated in equation (1.7).

Incidently, we may just write two other exact expressions for dissipation, at least as
fundamental as (1.6), obtained from the integration of (1.4) where entropy variations are
not expanded in terms of pressure and temperature variations (see Verhoogen (1980),
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page 82):

〈τ : ε̇〉 =

〈
ρ T

Ds

Dt

〉
= −

〈
ρ s

DT

Dt

〉
. (1.9)

2. Dissipation in the anelastic approximation (AA)

Equation (1.6) will now be used, within the anelastic approximation (AA) (see Ogura &
Phillips 1961), to determine a condition when the anelastic liquid approximation (ALA)
(see Braginsky & Roberts 1995; Schubert, Turcotte & Olson 2001) can be made. We
assume that convection is sufficiently vigorous to drive the fluid close to an iso-entropy
state, commonly called ’adiabatic’. All quantities will be expanded around their depth-
dependent adiabatic reference state denoted with the subscript 0 while fluctuations are
indicated by primes. The reference state is dependent on height only and is defined such
that the entropy s0 is uniform and that the hydrostatic equation is satisfied ∂P0/∂z =
−ρ0g, where z is the vertical upward coordinate. Equation (A 6) shows that, when entropy
is vigorously mixed, a relation develops between pressure and temperature variations. In
addition, when hydrostatics is considered, this leads to the so-called ’adiabatic gradient’

dT0
dz

= −α0gT0
cp0

. (2.1)

The main purpose of the anelastic approximation is to eliminate sound-waves by replacing
the general continuity equation (1.1), by its zeroth-order expansion

∇ · (ρ0u) = 0. (2.2)

The first order expansion of the entropy equation (1.3) is

ρ0T0
Ds′

Dt
= ε̇ : τ −∇ · (φ0 + φ′) . (2.3)

Writing the first term in a conservative form introduces an advection term for the adia-
batic temperature profile which is expressed using the adiabatic gradient (first term on
the right-hand side of the following equation)

ρ0
D (T0s

′)

Dt
= −α0ρ0T0g

cp0
uzs
′ + ε̇ : τ −∇ · (φ0 + φ′) . (2.4)

The derivation of the anelastic momentum equation is then based on the expansion of
density fluctuations in terms of entropy and pressure fluctuations

ρ′ =
∂ρ0
∂s

∣∣∣∣
P

s′ +
∂ρ0
∂P

∣∣∣∣
s

P ′. (2.5)

Using the Maxwell relation associated with (A 3) and the expression for the adiabatic
temperature gradient obtained from (A 6) for the first term, and hydrostatics for the
second, one obtains

ρ′ = −α0ρ0T0
cp0

s′ − 1

ρ0g

∂ρ0
∂z

P ′. (2.6)

Substituting in the Navier-Stokes equation (1.2) and selecting the lowest order terms
leads to

ρ0
Du

Dt
= −∇P ′ + α0ρ0T0g

cp0
s′êz +

1

ρ0

∂ρ0
∂z

P ′êz +∇ · τ, (2.7)
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where êz is the vertical unit vector. The first and third terms on the right-hand side can
be put together in a single conservative term

ρ0
Du

Dt
= −ρ0∇

(
P ′

ρ0

)
+
α0ρ0T0g

cp0
s′êz +∇ · τ. (2.8)

This form of the dynamic equation was derived by Braginsky & Roberts (1995). From
this point, we can derive important consequences in terms of energy dissipation. In (2.8)
the work of −ρ0∇ (P ′/ρ0) integrated over the volume is zero. Therefore the mechanical
works of the first (−∇P ′) and third (P ′∇ρ0/ρ0) terms of (2.7) are opposite to each other.
As the expression of the dissipation −〈DP/Dt〉 becomes −〈DP ′/Dt〉 = −〈u · ∇P ′〉, we
have

〈ε̇ : τ〉 = −
〈

1

ρ0

∂ρ0
∂z

uzP
′
〉

=

〈
ρ0g

Ks0
uzP

′
〉
, (2.9)

where Ks is the incompressibility at constant entropy. Introducing c =
√
Ks/ρ, the

celerity of sound waves, one can finally express the energy dissipation in terms of the
correlation of velocity and pressure fluctuations

〈ε̇ : τ〉 =

〈
g

c20
uzP

′
〉
. (2.10)

However, energy dissipation must also be equal to the work done by the second term on
the right-hand side of (2.7), in agreement with the expression of dissipation associated
with (2.4) and the general expression (1.9),

〈ε̇ : τ〉 =

〈
α0ρ0T0g

cp0
uzs
′
〉
, (2.11)

now in terms of the correlation between velocity and entropy fluctuations. Expanding
entropy fluctuations in terms of temperature and pressure fluctuations, using (A 6), leads
to

〈ε̇ : τ〉 = 〈α0ρ0guzT
′〉 −

〈
α2
0T0g

cp0
uzP

′
〉
. (2.12)

3. Energetic validation of the anelastic liquid approximation (ALA)

Comparing equations (2.10) and (2.12) shows the relative importance of the pressure
and the temperature terms in (2.12). The coefficient within the pressure/velocity corre-
lation term can be written

α2
0T0g

cp0
=
α2
0c

2
0T0

cp0

g

c20
= (γ0 − 1)

g

c20
, (3.1)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure and at
constant volume. The second equality in (3.1) can be retrieved from the general Mayer
relation cp − cv = −T/ρ2(∂P/∂T )|ρ (∂ρ/∂T )|P . In the case of a constant value of γ,
independent of temperature and pressure (one must here verify that there exist equations
of state with constant ratio of specific heat coefficients: this is indeed the case for the
class of ideal gases, with arbitrary polytropic index), equations (3.1) and (2.10) lead
immediately to the fraction of pressure/velocity correlations to dissipation in (2.12)〈

α2
0T0g

cp0
uzP

′
〉

= (γ0 − 1) 〈ε̇ : τ〉 , (3.2)
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It is hence safe from the point of view of energy dissipation to express entropy fluctuations
s′ (see 2.11) in terms of temperature fluctuations only T ′ (see 3.2) in equation (2.8) under
the condition

γ − 1 =
c2α2T

cp
<< 1. (3.3)

While that condition was obtained rigorously only in the case of constant γ, we expect
it to apply in the general case. Furthermore, provided there are reasonable correlations
between uz and P ′ as well as between uz and T ′, one can expect the condition (3.3)
to be the correct condition of application of the anelastic liquid approximation. It then
follows that, while entropy fluctuations are replaced by temperature fluctuations in (2.8),
cp0T

′ must be substituted to T0s
′ in (2.4) to ensure a consistent energy balance. This

leads to the following anelastic liquid approximation equations, derived from the anelastic
approximation (2.2), (2.4) and (2.8):

∇ · (ρ0u)=0, (3.4)

ρ0
D (cp0T

′)

Dt
=−α0ρ0guzT

′ + ε̇ : τ −∇ · (φ0 + φ′) , (3.5)

ρ0
Du

Dt
=−ρ0∇

(
P ′

ρ0

)
+ α0ρ0gT

′êz +∇ · τ. (3.6)

Let us mention here, for completeness, that a so-called truncated anelastic liquid ap-
proximation (TALA) has been used (for instance in Tan & Gurnis (2007) and Jarvis &
McKenzie (1980)) in which the contribution of pressure fluctuations to density fluctua-
tions are also neglected in equation (2.6). As a consequence, the term −ρ0∇ (P ′/ρ0) in
equation (3.6) above is changed for −∇P ′. However, as pointed out in Leng & Zhong
(2008), this change introduces an imbalance between energy dissipation calculated from
the dynamical equation and heat dissipation in the thermal equation. Such a TALA
formulation should be avoided when the calculation of energy dissipation is an issue.

Our condition (3.3) is in contrast to a scaling law usually derived (see Braginsky &
Roberts 1995; Anufriev & Jones 2005; Spiegel & Veronis 1960) from the anelastic liquid
approximation momentum equation (3.6) expressing the typical magnitude of pressure
fluctuations as a function of temperature fluctuations, P ′ ∼ α0ρ0gLT

′, where L is the
typical length-scale of the fluid domain. This leads to the following relation

α2
0T0g

cp0
uzP

′ ∼ (α0T0)
α0gL

cp0
[α0ρ0guzT

′] , (3.7)

which would imply that the anelastic liquid approximation is valid when (α0T0)D << 1,
where the dissipation number is D = α0gL/cp0. This heuristic scaling law (3.7) involving
D, hence L and g, is not compatible with the exact relation (3.2) from which the condition
(3.3) was obtained solely in terms of fluid properties. Actually, from equations (2.10) and
(2.12), one can infer a more adequate scaling of the pressure fluctuations than P ′ ∼
α0ρ0gLT

′, which is valid in the general anelastic approximation (liquid or not)

P ′ ∼ Kt0α0T
′, (3.8)

where Kt = Ks/γ is the incompressibility at constant temperature.

4. Discussion

Let us now discuss the implications of the results derived in this paper. Concerning
the ’exact’ model (1.1), (1.2) and (1.3), we have shown that it is crucial to use thermo-
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dynamically consistent thermo-physical coefficients. Specifically, considering a fluid with
constant heat capacity cp and small product αT of temperature by thermal expansion
coefficient leads to a severe inconsistency when determining the energetic dissipation.
Whatever αT , dissipation is always equal to 〈−DP/Dt〉. Once compressibility effects
have been taken into account in an anelastic model, no energetic inconsistency can arise
even in the case when constant uniform values for cp0 and other coefficients are used in
equations (2.4) and (2.8). Using the correct expression for dissipation, within the model
of the anelastic approximation, we have then been able to obtain the condition γ−1 << 1
for the anelastic liquid approximation to be valid. That condition is only dependent on
materials properties, not on gravity or length-scale. Note that the condition (3.3) can
be expressed with the Grüneisen parameter, Γ = αKs/(ρcp) used in Solid state Physics,
as c2α2T/cp = γ − 1 = ΓαT . The Grüneisen parameter is close to unity in the mantle
and in the Earth’s core and so is the ratio of heat capacities. This is the reason why
the condition (3.3) is close to αT << 1 in practice concerning the dynamics of the deep
Earth. For the Earth’s liquid outer core and for the mantle, the dimensionless number
in (3.3) is of order 0.05 justifying the anelastic liquid approximation.

From the correct expression for dissipation (1.6), we have obtained equations (3.5) and
(3.6), in the anelastic liquid approximation, which both lead to the following expression
for dissipation

〈ε̇ : τ〉 = 〈α0ρ0gT
′uz〉 . (4.1)

Surprisingly, Hewitt, McKenzie & Weiss (1975) reach the same conclusion when starting
from their expression (1.5):

〈ε̇ : τ〉 = −〈αTu · ∇P 〉 ' − 〈αTρ0guz〉
' 〈α0T

′ρ0guz〉 . (4.2)

This expression is indeed approximately correct for liquids and the apparently very dif-
ferent expressions (1.6) and (1.5) are nearly equal in the anelastic liquid approximation
〈DP/Dt〉 ≈ 〈αTDP/Dt〉. This is due to the large cancellations in (1.6) which allow the
same result to be reached when multiplied by a small term αT , with appropriate fluctua-
tions (here α0T

′ to the leading order). We only expect significantly different values from
expressions (1.6) and (1.5) when αT is neither too small nor too close to unity, where
(1.6) and (1.5) become similar.

To conclude, we hope that we have contributed to a clarification of the expression of
dissipation in a convective system and of the anelastic liquid approximation. We have
not systematically investigated the consequences of these findings in the different possible
fields of application: dynamics of the Earth’s core and mantle, dynamics of giant planets,
ice planets, super-Earth exoplanets. Regarding the application of the anelastic liquid
approximation for the terrestrial planets obeying a generic Murnaghan equation of state
(see Murnaghan 1951), we have no indication that the new criterion (3.3), γ − 1 << 1,
differs significantly from the classical criterion αTD << 1. According to Murnaghan’s
equation of state, the coefficient of expansion α decreases strongly when density ρ is
increased, α ∼ ρ−n while the coefficient of incompressiblity increases with ρ, Ks ∼ ρn,
with a value of n around 3. We have considered the case of silicate planets from one up to
possibly ten Earth masses. The parameter γ − 1 is always less than 0.08, and that value
decreases very quickly away from the surface to much lower values in the bulk of the
mantle (decreasing also when planetary mass increases). Provided the general anelastic
approximation can be applied to mantle dynamics, the anelastic liquid approximation is
indeed well justified for the mantle dynamics of the Earth and even better justified for
super-Earths.
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Appendix A. Useful thermodynamic relations

From the Gibbs equation expressed in terms of the Gibbs free energy G

dG = SdT − 1

ρ
dP, (A 1)

the following Maxwell relation is derived, expressing the partial derivative of entropy
with respect to pressure at constant temperature

∂S

∂P

∣∣∣∣
T

= − ∂V

∂T

∣∣∣∣
P

= −α
ρ
. (A 2)

The partial derivative of entropy with respect to temperature at constant pressure is
obtained as follows. Two expression for dH are first written, one from Gibbs relation,
the other from the definition of cp

dH = TdS +
1

ρ
dP, (A 3)

dH = cpdT +
∂H

∂P

∣∣∣∣
T

dP. (A 4)

The difference of these expressions above leads to

TdS = cpdT +

(
∂H

∂P

∣∣∣∣
T

− 1

ρ

)
dP. (A 5)

This shows that the partial derivative of entropy with respect to temperature at constant
pressure is cp/T . Along with equation (A 2), this leads to

dS =
cp
T
dT − α

ρ
dP. (A 6)

Comparing equations (A 5) and (A 6) leads to an important expression used in this paper

∂H

∂P

∣∣∣∣
T

=
1− αT
ρ

. (A 7)

The partial derivative of this last equation with respect to temperature at constant
pressure leads to expressions of the derivative of cp with respect to pressure at constant
temperature

∂cp
∂P

∣∣∣∣
T

=
∂

∂T

(
1− αT
ρ

)∣∣∣∣
P

, (A 8)

= −T
ρ

[
α2 +

∂α

∂T

∣∣∣∣
P

]
. (A 9)
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CORRIGENDUM

Reflections on dissipation associated with
thermal convection – CORRIGENDUM

Thierry Alboussière and Yanick Ricard

doi:10.1017/jfm.2013.241, Published by Cambridge University Press,
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Key words: convection, general fluid mechanics, geophysical and geological flows,
corrigendum

There is a flaw in the reasoning in the original paper, just before equation (2.9).
Everything before that point is correct, essentially that −〈u · ∇P〉 is an exact
expression for dissipation in thermal convection. The conclusions obtained after
that point are essentially unfounded, first that γ − 1� 1 is the condition of validity
for the anelastic liquid approximation, second that the scaling P′ ∼ KT0α0T ′ applies
within the general anelastic approximation. Other conclusions are derived here, in this
corrected version, on the continuity equation in the anelastic approximation.

We first summarize the results that can be derived from the complete equations of
convection. The dissipation is exactly

〈τ : ε̇〉 =−〈u · ∇P〉, (0.1)

Alboussière & Ricard (2013, equation (1.6)). Decomposing P= P0+ P′ and ρ = ρ0+
ρ ′, where P0 and ρ0 are the adiabatic, hydrostatic pressure and density, we have

〈τ : ε̇〉 = −〈u · ∇P0〉 − 〈u · ∇P′〉, (0.2)
= 〈ρ0guz〉 + 〈P′∇ · u〉. (0.3)

The second line (0.3) has been obtained using the hydrostatic equation for the
reference adiabatic profile and a Gauss integration. The dissipation appears therefore
to have two contributions. The first one 〈ρ0guz〉 is exactly −〈ρ ′guz〉 by global mass
conservation. Because ρ ′ and uz are generally correlated in a convective system (light
material rises, dense material sinks), this term is positive, i.e. 〈uz〉 > 0. The second
term can be estimated using also the continuity equation ∂ρ ′/∂t+∇ · [(ρ0+ ρ ′)u] = 0
which implies that ρ0∇ · u=−ρ ′∇ · u− uzdρ0/dz− u · ∇ρ ′ − ∂ρ ′/∂t. In the limit of
vanishing viscosity and thermal diffusivity, it is expected that the state variables will
become close to the adiabatic hydrostatic profile, in particular ρ ′/ρ0 −→ 0, which
implies that ρ0∇ · u≈−uzdρ0/dz at leading order. Dissipation (0.3) can be written:

〈τ : ε̇〉 ≈−〈ρ ′guz〉 −
〈

P′uz
1
ρ0

dρ0

dz

〉
, (0.4)

Then the density perturbations can be written in terms of entropy and pressure
perturbations, as a linear expansion about the adiabatic profile:

ρ ′ ≈−α0ρ0T0

cp0
s′ − 1

ρ0g
dρ0

dz
P′, (0.5)
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(cf our equation (2.6)), leading to the more familiar

〈τ : ε̇〉 ≈
〈
α0ρ0T0g

cp0
uzs′

〉
. (0.6)

If we now start from the Navier Stokes equation in the anelastic approximation

ρ0
Du
Dt
=−ρ0∇

(
P′

ρ0

)
+ α0ρ0T0g

cp0
s′êz +∇ · τ (0.7)

Alboussière & Ricard (2013, equation (2.8)), we get exactly

〈τ : ε̇〉 =
〈
α0ρ0T0g

cp0
uzs′

〉
, (0.8)

and using (2.6),

〈τ : ε̇〉 =−〈ρ ′guz〉 −
〈

P′uz
1
ρ0

dρ0

dz

〉
. (0.9)

The expressions of dissipation in the exact case and in the anelastic approximation,
in terms of entropy perturbation, (0.6) and (0.8), or in term of density and pressure
perturbations (0.4) and (0.9) are very similar. However, and this is the weak point
of our previous reasoning and the cause of this corrigendum, we used the anelastic
mass conservation ∇ · (ρ0u)= 0 together with the exact dissipation expression (0.3) to
conclude that 〈ρ0guz〉= 0 and that dissipation in the anelastic approximation is simply
−〈u ·∇P′〉. In doing so, we have unduly mixed equations of two different formalisms.
In the framework of anelasticity, we can only prove (0.9), and the anelastic mass
conservation says nothing about 〈ρ ′guz〉. Therefore, we must consider unproven that
the dissipation in the anelastic formalism can be expressed in terms of pressure
variations only, i.e. we have no arguments to neglect the term involving 〈ρ ′uz〉 in
(0.9) and to retain that involving 〈P′uz〉. The rest of our paper, comparing the relative
amplitudes of terms in 〈s′uz〉, 〈P′uz〉 and 〈T ′uz〉 in the anelastic approximation is most
probably wrong and, in any case, not demonstrated.

The treatment of continuity is at the origin why the expression of dissipation −〈u ·
∇P〉 does not translate into −〈u ·∇P′〉 when using the anelastic approximation model.
If we want that property to hold in the anelastic model, and pressure fluctuations to be
a faithful image of that in the full model, one must substitute the continuity equation
∇ · [(ρ0+ ρ ′)u] = 0 for the equation usually used in the anelastic model ∇ · (ρ0u)= 0.
The fact that mass conservation is not well treated at first order in the perturbations
from the adiabatic state can be seen from the original anelastic equations. Energy
conservation (Alboussière & Ricard 2013, (2.4)) provides s′, while the momentum
equation (2.8) or (0.7) provides P′ and u (with continuity (2.2)). From s′ and P′, it is
possible to evaluate ρ ′ from the linearized equation of state. Then there is no equation
ensuring mass conservation, i.e. 〈ρ ′u〉 for instance is not constrained to be zero.

In the original anelastic equations, the horizontal average of uz is zero and 〈uz〉 = 0.
However, the analysis in this corrigendum (in particular (0.3) stresses the importance
of the mean upward vertical velocity 〈uz〉 6= 0. Finally, the combination of that
horizontally averaged vertical velocity uz and the adiabatic hydrostatic pressure
gradient produces a significant contribution to the expression of dissipation −〈u ·∇P〉,
of the form 〈uzρ0g〉. That contribution is not present in the original anelastic equations
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and is well accounted for in a modified version of the anelastic equations when
continuity is written ∇ · [(ρ0 + ρ ′)u] = 0.

To conclude, we have shown that the approximated continuity equation ∇ · (ρ0u)=0
is not compatible with the property that energy dissipation is equal to −〈u · ∇P〉.
Hence either dissipation and/or pressure are likely to be evaluated incorrectly in the
original anelastic approximation. This inconsistency is resolved when the modified
continuity equation ∇ · [(ρ0+ ρ ′)u] = 0 is used, without affecting the anelastic nature
of the approximation.
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