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A simple model for necking and detachment of subducting slabs is
developed to include the coupling between grain-sensitive rheol-
ogy and grain-size evolution with damage. Necking is triggered
by thickened buoyant crust entrained into a subduction zone, in
which case grain damage accelerates necking and allows for rela-
tively rapid slab detachment, i.e., within 1 My, depending on the
size of the crustal plug. Thick continental crustal plugs can cause
rapid necking while smaller plugs characteristic of ocean plateaux
cause slower necking; oceanic lithosphere with normal or slightly
thickened crust subducts without necking. The model potentially
explains how large plateaux or continental crust drawn into sub-
duction zones can cause slab loss and rapid changes in plate motion
and/or induce abrupt continental rebound.
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Subduction of tectonic plates is widely recognized as the man-
ifestation of a convecting mantle, i.e., where the cold con-

vective thermal boundary layer at the Earth’s surface becomes
heavy enough to sink (e.g., refs. 1 and 2). Subduction is similarly
recognized for being the primary driving force for tectonic motions
(3, 4) as well as controlling vertical displacements of continents in
convergent margins (5, 6). Subducting slabs, however, can become
detached from their originating plate, possibly by either a necking
instability or by plastic or brittle failure (see refs. 7 and 8). Such
detachment has been invoked to explain seismicity gaps and
pinched tomographic features in slab structures (9, 10). However,
slab detachment also has significant geodynamic consequences
and may help account for precipitous tectonic events that are not
readily explained by mantle convective motions (11). In particular,
rapid loss of a slab from its connected plate could cause a sudden
change in plate forces and hence abrupt change in plate motion.
Likewise, slab loss below continents could account for instances of
rapid uplift. In both cases, horizontal or vertical adjustments occur
on the order of a few million years, which is much more rapid than
the typical 10- to 100-My timescale for changes in convective
circulation (i.e., typical transit times across the mantle).
The trigger for slab loss must also be reasonably rapid and

induce a change in the subducting system that causes it to neck
or break off rather than continue subducting. One plausible
trigger is the arrival of thick buoyant crust swept into the sub-
duction zone, which would likely have little influence until its
actual arrival; this would potentially impede subduction and in-
troduce tensile stresses that could initiate detachment. This
process could, for example, be associated with the arrival of thick
oceanic plateaux (or midocean ridges) at subduction zones and
subsequent changes in plate motion. For example, the collision
of the Ontong Java Plateau with the Melanesian arc possibly
curtailed subduction and caused a rotation of the Pacific plate at
6 Ma (12). Although highly speculative, ingestion of a plateau
into the Aleutian trench at 50 Ma may have abruptly disrupted
plate forces, causing the sudden change in plate motion associ-
ated with the Emperor-Hawaiian bend. Moreover, when thick
continental crust is entrained into a subduction zone, the slab
can also detach (13), and this is possibly associated with a rapid
isostatic uplift of the overriding plate. This process is apparent in

the correlation between the tectonic evolution of various margins
with tomographic images of slabs (e.g., ref. 9). Slab detachment
has thus been invoked to explain the topographic and tectonic
changes at Vanuatu (14), the Alps and the Aegean (13), the Dabie
shan (15), the Pannonian Basin (16), Central America (10), Bor-
neo (17), Anatolia (18, 19), Taiwan (20), East Timor (21), the
Appenines (22), and during the Messinian Event (23, 24).
The first numerical models of slab detachment, based on dif-

fusion and dislocation creep rheologies for olivine, found that
the slab was too cold and stiff to detach in the short timescale
implied by geological observations (25). More recent studies,
however (7, 8), were able to obtain more rapid detachment, but
required a power-law behavior in excess of normal dislocation
creep, and/or a combination of multiple lithologic layers with
various self-weakening effects (non-Newtonian behavior, shear
heating, brittle failure, and sediment ingestion).
We propose a simple model for rapid slab detachment that

combines triggering by entrainment of buoyant crust, and a rapid
necking mechanism facilitated by the coupling of grain-sensitive
rheology and grain-size evolution with damage (26–31). In par-
ticular, grain reduction and weakening by the combination of
damage and Zener pinning in a multiphase mineralogical as-
semblage, which is consistent with field and laboratory observa-
tions of polycrystalline rocks (27), allows rapid necking and thus
abrupt detachment. The stress drop in the slab during detachment
also provides an estimate for how quickly the slab decouples from
the surface and changes plate forces and/or loading for continental
subsidence. With a sufficiently large buoyant crustal plug and sub-
stantial damage, rapid necking occurs on the order of 1 My; this
suggests that the introduction of large ocean plateaux or continental
crust into convergent margins can trigger precipitous detachment,
and thus abrupt horizontal or vertical changes in tectonic motion.

Significance

Subduction zones are delineated by Earth’s ocean trenches,
and are where tectonic plates sink into the mantle as cold
heavy slabs, which in turn drive plate motion. But slabs can
detach from their surface plates, thus altering tectonic driving
forces. Slab detachment can occur if thick crust from continents
or oceanic plateaux is swept by plate motion into the sub-
duction zone, thus plugging it up. Detachment is also acceler-
ated because mineral grains in the slab become smaller during
deformation, causing the slab to weaken rapidly while being
stretched. The combination of crustal plugs with weakening
causes abrupt slab detachment in a few million years, which
can account for observed precipitous changes in plate tectonic
motion and rapid continental uplift.
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A Simple Necking Model
Force Balance and Stress.We consider a subducting slab of original
thickness D0 and length H0 >D0, which undergoes necking after
thickened buoyant crust plugs up the subduction zone, thereby
causing excess tensile stress along the slab. In the absence of this
crustal plug, e.g., before its arrival at the subduction zone, tensile
stress in the slab is assumed small enough that the slab does not
deform, in which case its effective weight is supported by mantle
viscous drag and it readily pulls the trailing plate into the sub-
duction zone. With this assumption, necking of the slab cannot
occur without a plug. However, with the ingestion of the crustal
plug, the upper portion of the slab necks and has length hðtÞ and
width bðtÞ after some time t (Fig. 1). Although here we isolate the
effect of the crustal plug on slab necking, it can also induce other
responses such as slab flattening or trench retreat (e.g., refs. 32–34).
In general, the negative buoyancy of the slab causes a down-

ward force FS (units of Newtons per meter for this 2D model),
the positive buoyancy of the thick crustal plug causes an up-
ward force FC, and mantle drag on the descending slab causes
an upward force FD on either side of the slab. We first define a
basic state where, before necking occurs, the full negative buoyancy
of the slab is FS° and the full mantle drag is FD° and all these
forces balance

FC −FS° + 2FD° = 0 [1]

where FS° =ΔρgD0H0, FD° = μ0H0W0=L wherein Δρ is the effec-
tive net slab density anomaly (accounting for thermal and chem-
ical density variations and the effect of phase changes, assuming
they sum to yield a net negative buoyancy and slab driving force),
μ0 is the surrounding mantle viscosity, and W0 is the slab descent
speed; L is the horizontal distance over which shear occurs, and is
assumed to be a characteristic plate length or convection cell width
that is roughly the same as the mantle depth (i.e., L≈ 3000  km).
(See Table 1 for fixed material and model properties.) With this
basic force balance, the slab still descends, but more slowly than if
the continental plug were not present (i.e., if FC = 0).
When necking and stretching ensues, we assume there is a

necking portion of initial length h0, and the rest of the slab of
length H0 − h0 remains undeformed. The necking portion ini-
tiates near the top of the slab where the tensile stress is maxi-
mum, and assuming the self-weakening feedback caused by
necking and damage induces much larger strength heterogeneity

in the slab than might occur at greater depth by, for example,
solid−solid phase changes (35, 36). The viscous vertical tensile
stress τ in the necking portion pulls up on the top of the unde-
formed slab, in which case the force balance on that undeformed
portion is

τ · b−FS + 2FD = 0 [2]

where b is the time-dependent width of the slab where it necks,
FS =ΔρgD0ðH0 − h0Þ, FD = μ0ðH0 − h0ÞðW0 +wÞ=L, and w is the
additional slab descent velocity because of necking. Using Eq. 1
to eliminate W0 from Eq. 2, we obtain

τ=
1
b

�
H0 − h0
H0

��
FC −

2μ0H0w
L

�
=
1
b
ðFC′ − 2μ0′wÞ [3]

which thus defines the reduced plug force FC′ and reduced mantle
viscosity μ0′. The tensile stress τ depends on the crustal buoyancy
pulling up as well as the fractional length of heavy undeformed slab
pulling down; in the simple limit where there is no continental plug
and no necking, τ= 0 and the slab subducts without stretching.
Likewise, in the similar analytical model of ref. 7, there is no
mantle drag, and the slab is supported by a rigid top surface, in
which case, by Newton’s third law (37), FC =FS°.
Although the necking portion starts with length h= h0 and width

b=D0, it becomes narrower and longer. We assume the mass of the
necking region is conserved; hence hb is a constant. Moreover, we
assume h0 = αD0, which is half the wavelength of the initial infini-
tesimal necking instability (38, 39); α itself is dependent on rheol-
ogy, and for our model, with a Newtonian surrounding mantle and
a slab initially in dislocation creep (see Rheology), α≈ 5. Therefore,
hb= αD2

0, and since w= dh=dt, then

w=−
αD2

0

b2
db
dt

[4]

The stress relation (Eq. 3) thus becomes

τ=
FC′
b

+ 2μ0′
αD2

0

b3
db
dt

[5]

Note that this simple necking model makes several key as-
sumptions, namely that the stretching of the slab is initially
nearly uniform before the necking instability starts (38) (which
is valid provided H0 is appreciably longer than h0) and that the
necking portion of length hðtÞ remains approximately uniform
in width bðtÞ.

Fig. 1. Sketch of model configuration, with basic initial geometry on the left
and the necking geometry and forces on the right. See A Simple Necking
Model, Force Balance and Stress, for discussion.

Table 1. Fixed material and model properties

Quantity Symbol Value

Crustal density ρc 2,700 kg/m3

Mantle−crust density contrast Δρc 600 kg/m3

Gravitational acceleration g 10 m/s2

Mean mantle viscosity μ0 1022 Pa s
Initial slab width D0 100 km
Initial slab length H0 1,500 km
Plate length (mantle depth) L 3,000 km
Dislocation creep exponent n 3
Dislocation creep compliance A 2× 10−41   s−1 · Pa−n

Diffusion creep grain size exponent m 3
Diffusion creep compliance B 5× 10−37   s−1 · Pa−1 ·mm

Interface coarsening rate G 2× 10−38  mq · s−1

Interface coarsening exponent q 4
Interface surface tension γ 1 Pam
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Rheology. The strain rate of necking is related to the stress by a
composite rheology of dislocation and diffusion creep in a poly-
crystalline rock, i.e., predominantly peridotite:

_e=
w
h
=−

1
b
db
dt

=Aτn +B
τ

rm
[6]

where A and B are the effective dislocation and diffusion creep com-
pliances for a mixture of olivine and pyroxene (which we assume, for
simplicity, to have similar rheological properties), and we use the
exponents n=m= 3 for standard dislocation and Coble creep. Al-
though diffusion creep depends on the evolving grain size, the inter-
face between the rock’s mineral phases (i.e., olivine and pyroxene)
induces Zener pinning, which blocks grain growth (40–42). Thus, we
assume grain size evolution is slaved to the evolution of the size of the
pinning bodies r, which is equivalent to the characteristic radius of
curvature, or roughness of the interface (27–29). Hence, the mineral
grain size is proportional to r, and using the definition for a pinned-
state (27), the rock’s average grain size is approximately π

2 r. (The
pinned state requires that the Zener pinning factor Zi = 1−
cð1−ϕiÞðRi=rÞ2 = 0, where Ri is grain size of phase i with volume
fraction ϕi, and c= 0:87 for the grain size distributions used by refs.
27–29. The mean grain size is thusR=

P
iϕiRi =

P
irϕi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1−ϕiÞ

p
,

and for a peridotitic mixture with ϕ1 = 0:4 for pyroxene and
ϕ2 = 0:6 for olivine, this leads to R= 1:5707r≈ π

2 r.)

Grain Evolution, Pinning, and Damage. The evolution equation for
the pinning body size (or interface roughness) r, which controls
grain size, is

dr
dt

=
ηG
qrq−1

−
fr2

γη
Ψ [7]

where most parameters are defined in Table 1, save for f, which is
a damage partitioning fraction (determining how much deforma-
tional work goes to creating surface energy to make smaller pinning
bodies and hence smaller grains), and η= 3ϕ1ϕ2. Although f � 1
(a typical value at midlithosphere temperature is 10−4; see ref. 31),
we consider a range of values through variation of the dimensionless
damage number (see Dimensionless Governing Equations). Finally,
Ψ= τ _e=Aτn+1 + Bτ2=rm is the deformational work. (See refs. 27–
29, for more details and applications of the grain damage and
pinning theory.)

Dimensionless Governing Equations. The governing equations for
our system are Eqs. 5−7, which we nondimensionalize using D0

as the length scale for b, Fc′=D0 as the scale for τ, and time and
pinning body (or grain) size scales for t and r given by

T=
1
A

�
D0

Fc′

�n

and R=

"
B
A

�
D0

Fc′

�n− 1
#1=m

; [8]

respectively. The timescale T is the inverse strain rate for slab
necking by dislocation creep, which is how the slab initially deforms;
the relation for the grain/pinning body scale R is the field boundary
between diffusion and dislocation creep (i.e., when their strain rates
are equal). The dimensionless governing equations are thus

τ=
1
b
+

β

b3
db
dt

[9]

db
dt

=−b
�
τn +

τ

rm

�
[10]

dr
dt

=
C

qrq−1
−Dr2

�
τn+1 +

τ2

rm

�
[11]

The dimensionless parameters of the model are α= h0=D0 as
described above, and

β= 2μ0′αA
�
Fc′
D0

�n−1

  ; C= ηGT
Rq and D=

fR
γη

Fc′
D0

[12]

which are an effective viscosity ratio between the mantle and
initially deforming slab, the coarsening (or healing) number, and
damage number, respectively.
The dimensionless numbers are obtained using the rheological

and grain growth and pinning-surface coarsening parameters from
refs. 27–29 and 31 for midlithosphere at temperature T ≈ 1;000 K
(however, see ref. 29, Methods, for discussion of coarsening rate
activation energy), which lead to the compliances and coarsening
rates shown in Table 1, among other fixed parameters. For the
crustal buoyancy stress, we use Fc=D0 =Δρcghc where hc is the
effective crustal thickness, which we vary to assess the effect of
different sized crustal plugs. The variation of hc basically only
affects the dimensionless number β. The coarsening number is
always very small, and we conservatively fix it to C≈ 10−5; however,
given the variations in the partitioning fraction f, we consider
a range of damage numbers, given by 0≤D≤ 1;000. Finally, as
already noted earlier, we fix α= 5.

Necking Results
Simple Case of Steady-State Damage/Healing and All Diffusion Creep.
We first consider the simple limiting case proposed by Schmal-
holz (7) in which there is no mantle drag supporting the slab,
which simply hangs from a rigid lithosphere. We further consider
that the slab has reached a steady state in which dr=dt→ 0 so that
healing and damage are in balance; in this limit, the grains have
been reduced so the rheology is dominated by diffusion creep.
With these assumptions, the evolution Eqs. 10 and 11 become

db
dt

=−
bτ
rm

[13]

C
qrq−1

=D τ2

rm−2 [14]

which, when combined to eliminate r, yield

db
dt

=−bτ
�
qDτ2

C
� m

q+1−m

=−bτ4
�
qD
C
�3=2

[15]

using m and q from Table 1; this relation for _b is equivalent
to the Schmalholz relation with a stress power law exponent
of n= 4. Thus, the damage relation potentially gives an even
stronger power-law necking effect than simple dislocation creep
with n= n= 3 (i.e., any n> 1 leads to the necking instability, and
the time to completely neck or break off the slab in the Schmal-
holz analysis is t≈ 1=n). Moreover, ref. 8. found that the best fit
of the Schmalholz relation to their numerical experiments, which
included a combination of various weakening effects, was also
for n= 4. For grain-damage weakening, the coefficient multiply-
ing −bτ4 on the right side of Eq. 15 is very large, i.e.,
ðqD=CÞ3=2 ≈ 1010, using q= 4, C= 10−5 and D= 10, and this factor
influences the necking rate. However, unlike Schmalholz’s anal-
ysis, b does not collapse to 0 in a finite time, primarily because
of the inclusion of mantle drag in our model.

Nonlinear Evolution and Necking.The full nonlinear governing Eqs.
9−11 can be solved numerically by first combining Eqs. 9 and 10
into a polynomial (cubic if n= 3) for τ, the real solutions of which
give the function τðb; rÞ; this is then used in Eqs. 10 and 11, which
are integrated using a stiff ordinary differential equation solver
in MATLAB. The initial conditions are b= 1 (100-km-thick slab)
and r= 10 (which corresponds to about 1-mm grain or pinning
body size).
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In this model, necking is triggered by a buoyant plug that
imposes a tensile stress on the slab, which slows it down and causes
it to neck. For the largest plug considered, with an equivalent hc =
40-km-thick crust, the necking time is very long, of order 100 My,
without any damage, but is reduced to about 1 My with significant
grain damage (see Fig. 2A). However, for a much smaller conti-
nental plug (with a 10-km-thick crust), the necking time for each
case goes up by almost two orders of magnitude; this is to be ex-
pected, since the timescale given by Eq. 8 goes as h−nc and thus
a factor of 4 drop in hc, with a power-law index n= 3, gives a factor
of 64 increase in the basic timescale.
During necking, the slab width eventually drops to a finite value

of several tens of meters but does not reach zero thickness. How-
ever, in principle, the slab neck cannot stretch longer than the depth
of the mantle (minus the length of the undeformed slab). The
maximum neck length is hmax =L−H0 + h0 ≈ 2;000  km (see Table
1), and this is associated with a neck width b= αD2

0=hmax ≈ 25  km.
However, the neck reaches this width (Fig. 2) at a considerably
later time than the time for stress loss, and thus the full effect of
detachment is “felt” well before the slab reaches the bottom of
the mantle.
The additional velocity of slab descent w due to necking increases

to values of 1–10 cm/y, which restores the total slab velocity to its
free Stokes descent (i.e., the slab goes from a slower velocity, given
the resistance of the buoyant crustal plug, to a faster velocity of a
free-falling detached slab).
The stress τ of the neck on the descending slab (and hence the

stress of the slab on the surface) increases and peaks over a long
time when there is no damage, but drops precipitously, within about
1My, when there is significant damage and a large crustal plug. This
implies the stress guide or direct coupling of the slab to the surface
is rapidly lost, which would induce a rapid loss of plate driving force
and hence a change in plate motion, and/or a rapid uplift of over-
lying continent. The effect of detachment is most pertinent with
regard to stress loss, and thus we infer the detachment time as
the time needed to lose most of the stress τ; as expected, this

detachment time is a strong function of crustal plug thickness hc and
damage number D (Fig. 3). For large plug size (30−40 km) and
damage ðD> 100Þ, the detachment time is of order 1 M. However,
once the plug thickness hc is less than 10−20 km, detachment takes
10–100 My or more (unless damage is extremely high).

Discussion and Conclusion
Our simple model demonstrates that the introduction of a sig-
nificant buoyant crustal plug into a subduction zone can induce

A B

Fig. 2. Nonlinear solutions to Eqs. 9−11 for two cases of a 40-km-thick crustal plug with β= 1:7×10−2 (A) and a 10-km-thick crustal plug with β= 1:1×10−3 (B).
Other parameters are C= 10−5, α= 5, and four values of the damage number D= 0,  10,  100,  1,000 in black, blue, magenta, and red, respectively. Initial
conditions for dimensionless quantities are b= 1 and r = 10.

Fig. 3. Detachment time (defined as the time for stress τ to reach 10% of its
maximum value) as a function of crustal plug thickness hc , for damage
numbers D= 0,  10,  100,  1,000 in black, blue, magenta, and red, respectively.
All other parameters are the same as in Fig. 2.
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rapid slab detachment, provided there is a sufficient self-weak-
ening mechanism in the slab. The weakening mechanism in our
model is based on grain reduction and damage in polycrystalline
rocks that is consistent with laboratory and field observations of
mylonitic shear localization (27). With significant and plausible
damage, detachment can occur in about 1 My for larger crustal
plugs. However, as the crustal plug thickness is reduced, the de-
tachment time increases rapidly, and for plugs much less than 10–20
km thick, detachment is typically 10–100 My or more (depending
on the extent of damage), which is too slow to occur before con-
vective downwelling of the slab sweeps away its necking portion into
the lower mantle.
For the fastest model detachments, the stress drop is abrupt and

would potentially induce a precipitous adjustment in forces driving
horizontal plate motion, and/or vertical uplift/downwarping of
continents in convergent margins. The stress drop in the model is
effectively always simply FC′=D0 =FC=D0 · ðH0 − h0Þ=H0. For the
parameters used (Table 1), the stress drop is approximately 2/3 the
total stress due to the crustal load FC: In essence, only the bottom
portion of the slab detaches, but the remaining necking portion

still provides a vertical load even as it is being stretched. Thus,
if, for example, a maximum 40 km of a crustal plug was sub-
merged, after detachment, only 27 km of it would be restored
to isostasy. However, the release of 27 km of crustal load to
isostasy would lead to a significant 27  km ·Δρc=ðρc +ΔρcÞ= 5  km
surface uplift.
The stress loss associated with detachment is also equivalent

to losing ðH0 − h0Þ=H0 ≈ 2=3 of the slab driving force. This drop
in driving force is sufficient to make a fast-moving plate ap-
proach speeds of a slow-moving plate, and/or allow the slab
driving force elsewhere on the plate edge (that is not detached)
to dominate and change plate directions. If detachment is in
1 My, as implied for the cases with large crustal loads and
substantive damage, then this change in plate motion would
appear as abrupt as what is observed for rapid changes in plate
direction.
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