
Tre
7.02 Physics of Mantle Convection
Y Ricard, Ecole Normale Supérieure de Lyon, Université de Lyon-1, CNRS, Lyon, France
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7.02.1 Introduction

In many textbooks of fluid dynamics, and for most students,

the word ‘fluid’ refers to one of the states of matter, either

liquid or gaseous, in contrast to the solid state. This definition

is much too restrictive. In fact, the definition of a fluid rests in

its tendency to deform irrecoverably. Basically, any material

that appears as elastic or nondeformable, with a crystalline

structure (i.e., belonging to the solid state) or with a disordered

structure (e.g., a glass, which from a thermodynamic point of

view belongs to the liquid state), can be deformed when sub-

jected to stresses for a long enough time.

The characteristic time constant of the geologic processes

related to mantle convection, typically 10 My (3�1014 s), is so

long that the mantle, although stronger than steel and able to

transmit seismic shear waves, can be treated as a fluid. Simi-

larly, ice, which is the solid form of water, is able to flow from

mountain tops to valleys in the form of glaciers. A formalism

that was developed for ordinary liquids or gases can therefore

be used in order to study the inside of planets. It is not the

equations themselves, but their parameters (viscosity, conduc-

tivity, spatial dimensions, etc.) that characterize their applica-

bility to mantle dynamics.

Most materials can therefore behave like elastic solids

on very short time constants and like liquids at long times.

The characteristic time that controls the appropriate
rheological behavior is the ratio between dynamic viscosity,

�, and elasticity (shear modulus), mr, called the Maxwell time

tM (Maxwell, 1831–79),

tM ¼ �

mr
[1]

The rheological transition in some materials like silicon

putty occurs in only a few minutes; a silicon ball can bounce

on the floor, but it turns into a puddle when left on a table for

tens of minutes. The transition time is of the order of a few

hundred to a few thousand years for the mantle (see

Section 7.02.3.2). Phenomena of a shorter duration than this

time will experience the mantle as an elastic solid, while most

tectonic processes will experience the mantle as an irreversibly

deformable fluid. Surface loading of the Earth by glaciation

and deglaciation involves times of a few thousand years for

which elastic aspects cannot be totally neglected with respect to

viscous aspects.

Although the word ‘convection’ is often reserved for flows

driven by internal buoyancy anomalies of thermal origin, in

this chapter, we will more generally use ‘convection’ for any

motion of a fluid driven by internal or external forcing. Con-

vection can be kinematically forced by boundary conditions or

induced by density variations. The former is ‘forced convec-

tion’ and the latter is ‘free convection,’ which can be of com-

positional or thermal origin. We will, however, mostly focus



Physics of Mantle Convection 25
on the aspects of thermal convection (or Rayleigh–Bénard

convection (Rayleigh, 1842–1919; Bénard, 1874–1939))

when the fluid motion is driven by thermal anomalies and

discuss several common approximations that are made in this

case. We know, however, that many aspects of mantle convec-

tion can be more complex and involve compositional and

petrologic density anomalies or multiphase physics. We will

therefore review some of these complexities.

The physics of fluid behavior, like the physics of elastic

media, is based on the general continuum hypothesis. This

hypothesis requires that quantities like density, temperature,

and velocity are defined everywhere, continuously, and at

‘points’ or infinitesimal volumes that have a statistically mean-

ingful number of molecules so that the quantity represents an

average independent of microscopic molecular fluctuations.

This hypothesis seems natural for ordinary fluids at the labo-

ratory scale. We will adopt the same hypothesis for the mantle,

although we know that it is heterogeneous at various scales and

made of compositionally distinct mineral grains.
7.02.2 Conservation Equations

The basic equations of this section can be found in more detail

in many classical textbooks (Batchelor, 1967; Landau and

Lifchitz, 1980). We will only emphasize the aspects that are

pertinent to Earth’s and terrestrial mantles.
7.02.2.1 General Expression of Conservation Equations

Let us consider a fluid transported by the velocity field n, a

function of position x and time t. There are two classical

approaches to describe the physics in this deformable medium.

Any variable A in a flow (like a scalar such as temperature or a

vector like velocity) can be considered as a simple function of

position and time, A(x, t), in a way very similar to the specifi-

cation of an electromagnetic field. This description is the Euler-

ian point of view (Euler, 1707–83). The second point of view is

traditionally attributed to Lagrange (Lagrange, 1736–1813)

and considers that a material element of the flow is identified

by its unique initial position x0 and thereafter follows a trajec-

tory specific to that element x(x0, t). An observer following this

trajectory would naturally choose the variable A(x(x0, t), t). The

same variable A seen by an Eulerian or a Lagrangian observer

would have very different time derivatives. According to Euler,

the time derivative would simply be the rate of change seen by

an observer at a fixed position, that is, the partial derivative

@/@t. According to Lagrange, the time derivative, noted with D,

would be the rate of change seen by an observer riding on the

material element

DA

Dt
¼ dA x x0, tð Þ, tð Þ

dt

� �
x0

¼
X
i¼1,3

@A

@xi

@xi
@t

+
@A

@t
[2]

where xi are the components of x. Since x is the position of a

material element of the flow, its partial time derivative is

simply the flow velocity v. The Lagrangian derivative is also

sometimes called material derivative, total derivative, or sub-

stantial derivative.
The previous relation was written for a scalar field A, but it

could easily be applied to a vector field A. The Eulerian and

Lagrangian time derivatives are thus related by the symbolic

relation

D

Dt
¼ @

@t
+ v�—ð Þ [3]

In Cartesian coordinates (Descartes, 1596–1650), the oper-

ator (v �—) is the symbolic scalar (u1@/@x1+u2@/@x2+u3@/@x3)
and a convenient mnemonic is to interpret it as the scalar

product of the velocity field with the gradient operator

(@/@x1,@/@x2,@/@x3) denoted with the symbol — called nabla.

The operator (v �—) can be applied to a scalar or a vector.

Notice however the limitations of this mnemonic as for any

vectors A and B, (v �B)A is parallel to A, while (v �—)A is parallel

neither to A nor to v.

In a purely homogeneous fluid, the flow lines are not visible

and the mechanical properties are independent of the original

position of fluid particles. In this case, the Eulerian perspective

seems natural. On the other hand, a physicist describing elastic

media can easily draw marks on the surface of deformable

objects and flow trajectories become perceptible for him or

her. After elastic deformation, the stresses are also dependent

on the initial equilibrium state. The Lagrangian perspective is

therefore more appropriate. We will mostly adopt the Eulerian

perspective for the description of the mantle. However, when we

discuss deformation of heterogeneities embedded in and stirred

by the convective mantle, the Lagrangian point of view will be

more meaningful (see Section 7.02.5.1.7).

A starting point for describing the physics of a continuum is

the conservation equations. Consider a scalar- or a vector-exten-

sive variable A (i.e., mass, momentum, energy, entropy, and

number of moles) with a density per unit volume rA (with

units of A per unit volume) and a virtual but fixed volume O
enclosed by the open surface

P
. This virtual volume is freely

crossed by the flow. The temporal change of the net quantity of A

inside O is

d

dt

ð
O
rA dV ¼

ð
O

@rA
@t

dV [4]

Since O is fixed, the derivative of the integral is the integral

of the partial time derivative.

The total quantity of the extensive variable A in a volume O
can be related to a local production, HA (with units of A per

unit volume and unit time), and to the transport (influx or

efflux) of A across the interface. This transport can be either a

macroscopic advective transport by the flow or a more indirect

transport, for example, microscopic diffusion. Let us call JA the

total flux of A per unit surface area. The conservation of A can

be expressed in integral form as

ð
O

@rA
@t

dV ¼�
ð
S
JA� dS+

ð
O
HA dV [5]

where the infinitesimal surface element vector dS is oriented

with the outward unit normal; hence, the minus sign associates

outward flux with a sink of quantity A. Equation [5] is the

general form of any conservation equation. When the volume

O, surface
P

, and flux JA are regular enough (in mathematical

terms when the volume is compact, the surface piecewise
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smooth, and the flux continuously differentiable), we can

make use of the divergence theoremð
S
JA�dS¼

ð
O
—�JA dV [6]

to transform the surface integral into a volume integral. The

divergence of the vector J with Cartesian coordinates (J1, J2, J3)

is the scalar — � J¼@J1/@x1+@J2/@x2+@J3/@x3, scalar product of

the symbolic operator — by the real vector J (although notice

the difference between the scalar — � J and the operator J �—).
Since the integral equation [5] is valid for any virtual volume

O, we can deduce that the general differential form of the

conservation equation is

@rA
@t

+—�JA ¼HA [7]

A similar expression can be used for a vector quantity rA
with a tensor flux JA and a vector source term HA. In this case,

the divergence of the second-order tensor with components Jij
is a vector with Cartesian components Sj¼1,3@Jij/@xj (our con-

vention is that the derivatives in the divergence affect the

second index of the tensor; other authors (e.g., Malvern,

1969) use a different convention).

We now apply this formalism to various physical quantities.

Three quantities are strictly conserved: themass, themomentum,

and the energy. This means that they can only change in a

volume O by influx or efflux across the surface
P

. We must

identify the corresponding fluxes, but no source terms should

be present (in fact, in classical mechanics, the radioactivity

appears as a source of energy) (see also Section 7.02.2.5.3).

One very important physical quantity is not conserved – the

entropy – but the second law of thermodynamics ensures the

positivity of the associated sources.
σzydxdz

σyydxdz

σxydxdz

x

y

z

o

Figure 1 The force per unit area applied on a surface directed by the
normal vector n is by definition s�n. The component of this force
along the unit vector ei, therefore ei �s�n. For example, szydxdz is the
component acting in the oz direction of force applied on the surface dxdz
with normal in the oy direction. Here again, the order of the indexes for
the stress tensor is a convention but in agreement with our definition
of the divergence of a tensor.
7.02.2.2 Mass Conservation

Mass flux of material with density r (mass per unit volume) is

Jr ¼ rv [8]

Using either the Eulerian or the Lagrangian time derivatives,

mass conservation becomes

@r
@t

+—� rvð Þ¼ 0 [9]

or
Dr
Dt

+ r—�v¼ 0 [10]

In an incompressible fluid, particles have constant density,

and so in the particle frame of reference, the Lagrangian

observer does not see any density variation and Dr/Dt¼0. In

this case, mass conservation takes the simple form — �v¼0,

which is commonly called the continuity equation.

Using mass conservation, a few identities can be derived

that are very useful for transforming an equation of conserva-

tion for a quantity per unit mass to a quantity per unit volume.

For example, for any specific scalar quantity A (i.e., quantity

per unit mass),

@ rAð Þ
@t

+—� rAvð Þ¼ r
DA

Dt
[11]

and for any specific vector field A,
@ rAð Þ
@t

+—� rA�Vð Þ¼ r
DA

Dt
[12]

where A�v is a dyadic tensor of components Aiuj (notice that

v�A 6¼A�v).
7.02.2.3 Momentum Conservation

7.02.2.3.1 General momentum conservation
The rate of change of momentum of material in a volume O is

related to the body forces acting in the volume O and to the

surface forces acting on its surface
P

, that is, Newton’s second

law (Newton, 1642–1727). The total momentum isð
O
rv dV [13]

and its variations are due to

• advective transport of momentum across the surface
P

,

• forces acting on this surface,

• internal body forces.

The momentum conservation of an open, fixed volume can

therefore be expressed in integral form asð
O

@ rvð Þ
@t

dV ¼�
ð
S
rv v�dSð Þ+

ð
S
s�dS +

ð
O
f �dV [14]

The stress tensor s corresponds to the traction applied on

the surface, per unit area (see Figure 1). Our convention is that

sij is the i-component of the force per unit area across a plane

normal to the j-direction. The term f represents the sum of all

body forces per unit volume and in particular the gravitational

forces rg (we will not consider electromagnetic forces that are

described in vol. 8).

Using the divergence theorem (for the first term of the right

side, rv(v �dS) can also be written as r(v�v) �dS) and the

equality [12], the differential form of momentum conservation

becomes

r
Dv

Dt
¼—�s + f [15]

It is common to divide the total stress tensor into a thermo-

dynamic pressure – PI where I is the identity stress tensor and a
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velocity-dependent stress t. The relationship between the tensor

t and the velocity field will be discussed in Section 7.02.3.2.

Without motion, the total stress tensor is thus isotropic and

equal to the usual pressure. In most geophysical literature, it

has been assumed that the velocity-dependent tensor has no

isotropic component, that is, it is traceless tr t
� �

¼ 0. In this case,

the average isotropic total stress�tr s
� �

=3 is the thermodynamic

pressure P and the velocity-dependent stress tensor t is the

deviatoric stress tensor (see Section 7.02.3.2 for more details).

As —� PI
� �

¼—P, momentum conservation [14], in terms of

pressure and deviatoric stresses, is

r
Dv

Dt
¼�—P +—�t + f [16]

This equation is called the Navier–Stokes equation (Navier,

1785–1836; Stokes, 1819–1903) when the stress tensor is

linearly related to the strain rate tensor and the fluid is incom-

pressible (see Section 7.02.3.2).

7.02.2.3.2 Inertia and non-Galilean forces
In almost all studies of mantle dynamics, the fact that the Earth

is rotating is simply neglected. It is however worth discussing

this point. Let us define a reference frame of vectors ei attached

to the solid Earth. These vectors rotate with the Earth, such that

with respect to a Galilean frame, their rate of change is

dei
dt

¼v�ei [17]

where v is the angular velocity of Earth’s rotation. A point of

the Earth, x¼
P

i xiei, has a velocity in the Galilean frame

dx

dt

� �
Gal:

¼
X
i¼1;3

dxi
dt

� �
ei + xi

dei
dt

� �� �
¼ vEarth +v�x [18]

where vEarth is the velocity in the Earth’s frame, and, by repeat-

ing the Galilean time derivate, to obtain the acceleration gGal

in a Galilean frame (Galileo, 1564–1642),

gGal ¼gEarth + 2v�vEarth +v� v�xð Þ + dv

dt
�x [19]

In this well-known expression, one recognizes on the right

side the acceleration in the non-Galilean Earth’s reference

frame and the Coriolis (Coriolis, 1792–1843), centrifugal,

and Poincaré accelerations (Poincaré, 1854–1912).

To quantify the importance of the first three acceleration

terms (neglecting the Poincaré term), let us consider a charac-

teristic length scale (the Earth’s radius, a¼6371 km) and man-

tle velocity (the maximum plate tectonic speed,

U¼10 cm year�1) with which we can compare the various

acceleration terms. One immediately gets

Inertia

Coriolis
¼ U

2oa
¼ 1

2:9�1011
[20]

Coriolis

Gravitational force
¼ 2oU

g
¼ 1

2:1�1013
[21]

Centrifugal

Gravitational force
¼o2a

g
¼ 1

291
[22]

Thus, the inertial term is much smaller than the Coriolis

term (this ratio is also known as the Rossby number (Rossby,

1898–1957)), which is itself negligible relative to gravitational

force. Even if we argue that a more meaningful comparison
would be between the whole Coriolis force 2roU and the

lateral variations of the gravitational force drg rather than the

total gravity force rg, inertia and Coriolis accelerations still

play a negligible role in mantle dynamics (assuming that the

mantle velocity U is related to drg by a viscous relation

U∝drga2/� where � is the mantle viscosity, the ratio

2roU/(drg) is the inverse of the Ekman number (Ekman,

1874–1954)). Neglecting inertia means that forces are instan-

taneously in balance and that changes in kinetic energy are

negligible since inertia is the time derivative of the kinetic

energy. We can perform a simple numerical estimate of the

mantle kinetic energy. The kinetic energy of a lithospheric plate

(a square of size 2000 km, thickness 100 km, velocity 5 cm

year�1, and density 3000 kg m�3) is 1.51 kJ, which is compa-

rable to that of a medium-sized car (2000 kg) driven at only

4.42 km h�1 or of a man on a bike (say, total about 100 kg)

going at a leisurely 20 km h�1.

The centrifugal term is also quite small but not as small

(i.e., it is 1/291 of gravitational force). It induces several effects.

The centrifugal effect causes the Earth’s flattening with an

equatorial bulge of 21 km (1/300 of the Earth’s radius),

although this is a static phenomenon that has no interactions

with convective dynamics. The gravitational coupling between

the equatorial bulge and other celestial bodies perturbs their

Keplerian orbits (Kepler, 1571–1630) and leads to precessions

and nutations of their orbits as well as Earth’s spin. Finally, the

bulge causes the whole planet to rotate along an equatorial axis

in order to keep the maximum principal inertial axis coinci-

dent with its rotational axis (Ricard et al., 1993b; Spada et al.,

1992a). This rotational equilibrium of the Earth will not be

discussed here (see e.g., Chandrasekhar (1969) for the static

equilibrium shape of a rotating planet and Munk and

MacDonald (1960) for the dynamics of a deformable rotating

body). The Poincaré acceleration is itself negligible compared

to the centrifugal term as the changes of Earth’s rotation occur

over times much larger than a day. Although Poincaré acceler-

ation has no effect on the mantle, it may affect the dynamics of

the fluid core (Vanyo et al., 1995).

We neglect all the acceleration terms in the following, but

we should remember that in addition to the convective motion

of a nonrotating planet, a rotation of the planet with respect to

an equatorial axis is possible. This motion documented by

paleomagnetism is called true polar wander (Besse and

Courtillot, 1991).
7.02.2.3.3 Angular momentum conservation
The angular momentum per unit mass J¼x�v also obeys a

conservation law. This law can be obtained in two different

ways. First, as we did for mass and momentum conservation,

we can express the balance of angular momentum in integral

form. In the absence of intrinsic body couples (i.e., we do not

consider the case where distributed body couples exist in addi-

tion of distributed body forces), the angular momentum vari-

ations are due to

• advective transport of angular momentum across the sur-

face
P

,

• torque of forces acting on this surface,

• torque of internal body forces.

The resulting balance is therefore
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ð
O

@ rJð Þ
@t

dV ¼�
ð
S
rJ v�dSð Þ +

ð
S
x� s�dS
� �

+

ð
O
x� f dV [23]

The only difficulty to transform this integral form into a

local equation is with the integral involving the stress tensor

(but is readily solved using tensor or index notation; see

Malvern, 1969). After some algebra, eqn [23] becomes

r
DJ

Dt
¼ x�—�s + x� f + T [24]

where the torque T is the vector (T zy�T yz,T xz�T zx,T yx�T xy).

A second expression can be obtained by the vectorial multipli-

cation of the momentum equation [15] by x. Since

x�Dv

Dt
¼DJ

Dt
�@x

@t
�v¼DJ

Dt
�v�v¼DJ

Dt
[25]

we get,

r
DJ

Dt
¼ x�—�s + x� f [26]

which differs from eqn [24] by the absence of the torque T .

This proves that in the absence of singular sources of angular

momentum (distributed body couples), the stress (either s or

t) must be represented by a symmetrical tensor,

s¼st , t¼tt [27]

where [ ]t denotes tensor transposition.
7.02.2.4 Energy Conservation

7.02.2.4.1 First law and internal energy
The total energy per unit mass of a fluid is the sumof its internal

energy, U , and its kinetic energy (this approach implies that the

work of the various forces is separately taken into account;

another approach that we use in Section 7.02.2.5.3 adds to

the total energy the various possible potential energies and

ignores forces). In the fixed volume O, the total energy is thusð
O
r U +

u2

2

� �
dV [28]

A change of this energy content can be caused by

• advection of energy across the boundary
P

by macroscopic

flow;

• transfer of energy through the same surface without mass

transport, by say diffusion or conduction;

• work of body forces;

• work of surface forces;

• volumetrically distributed radioactive heat production.

Using the divergence theorem, the balance of energy can

therefore be written as

@

@t
r U +

u2

2

� �� �
¼�—� r U +

u2

2

� �
v +q+ Pv�t�v

� �
+ f �v +rH

[29]

where q is the diffusive flux, H is the rate of energy production

per unit mass, and the stresses are divided into thermodynamic

pressure- and velocity-dependent stresses.
This expression can be developed and simplified by using

eqn [11] and the equations of mass and momentum

conservation [9] and [16] to reach the form

r
DU
Dt

¼�—�q�P—�v + t :—v +rH [30]

The viscous dissipation term t :—v is the contraction of the

two tensors t and —v (of components @ui/@xj). Its expression is

Sijtij@ui/@xj.

7.02.2.4.2 State variables
The internal energy can be expressed in terms of the more usual

thermodynamic state variables, namely, temperature, pressure,

and volume. We use volume to follow the classical

thermodynamic approach, but since we apply thermodynam-

ics to points in a continuous medium, the volume V is in fact

the volume per unit mass or 1/r. We use the first law of

thermodynamics that states that during an infinitesimal

process, the variation of internal energy is the sum of the heat

dQ and work dW exchanged. Although irreversible processes

occur in the fluid, we assume that we can adopt the hypothesis

of local thermodynamic equilibrium.

The increments in heat and work are not exact differentials:

these increments depend not only on the initial and final

stages but also on the entire process of energy exchange.

Using either a T–V or a T–P formulation, we can write

dQ¼CVdT + ldV ¼CpdT + hdP [31]

where CP an CV are the heat capacities per unit mass at constant

pressure and volume, respectively, and h and l are two other

calorimetric coefficients necessary to account for heat exchange

at constant temperature. For fluids, the reversible exchange of

work is only due to the work of pressure forces:

dW ¼�PdV [32]

which implies that only the pressure term corresponds to an

energy that can be stored and recovered without loss when the

change in volume is reversed. In contrast, the stresses related to

the velocity will ultimately appear in the dissipative, irrecover-

able term of viscous dissipation: this point will be further

considered in the Section 7.02.3.2 about rheology.

Thermodynamics states that the total variations of energy,

dU ¼ dQ + dW; enthalpy, dH¼dU + d PVð Þ; or entropy,

dS¼ dQ=T, are exact differentials and U,H, and S are potentials.

Thismeans that the net change in energy (or enthalpy or entropy)

between an initial state and a final state depends only on the

initial and final states themselves and not on the intermediate

stages. This implies mathematically that the second partial deriv-

atives of these potentials with respect to any pair of variables are

independent of the order of differentiation. Using these rules, a

large number of relations can be derived among the thermody-

namic coefficients and their derivatives. These are called the

Maxwell relations and are discussed in most thermodynamics

textbooks (e.g., Poirier, 1991). We can in particular derive the

values of l (starting from dU and dS in the T–V formulation) and

h (starting from dH and dS in the T–P formulation),

l¼ aTKT , and h¼�aT
r

[33]

In these expressions for l and h, we introduced the thermal

expansivity a and the isothermal incompressibility KT,
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a¼ 1

V

@V

@T

� �
P

¼�1

r
@r
@T

� �
P

KT ¼�V @P
@V

� 	
T
¼ r @P

@r

� �
T

[34]

The thermodynamic laws and differentials apply to a closed

deformable volume O(t), which corresponds to the perspective

of Lagrange. We can therefore interpret the differential symbols

‘d’ of the thermodynamic definitions [31] and [32] as Lagrang-

ian derivatives ‘D.’

Therefore, in total, when the expressions for l and h are

taken into account, [33], and when the differential symbols are

interpreted as Lagrangian derivatives, the change of internal

energy, dU¼dQ+dW, can be recast as

DU
Dt

¼CV
DT

Dt
+ aTKT �Pð Þ—�v

r
[35]

or

DU
Dt

¼CP
DT

Dt
�aT

r
DP

Dt
�P

—�v
r

[36]

In these equations, we also have replaced the volume vari-

ation using mass conservation [9]

DV

Dt
¼D 1=rð Þ

Dt
¼� 1

r2
Dr
Dt

¼—�v
r

[37]

7.02.2.4.3 Temperature
We can now employ either thermodynamic relation [35] or

[36] in our conservation equation deduced from fluid mechan-

ics, [30], to express the conservation of energy in terms of

temperature variations:

rCP
DT

Dt
¼�—�q+ aTDP

Dt
+ t :—v + rH

rCV
DT

Dt
¼�—�q�aTKT—�v + t :—v + rH [38]

Apart from diffusion, three sources of temperature varia-

tions appear on the right side of these equations. The last term

rH is the source of radioactive heat production. This term is of

prime importance for the mantle, mostly heated by the decay

of radioactive elements like uranium (235U and 238U), thorium

(236Th), and potassium (40K). All together, these nuclides gen-

erate about 20�1012 W (McDonough and Sun, 1995).

Although this number may seem large, it is in fact very small.

Since the Earth now has about 7�109 inhabitants, the total

natural radioactivity of the Earth is only �3 kW/person, not

enough to run the appliances of a standard kitchen in a devel-

oped country. It is amazing that this ridiculously small energy

source drives plate tectonics, raises mountains, and produces a

magnetic field. In addition to the present-day radioactivity,

extinct radionuclides, like that of 36Al (with a half-life of

0.73 My), have played an important role in the initial stage of

planet formation (Lee et al., 1976).

The viscous dissipation term t :—v converts mechanical

energy into heat. This term explains the classical Joule experi-

ment (equivalence between work and heat, Joule, 1818–89) in

which the potential energy of a load (measured in joules)

drives a propeller in a fluid and dissipates the mechanical

energy as thermal energy (measured in calories).

The remaining source term, containing the thermodynamic

coefficients (a or aKT in eqn [38]), vanishes when the fluid is
incompressible (e.g., when a¼0 or when — �v¼0). This term is

related to adiabatic compression and will be discussed in

Section 7.02.4.2.2.
7.02.2.4.4 Second law and entropy
We now consider the second law of thermodynamics and

entropy conservation. Assuming local thermodynamic equilib-

rium, we have dU¼TdS�PdV. Using the equation of conser-

vation for the internal energy U, [30], and expressing the

volume change in terms of velocity divergence, [37], we obtain

rT
DS
Dt

¼�—�q + t :—v +rH [39]

To identify the entropy sources, we can express this equa-

tion in the form of a conservation equation (see eqn [7]),

@ rSð Þ
@t

¼�—� rSv + q

T

� 	
� 1

T2
q�—T +

1

T
t :—v +

1

T
rH [40]

The physical meaning of this equation is therefore that the

change of entropy is related to a flux of advected and diffused

entropy, rSv and q/T, and to three entropy production terms,

including from radiogenic heating.

A brief introduction to the general principles of non-

equilibrium thermodynamics will be given in Section

7.02.5.1.4. Here, we simply state that the second law requires

that in all situations, the total entropy production is positive.

When different entropy production terms involve factors of

different tensor orders (tensors, vectors, or scalars), they must

separately be positive. This is called the Curie principle (Curie,

1859–1906) (see e.g., de Groot and Mazur, 1984; Woods,

1975). It implies that

�q�—T � 0 and t :—v � 0 [41]

The usual Fourier law (Fourier, 1768–1830) with a positive

thermal conductivity k>0,

q¼�k—T [42]

satisfies the second law.

When the conductivity k is uniform, the thermal diffusion

term of the energy equation �— �q becomes kr2T where

r2¼— �— is the scalar Laplacian operator (Laplace, 1749–

1827). Instead of a thermal conductivity, a thermal diffusivity

k can be introduced:

k¼ k

rCP
[43]

(although in principle, isobaric and isochoric thermal diffusiv-

ities should be defined). In situations with uniform conductiv-

ity, without motion and radioactivity sources, the energy

equation [38] becomes the standard diffusion equation

@T

@t
¼ kr2T [44]

The relation between stress and velocity will be discussed in

detail in Section 7.02.3.2. We will show that the relationship

t¼ 2� _«�1

3
—�vI

� �
[45]

is appropriate for the mantle, where � is dynamic viscosity and

strain rate tensor _« is defined by
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_«¼ 1

2
—v½ �+ —v½ �t
� �

[46]

The positivity of the entropy source [41] implies that

t : _«¼ � _« : _«� 0 [47]

and the dynamic viscosity is therefore a positive quantity.

Using this relation and assuming � uniform, the divergence

of the stress tensor that appears in the momentum conserva-

tion equation has the simple form

—�t¼�—2v +
�

3
— —�vð Þ [48]

where the vectorial Laplacian —2v is —(— �v)�—�(—�v). This

relationship suggests a meaningful interpretation of the viscos-

ity. The momentum equation [16] can be written as

@v

@t
¼ �

r
—2v +other terms . . . [49]

forgetting the other terms, a comparison with the thermal

diffusion equation [44] shows that the kinematic viscosity n,
defined by

n¼ �

r
[50]

should rather be called the momentum diffusivity; it plays the

same role with respect to the velocity as thermal diffusivity

does with respect to temperature.
7.02.2.5 Gravitational Forces

7.02.2.5.1 Poisson’s equation
In this chapter, the only force is the gravitational body force. The

Earth’s gravity is the sum of this gravitational body force and

the centrifugal force already discussed in Section 7.02.2.3.2. The

gravitational force per unit mass is the gradient of the gravita-

tional potential c, a solution of Poisson’s equation (Poisson,

1781–1840), that is,

g¼�—c, and —2c¼ 4pGr [51]

where G is the gravitational constant. In the force term that

appears in the momentum equation [16], f¼rg, the gravita-

tional force per unit mass should be in agreement with the

distribution of masses: the Earth should be self-gravitating.

7.02.2.5.2 Self-gravitation
When dealing with fluid dynamics at the laboratory scale, the

gravitational force can be considered as constant and uniform.

The gravitational force is related to the entire distribution of

mass in the Earth (and the universe) and is practically inde-

pendent of the local changes in density in the experimental

environment. Therefore, at the laboratory scale, it is reasonable

to ignore Poisson’s equation and to assume that g is a uniform

and constant reference gravitational field.

Inside a planet, the density can be divided into an average

depth-dependent density, r0(r); the source of the reference depth-
dependent gravitational field, g0(r); and a density perturbation

dr, the source of a gravitational perturbation dg. The force term f is

therefore to first order r0g0+drg0+r0dg; it is tempting to assume

that each term in this expression is much larger than the next one
and hopefully that only the first two terms are of importance

(neglecting the second term would suppress any feedback

betweendensity perturbations and flow). Practically, this assump-

tionwould imply considerationof the total density anomalies but

only the depth-dependent gravitational field. Solving Poisson’s

equation to compute the perturbed gravitational field would thus

be avoided. We can test the previously mentioned idea and show

that unfortunately, the third term, r0dg, may be of the same order

as the second one (Panasyuk et al., 1996; Ricard et al., 1984;

Richards and Hager, 1984). To perform this exercise, we have to

introduce the spherical harmonic functions Ylm(y,f). These func-
tions of latitude y and longitudef oscillate on a sphere of radius a

just like 2-D sinusoidal functions on a plane. Each harmonic

function changes sign l�m times from North to South Pole and

m times over the same angle (180	) around the equator. The

degree l can thus be interpreted as corresponding to a wavelength

of order 2pa/l. Spherical harmonics constitute a basis for func-

tions defined on the sphere and are also eigenfunctions of the

angular part of Laplace’s equation that facilitates the solution of

Poisson’s equation.

Let us consider a density anomaly dr¼sd(r�a)Ylm(y,f) at
the surface of a sphere of radius a and uniform density r0,
where d(r�a) is the Dirac delta function (Dirac (1902–84);

s has unit of kg m�2). Inside the planet, this mass distribution

generates the radial gravitational perturbation field of

dg¼ 4pGs
l

2l +1

r

a

� 	l�1

Ylm y, fð Þ [52]

We can compare the terms r0hdgi and g0hdri, both averaged

over the planet radius. For a uniform planet, the surface grav-

itational force per unit mass is g0¼4pGr0a/3. Since

hdri¼sYlm(y,f)/a, we get

r0 dgih
g0 drh i ¼

3

2l +1
[53]

This estimate is certainly crude and a precise computation

taking into account a distributed density distribution could be

done. However, this rule of thumb would remain valid. At low

degree, the effect of self-gravitation r0dg is about 50% of the

direct effect drg0 and reaches 10% of it only near l�15. Self-

gravitation has been taken into account in various models

intended to explain Earth’s gravity field from mantle density

anomalies (see also Ribe, this volume, and Forte, vol. 3). Some

spherical convection codes account for self-gravitation (e.g.,

Zhong et al., 2008); the codes that do not include this effect

lead to an inaccurate computation of the gravity field.
7.02.2.5.3 Conservative forms of momentum and energy
equations
In the general remarks on conservation laws in Section 7.02.2.1,

we wrote that conserved quantities like mass, momentum, and

energy can only be transported but do not have production

terms (contrary to entropy). However, in the momentum con-

servation [16] and in the energy conservation [29], two terms,

f¼rg and fv¼rg �v, appear as sources (we also said that the

radioactive term rH appears because classical physics does not

identify mass as energy and vice versa. A negligible mass sink of

order –rH/c2, where c is the speed of light, should, moreover, be

present in the mass conservation).
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It is interesting to check that our equations can be recast

into an exact conservative form. An advantage of writing equa-

tions in conservative form is that it is appropriate to treat with

global balances, interfaces, and boundaries (see Section

7.02.2.6). We can obtain conservative equations by using

Poisson’s relation [51] and performing some algebra (using

r¼(r2c)/(4pG) and g �—g¼—g �g, since g¼�—c):

rg¼� —�g
4pG

g¼� 1

4pG
—� g�g�1

2
g2I

� �
[54]

rg�v¼�rv�—c

¼�r
Dc
Dt

�@c
@t

� �
¼�r

Dc
Dt

� —�g
4pG

@c
@t

¼�r
Dc
Dt

� 1

4pG
—� g

@c
@t

� �
� 1

8pG
@g2

@t

[55]

If we substitute these two expressions in the momentum

and the energy conservation equations, [16] and [29], we

obtain the conservative forms

@ rvð Þ
@t

¼�—� rv�v +PI�t +
1

4pG
g�g� 1

8pG
g2I

� �
[56]

@

@t
r U +c+

u2

2

� �
+

g2

8pG

� �
¼�—� rv U +c+

u2

2

� �
+q+Pv�t�v + g

4pG
@c
@t

� �
+ rH

[57]

When the gravitational force is time-independent, a poten-

tial c can simply be added to the kinetic and internal energies

to replace the work of gravitational forces. When gravitational

force and its potential are time-dependent (due to mass redis-

tribution during convection, segregation of elements, etc.), two

new terms must be added, a gravitational energy proportional

to g2 and a gravitational flux proportional to g@c/@t (this is

equivalent to the magnetic energy proportional to B2, where B

is the magnetic induction, in tesla (Tesla, 1856–1943), and to

the Poynting vector of magnetohydrodynamics (Poynting,

1852–1914)).

In a permanent or in a statistically steady regime, the time-

dependent terms of energy equation [57] can be neglected and

the equation can then be integrated over the volume of the

Earth. The natural assumption is that the Earth’s surface veloc-

ities are perpendicular to the Earth’s surface normal vector and

that the surface is either stress-free or with no horizontal veloc-

ity (we exclude the case of convection forced by imposing a

nonzero surface velocity). Using the divergence theorem to

transform the volume integral of the divergence back to a

surface integral of flux, most terms in eqn [57] cancel and all

that remains is ð
S
q�dS¼

ð
O
rH dV [58]

The surface flux in a statistically steady regime is simply the

total radiogenic heat production.

It may seem surprising at first that viscous dissipation that is

everywhere positive does not appear in this balance. To under-

stand this point, we can directly integrate the energy equation

written in terms of temperature [38],
ð
O
rCP

DT

Dt
dV ¼�

ð
S
q�dS +

ð
O

aT
DP

Dt
+ t :—v

� �
dV +

ð
O
rHdV

[59]

On the right side, the first and last terms cancel each other

out by eqn [58]. To simplify the left side, notice that the

enthalpy H¼U +P=r obeys (see eqn [36])

r
DH
Dt

¼ rCP
DT

Dt
+ 1�aTð ÞDP

Dt
[60]

According to eqn [11], rDH/Dt¼@(rH)/@t+—(rvH). The

last term cancels when integrated on Earth’s volume (using the

divergence theorem), and the first term cancels in a statistically

steady regime. Therefore, the time-average volume integral of

rDH/Dt is zero and the volume integral of rCpDT/Dt must

be opposite to that of (1�aT )DP/Dt. The time average of the

energy equation [59] implies therefore (Alboussiere and

Ricard, 2013) ð
O

DP

Dt
+ t :—v

� �
dV ¼ 0 [61]

The total heat production due to dissipation is balanced by

the work due to compression and expansion over the convec-

tive cycle (notice that if we had assumed a constant CP, the left

side of eqn [59] would have been zero and we would have

found an aT term in front of DP/Dt (Hewitt et al., 1975), which

is incorrect). This balance is global not local. Dissipation

occurs mostly near the boundary layers of the convection and

compressional work is done along the downwellings and

upwellings of the flow. The relation [61] can also be derived

by multiplying the Navier–Stoke equation [16] by v and per-

forming a volume integration.
7.02.2.6 Boundary and Interface Conditions

7.02.2.6.1 General method
A boundary condition is a special case of an interface condition

when certain properties are taken as known on one side of the

interface. Sometimes, the properties are explicitly known (e.g.,

the three velocity components are zero on a no-slip surface),

but often, an interface condition simply expresses the continu-

ity of a conserved quantity. To obtain the continuity conditions

for a quantity A, the general method is to start from the

conservation equation of A in its integral form (see eqn [5]).

We choose a cylindrical volume O (a pillbox) of infinitely

small radius R where the top and bottom surfaces are located

at a distance
E from a discontinuity surface (see Figure 2). We

choose two Cartesian axes Ox and Oy; we call n the upward
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unit vector normal to the interface and t a radial unit vector

normal to the cylindrical side of the pillbox; and y is the angle

between t and Ox. If we now make the volume O(E) shrink to

zero by decreasing E at constant R, the volume integrals of the

time-dependent and the source terms will also go to zero

(unless the source term contains explicit surface terms like in

the case of surface tension, but this is irrelevant at mantle

scales). We simply get

lim
E!0

ð
S Eð Þ

JA�dS¼ 0 [62]

(the demonstration is here written for the vector flux JA of the

scalar A but is easily extended to tensor flux of a vectorial

quantity A). This integral can also be written as

pR2 JA½ ��n+R

ð + E

�E

ð2p
0

JA�tdzdy [63]

where [X] is the jump of X across the interface, sometimes noted

X+–X�. Inmost cases, the second term goes to zero with E because
the components of JA are bounded or is exactly zerowhen the flux

is not a function of y (since the double integral becomes the

product of an integral in z times
Ð
0
2ptdy¼0). In these cases, the

boundary condition for A becomes

JA½ ��n¼ 0 [64]

At an interface, the normal flux of A must therefore be

continuous. However, in some cases, for example, when JA
contains a z-derivative, the second term may not cancel and

this happens in the case of boundaries associated with phase

changes (see Section 7.02.2.6.3).
7.02.2.6.2 Interface conditions in the 1-D case
and for bounded variables
Using the mass, momentum, energy, and entropy conserva-

tions in their conservative forms in eqns [9], [56], [57], and

[40] and assuming for now that no variable becomes infinite at

an interface, the interface conditions in the reference frame in

which the interface is motionless are

rv½ ��n¼ 0

t

 �

�n� P½ �n¼ 0

rvU +q�t�v + Pv

 �

�n¼ 0

rvS +
q

T

h i
�n¼ 0

[65]

(the gravitational force per unit mass and its potential are

continuous). In these equations, we neglected the inertia and

the kinetic energy terms in the second and third equations of

eqn [65] as appropriate for the mantle. When these terms are

accounted for (adding [�rv�v] �n to the second equation and

[�rvu2/2] �n to the third), these equations are known as the

Hugoniot–Rankine conditions (Hugoniot, 1851–87; Rankine,

1820–72).

At the surface of a fluid, and on any impermeable interfaces

where v �n¼0 and [v]¼0, the general jump conditions [65]

without inertia imply that the heat flux [q] �n, the entropy flux
[q/T] �n (and therefore the temperature T ), and the stress

components t

 �

�n� P½ �n are continuous. In 3-D, four bound-

ary conditions are necessary on a surface to solve for the three
components of velocity and for the temperature. The temper-

ature (or the heat flux) can be imposed, and, for the velocity

and stress, either free-slip boundary conditions v �n¼0, which

is the first condition of eqn [65] and t�n
� �

�n¼ 0, or no-slip

boundary conditions (the horizontal surface velocity v is

imposed) are generally used.

Inside the mantle, minerals undergo several phase transi-

tions at depth and at least two of them, the olivineÐwadsleyite

and the ringwooditeÐperovskite+ferropericlase transitions

around 410 and 660 km depth, respectively, are sharp enough

to be modeled by discontinuities. Conditions [65] have been

used in several convection models (assuming therefore that all

variables remain bounded).

When the kinetic energy is neglected, and the viscous stres-

ses are much smaller than the pressure term, which are two

approximations valid for the mantle, the last two boundary

conditions are, assuming continuity of temperature,

rv U +
P

r

� �� �
�n + q½ ��n¼ 0

rvS½ ��n+
1

T
q½ ��n¼ 0

[66]

The diffusive flux q can be eliminated from these two

equations. Since pv is continuous, and remembering that

U +P/p is the enthalpy H, we simply recognize the Clapeyron

condition, which is latent heat release,

DH¼ TDS [67]

where the enthalpy and entropy jumps, [H] and [S], were
replaced by their more traditional notations, DH and DS. The
heat flux is discontinuous across an interface,

DHrv�n + q½ ��n¼ 0 [68]

and the discontinuity amounts to the enthalpy released by the

mass flux that has undergone a chemical reaction or a phase

change.
7.02.2.6.3 Phase change interfaces and stress continuity?
A mathematical dilemma arises in using the conditions [65]

across a phase change interface that does not seem to have

been considered except by Corrieu et al. (1995): a phase

change induces a stress discontinuity at an interface.

We illustrate the mathematical difficulty by discussing the

stress continuity in the second condition of eqn [65]. The

problem arises from the term in @uz/@z present in the rheolog-

ical law [45] that becomes infinite when the material is forced

to change its density discontinuously. To enforce the change in

shape that occurs locally, the normal horizontal stresses have

to become infinite, and therefore, their contributions to the

force equilibrium of a pillbox do not vanish when the pillbox

height is decreased.

To derive the appropriate interface condition, we have to

consider again eqn [63] where JA is substituted by s. The

interface is considered as laterally infinite and perfectly flat

(without curvature) and the viscosity is uniform. The only

terms that may be unbounded on the interface are sxx, syy,
and szz. Omitting the other stress components, which would

make no contribution to the interface condition when E goes to
zero, the stress continuity becomes
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pR2 s

 �

�n +Rex

ð + E

�E

ð2p
0

sxxcosydzdy +Rey

ð + E

�E

ð2p
0

syysinydzdy¼ 0

[69]

Since R is small, we can replace the stresses on the cylindri-

cal side of the pillbox by their first-order expansions, for

example, sxx¼sxx(0)+(@sxx/@x)R cos y+(@sxx/@y)R sin y. After
integration in y and division by pR2, one gets

s

 �

�n + ex
@

@x

ð + E

�E
sxxdz + ey

@

@y

ð + E

�E
syydz¼ 0 [70]

This expression already demonstrates the continuity of szz.
Using sxx¼szz+2�@ux/@x�2�@uz/@z, and assuming that the

viscosity remains uniform, we see that

lim
E!0

ðE
�E
sxxdz¼�2� lim

E!0

ðE
�E

@uz
@z

dz¼�2� uz½ � [71]

The same result holds for the syy term. Since uz is discontin-
uous (because of mass-flux continuity and the density jump), a

sudden change in volume implies a discontinuity of the tan-

gential stresses. The stress boundary conditions are thus

txz½ ��2�
@

@x
uz½ � ¼ tyz


 �
�2�

@

@y
uz½ � ¼ tzz�P½ � ¼ 0 [72]

in disagreement with eqn [65]. Infinite horizontal stresses and

discontinuous shear stresses occur in the presence of an inter-

face with surface tension ( Joseph and Renardy, 1993). In the

case of a permeable and infinitely thin phase transition, there

should also be a surface tension with a dynamic origin, simply

related to [uz] when the viscosity is uniform. A rigorous math-

ematical demonstration that proves the existence of a normal

stress discontinuity in the case of a curved interface in perfect

analogy with usual surface tension and that is extended for a

variable viscosity is given in Chambat et al. (2013). Notice also

that the pressure and the viscous dissipation should also be

unbounded. Until a complete clarification of these discontinu-

ity problems is achieved, it seems that the usual continuity

conditions across phase changes may not be mathematically

consistent.

7.02.2.6.4 Weakly deformable surface of a convective cell
When a no-slip condition is imposed at the surface, both

normal and shear stresses are present at the boundary. These

stresses, according to the second interface condition [65], must

balance the force �t�n +Pn exerted by the fluid. This is reason-

able for a laboratory experiment with a fluid totally enclosed in

a tank whose walls are rigid enough to resist fluid traction.

However, in the case of free-slip boundary conditions, it may

seem strange that by imposing a zero vertical velocity, a finite

normal stress results at the free surface. It is therefore worth

discussing this point in more detail.

The natural boundary conditions should be that both the

normal and the tangential stresses applied on the free deform-

able surface, z¼h(x, y, t), of a convective fluid are zero:

t�n�Pn
� �

on z¼h
¼ 0 [73]

(neglecting atmospheric pressure). In this expression, the

topography h is unknown and the normal n, computed at the

surface of the planet, is n¼ ez�—Hhð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ —Hhj j2

q
where ez is
the unit vector along z, opposite to gravity, and —H the hori-

zontal component of the gradient operator.

The variation of topography is related to the convective flow

and satisfies

@h

@t
+ v0H�—Hh� u0z ¼ 0 [74]

This equation expresses the fact that a material particle on

the surface remains always on it. In this expression, vH
0 and uz

0

are the horizontal and vertical velocity components at the

surface of the planet. We will see in Section 7.02.4 that lateral

pressure and stress variations are always very small compared

to the average pressure (this is because in most fluids, and in

the mantle, the lateral density variations remain negligible

compared to the average density). This implies that the surface

topography is not much affected by the internal dynamics and

remains close to horizontal at long wavelengths, j—Hhj�1.

Boundary condition [73] and topography advection [74] can

therefore be expanded to first order to give

t�ez�Pez
� �

on z¼0
��r0g0hez,

@h

@t
¼ u0z [75]

where we again make use of the fact that the total stress

remains close to hydrostatic, that is, n�t�n�P (p0 and g0 are

the surface values of density and gravity). To first order, the

stress boundary condition on a weakly deformable top surface

is therefore zero shear stress but with a time-dependent normal

stress related to the surface topography and vertical velocity.

The convection equations with these boundary conditions

could be solved, but this is not always useful. Since the bound-

ary conditions involve both displacement h and velocity uz
0, the

solution is akin to an eigenvalue problem. It can be shown that

for an internal density structure of wavelength, l,uz
0 goes to zero

in a time of order �=r0g0l where � is the typical viscosity of the

underlying liquid over the depth l (Richards and Hager, 1984).

For the Earth, this time is the characteristic time of postglacial

rebound and is typically a few thousand years for wavelengths of

a few thousand kilometers (e.g., Spada et al., 1992b).

For convection, where the characteristic times are much

longer, it is thus appropriate to assume that the induced topog-

raphy is in mechanical equilibrium with the internal density

structure. A zero normal velocity can therefore be imposed and

the resulting normal stress can be used to estimate the topog-

raphy generated by the convective flow. Internal compositional

interfaces can be treated in a similar manner if they are only

weakly deformable (i.e., when their intrinsic density jumps are

much larger than the thermal density variations). This is the

case for the core–mantle boundary (CMB).

For rapid events (e.g., for a localized thermal anomaly

impinging the Earth’s surface), the time for topographic equil-

ibration becomes comparable to the timescale of internal con-

vective processes. In this case, the precise computation of a

history-dependent topography is necessary and the finite elas-

ticity of the lithosphere, the coldest part of the mantle, plays an

important role (Zhong et al., 1996). Various studies have also

shown that at short wavelength, the condition of free surface

differs significantly from the more usual free-slip condition

(Crameri et al., 2012; Kaus et al., 2010; Schmeling et al.,

2008). In particular, one-sided subductions, as observed in

nature and in analogical experiments, are reproduced much
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more accurately by numerical codes that include a true deform-

able topography according to eqn [73].
7.02.3 Thermodynamic and Rheological Properties

Section 7.02.2 on conservation equations is valid for all fluids

(although the interface conditions are mostly discussed when

inertia and kinetic energy are negligible). The differences

between mantle convection and core, oceanic, or atmospheric

convection come from the thermodynamic and transport

properties of solids that are very different from those of usual

fluids. We review some basic general properties of solids in

Section 7.02.3 and will be more specific in Section 7.02.6.
7.02.3.1 Equation of State and Solid Properties

The equation of state of any material (EoS) relates its pressure,

density, and temperature. The equation of state of a perfect gas,

PV/T¼constant, is well known, but irrelevant for solids.

Unfortunately, there is no equation for solids based on a

simple and efficient theoretical model. In the mineralogical

community, the third-order finite strain Birch–Murnaghan

EoS seems highly favored (Birch, 1952). This equation is cum-

bersome and is essentially empirical. More physical

approaches have been used in Vinet et al. (1987), Poirier and

Tarantola (1998), and Stacey and Davis (2004), but it seems

that for each solid, the EoS has to be obtained experimentally

(for more details, see Stixrude, vol. 2).

In the simplest cases, the density varies around r0 measured

at temperature T0 and pressure P0 as

r¼ r0 1�a T�T0ð Þ+ P�P0
KT

� �
[76]

where the thermal expansivity a and incompressibility KT have

been defined in eqn [34]. This expression is a first-order expan-

sion of any EoS. Equation [76] can however be misleading if

one forgets that the parameters a and KT cannot be constant

but must be related through Maxwell relations (e.g., their

definitions [34] imply that @(ar)/@P¼�@(r/KT)/@T).

Equation [76] can be used for a very simple numerical

estimate that illustrates an important characteristic of solid

Earth geophysics. Typically for silicates a�10�5K�1,

KT�1011 Pa, while temperature variations in the mantle, DT,
are of a few 1000 K with a pressure increase between the surface

and the core, DP, of order of 1011 Pa. This indicates that the

overall density variations due to temperature differences are

negligible compared to those due to pressure differences

(aDT�1 but DP/KT�1). In planets, to first order, the radial

density is only a function of pressure, not of temperature. This

is opposite to most liquid or solid laboratory experiments,

where the properties are usually controlled by temperature.

A very important quantity in the thermodynamics of solids

is the Gr€uneisen parameter (Gr€uneisen, 1877–1949)

G¼ sKT

rCv
¼ 1

rCv

@P

@T

� �
V

[77]

The Gr€uneisen parameter is dimensionless, does not vary

much through the mantle (around 1), and can reasonably be
considered as independent of the temperature. An empirical

law (Anderson, 1979) relates G with the density,

G¼G0
r0
r

� �q

[78]

where q is around 1. The Gr€uneisen parameter can also be

related to the microscopic vibrational properties of crystals

(Stacey, 1977). At high temperature, above the Debye temper-

ature (Debye, 1884–1966), all solids have more or less the

same heat capacity at constant volume. This is called the

Dulong and Petit rule (Dulong, 1785–1838; Petit, 1791–

1820). At high T, each atom vibrates and the thermal vibra-

tional energy is equipartitioned between the three dimensions

(degrees of freedom), which leads to CVm¼3R per mole of

atoms, independent of the nature of the solid (R is the gas

constant). Assuming that the mantle is made of pure forsterite

Mg2SiO4 that contains seven atoms for a molar mass of 140 g,

its heat capacity at constant volume is therefore close to

CVm¼21R¼174.56 J K�1 mol�1 or CV¼1247 JK�1 kg�1. The

approximate constancy of CV and the fact that G is only a

function of r allow us to integrate [77]

P¼ F rð Þ + a0K0
T T�T0ð Þ r

r0

� �1�q

[79]

where a0 and KT
0 are the thermal expansivity and incompressi-

bility at standard conditions and where F(r) is a density-

dependent integration constant. A rather simple but acceptable

choice for the function F(r), at least for mantle dynamicists, is

the Murnaghan EoS (Murnaghan, 1951) at constant T that

allows us to write an EoS for solids of the form

P¼K0
T

n

r
r0

� �n

�1

� �
+ a0K0

T T�T0ð Þ r
r0

� �1�q

[80]

This equation could easily be used to derive any thermody-

namic property like a(P,T ) or KT(P,T ). The exponent n

expresses the variations of KT with pressure at reference tem-

perature T0 as KT(P,T0)¼KT
0+nP. The value of n (also some-

times called K0

0
) is of order of 4 for most mantle materials

(Stixrude and Lithgow-Bertelloni, 2005). This equation has

been used implicitly in various models of mantle convection

(e.g., Bercovici et al., 1989a, 1992; Glatzmaier, 1988). An

important consequence of this EoS assuming q�1 is that aKT

is more or less constant and that

KT �K0
T

r
r0

� �n

, a� a0
r
r0

� ��n

[81]

In the mantle, the incompressibility increases and the ther-

mal expansion decreases significantly with depth, typically by a

factor �8. The geophysical consequences are further discussed

in Section 7.02.6.5.1.

Two other thermodynamic equalities can also be straight-

forwardly deduced by chain rules of derivatives and will be

used in the following. A relation between the two heat capac-

ities CP and CV of the energy equations [38] can be derived

from the two expressions for heat increments, eqn [31], and

the definition of h, eqn [33],

CP�CV ¼ aT
r

@P

@T

� �
V

[82]
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The same expressions for heat increments, eqn [31], and the

l and h definitions, eqn [33], imply that for an adiabatic

transformation (when dQ and dS are zero),

@P

@T

� �
S
¼ rCP

aT
and

@V

@T

� �
S
¼� CV

aKTT
[83]

Equations [82] and [83] take simpler forms when the

Gr€uneisen parameter [77] and the adiabatic compressibility

defined by

KS ¼ r
@P

@r

� �
S
¼�1

r
@P

@T

� �
S
=

@V

@T

� �
S

[84]

are used; they are

CP

CV
¼KS
KT

¼ 1+GaT [85]

Since G�1 and since aT�1, the two heat capacities are

basically equal. The incompressibility KS is defined similarly to

KT but at constant entropy. The theory of elastic waves intro-

duces this parameter that can be obtained from seismic

observations

KS ¼ r u2p �
4

3
u2s

� �
[86]

where up and us are the P and S wave velocities. We will see later

(Section 7.02.4.2.2) that a vigorously convective fluid should

be close to adiabatic. As this is the case for the mantle, KS

should be the incompressibility measured along the mantle

density profile

KS ¼ r
@P

@r

� �
S
¼ r

—Pk k
—rk k¼

r2 gk k
—rk k [87]

The relations [86] and [87] connect a seismological obser-

vation KS(r)/r(r) to the density gradient of the real Earth r(r)
g(r)/k—r(r)k. This is the important Bullen hypothesis (Bullen,

1940) used to build the reference density of the Earth (e.g.,

Dziewonski and Anderson, 1981).
7.02.3.2 Rheology

In Section 7.02.2.3 on momentum conservation, no assump-

tion is made about the rheology of the fluid, that is, on the

relation between the stress tensor and the flow itself. In con-

trast, the discussion of energy conservation (Section 7.02.2.4)

relies on the assumption that the pressure-related work is

entirely recoverable, eqn [32]; as a consequence, the work of

the deviatoric stresses ends up entirely as a dissipative term,

hence a source of entropy. In a real fluid, this may be wrong for

two reasons: part of the deviatoric stresses may be recoverable

and part of the isotropic work may not be recoverable. In the

first case, elasticity may be present, and in the second case, bulk

viscosity.
7.02.3.2.1 Elasticity
On a very short timescale, the mantle is an elastic solid in

which compressional and shear waves propagate (e.g.,

Kennett, 2001). In an elastic solid, the linear strain tensor,
«e ¼ 1

2
—u+ —u½ �t
� �

[88]

in which u is the displacement vector (this is valid for small

deformations, see e.g., Malvern, 1969; Landau and Lifchitz,

2000, for the large deformation case), is linearly related to

the stress tensor,

seij ¼
X
k, l

Ae
ijklE

e
kl [89]

where Ae is the fourth-rank stiffness tensor. Since both the

stress and the strain tensors are symmetrical and because of

the Maxwell thermodynamic relations for internal energy

(including the elastic energy), @2U=@Eij@Ekl ¼ @2U=@Ekl@Eij, the
elastic tensor is invariant to permutations of i and j, k and l, and

ij and kl. This leaves in the most general case of anisotropy

21 independent stiffness coefficients (Malvern, 1969). In crys-

tals, this number decreases with the number of symmetries of

the unit cell. For isotropic elastic solids, only two parameters

are needed, the incompressibility K and the rigidity mR, and the

elastic behavior satisfies

se ¼Ktr «e
� �

I +2mR «e�1

3
tr «e
� �

I

� �
[90]

where tr «e
� �

¼—�u.
Two remarks can be made on this rapid presentation of elas-

ticity that are more deeply developed in textbooks of mechanics

(e.g., Landau andLifchitz, 2000;Malvern, 1969) or of seismology

(e.g., Dahlen and Tromp, 1998). First, the expression [90]

assumes that the displacement vector is computed from an initial

situation where the solid is perfectly stress-free, that is, se ¼ 0

when «e ¼ 0. In practical problems, only incremental displace-

mentswith respect to an initial prestressed state are knownandse

has to be understood as a variation of the stress tensor. Second,

temperature variations are associated with changes in elastic

stresses and the definition of incompressibility K should take

these variations into account. The incompressibility should be

K¼KS for rapid adiabatic seismicwaves andK¼KT for isothermal

variations. The other elastic parameters that are often introduced,

Poisson’s ratio, Young’s modulus (Young, 1773–1829), and

Lamé’s parameters (Lamé, 1795–1870), are simple functions of

incompressibility and rigidity. Since the term proportional to mR
is traceless, equation [90] leads to tr se

� �
¼ 3Ktr _«e

� �
, and the

rheology law can also be written in terms of compliance (i.e.,

getting «e as a function of se),

«e ¼ 1

9K
tr se
� �

I +
1

2mR
se�1

3
tr se
� �

I

� �
[91]

In these equations, the trace of the stress tensor can also be

replaced by the pressure definition

tr se
� �

¼�3P [92]

The momentum equation [15] remains valid in a purely

elastic solid (except that the advective transport is generally

neglected, D/Dt�@/@t), but the discussion of energy conserva-

tion and thermodynamics is different for elastic and viscous

bodies. The work of the elastic stress is entirely recoverable: a

deformed elastic body returns to its undeformed shape when

the external forces are released. The internal energy change

due to the storage of elastic stress is dW¼Vse : d«
e instead of
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dW¼–PdV, and this is provided by the deformation work term

t :—v, which is therefore nondissipative. Thus, for an elastic

body, the temperature equations [38] and the entropy

equation [39] hold, but with the t :—v, source term removed.

7.02.3.2.2 Viscous Newtonian rheology
On a very long timescale, it is reasonable to assume that the

internal deviatoric stresses become eventually relaxed and dis-

sipated as heat. This is the assumption that we have implicitly

made and that is usual in fluid mechanics. Since the dissipative

term is t :—v¼ t : _« u and must be positive according to the

second law, this suggests a relationship between velocity-

related stresses and velocity derivatives such that the total stress

tensor has the form

suij ¼�Pdij +Au
ijkl _«

u
kl [93]

dij being the Kronecker symbol (Kronecker, 1823–91). Except

for the time derivative, the only formal difference between this

expression and eqn [89] is that pressure exists in a motionless

fluid but is always associated with deformation in an elastic

solid.

Using the same arguments as for the elastic case, the viscous

rheology in the isotropic case can therefore be written in terms

of stiffness

su ¼ �P + ztr _« u
� 	� 	

I +2� _« u�1

3
tr _« u
� 	

I

� �
[94]

where tr _« u
� 	

¼—�v. Using tr sv
� �

¼ 3 �P + ztr _« u
� 	� 	

, the rhe-

ology can also be expressed in terms of compliance

_«u ¼ 1

9z
3P + tr su� �� �

I +
1

2�
su�1

3
tr su2
� 	

I

� �
[95]

The two parameters � and z are positive according to the

second law and are called the shear and bulk viscosities. When

they are intrinsic material properties (i.e., independent of the

flow itself ), the fluid is called linear or Newtonian. The

hypothesis of isotropy of the rheology is probably wrong for

a mantle composed of highly anisotropic materials (see Karato,

1998), but only a few papers have tried to tackle the problem

of anisotropic viscosity (Christensen, 1997a; Muhlhaus et al.,

2004; Pouilloux et al., 2007).

Since tr su
� �

=3¼�P + z —�v, the isotropic average of the

total stress is not the pressure term, unless z— �v¼0. Therefore,

part of the stress work, t : _« u
, during isotropic compaction could

be dissipated in the form of the heat source z(— �v)2. A density-

independent bulk viscosity allows an infinite compression

under a finite isotropic stress. The bulk viscosity parameter z is
generally only introduced to be immediately omitted and we

will do the same. However, using eqn [94] with z¼0 but keep-

ing — �v 6¼0 is not valid since it would remove all resistance to

isotropic compression. We will see that the correct physical

behavior is obtained by setting z¼+1: elastic stresses are pre-

sent and provide the resistance to isotropic compression. A finite

bulk viscosity, or some equivalent concept, is however necessary

to handle two-phase compaction problems (Bercovici et al.,

2001a; McKenzie, 1984) (see Section 7.02.5.2).

7.02.3.2.3 Maxwellian viscoelasticity
To account for the fact that the Earth behaves elastically on

short time constants and viscously at long times, it is often
assumed that under the same stress, the deformation has both

elastic and viscous components. By summing the viscous com-

pliance equation [95] with the time derivative of the elastic

compliance equation, [91] and in the case of an infinite bulk

viscosity z, we get

_« ¼ 1

9K
tr _s
� �

I +
1

2�
s�1

3
tr s
� �

I

� �
+

1

2mR
_s�1

3
tr _s
� �

I

� �
[96]

where s¼su ¼se and «¼ «u +«e. This time-dependent rheo-

logical law is the constitutive law of a linear Maxwell solid.

A few simple illustrations of the behavior of a Maxwellian

body will illustrate the physical meaning of equation [96] (see

also Ribe, this volume). First, we can consider the case where

stress and strain are simple time-dependent sinusoidal functions

with frequency o i:e:, s¼s0exp iotð Þ and «¼ «
0
exp iotð Þ

� �
.

The solution to this problem can then be used to solve other

time-dependent problems by the Fourier or Laplace transforms.

Equation [96] becomes

«0 ¼
1

9K
tr s0

� �
I +

1

2mR
1� i

ot

� �
s0�

1

3
tr s0

� �
I

� �
[97]

where t¼�/mR is the Maxwell time, eqn [1]. This equation can

be compared to eqn [91] and shows that the solution of a

viscoelastic problem is formally equivalent to that of an elastic

problem with a complex elastic rigidity. This is called the

correspondence principle.

We can also solve the problem of a purely 1-D Maxwellian

body (only szz and Ezz are nonzero), submitted to a sudden

load szz¼s0H(t) (where H is the Heaviside distribution

(Heaviside, 1850–1925)) or to a sudden strain Ezz¼ E0H(t).

The solutions are, for t�0,

E0 ¼
1

3kmR
s0 +

1

3�
s0t [98]

and

s0 ¼ 3kmRexp �k
t

t

� 	
E0 [99]

respectively, with k¼3K/(3K+mR). In both cases, the instanta-

neous elastic response is followed by a viscous flow. In the first

case, the finite elastic deformation is followed by a steady flow.

In the second case, the initial elastic stresses are then dissipated

by viscous relaxation over a time constant, t/k. This time con-

stant is different from the Maxwell time constant as both devia-

toric and nondeviatoric stresses are present. For mantlematerial,

the time t/kwould however be of the same order as the Maxwell

time constant t (in the midmantle, K�2mR�200 GPa).

From equation [96], we can now understand what rheology

must be used for a compressible viscous mantle. For phenom-

ena that occur on time constants much larger than the Maxwell

time, the deviatoric stresses can only be supported by the vis-

cosity. As a typical viscosity for the deep mantle is in the range

1019–1022 Pa s (see Sections 7.02.4 and 7.02.6), the appropri-

ate Maxwell times are in the range 30 year–30 kyr, much shorter

than those of convection. By contrast, the isotropic stress

remains only supported by elasticity in the approximation

where the bulk viscosity z is infinitely large. The appropriate

rheology for mantle convection is therefore given by

_« ¼ 1

9K
tr _s
� �

I +
1

2�
s�1

3
tr s
� �

I

� �
[100]
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This equation is simultaneously a rheology equation for

the deviatoric stress and an EoS for the isotropic stress. Using

P¼�tr(s)/3, the stress tensor verifies

s¼�PI +2� _«�
_P

3K
I

� �
[101]

This equation is intrinsically a viscoelastic equation that can

be replaced by a purely viscous equation plus an EoS:

s¼�PI +2� _«�1

3
tr _«
� 	

I

� �
[102]

tr «
� �

¼ P

K
[103]

Equation [102] is therefore the appropriate limit of eqn

[94] for slow deformation, when z¼+1 and when isotropic

compaction is resisted by the elastic stresses.

The use of a Maxwellian viscoelastic body to represent the

mantle rheology on short timescale remains however rather

arbitrary. Instead of summing the elastic and viscous deforma-

tions for the same stress tensor, another linear viscoelastic body

could be obtained by partitioning the total stress into elastic and

viscous components for the same strain rate. Basically, instead of

having the elasticity and the viscosity added like a spring and a

dashpot in series (Maxwell rheology), this Kelvin–Voigt rheol-

ogy would connect in parallel a viscous dashpot with an elastic

spring (Kelvin, 1824–1907; Voigt, 1850–1919). Of course, fur-

ther degrees of complexity could be reached by summing Max-

well and Voigt bodies, in series or in parallel. Such models have

sometimes been used for the Earth, but the data that could

support or dismiss them were scarce (Ross and Schubert, 1986;

Yuen et al., 1986). However, the unprecedented precision of

the observations of large-scale deformations that followed the

magnitude 9 seisms of Indonesia (Aceh earthquake, 2004) and

Japan (Tohoku earthquake, 2011) should soon allow to reeval-

uate and constrain the transient rheology of the mantle

(e.g., Trubienko et al., 2013).
7.02.3.2.4 Nonlinear rheologies
Even without elasticity and bulk viscosity, the assumption of a

linear Newtonian rheology for the mantle is problematic. The

shear viscosity cannot be a direct function of velocity since this

would contradict the necessary Galilean invariance of material

properties. However, since the shear viscosity is a scalar, it

could be any function of the scalar invariants of the stress

tensor. There are three invariants of the stress tensor: its trace

(related to the pressure), its determinant, and the second

invariant I2 ¼ t:t
� �

=2 (where as in eqn [30], the double dots

denote tensor contraction). The viscosity could therefore be a

function of det t
� �

and I2 in addition to the thermodynamic

variables P and T and the mineralogical variables, for example,

composition, grain size, and fabrics. Because viscosity must be

a positive quantity, its stress dependence is assumed to be

related to I2 (which is always positive) and not to det t
� �

(which can change sign).

The main mechanism of solid-state deformation pertinent

to mantle conditions (excluding the brittle and plastic defor-

mations) is either diffusion creep or dislocation creep (see

Poirier, 1991). In the first case, finite deformation is obtained

by summing the migrations of individual atoms exchanging
their positions with crystalline lattice vacancies. In crystals, the

average number of lattice vacancies C varies with pressure, P,

and temperature, T, according to Boltzmann statistics

(Boltzmann, 1844–1906),

C∝exp �PV

RT

� �
[104]

(V is the atomic volume and R the gas constant). A mineral is

composed of grains of size d with an average concentration of

lattice vacancies C0. Submitted to a deviatoric stress t, a gradi-

ent of vacancies of order j—Cj∝(C0/d)(tV/RT ) appears due to
the difference in stress regime between the faces in compres-

sion and the faces in extension (tV�RT ) (see Poirier, 1991;

Ranalli, 1995; Schubert et al., 2001; Turcotte and Schubert,

1982). This induces the flux of atoms (number of atoms per

unit surface and unit time):

J∝D
C0

d

t
RT

[105]

where D is a diffusion coefficient. This flux of atoms goes from

the grain faces in compression to the grain faces in extension.

Along the direction of maximum compression, each crystal

grain shortens by a quantity dd, which corresponds to a total

transport of d2dd/V atoms. These atoms can be transported in a

time dt by the flux JV across the grain of section d2 (with volume

diffusion DV). They can also be transported by grain boundary

flux JB (with grain boundary diffusion DB) along the grain

interfaces through a surface hd (h being the thickness of the

grain boundary), according to

d2dd
V

� JDd
2dt, or

d2dd
V

� JBdhdt [106]

As _«¼ dd=dtð Þ=d, the previous equations lead to the stress–

strain rate relationship:

_«∝
C0V

d2RT
DV +DB

h

d

� �
t [107]

These diffusion mechanisms lead to a Newtonian rheology

but with a grain size dependence of the viscosity: �∝d2 for

Nabarro–Herring creep with diffusion inside the grain

(Nabarro, 1916–2006; Herring, 1914–2009) and �∝d3 for

Coble grain boundary creep (Coble, 1928–92). The viscosity

is also very strongly T-dependent not so much because of the

explicit factor T in eqn [107], but because diffusion is a ther-

mally activated process, D∝exp(–Edif/RT ), where Edif is an

activation enthalpy of diffusion. As the diffusion increases

with temperature, the viscosity in the diffusion creep regime

decreases with temperature.

In the case of dislocation creep, lines or planar imperfec-

tions are present in the crystalline lattice, and macroscopic

deformation occurs by collective slip motion along these

imperfections, called dislocations. Instead of the grain size d

for diffusion creep, the mean spacing dd between dislocations

provides the length scale. This distance is experimentally found

to decrease with the intensity of the deviatoric stresses and to

vary as � 1=
ffiffiffiffi
I2

p
. Therefore, instead of a diffusion creep with a

viscosity in dn, the resulting rheology is rather in I2
�n/2 and is

also thermally activated with an activation energy Edis. Dislo-

cation creep leads to a nonlinear regime where the equivalent
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viscosity varies with the second invariant with a power –n/2,

where n is typically of order 2,

_«∝I
n=2
2 exp �Edis=RTð Þt [108]

and to a viscosity also strongly decreasing with temperature

(this relationship is often written, in short, _«∝tm with a stress

exponent m of order 3 but tm really means I
m�1ð Þ=2
2 t).

In general, for a given stress and a given temperature, the

mechanism with the smallest viscosity (largest strain rate) pre-

vails. Whether linear (grain size-dependent) or nonlinear

(stress-dependent), viscosities are also strongly dependent

upon temperature, pressure, melt content, water content, min-

eralogical phase, and oxygen fugacity (e.g., Hirth and

Kolhstedt, 1996). In Section 7.02.6.3, we will further discuss

the rheological mechanisms appropriate for the Earth.
7.02.4 Physics of Convection

The complex and very general system of equations that we have

discussed in Sections 7.02.2 and 7.02.3 can be used to model

an infinite number of mantle flow situations. Mantle flow can

sometimes be simply modeled as driven by the motion of plates

(some examples are discussed in Zhong et al., Parmentier, and

King, this volume). It can also be induced by compositional

density anomalies (some examples are discussed in Tackley, this

volume, and Forte, vol. 3). However, a fundamental cause of

motion is due to the interplay between density, pressure, and

temperature, and this is called thermal convection.

The phenomenon of thermal convection is common to all

fluids (gas, liquid, and creeping solids), and it can be illus-

trated by simple experiments (see Chapter 7.03). The simplest

can be done using water and an experimental setup called the

shadowgraph method. Parallel light enters a transparent fluid

put in a glass tank and is deflected where there are refractive

index gradients due to temperature variations in the fluid.

A pattern of bright regions and dark shadows is formed on a

screen put on the other side of the tank. From this

shadowgraph, the structure of the temperature pattern can be

qualitatively assessed (see examples of shadowgraphs in

Tritton, 1988).
7.02.4.1 Basic Balance

From a simple thought experiment on thermal convection, we

can derive the basic dynamic balance of convection. Let us

consider a volume of fluid, O, of characteristic size a, in

which there is a temperature excess △T with respect to the

surrounding fluid. The fluid is subject to a gravity g, and it

has an average density r and thermal expansivity a. The volume

O, because of its anomalous temperature, experiences an

Archimedean force, or buoyancy (Archimedes c.287–212

BC), given by

f ¼�c1a
3raDTg [109]

(c1 is a constant taking into account the shape of O, e.g.,

c1¼4p/3 for a sphere of radius a). If the volume O is in a

fluid of viscosity �, it will sink or rise with a velocity given by

the Stokes law (Stokes, 1819–1903):
vs ¼�c1c2
a2raDTg

�
[110]

(c2 is a drag coefficient accounting for the shape of O, i.e.,
c2¼1/(6p) for a sphere).

During its motion, the volume O exchanges heat by diffu-

sion with the rest of the fluid and the diffusion equation [44]

tells us that a time of order

td ¼ c3
rCpa

2

k
[111]

is needed before temperature equilibration with its surround-

ings. During this time, the fluid parcel travels the distance

l¼vstd.

A natural indication of the possibility that the parcel of

fluid moves can be obtained by comparing the distance l to

the characteristic size a. When l�a, that is, when the fluid

volume can be displaced by several times its size, motion will

be possible. On the contrary when l�a, thermal equilibration

will be so rapid that no motion will occur.

The condition l�a, when vs and td are replaced by the

previously mentioned expressions, depends on only one quan-

tity, the Rayleigh number Ra,

Ra¼ r2aDTga3CP

�k
¼ aDTga3

kn
[112]

in terms of which motion occurs when Ra�1 (assuming that

c1c2c3�1). The Rayleigh number compares the driving mech-

anism (e.g., the Archimedean buoyancy) to the two resistive

mechanisms, the diffusion of heat, represented by k (see eqn

[43]), and the diffusion of momentum, represented by n (see

eqn [50]).

This simple balance suggests that a large nondimensional

number Ra favors fluid motion. How large Ra needs to be is a

question that we cannot address at this moment, but it will be

discussed in Section 7.02.4.4. Convection lifts hot fluid and

causes cold fluid to sink (assuming a>0, which is true for most

fluids and for the mantle). A convective system will rapidly

reach an equilibrium where all thermal heterogeneities are

swept up or down (if Ra is large) or thermally equilibrated (if

Ra is small), unless a forcing mechanism continuously injects

new cold parcels at the top and new hot parcels at the bottom.

This can be done by cooling the top surface or heating the

bottom one. When a fluid is heated from the side, a lateral

temperature anomaly is constantly imposed and the liquid

lateral thermal equilibration is prevented. The fluid remains

in motion regardless of the amplitude of the imposed temper-

ature anomaly.
7.02.4.2 Two Simple Solutions

7.02.4.2.1 The diffusive solution
Trying to directly and exactly solve the mass, momentum,

energy, and Poisson’s equations and accounting for a realistic

EoS would certainly be a formidable task. This complex system

of equations has however two rather obvious but opposite

solutions.

A steady and motionless solution is indeed possible. The

assumption @/@t¼0 and v¼0 satisfies the mass equation [9],

the momentum equation [16] when the pressure is hydrostatic,
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0¼�—P +rg [113]

and the energy equation [38] when the temperature is diffusive

(using the Fourier law [42]),

—� k—Tð Þ+ rH¼ 0 [114]

Solving analytically for the hydrostatic pressure and the

diffusive temperature is trivial whenH, k, g, and r are uniform.

For example, choosing a depth z positive downward, we get

P¼ rgz, T ¼ T0 +DT
z

h
+
1

2
rHz h� zð Þ [115]

across a conductive solution with T¼T0, P¼0 at z¼0, and

T¼T0+DT at z¼h. Computing analytically the conductive

solution in the mantle remains feasible but could be quite

cumbersome if one introduces a realistic EoS and computes

gravity in agreement with the density distribution using

Poisson’s equation [51]. In Section 7.02.4.4, we will under-

stand why the fluid does not necessarily choose the diffusive

solution.
7.02.4.2.2 The adiabatic solution
The previous diffusive solution was obtained for a steady

motionless situation. However, the opposite situation where

the velocities are very large also corresponds to a rather simple

situation. The energy equation [38] can also be written as

rCVT
D lnT

Dt
�G

D lnr
Dt

� �
¼�—�q+ t :—v+ rH [116]

or

rCPT
D lnT

Dt
� a
rCP

DP

Dt

� �
¼�—�q + t :—v+rH [117]

The right sides of these equations were previously shown to

be equal to rTDS/Dt in eqn [39]. If we decrease the viscosity in

a fluid, the convective velocity increases. The advection terms

v �—T, v �— ln r and v �—P become then much larger than the

time-dependent, diffusion, and radioactive production terms.

With a low viscosity, the fluid becomes also unable to sustain

large stresses. As a consequence, when convection is vigorous

enough, the fluid should evolve toward a situation where

— lnTð ÞS �G — lnrð ÞS ¼ 0

— lnTð ÞS �
a

rCP
—Pð ÞS ¼ 0

[118]

Since such equations imply that the entropy is exactly con-

served, DS/Dt¼0, this equilibrium is called the adiabatic equi-

librium. We added a subscript [ ]S to denote the isentropic

state.

Notice that, since the Gr€uneisen parameter is only density-

dependent (see eqn [78]), density and temperature are simply

related along the adiabat. For example, if the Gr€uneisen param-

eter is a constant, G0 (using q¼0 in eqn [78]), the first of the

equations [118] implies

T ¼ T0
r
r0

� �G0

[119]

where T0 and r0 are two reference values. This equation implies

that the adiabatic temperature increases by a factor 1.72
(e.g., from 1300 to 2230 K) from the asthenosphere

(r0�3200 kg m�3) to the CMB (r�5500 kg m�3), if we

assume G0¼1.

7.02.4.2.3 Stability of the adiabatic gradient
When a fluid is compressed, it heats up and it cools down

when decompressed. This is the same physics that explains

why atmospheric temperature decreases with altitude. Of

course, this adiabatic effect is vanishingly small in laboratory

experiments, but not always in nature.

If a parcel of fluid is rapidly moved up or down along z by a

distance a, it changes its temperature adiabatically, by the

quantity a(dT/dz)S. However, the surrounding fluid will be at

the temperature a(dT/dz) where dT/dz is just the temperature

gradient, not necessarily adiabatic, of the fluid at rest. We

can define DTna as the nonadiabatic temperature DTna¼
a(dT/dz�(dT/dz)S). The parcel being warmer or colder than

the surroundings will rise or sink with a Stokes velocity that,

rather than eqn [110], will be of order

vs ¼�c1c2
a2raDTnag

�
[120]

Since z is depth and dz is positive along g, the adiabatic

gradient is positive and the fluid parcel is locally unstable when

the gradient in the surrounding fluid is larger (superadiabatic)

than the adiabatic gradient. On the contrary, a subadiabatic

gradient is stable with respect to convection. It is therefore not

the total temperature difference between the top and the bottom

of the fluid that drives motion, but only its nonadiabatic part.

To compare the Stokes velocity with the thermal equilibra-

tion time, we need to introduce a modified Rayleigh number

Ra¼ aDTnag0a3

kn
[121]

This number is based on the nonadiabatic temperature

difference in excess of the adiabatic variation imposed over

the height a.

We have shown that inside a convective cell, the thermal

gradient should be superadiabatic. Superadiabaticity is the

source of convective instability, but vigorous convective stir-

ring involves largely rapid adiabatic vertical motion; so much

of convecting fluid is indeed adiabatic, while most of super-

adiabaticity is bound up in the thermal boundary layers where

the vertical motion goes to zero. This mechanism suggests that

an adiabatic reference background should not be such a bad

assumption for the bulk of a convective fluid.

This adiabaticity hypothesis should, however, not be taken

too literally ( Jeanloz and Morris, 1987). In most numerical

simulations, the resulting averaged geotherm can be far (a few

hundred kelvins) from adiabatic (Bunge et al., 2001). First,

radioactive heating, dissipation, and diffusion are never totally

negligible; second, even if each fluid parcel follows its own

adiabatic geotherm, the average geotherm may not correspond

to any particular adiabat.
7.02.4.3 Approximate Equations

7.02.4.3.1 Depth-dependent reference profiles
We assume that the thermodynamic state is not far from a

hydrostatic adiabat; thus, we choose this state as a reference.
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We denote all the reference variables with an overbar, the

hydrostatic pressure given by

—P¼ rg [122]

and adiabatic temperature and densities obeying eqn [118]:

—T¼ ag
Cp

T

—r¼ ag
CpG

r
[123]

where all the parameters are computed along the reference

geotherm and where g has been solved using Poisson’s

equation [51] with the reference density r.
The reference parameters are depth-dependent and usually,

even for a simple EoS, cannot be analytically obtained. They

can however be computed numerically from eqn [118] assum-

ing that the Gr€uneisen parameter is only r-dependent. Using

the EoS [80], all the thermodynamic quantities become func-

tions of depth only, so that the reference profiles can be

obtained by quadratures.
7.02.4.3.2 Perturbations of the hydrostatic, adiabatic
solution
We can now rewrite the equations of fluid dynamics in terms of

perturbations to the reference hydrostatic and adiabatic state

(see also Alboussiere and Ricard, 2013; Bercovici et al., 1992;

Glatzmaier, 1988; Jarvis and Mckenzie, 1980). The exercise is

not easy as all the thermodynamic quantities, a, KT, CP, and CV,

are related to pressure, temperature, and density by complex

Maxwell relations. Assuming inadvertently the constancy of

any thermodynamic quantities may thus lead to inconsis-

tencies. We introduce the perturbations, noted with a prime,

and assume that T¼ T + T 0, P¼ P +P0, r¼ r +r0. As the refer-

ence state is adiabatic, we simply have S¼S0. The variations of

density and temperature are related by the following relations:

r0 ¼ @r
@S

� 	
P
S0 +

@r
@P

� 	
S
P0

T 0 ¼ @T
@S

� 	
P
S0 + @T

@P

� 	
S
P0

[124]

The partial derivatives of the previously mentioned expres-

sions can be expressed as functions of the usual thermody-

namic quantities. The S derivatives can be deduced after

some algebra starting from the Maxwell relations implied by

the enthalpy dH¼TdS+dP/r and by the Gibbs potential

dG¼–SdT+dP/r, and using eqns [31] and [33]. The adiabatic

derivatives (at constant S) are directly obtained from the ref-

erence profiles in eqns [122] and [123]. We finally end up with

two equations that we consider valid at first order:

r0 ¼�arT
CP

S0 +
—r �g
r gk k2

P0

T 0 ¼� T

CP

S0 +
aT
rCP

P0
[125]

Taking into account the variations of density with entropy

and pressure, the momentum conservation [16] becomes

r
Dv

Dt
¼�r—

P0

r

� �
+—�t�garT

CP

S0 [126]
In this equation, the pressure dependence of the density has

been collected with the pressure gradient. The energy conser-

vation can take various forms (e.g., eqn [30] or [38]), but here,

we use the entropy conservation [39]:

rT
DS0

Dt
¼—� k— T +T 0� �� �

+ t :—v +rH [127]

7.02.4.3.3 Anelastic approximation
As a principle, the validity of equations cannot depend on the

units in which the quantities are expressed. The laws of physics

can only relate dimensionless combinations of parameters

(e.g., Barenblatt, 1996). This is fundamental in fluid dynamics

where a large number of quantities appear in the equations

(see also Ribe, this volume). A necessary starting point is

therefore to rephrase any fluid dynamics problem involving

N dimensional parameters in terms of M dimensionless quan-

tities (N�M
0 is the number of independent physical dimen-

sions of the problem).

Equations [126] and [127], completed with the equation of

state [125] and of mass conservation, provide a differential

system that controls the behavior of a nearly adiabatic and

hydrostatic fluid. One cannot perform the nondimensionaliza-

tion of these equations using the variable reference profiles. We

must therefore introduce constant parameters, with indexes

[ ]0, corresponding to some typical or mantle-averaged values

of the depth-dependent reference values. We introduce, for

example, a0,K0
S ,r0, g0 orC

0
p . We can use the typical values of

these parameters to estimate the different terms of the convec-

tion equations.

Without approximation, the mass conservation is

@r0

@t
+—� r+ r0ð Þvð Þ¼ 0 [128]

This equation, with the momentum and energy equations,

describes not only the fluid convection but also the propaga-

tion of sound waves. These waves, with velocity close to

uf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K0
S =r0

p
, travel much faster than the typical velocity of

convection, at a velocity comparable to those of the P or

S waves. A typical convective velocity is given by the Stokes

velocity us¼r0a0DTnag0a
2/�0 (see eqn [110]). The Mach num-

ber M¼vs/vf, ratio of the typical fluid velocity to the sound

speed (Mach, 1838–1916) is very small (with the numerical

values of Table 1, M¼1.5�10�9). It should therefore be safe

to neglect the time derivative of the density in eqn [128]; this

will only filter out the sound propagation that seems a phe-

nomenon decoupled from mantle convection.

In the divergence term of eqn [128], we can also compare r
and r0. Density, temperature, and pressure variations are

related by eqn [76]:

r0

r
¼�aT 0 +

P0

KT
[129]

(a relation that can also be derived from eqn [125], by elimi-

nating S0 and using the relation between KS and KT, eqn [85]).

The effect of temperature on density is small, of order

a0DTna�3�10�2 (see Table 1). In the convecting mantle, P0

is comparable to the viscous stresses P0 ��0us/a�r0a0DTnag0a
and the density variations due to the pressure fluctuation

are thus



Table 1 Typical parameter values for numerical models of mantle convection

Mantle Core Unit

Size a 3�106 3�106 m
Dynamic viscosity �0 1021 10�3 Pa s
Heat capacity CP

0�CV
0 1000 700 J K�1 kg�1

Density r0 4000 11000 kg m�3

Heat cond. k0 3 50 Wm�1K�1

Expansivity a0 2�10�5 10�5 K�1

Temperature excess DTna 1500 1? K
Radioactivity prod. H 7�10�11 0? W kg�1

Gravity g0 9.8 5 m s�2

Incompressibility KT
0�KS

0 2�1011 1012 Pa
Kinematic viscosity n¼�0/r0 2.5�1017 9.1�10�8 m2 s�1

Thermal diff. k¼k0/(r0CP
0) 7.5�10�7 6.5�10�6 m2s�1

2 3.0�10�2 1.0��5

Dissipation number D0 0.59 0.21
Gr€uneisen parameter G 1 1.3
Rayleigh Ra 4.2�107 2.2�1027?
Intern. Rayleigh RaH 2.4�1010 0?
Prandtl Pr 3.3�1023 1.4�10�2

Grashof/Reynolds Gr¼Re¼Ra/Pr 1.3�10�16 1.6�1029?
Mach M 1.5�10�9 �1

M2Pr/Ra or D0E/G0 1.7�10�2 1.6�10�6

To emphasize the drastic differences between the highly viscous mantle and a real liquid (in which shear waves do not propagate), we added estimates for the core assuming that core

convection is so efficient that only 1 K of nonadiabatic temperature difference can be maintained across it. Notice that with only 1 K of temperature difference, the Rayleigh

number of the fluid core would already reach 1027! A Stokes velocity is not appropriate to estimate the velocity in the core or its Mach number.
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r0

r
� a0DTna

D0

G0

C0
p

C0
u
¼M2 Pr

Ra

K0
s

K0
T

[130]

In these estimates, we used either a nondimensional dissi-

pation number

D0 ¼
a0g0a
C0
p

[131]

and a Gr€uneisen parameter, eqn [77], or the Rayleigh number

Ra defined in eqn [121] and the Prandtl, Pr, number:

Pr¼ �0C
0
P

k0
¼ n0
k0

[132]

The ratios Cp
0/Cu

0 and Ks
0/KT

0 are of order 1. The dissipation

number compares the natural scale of temperature variations

[123] with the layer thickness, a. The dissipation number D0 is

around 0.5 for the Earth’s mantle. For any laboratory

experiment, this number would be infinitely small; only geo-

physical or astrophysical problems have large dissipation num-

bers. The physical meaning of the Rayleigh number as a

measure of convective vigor has already been discussed. The

Prandtl number (Prandtl, 1975–53) compares the two diffu-

sive processes: namely, the diffusion of momentum and heat.

As D0�0.5 and G0�1, the density variations due to non

hydrostatic pressure variations are smaller but of the same

order as those due to temperature variations. There are both of

a few percent so that r0 � r. The mass conservation can there-

fore be approximated in what is called the anelastic approxima-

tion (Ogura and Phillips, 1962; Spiegel and Veronis, 1960):

—� rvð Þ¼ 0 [133]

The anelastic approximation is sometimes called small

Mach number approximation. However, the anelastic approx-

imation really requires not only a small M but also a small

M2Pr/Ra (Bercovici et al., 1992). A planet could have a very low
Mach number but so large a Prandtl number that the anelastic

approximation would not be valid. Similarly, a planet can have

a low Reynolds number (creeping convection) with a very large

Rayleigh number (chaotic convection).

The differential system eqns [126], [127], [125], and [133]

constitute the anelastic approximation of convection that has

been used for atmospheric convection as well as for liquid and

solid convection, including mantle and core convection.

A large difference between gases and liquids or solids is that

the former have aT�1 (and exactly 1 for ideal gas) and the

latter have aT�1. This allows a further simplification of the

equation, the anelastic liquid approximation.

7.02.4.3.4 Anelastic liquid approximation
Using the relation between entropy, pressure, and temperature

(eqn [125]), and following the same scaling as before, where

non hydrostatic pressure and viscous stresses have the same

magnitude, yields

T 0 ¼ T

CP

S0 +
aT
rCP

P0 � T

CP

S0 +D0aTT 0 [134]

As D0�0.5 and aT�0, the last term is negligible, and

for the mantle or the core, we can identify TS0 and CPT
0.

Using TdS0 ¼d TS0� �
�S0dT ¼d CPT

0� �
�CP T 0=T

� �
dT, we can

express the anelastic liquid equations by

—� r0vð Þ¼ 0

r
Dv

Dt
¼�r—

P0

r

� �
+—�t�rgaT 0

r
DCT 0

Dt
¼ rgaugT 0 +—� k— T +T 0� �� �

+ t :—v +rH [135]

where ug is the velocity along g.

In the anelastic liquid approximation, CP and CV are equal, as

well as KS and KT (their relative difference is G0a0DTna�1
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according to eqn [85]); we thus simply label the heat capacity

and incompressibility as C and K.

7.02.4.3.5 Nondimensionalization
To nondimensionalize the equations, we perform the change

of variables and parameters

x, u, t, P0, T 0, t! aex,useu, a

us
et, �0us

a
eP0
, DTnaeT 0

,
�0uS
a
et

—, r, a, C, K, k, g!1

a
e—, r0er, a0ea, C0

eC, K0
eK, k0ek, g0eg [136]

where vs is the Stokes velocity a
2g0r0a0 △Tna/�0. We obtain the

nondimensionalized fluid anelastic equations:

—� ervð Þ¼ 0

erRa
Pr

Dv

Dt
¼�er— Per

� �
+—�t�eregeaT

erDeCeT
Dt

¼ eregeaugD0T +
1

Ra
—� ek— eT + T

� 	� 	
+D0t :—v +

1

Ra
er r0Ha2

k0DTna
[137]

For simplicity, we only kept the tilde sign on the reference

nondimensionalized profiles, and we omitted the tilde and

the primes on all the other quantities. In the momentum

equation, the nondimensionalized stress tensor in the Newto-

nian case (without bulk viscosity) is

t¼e� —v + —v½ �t
� �

�2

3
e�—�v [138]

The formalism is already so heavy that we have not

included the self-gravitational term. This term is not negligible

at long wavelengths (see Section 7.02.2.5.2). To account for

this term, we should have added on the right side of momen-

tum equation of [137] a term �er—ec. where the perturbed

gravitational potential due to the departure of the density

from the reference profile satisfies Poisson’s equation:

—2ec¼ 3er r0
< r>

1eK D0

G0
P0 �eaT 0

� �
[139]

where <r> is the average density of the Earth.

7.02.4.3.6 Dimensionless numbers
The ratio Ra/Pr is also called the Grashof number

Gr¼a0g0DTnaa
3/n0

2 (Grashof, 1826–93). Introducing the

Stokes velocity vS, eqn [110], this number can also be written

as vSa/n0 and could be called the Reynolds number, Re, of the

flow (Reynolds, 1842–1912). Using one or the other names

depends on the quantities that are best known. For example, if

the velocity V0 is a parameter imposed by a boundary condi-

tion, using it to perform the nondimensionalization and char-

acterizing the system by the Reynolds number V0a/n0 would be

more natural than using the Grashof number. If a thermal

structure is imposed by a velocity boundary condition (e.g.,

by the thickening of the oceanic lithosphere with age), it would

seem natural to introduce a Péclet number V0a/k0 (Péclet,

1793–1857), which is nothing more than the Rayleigh number

of the flow if the velocity is imposed by the convection.

The Rayleigh and Prandtl numbers can be estimated in

different ways. In fact, the only parameter difficult to know is

the viscosity. In most textbooks, the value of 1021 Pa s, first
proposed by Haskell (1937), is given with a unanimity that

hides very large uncertainties and most probably a large

geographic variability. The mantle viscosity and its depth

dependence can be constrained by postglacial rebound,

geoid, true polar wander, change of flattening of the Earth,

and plate force balancemodels or extrapolated from laboratory

measurements. An increase of viscosity with depth, either one

or two orders of magnitudes, is likely, with an asthenosphere

significantly less viscous (1019 Pa s) at least under oceanic

plates and a lower mantle probably around 1022 Pa s (see

details in Section 7.02.6.1). It is impossible to give justice to

all the papers on this subject, but some geodynamic estimates

of mantle viscosity can be found in, for example, Peltier

(1989), Sabadini and Yuen (1989), Lambeck and Johnston

(1998), and Ricard et al. (1993a). Whatever the value of the

real viscosity, the ratio Ra/Pr is so small that inertia plays no

role in the mantle and the left side of the momentum equation

in the anelastic approximation [137] can safely be set to zero

(see numerical values in Table 1).

7.02.4.3.7 Boussinesq approximation
As was expected from Section 7.02.2.5.3, where we had shown

that the dissipation and the adiabatic terms balance each other

in a statistical steady-state regime, these terms are proportional

to the same dissipation number D0. Although D0 is not so

small, most of the physics of mantle convection, except for

the additional adiabatic temperature gradient, is captured with

models where D0 is arbitrarily set to zero. The Boussinesq

approximation captures most of the mantle dynamics due to

the fact that a huge DTna is maintained across the top and

bottom boundary layers. The other sources and sinks of energy

and density anomaly (viscous dissipation and adiabatic heat-

ing) are therefore always small (Bercovici et al., 1992;

Glatzmaier, 1988; Jarvis and Mckenzie, 1980; Tackley, 1996).

In the Boussinesq approximation, D0¼0, the reference

density and temperature as well as the heat capacity and the

thermal expansivity become constants (according to eqn [123],

reT �D0
eT and rer� D0=G0ð ÞerÞ). The nonadiabatic tempera-

ture increase DTna becomes simply the total temperature

increase DT. This approximation is of course excellent for

laboratory-scale experiments where effectively D0�1. The

EoS [130] indicates that the density variations due to pressure

are D0/G0 smaller than those due to temperature and are

therefore negligible and the fluid dynamics equations become

r�v¼ 0

Ra

Pr

Dv

Dt
¼�—P +—� e� —v + —v½ �t

� �� �
�egT

DT

Dt
¼ 1

Ra
—� ek—Th i

+
1

Ra

r0Ha2

k0DT

[140]

Here again, as in the mantle, Gr¼Ra/Pr�1, the inertia in

the momentum equation [140] can be neglected. The self-

gravitational term �ere—ec should be added to the momentum

equation (second equation of eqn [140]) for large-scale simu-

lations, the gravitational potential being solution of eqn [139]

where only the thermal part of the density variation needs to be

taken into account.

The nondimensionalized gravity eg, viscosity e�, and thermal

conductivity ek are often assumed constant (e.g., ek¼e�¼ 1 andeg¼eeg, a constant unit vector), but they can be variable. The
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physical behavior of a large Rayleigh number is obvious in eqn

[140]. When Ra!1, and in the absence of heat sources, the

temperature becomes a purely advected and conserved quan-

tity, DT/Dt¼0.
7.02.4.3.8 Internal heating
In the nondimensionalization, we assumed that the non-

adiabatic temperature DTna and the radioactive sources are

two independent quantities. Of course, in the case where

the mantle is only heated from within, the excess tempera-

ture is not a free parameter but must result from the heat

source and from the flow itself. In the nondimensionaliza-

tion, we can replace DTna by r0 Ha2/k0 in such a way that

the radioactive heat source of the anelastic or Boussinesq

energy equations, [137] and [140], are simply 1/Ra. This

choice requires the introduction of a somewhat different

Rayleigh number, the internally heated Rayleigh number

(Roberts, 1967),

RaH ¼ a0Hr30g0a
5C0

P

�0k
2
0

[141]

7.02.4.3.9 Change of nondimensionalization
We use a Stokes velocity to nondimensionalize the equations.

We have therefore introduced a velocity V0 of order of

300 m year�1 and a time a/V0¼10000 year (see Table 1).

This is certainly very fast and short compared with geologic

scales. Most physical and geophysical textbooks (e.g., Schubert

et al., 2001) use instead a diffusive time tD¼rCPa
2/k0 and

velocity a/tD. This is perfectly valid, but Table 1 shows that

the diffusive time and velocity amount to tD¼400 byr and

VD¼7�10�6 m year�1. These values would on the contrary

be very slow and long compared with geologic scales.

A nondimensionalization using a diffusive timescale leads to

the anelastic equations

—� ervð Þ¼ 0

er 1

Pr

Dv

Dt
¼�er— Per

� �
+—�t�RaeregeaT

erDeCT
Dt

¼ eregeaD0ugT +—� ek— eT + T
� �� 	

+
D0

Ra
t :—v +

r0Ha2

k0DTna
[142]

and the Boussinesq equations

—� vð Þ¼ 0

1

Pr

Dv

Dt
¼�—P +—�t�RaegT

DT

Dt
¼—� ek—T� 	

+
r0Ha2

k0DT
[143]

Notice that the Ra number appears in different places than

in eqns [137] and [140]. Of course, after their appropriate

changes of variables, the dimensional solutions are the same.
7.02.4.4 Linear Stability Analysis for Basally Heated
Convection

To understand why the static conductive solution is not neces-

sarily the solution chosen by the system, one can test the

stability of a static state. This is what physicists call a study of
stability analysis (see also Ribe, this volume). It consists of

substituting into the basic equations the known static solution

plus an infinitely small perturbation and checking whether or

not this perturbation amplifies, decreases, or propagates. It is

only when perturbations decrease in amplitude that the tested

equilibrium is established to be stable.

To illustrate this analysis, we use the Boussinesq approxi-

mation, with constant viscosity and conductivity, neglecting

inertia and without internal heating. The nondimensionalized

equations [140] yield

—�v¼ 0

�—P +—2v�Tez ¼ 0

@T

@t
+ v�—T¼ 1

Ra
—2T

[144]

(ez is the unit vector parallel to g). The steady diffusive nondi-

mensional temperature solution is T¼z, and we test a solution of

the form T¼z+dT. The temperature boundary condition, T¼0

on top and T¼1 at the bottom, requires that dT vanishes for z¼0

and z¼1. In static conductive state, the velocity is zero, thus the

velocity v induced by the perturbation dT will be infinitesimally

small. In the nonlinear term, we can approximate v �—T¼
v �—(z+dT)�uz. With this approximation, the equations are

linear and we can find a solution in the form of a plane wave.

For a fluid confined between z¼0 and z¼1 where the

temperature is imposed (i.e., where dT¼0) and unbounded

in the x-direction, a solution, dT¼y(t) sin(pz) sin(kx), is appro-
priate and satisfies the boundary conditions. This solution is

2-D, has a single mode in the z-direction, and is periodic in x

with wavelength l¼2p/k. More complex patterns could be

tried but the mode we have chosen would destabilize first

(see Ribe, this volume). It is then straightforward to deduce

that for such a thermal anomaly, the energy equation imposes

a vertical velocity

uz ¼� _y+
k2 + p2ð Þ
Ra

y
� �

sin pzð Þsin kxð Þ [145]

From mass conservation and assuming top and bottom

free-slip conditions, the x-component of the velocity must be

ux ¼�p
k

_y +
k2 + p2ð Þ
Ra

y
� �

cos pzð Þcos kxð Þ [146]

When the velocity and the temperature are introduced in

the momentum equations, the pressure eliminated, the time

evolution of the temperature perturbation is found

_y¼ y
k2

p2 + k2ð Þ2
� p2 + k2ð Þ

Ra

 !
[147]

For any wave number k, a small enough Rayleigh number

corresponds to a stable solution, _y=y< 0. When the Rayleigh

number is increased, the temperature perturbation with wave

number k becomes unstable at the threshold Rayleigh number

Ra¼ p2 + k2ð Þ3

k2
[148]

This Ra(k) curve is plotted in Figure 3. This curve has a

minimum when
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Figure 3 Critical Rayleigh number as a function of the half wavelength
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with a whole range of unstable wavelengths. Below this curve, the
conductive temperature is stable since temperature perturbations of any
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and a critical Rayleigh number of 657.
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k¼ pffiffiffi
2

p , Rac ¼
27

4
p4 � 657 [149]

What canbe interpreted as the size of one convective cell is p/k
since one wavelength corresponds to two counterrotating cells.

The critical cell has an aspect ratio, width over height, of
ffiffiffi
2

p
.

A Rayleigh number of 657 is the critical Rayleigh number

for the onset of convection in a layer heated from below with

free-slip boundary conditions. As soon as Ra>Rac, there is a

wave number interval over which convection begins. Of

course, when convection grows in amplitude, the marginal

stability solution becomes less and less pertinent as the

assumption that v �—dT�v �—z becomes invalid. The existence

of a critical Rayleigh number and its value, here obtained from

amarginal stability analysis, have also been obtained in a more

general case, where finite amplitude perturbations (instead of

infinitesimal ones) are added to the stationary solution. Below

the critical Rayleigh number, any finite perturbation can be

shown to decay eventually to zero (e.g., Joseph, 1966).
7.02.4.5 Road to Chaos

In Cartesian geometry, when the Rayleigh number reaches its

critical value, convection starts and forms rolls. When the

Rayleigh number is further increased, complex series of con-

vection patterns can be obtained, first stationary, then periodic,

and finally chaotic (see Chapter 7.03). Using the values of

Table 1, the critical Rayleigh number of the mantle would be

attained for a nonadiabatic temperature difference between the

surface and the CMB of only 0.025 K. The mantle Rayleigh

number is several orders of magnitude higher than critical

and the mantle is in a chaotic state of convection.

Figure 4 shows a stationary convection pattern at Ra¼105

and three snapshots of numerical simulation of convection at
higher Rayleigh number. The color scale has been chosen

differently in each panel to emphasize the thermal structures

that decrease in length scale with Ra. This view is somewhat

misleading since all the thermal anomalies become confined

in a top cold boundary layer and in a hot bottom one at large

Rayleigh numbers. Most of the interior of the cell becomes just

isothermal (or adiabatic when anelastic equations are used).

The various transitions of convection as the Rayleigh number

increases will be discussed in other chapters of this treatise (see

Chapters 7.03, 7.04, 7.05).
7.02.5 Introduction to Physics of Multicomponent
and Multiphase Flows

The mantle is not a simple homogeneous material. It is made

of grains of variable bulk composition and mineralogy and

contains fluids, magma, and dissolved volatiles. Discussion of

multicomponent and multiphase flows could deal with

solids, liquids, or gases; include compressibility or not; and

consider elastic, viscous, or more complex rheology. For each

combination of these characteristics, a geophysical applica-

tion is possible. Here, we will restrict the presentation to

viscous creep models (i.e., without inertia), where the various

components are treated with continuous variables (i.e., each

component is implicitly present everywhere). We do not con-

sider approaches where the various components are separated

by moving and deformable interfaces. Our presentation

excludes cases where the problem is to match properties at

macroscopic interfaces between regions of different but

homogeneous compositions.

We will focus on two cases. The first will be when all the

components are perfectly mixed in variable proportions. This

corresponds to the classical chemical approach of multiple

components in a solution. This will provide some tools to

understand mantle phase transitions and the physics of

chemical diffusion and mixing. We will be rather formal

and refer to other chapters of this treatise for the applications

and illustrations (e.g., Parmentier and Tackley, this volume).

Our goal is to explain why and when the advection–diffusion

equation can be used in mantle dynamics. The irreversible

thermodynamics of multicomponent flows is discussed in

various classical books (e.g., de Groot and Mazur, 1984;

Haase, 1990). However, as usual with geophysical flows, the

mantle has many simplifications and a few complexities that

are not necessarily well documented in these classical

textbooks.

The second case will be for two-phase flows in which the

two phases are separated by physical interfaces that are highly

convolved and with spatial characteristics much smaller than

the typical size of geodynamic models. This is typically the case

where magma can percolate through a compacting matrix (see

also Dingwell, vol. 2). This approach was used to model melt

extraction and core–mantle interaction (McKenzie, 1984; Scott

and Stevenson, 1984). Magma migration has also been treated

in a large number of publications where solid and magma are

considered as separated in studies of dike propagation through

hydraulic fracturing (e.g., Lister and Kerr, 1991) or where

fusion is parameterized in some way (e.g., Choblet and

Parmentier, 2001; Ito et al., 1999). We do not discuss these

latter approaches.



Figure 4 Convection patterns of a fluid heated from below at Rayleigh number 105, 106, 107, and 108. The temperature color bars range from 0 (top
boundary) to 1 (bottom boundary). The Boussinesq approximation was used (numerical simulations by F. Dubuffet). The increase in Rayleigh
number corresponds to a decrease of the boundary layer thicknesses and the width of plumes. Only in the case of the lowest Rayleigh number (top left)
is the convection stationary with cells of aspect ratio �

ffiffiffi
2

p
as predicted by marginal stability. For higher Rayleigh number, the patterns are highly

time-dependent.

Physics of Mantle Convection 45
7.02.5.1 Fluid Dynamics of Multicomponent Flows
in Solution

7.02.5.1.1 Mass conservation in a multicomponent solution
If we want to study the evolution of major or trace element

concentration in the convecting mantle, we can consider the

mantle, instead of a homogeneous fluid, as a solution of

various components i in volumetric proportions fi (withP
ifi¼1) having the densities ri and velocities vi (and later,

thermal expansivities ai and heat capacities Cp
i . . .).

Using a mass balance very similar to what we had discussed

for a homogeneous fluid, we obtain a mass conservation equa-

tion of the form

@ firið Þ
@t

+—� firivið Þ¼Gi [150]

where Gi is the rate of mass production of component i. This

rate of mass production is zero if no reactions produce the

component i.

In the fluid, the average density is

r¼
X
i

firi [151]

and various average velocities can be defined (weighted by the

mass, the volume, the number of moles, etc., of each compo-

nent i). In this section, we introduce the barycentric velocity, vb
(velocity of the center of mass), defined by
vb ¼
P

firivi
r

[152]

The average mass conservation can be obtained by sum-

ming the equations of component conservation [150],

@r
@t

+r� rvbð Þ¼ 0 [153]

since the sum of the rates of mass production is zero:X
i

Gi ¼ 0 [154]

In equation [150], instead of the various component

velocities vi, we can introduce the barycentric velocity vb and

the diffusive flux of the component i with respect to this

average flow,

@ firið Þ
@t

+—� firivbð Þ¼�—�Ji +Gi [155]

where we define the diffusive flux, Ji, by

Ji ¼firi vi�vbð Þ [156]

By definition of the barycentric velocity eqn [152], the

diffusive flows sum to zero:X
i

Ji ¼ 0 [157]
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Diffusive transport of mass is nothing more than the advec-

tive transfer by component velocities relative to the average

barycentric velocity. We will show later in simple cases that

the diffusive fluxes are driven by concentration gradients (de

Groot and Mazur, 1984; Haase, 1990; Woods, 1975).

If we introduce the mass fraction Ci ¼firi=r (in kg of i

per kg of mixture), we can easily show from eqns [153] and

[155] that

r
DCi

Dt
¼�—�Ji +Gi [158]

where the Lagrangian derivative is defined with the barycentric

velocity,

D

Dt
¼ @

@t
+ vb�— [159]

7.02.5.1.2 Momentum and energy in a multicomponent
solution
In our multicomponent solution, all constituents are present at

each point, and they are all locally submitted to the same

pressure and stresses. We assume that the viscous stress is

simply related to vb and we neglect inertia as appropriate for

the mantle. Newton’s second law (here, simply the balance of

forces) can be applied to the barycenter and implies

—�t�—P + rg¼ 0 [160]

where the only force is due to the (constant) gravity. The

momentum equation thus remains identical to that of a fluid

with uniform composition and without inertia (eqn [16]).

Since there is only one momentum equation for i compo-

nents, the i�1 other velocity equations will be found by using

the constraints of the laws of thermodynamics and in particu-

lar the positivity of the entropy source. To derive the energy

conservation, we perform the standard balance to account for

all the energy exchanges in a volume O and across its surfaceP
. Instead of the one component equation [30], we have to

sum up various contributions and we get

X
i

@ firiU ið Þ
@t

¼�—�
X
i

firiU ivi + P
X
i

fivi +q�t�vb

 !

+ g�
X
i

firivi + rH [161]

In this expression, we recognize the temporal changes in

energy (U i is the internal energy per unit mass of component i

and the kinetic energies are neglected), the bulk energy flux, the

pressure work, the thermal diffusion, the viscous stress work,

the gravity work, and the radioactivity production

rH¼
P

ifiriHi

� �
. The various fi come from the assumption

that each component i is present in proportion fi in both the

volume O and its surface
P

. We assume that thermal diffusion

acts equally for each component and that the surface work of

the stress tensor is only related to the barycentric velocity.

Using the definition of the barycentric velocity [152], of the

diffusive fluxes [156], and of the momentum conservation

[160] and using
P

ifi¼1, the energy expression can be sim-

plified to
X
i

firi
DHi

Dt
¼�—�q�

X
i

Ji�—Hi +
DP

Dt
�
X
i

GiHi

+ t :rvb +rH [162]

where Hi are the component enthalpies

Hi ¼U i +
P

ri
[163]

The enthalpy variation for each component i can be

expressed as a function of the state variables P and T. According

to eqn [60], we can write for each component

ri
DHi

Dt
¼ riC

i
p

DT

Dt
+ 1�aiTð ÞDP

Dt
[164]

Finally, the expression for the temperature evolution is

rCp
DT

Dt
¼�—�q�

X
i

Ji�—Hi + aT
DP

Dt
�
X
i

GiHi

+ t :—vb + rH [165]

where the average heat capacity and thermal expansivity are

Cp ¼
P

ifiriC
i
p=r and a¼

P
ifiai .

Compared to the homogeneous case [38], two new heat

source terms are present, the enthalpy exchange through chem-

ical reactions,
P

iGiHi, and the enthalpy redistribution by

component diffusion,
P

iJi�—Hi.
7.02.5.1.3 Entropy conservation in a multicomponent
solution
Entropy conservation is essential for deriving the expressions

of the diffusive fluxes. The general expression of entropy con-

servation [7] is X
i

@ firiSið Þ
@t

¼�—�JS +HS [166]

where JS and HS are the yet unknown entropy flux and source.

The entropy of the various components takes into account

their specific entropies as well as their configurational entro-

pies or mixing entropies due to the dispersion of the compo-

nent i in the solution. Introducing the barycentric velocities

and the diffusive fluxes, this equation can be recast as

X
i

firi
DSi

Dt
¼—�

X
i

firiSivb +
X
i

SiJi� JS

 !

+HS �SiGi� Ji�—Si [167]

However, a second expression of the entropy conservation

can be obtained from the enthalpy conservation, [162]: using

dHi ¼ TdSi +VidP, which, in our case, can be expressed as

ri
DHi

Dt
¼ riT

DSi

Dt
+
DP

Dt
[168]

we deriveX
i

firiT
DSi

Dt
¼�—�q�

X
i

Ji�—Hi�
X
i

GiHi + t :—vb +rH

[169]
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A comparison of the two expressions for the entropy con-

servation, [167] and [169], allows us to identify the total

entropy flux

JS ¼
q

T
+ vb

X
i

firiSi +
X
i

SiJi [170]

and the entropy sources

THS ¼� q

T
+
X
i

SiJi

 !
�—T�

X
i

Ji�—mi�
X
i

Gimi

+ t :—vb + rH [171]

where we introduced the chemical potentials mi ¼Hi�TSi.

The total entropy flux, eqn [170], is related to thermal diffu-

sion and to advection and chemical diffusion of component

entropies.

In eqn [171], the gradients of chemical potential and tem-

perature are not independent as the chemical potential gradi-

ents implicitly include the temperature gradient, so that

alternative expressions can be found. For example, we can

introduce the gradient of m at constant temperature —Tm as

—Tmi ¼—mi +Si—T [172]

which leads to

THS ¼�1

T
q�—T�

X
i

Ji�—Tmi�
X
i

Gimi + t :—vb +rH [173]

This last equation has the advantage of separating the tem-

perature contribution, rT, from the compositional contribu-

tion, rTmi (rTmi varies mostly with composition as

composition can change over very short distances; however,

this term is also related to pressure variations) (see de Groot

and Mazur, 1984).
7.02.5.1.4 Advection–diffusion equation and reaction rates
Among the entropy sources, only terms involving similar ten-

sorial ranks can be coupled in an isotropic medium, according

to the Curie principle. The positivity of the entropy production

[173] imposes three conditions, coupling tensors, vectors, and

scalars:

t :—vb>0, �q�—T
T

�
X
i

Ji�—Tmi>0 �
X
i

Gimi>0 [174]

The first term relates tensors and we have already discussed

its implications for the rheology in Section 7.02.3.2.

The second term relates vectors and we assume, in agree-

ment with the general principle of nonequilibrium thermody-

namics (de Groot and Mazur, 1984), that a phenomenological

matrix M relates the thermodynamic fluxes J¼ J1 . . . Ji . . .q to

the thermodynamic forces X¼�—Tm1 . . .�—Tmi . . .�—T/T:

J1
J2
. . .
q

0BB@
1CCA¼�

m11 m12 . . . m1q

m21 m22 . . . m2q

. . . . . . . . . . . .
mq1 mq2 . . . mqq

0BB@
1CCA

—Tm1
—Tm2
. . .
—T=T

0BB@
1CCA [175]

This linear relationship implies that the term of vectorial rank

(with superscript u), in the entropy source, TH
uð Þ
S , appears as
TH
uð Þ
S ¼XtMX¼Xt M +Mt

2
X [176]

According to the second law of thermodynamics, the

symmetrical part of the matrix M, (M+Mt)/2, must be positive

definite, that is, the right-hand side of equation [176] must be

positive for any vectors X.

At microscopic scale, a process and its reverse occur at the

same rate. A consequence, known as the Onsager reciprocal

relations, is the existence of symmetry or antisymmetry

between mij and mji (Onsager, 1903–76). A general discussion

can be found in, for example, de Groot and Mazur (1984) or

Woods (1975). When the forces are independent of the veloc-

ities, the matrix M must be symmetrical, mij¼mji.

In the general case, the transport of heat by concentration

gradients (the Dufour effect (Dufour, 1832–92)) or the trans-

port of concentration by temperature gradients (the Soret effect

(Soret, 1827–90)) is possible. In many situations, these cross

effects are small and we will assume that the matrixM does not

couple thermal and compositional effects (the last row and

column of M are zero except for mqq/T¼k, the thermal

conductivity).

Even without coupling between thermal and compositional

effects, chemical diffusion in a multicomponent system

remains difficult to discuss in the most general case (the pos-

itive definiteness of a symmetrical matrix is not a very strong

constraint). We therefore restrict our study to a simple two-

component system where

J1
J2

� �
¼� m11 m12

m21 m22

� �
—Tm1
—Tm2

� �
[177]

For such a simple case, the sum of the fluxes must cancel

(see eqn [157]), and since the Onsager relations impose the

symmetry of the matrix, the coefficients mij must verify

m11 +m21 ¼m12 +m22 ¼m12�m21 ¼ 0 [178]

Only one coefficient, for example, m¼m11, can be freely

chosen, and the fluxes can be written as

J1 ¼m—T m2�m1ð Þ

J2 ¼m—T m1�m2ð Þ
[179]

and the second law requires m>0. If the component 1 is in

small quantity (the solute) and the component 2 is in large

quantity (the solvent, with —T(m2)¼0), we can easily track the

evolution of solute concentration C1. Its chemical diffusion

flux is J1¼�m—Tm1, and according to eqn [158], its

concentration

r
@C

@t
+ vb�—C

� �
¼—� m—Tmð Þ [180]

where the subscript 1 has been omitted and the source term G1

neglected.

For a solute, the chemical potential is a standard chemical

potential m0 plus a mixing term expressing the entropy gain

(configurational entropy associated with the increased disor-

der) made by dispersing the solute into the solvent, of the form

RT log a(C) (for crystalline solids, the activity a(C) of the

mixing term can be complex since it depends on the number

and multiplicity of crystallographic sites (Spear, 1993), but we
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just need to know that it is related to C). In a domain where the

average density and the standard potential remain uniform, the

advection–diffusion equation is obtained:

@C

@t
+ vb�—C¼—� D—Cð Þ [181]

with a diffusion coefficient D¼m=r @m=@Cð Þ most likely

T-dependent. The negative linear relationship between chemi-

cal diffusion flux J (now in mol m�2 s�1) and concentration

gradient J¼–DrC (with D in m2 s�1) is called the first Fick’s

law (Fick, 1829–1901).

When a component is present in two domains separated by

a compositional interface, its standard chemical potential m0 is
generally discontinuous. In this case, the gradient of the chem-

ical potential at constant T, —Tm is a mathematical distribution

that contains a term —Tm0, infinite on the compositional inter-

face. This discontinuity drives an infinitely fast diffusion of the

solute component across the interface until the equilibrium

and the continuity of the total chemical potential m0+RT log

a(C) are restored. The concentration ratio of C (or partition

coefficient of C) must therefore verify

a Cð Þ +

a Cð Þ� ¼ exp �m +
0 �m�0
RT

� �
[182]

where m0
+�m0

�¼ [m0] is the jump of standard potential across

the interface. This equation corresponds to the general rule of

chemical equilibrium.

The last entropy source in eqn [174],
P

iGimi, relates two

scalars (production rates and chemical potentials). In a mix-

ture of i components involving k stable atomic species, the

conservation of these atomic species implies that only r¼ i�k

linearly independent reactions exist. Let ni
j be the stoichiomet-

ric coefficient of the component i in the jth¼(1 . . . r) chemical

reaction with reaction rate, Gj. We can express Gi as

Gi ¼
X
j¼1...r

n
j
iGj [183]

and the second law imposes

�
X
j¼1...r

Gj

X
i

n
j
imi � 0 [184]

The positivity of the entropy source is satisfied if the kinetic

rates of the jth¼1 . . . r chemical reaction are proportional to

their chemical affinities, �DGj¼�
P

ini
jmi, with positive reac-

tion rate factors Rj:

Gj ¼�RjDGj [185]

In the case of exact thermodynamic equilibrium, DGi¼0,

the reaction rate vanishes and the second law is of course

satisfied.

Chemical reaction rates are however very rarely simply

proportional to the affinities and the Rj are likely some com-

plex, but positive, functions of P, T and concentrations Ci.

Indeed, in the context of chemical reactions, the kinetics of

reactions are often approximated by phenomenological laws

based on the law of mass action rather than on affinities (e.g.,

the reaction rates are rather related to exp(–DGj/RT )�1 than

to –DGj (see Lasaga, 1998; Rudge et al., 2011)).

In the same way as we defined the affinity �DGj of the

reaction j, we can define its enthalpy DHj¼
P

ini
jHi (see de
Groot and Mazur, 1984). The enthalpy exchange term of the

energy equation [165]
P

iGiHi can also be written as
P

jGjDHj,

which represents the products of the reaction rates and the

reaction enthalpies. Various phase changes take place in the

mantle, most notably at 410 and 660 km depth. Their effects

on mantle convection have been studied by various authors

and will be discussed in Section 7.02.6.6.
7.02.5.1.5 Conservation properties of the advection–
diffusion equation
We now make the hypothesis that the evolution of concentra-

tion of a solute in the convective fluid is controlled by the

advection–diffusion equation [181] and that this solute is not

involved in any chemical reaction, G¼0. For simplicity, we

assume that the barycentric flow is incompressible (— �vb¼0,C

can therefore be a concentration per unit volume or per unit

mass) and the diffusion coefficient D is a constant. The fluid

and the solute cannot escape the domain O; the normal veloc-

ity and normal diffusive flux are thus zero on the boundaries of

the domain, that is, vb �n¼0 and D—C �nb¼0 on the surface
P

with normal vector n.

First, it is obvious that when integrated over the total

domain O and with the divergence theorem, the advection–

diffusion equation [181] implies

d

dt

ð
O
CdV ¼�

ð
S
Cvb�D—Cð Þ�dS¼ 0 [186]

The initial heterogeneity does not disappear, it is just redis-

tributed through time.

To understand how the heterogeneity is redistributed, we

can express the evolution of the concentration variance. The

variance is related to C2�C
2
where C is the average concentra-

tion. We can get an evolution equation for C2 by multiplying

eqn [181] by 2C and we get after some algebra

DC2

Dt
¼D—2C2�2Dj—Cj2 [187]

This expression when integrated over the closed volume O
implies that

d

dt

ð
O
C2dV ¼�2D

ð
O
j—Cj2dV [188]

Since the right side is always negative, the variance must

continuously decrease until j—Cj¼0, which corresponds to a

state of complete homogenization.

If the initial concentration is C¼1 in some domain and

C¼0 elsewhere, a perfect homogenization is achieved after a

time t if the concentration is everywhere C¼C, the average

concentration. Since the average mixing rate is proportional to

the diffusion D, eqn [188], we note, however, that a non-

diffusive flow does not homogenize at all. A nondiffusive

flow just stirs the heterogeneities. When there is no diffusion,

the initial heterogeneity is stirred and stretched, but the local

concentrations remain, for all time, either C¼1 or C¼0, but

never an intermediate value (see Figure 5)

In the case of the Earth’s mantle, the solid-state diffusion

coefficients are all very low (see Table 2), and many studies

have totally neglected chemical diffusion. We see, at face value,

that these models are not really homogenizing, only stirring

the heterogeneities. Without diffusion, a chemical



Table 2 Homogenization times for helium and uranium assuming
a heterogeneity of initial thickness 2d0¼7 km and a strain rate of
5�10�16 s�1

Uranium Helium

D (m2 s�1) 10�19 10�13

t0 (Ma) 3.88�1013 3.88�107

tL (Ma) 3.60�105 3.60�103

tT (Ma) 1575 699

The diffusion coefficients for U and He are from Hofmann and Hart (1978) and Trull

and Kurtz (1993).
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heterogeneity (e.g., a piece of subducted oceanic crust) will

forever remain the same petrologic heterogeneity, and only

its shape will change.

Since the mixing rate is related to the compositional gradi-

ent [188], we should discuss the evolution of this gradient. We

multiply eqn [181] by the operator 2—C �— to obtain

Dj—Cj2
Dt

¼�2—C� _« �—C+ 2D —� r2C—C
� �

� r2C
� �2h i

[189]

which can be integrated as

d

dt

ð
O
j—Cj2dV ¼�2

ð
O
—C� _«�—CdV�2D

ð
O

r2C
� �2

dV [190]

The rate of gradient production is related to the flow prop-

erties through the strain rate tensor _« and to the diffusion. The

diffusion term is negative and decreases the sharpness of com-

positional gradients.

The term related to the flow properties through the strain

tensor (first term of the right side of eqn [190]) could in

principle be either positive or negative. However, as time

evolves, this term must become positive. The strain rate tensor

has locally three principal axes and three principal strain rates,

the sum of them being zero since the flow is incompressible.

The stretched heterogeneities become elongated along the

direction of the maximum principal strain rate and the con-

centration gradients reorient themselves along the minimum,

and negative, principal strain rate. The term under the first

integral on the right side of eqn [190] is thus of the order of

+ _«minj j —Cj j2 ( _«min is the local, negative eigenvalue of the

strain rate tensor). Stirring is thus the source of production of

concentration gradient (see Figure 5).

We can now understand the interplay between advection

and diffusion. Even when the diffusion coefficient D is vanish-

ingly small in eqn [190], the stirring of the flow by convection

will enhance the concentration gradients until the average

diffusion term, proportional to the square of concentration

gradients, will become large enough (see eqn [188]), for a

rapid decrease of the concentration variance. We illustrate
Figure 5 An initial heterogeneity (top) is introduced at t¼0 into a time-dep
heterogeneity is stirred by convection and then stretched on the form of thin r
constant. It is only with diffusion, D 6¼0 (bottom right), that a real homogeniz
this behavior in the next two subsections by choosing a simple

expression for the strain rate and computing the evolution of

concentration through time.

7.02.5.1.6 Laminar and turbulent stirring
The efficiency of mixing, mostly controlled by stirring, is there-

fore related to the ability of the flow to rapidly reduce the

thickness of heterogeneities (Olson et al., 1984). In this

section, we set aside diffusion and discuss the stirring proper-

ties of a flow (see also Tackley, this volume). Let us consider a

vertical piece of heterogeneity of width 2d0 and height 2l0
(l0�d0) in a simple shear flow ux ¼ _«z, with constant _«. Its

top and bottom ends are at (0, l0) and (0, –l0) and they will be

advected to _«tl0, l0ð Þ, � _«tl0,� l0ð Þ after a time t. As the hetero-

geneity length increases as 2l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ _«2t2,

p
mass conservation

implies that its half width d(t) decreases as

d tð Þ¼ d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + _«2t2

p [191]

On the contrary, in a pure shear flow, uz ¼dz=dt¼ z _« with

constant _«, the length of the heterogeneity would increase as

l¼ l0exp _«tð Þ and its width would shrink as

d tð Þ¼ d0exp � _«tð Þ [192]
endent convection cell. Without diffusion, D¼0 (bottom left), the
ibbons. However, the variance of the heterogeneity concentration remains
ation occurs with a decrease of the heterogeneity variance.
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Such a flow is said to induce turbulent stirring. This is

unfortunate terminology because turbulent stirring can occur

in a creeping flow with Re¼0. Mantle convection is not turbu-

lent but it generates turbulent stirring.

Chaotic mixing flows have globally turbulent stirring

properties and the qualitative idea that highly time-

dependent convection with high Rayleigh number mixes

more efficiently than low Rayleigh number convection is

often true (Coltice and Schmalzl, 2006; Schmalzl et al.,

1996). However, steady 3-D flows can also induce turbulent

mixing. This surprising phenomenon called Lagrangian chaos

is well illustrated for some theoretical flows (Dombre et al.,

1986) and for various simple flows (Ottino, 1989; Toussaint

et al., 2000). For example, in a steady flow under an oceanic

ridge offset by a transform fault, the mixing is turbulent

(Ferrachat and Ricard, 1998).
7.02.5.1.7 Diffusion in Lagrangian coordinates
In Section 7.02.5.1.5, we discussed the mixing properties from

a Eulerian viewpoint. We can also understand the interplay

between diffusion and stretching (stirring) by adopting a

Lagrangian viewpoint (Kellogg and Turcotte, 1987; Ricard

and Coltice, 2004), that is, by solving the advection–diffusion

equations in a coordinate frame that follows the deformation.

Let us consider a strip of thickness 2d0 with an initial

concentration C0 embedded in an infinite matrix of concentra-

tion C1. In the absence of motion, the solution of the

advection–diffusion equation [181] can be expressed using

the error function, and the time-dependent concentration

C(x, t) is given by

C x, tð Þ�C1
C0�C1

¼ 1

2
erf

d0�x

2
ffiffiffiffiffiffi
Dt

p
� �

+ erf
d0 + x

2
ffiffiffiffiffiffi
Dt

p
� �� �

[193]

where x is a coordinate perpendicular to the strip and is zero at

its center.

The concentration at the center of the strip (x¼0) is

C 0, tð Þ�C1
C0�C1

¼ erf
d0

2
ffiffiffiffiffiffi
Dt

p
� �

[194]

and the concentration decreases by a factor of about 2 in the

diffusive time

t0 �
d20
D

[195]

(erf (1/2) is not far from 1/2). The time needed to homogenize

a 7 km thick piece of oceanic crust introduced into a motion-

less mantle is extremely long (see Table 2); even the relatively

mobile heliumwould be frozen in place since the Earth formed

as it would only have migrated around 50 cm.

However, this idea of a
ffiffi
t

p
diffusion is faulty since the flow

stirs the heterogeneity and increases compositional gradients

(see eqn [190]), which in turn accelerates the mixing process

(e.g., eqn [188]). Assuming that the problem remains two-

dimensional enough so that diffusion only occurs perpendicular

to the deforming heterogeneity, let d(t) with time derivative _d tð Þ
be half the thickness of the strip containing a chemical hetero-

geneity. The velocity perpendicular to the strip would locally be

at first order
ux ¼ x
_d tð Þ
d tð Þ [196]

(each side of the stripe, at x¼
d(t) moves at 
 _d tð Þ).
We can choose as a new space variable ex¼ xd0=d tð Þ, in such

a way that the Lagrangian coordinate ex will vary between the

fixed values �d0 and d0. The diffusion equation becomes

@C

@t

� �
ex ¼D

d0
d tð Þ

� �2
@2C

@ex2 [197]

where the partial time derivative is now computed at constantex. We see that the advection–diffusion equation has been

turned into a pure diffusive equation where the diffusivity D

has been replaced by D(d0/d(t))
2. This equivalent diffusivity is

larger than D and increases with time as d(t) decreases.

To solve analytically equation [197], it is appropriate to

rescale the time variable by defining et¼ F tð Þ with

F tð Þ¼
ðt
0

d0
d uð Þ

� �2

du [198]

and the resulting advection–diffusion equation in Lagrangian

coordinates becomes the simple diffusion equation with con-

stant diffusivity where t and x are replaced by et and ex. Its
solution can be deduced from eqn [193]. For example, the

concentration at the center of the deformable strip varies like

C 0, tð Þ�C1
C0�C1

¼ erf
d0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
DF tð Þ

p !
[199]

and the concentration diminishes in amplitude by a factor of 2

after a time t that satisfies

F tð Þ� d20
D

[200]

To perform a numerical application, let us consider that the

flow is either a simple shear, eqn [191], or a pure shear defor-

mation, eqn [192]. Computing F(t) from equation [198] is

straightforward and, assuming _«t� 1, we get from eqn [200]

the homogenization times

tL �
31=3d

2=3
0

_«2=3D1=3
[201]

and

tT �
1

_«
log

d20 _«

D
[202]

for the laminar and turbulent case, respectively. For the same

oceanic crust of initial thickness 7 km, we get homogenization

times of about 0.70 byr for He and 1.57 byr for U if we use the

pure shear mechanism and assume rather arbitrarily that

_«¼ 5�10�16 s�1 (this corresponds to a typical plate velocity

of 7 cm year�1 over a plate length of 5000 km). Although He

and U have diffusion coefficients 6 orders of magnitude apart,

their residence times in a piece of subducted oceanic crust only

differ by a factor �2 (see Table 2).

The use of tracers to simulate the evolution of chemical

properties in the mantle is our best method since solid-state

diffusion is too slow to be efficiently accounted for in a numer-

ical simulations (e.g., Tackley and Xie, 2002; van Keken et al.,

2002). However, by using tracers, we do not necessarily take
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into account that some of themmay represent points that have

been stretched so much that their initial concentration anom-

alies have completely diffused into the background. In other

words, even if diffusion seems negligible, diffusion will erase

all heterogeneities after a finite time that is mostly controlled

by the stirring properties of the flow.
7.02.5.2 Fluid Dynamics of Two-Phase Flows

Up to now, in all of Section 7.02.5.1, all components weremixed

in a single phase. However, another important geophysical appli-

cation occurs when the multicomponents belong to different

phases. This case can be illustrated with the dynamics of partial

melt in a deformable compacting matrix. Partial melts are obvi-

ously present under ridges and hot spots, but they may also be

present in the middle and deep mantle (Bercovici and Karato,

2003;Williams and Garnero, 1996) and they were certainly more

frequent when the Earth was younger (Labrosse et al., 2007). We

discuss the situation where two phases, fluid and matrix, can

interact. In contrast to Section 7.02.5.1, where the proportion

and velocity of each component in solution were defined every-

where at a microscopic level, in a partial melt aggregate, the local

velocity at a microscopic level is either the velocity of a matrix

grain, evm, or the interstitial velocity of the melt, evf .
We assume that the two phases are individually

homogeneous and incompressible (various extensions of this

theory are possible, for compressible phases (e.g., Bercovici

and Michaut, 2010; Michaut et al., 2013)), when one phase

is void (e.g., Bercovici and Ricard, 2003; Ricard and Bercovici,

2003) and when one phase is only manifested by its surface

energy (e.g., Hier-Majumder et al., 2006). They have densities

rf and rm and Newtonian rheologies with viscosities �f and �m.

They are isotropically mixed and connected. Their volume

fractions are f (the porosity) and 1�f. The rate of magma

melting or freezing is DG (in kg m�3 s�1). Although the two

phases have very different physical properties, we will require

the equations to be material-invariant until we need to use

numerical values. This means that swapping f and m, f and

1�f, and DG and �DG must leave the equations unchanged.

This rule is both a physical requirement and a strong guidance

in establishing the general equations (Bercovici et al., 2001a).

We make the hypothesis that there is a mesoscopic size of

volume dV, which includes enough grains and interstitial fluid

that averaged and continuous quantities can be defined. Classi-

cal fluid dynamics also has its implicit averaging volume dV that

must contain enough atoms that quantum effects are negligible,

but what is needed here is a much larger volume. This averaging

approach remains meaningful because the geophysical macro-

scopic phenomenon that we want to understand (say, melting

under ridges) has characteristic sizes large compared to those of

the averaging volume (say, a few cm3) (Bear, 1988).

To do the averaging, we define at microscopic level a func-

tion y that takes the value 1 in the interstitial fluid and the

value 0 in the matrix grain. Mathematically, this function is

rather a distribution and it has a very convolved topology.

From it, we can define first the porosity (volume fraction of

fluid) f and then the fluid and matrix averaged velocities, vf
and vm (Bercovici et al., 2001a), by

f¼ 1

dV

ð
dV
ydV [203]
fvf ¼
1

dV

ð
dV
yevf dV, 1�fð Þvm ¼ 1

dV

ð
dV

1�yð ÞevmdV [204]

7.02.5.2.1 Mass conservation for matrix and fluid
Having defined the average quantities, the derivation of the

two mass conservation equations is fairly standard (Bercovici

et al., 2001a; McKenzie, 1984). They are

@f
@t

+—� fvf½ � ¼DG
rf

[205]

�@f
@t

+—� 1�fð Þvm½ � ¼�DG
rm

[206]

We get the same equations as in eqn [150] except that we

refer to f, 1�f, and DG instead of f1, f2, and G1. When

averaged, the mass conservation equations of two separated

phase take the same form as the mass conservation equations

of the two components in a solution.

We define an average and a difference quantity for any

general variable, q, by

q¼fqf + 1�fð Þqm, Dq¼ qm�qf [207]

The velocity v is volume-averaged and is different from

the barycentric velocity (eqn [152]),

vb ¼ frfvf + 1�fð Þrmvmð Þ=r¼ u+f 1�fð ÞDuDr=r

By combining the fluid and matrix mass conservation

equations, we get the total mass conservation equation

@r
@t

+—� rvbð Þ¼ 0 [208]

(as before, eqn [153]) and the time rate of change in volume

during melting

—�v¼DG
Dr
rfrm

[209]

7.02.5.2.2 Momentum conservation of matrix and fluid
Total momentum conservation, that is, the balance of the

forces applied to the mixture, is

—�t�—P +rg¼ 0 [210]

We have considered that the only force is due to gravity,

although surface tension between the two phases could also be

introduced (Bercovici and Ricard, 2003; Bercovici et al.,

2001a). In this equation, P,t , and r are the average pressure,

stress, and density, respectively. The equation is not surprising

and looks identical to its counterpart for a multicomponent

solution [160]. However, the average pressure and stresses

P¼fPf + 1�fð ÞPm and t¼ftf + 1�fð Þtm are now the sum

of two separate contributions, from two separate phases having

most likely very different rheologies and different pressures.

Hypothesizing that the two phases are subject to the same

pressure does not rest on any physical justification. It certainly

cannot hold if surface tension is present as the Young–Laplace

condition implies in the static case, a pressure difference

between phases related to the curvature of their interface. We

will show later that the pressure difference between phases DP
controls the rate of porosity change.
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We split the total momentum equation into two equations

one for the fluid and one for the matrix:

— fPf½ �+frfg+—: ft f


 �
+hf ¼ 0 [211]

�— 1�fð ÞPm½ �+ 1�fð Þrmg +—: 1�fð Þtm


 �
+hm ¼ 0 [212]

where hf and hm satisfy hf +hm¼0 and represent the interac-

tion forces acting on the fluid and on the matrix, across the

interfaces separating the two phases. Because of the complexi-

ties of the interfaces, these two interaction forces must be

parameterized in some way.

The simplest contribution to the interfacial forces that pre-

serves Galilean invariance is a Darcy-like term cDv¼ c(vm�vf)

(Drew and Segel, 1971; McKenzie, 1984) (Darcy, 1803–58). The

interaction coefficient c is related to permeability that is itself a

function of porosity (Bear, 1988). A symmetrical form compat-

ible with the usual Darcy term is (see Bercovici et al., 2001a)

c¼ �f�m

k0 �f 1�fð Þn�2 + �mf
n�2


 � [213]

where the permeability of the form k0f
n was used (this is often

called the Kozeny–Carman law with n�2–3 (Carman, 1939)).

Assuming n¼2 and �m��f, the interaction coefficient

becomes a constant, c¼�f/k0.

In the absence of gravity and when the pressures are uni-

form and equal, no motion should occur even in the presence

of nonuniform porosity. In this situation where

Dv¼ tf ¼ tm ¼ 0 and where P is uniform, P¼Pf¼Pm, the

force balances are�P—f+hf¼�P—(1�f)+hm¼0. Therefore,

the interface forces hf and hm must also include Prf and Pr
(1�f) when the two pressures are equal. This led Bercovici

and Ricard (2003) to write the interaction terms as

hf ¼ cDv +Pf—f +oDP—f

hm ¼�cDv + Pm— 1�fð Þ + 1�oð ÞDP—f
[214]

with 0
o
1. These expressions verify hf +hm¼0, are

Galilean- and material-invariant, and allow equilibrium of a

mixture with nonuniform porosity but uniform and equal

pressures (see also McKenzie, 1984).

Atmicroscopic level, thematrix–melt interfaces are not sharp

discontinuities but correspond to layers (called ‘selvage’ layers)

of disorganized atom distributions. The coefficient 0<o<1

controls the partitioning of the pressure jump (and potentially

of the surface tension) between the two phases (Bercovici and

Ricard, 2003) and represents the fraction of the volume-

averaged surface force exerted on the fluid phase. The exact

value of o is related to the microscopic behavior of the two

phases (molecular bond strengths and thickness of the interfa-

cial selvage layers) and measures the extent to which the micro-

scopic interface layer is embedded in one phase more than the

other. The only general physical constraints that we have are that

o must be zero when the fluid phase disappears (when f¼0)

and when the fluid phase becomes unable to sustain stresses

(when �f¼0). A symmetrical form like

o¼ f�f
f�f + 1�fð Þ�m

[215]

satisfies these conditions. For mantle conditions, �f��m and

hence, o�0.
To summarize, general expressions for the equations of

fluid and matrix momentum conservation are (Bercovici and

Ricard, 2003)

�f —Pf �rfg½ �+—: ftf

 �

+ cDv +oDP—f¼ 0 [216]

� 1�fð Þ —Pm�rmg½ � +—: 1�fð Þtm

 �

� cDv + 1�oð ÞDP—f¼0

[217]

The relationship between stress and velocities does not

include an explicit bulk viscosity term (Bercovici et al.,

2001a), and for each phase j, the deviatoric stress is simply

tj ¼ �j —vj + —vj

 �t �2

3
—�vjI

� �
[218]

where j stands for f or m. There is no difference in constitutive

relations for the isolated component and the component in the

mixture.
7.02.5.2.3 Energy conservation for two-phase flows
In the case where surface energy and entropy exist on

interfaces, the conservation of energy deserves more care

(Bercovici and Ricard, 2003; Bercovici et al., 2001a; Hier-

Majumder et al., 2006; Sramek et al., 2007). Otherwise, the

global conservation is straightforward and can be expressed by

the following equation where the left side represents the tem-

poral change of internal energy content in a fixed control

volume and the right side represents the different contribu-

tions to this change, namely, internal heat sources, loss of

energy due to diffusion, advection of energy, and rate of work

of both surface and body forces,

@

@t
frfU f + 1�fð ÞrmUm½ � ¼ rH�—�q�—� frfU fvf½

+ 1�fð ÞrmUmvm�+—� �fPfvf � 1�fð ÞPmvm +fvf �tf



+ 1�fð Þvm�tm�+fvf �rfg + 1�fð Þvm�rmg [219]

The last equation is manipulated in the standard way

using the mass and momentum equations. Because the two

phases are incompressible, their internal energies are simply

dU f¼CfdT and dUm¼CmdT. After some algebra, we get

frfCf
DfT

Dt
+ 1�fð ÞrmCm

DmT

Dt
¼�—�q�DP

Dof
Dt

+DHDG+C+ rH [220]

where C is the rate of deformational work

C¼f—vf : tf + 1�fð Þ—vm : tm + c Dvð Þ2 [221]

It contains the dissipation terms of each phase plus a term

related to the friction between the two phases. The fundamen-

tal derivatives are defined by

Dj

Dt
¼ @

@t
+ vj�— [222]

where vj is to be substituted with the appropriate velocity vf,

vm, or vo with

vo ¼ovf + 1�oð Þvm [223]
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In contrast to Section 7.02.5.1, it would not make much

sense to try to keep the equations in terms of an average

velocity like vb plus some minor diffusion terms. Here, the

two components may have very different velocities (e.g., a

weak downward compaction of the matrix with a fast upward

migration of magma), and we have to define various material

derivatives.

Since o represents a partitioning of pressure jump, it is not

surprising to find the velocity vo (included in Do/Dt) in the

work term related to this pressure jump. Associated with this

partitioning factor, we can also introduce interface values, qo,

that we will use later. Any quantity Dq¼qm�qf can also be

written as (qm�qo)–(qf�qo). When the property jump is

embedded entirely in the matrix (o¼0), there should be no

jump within the fluid and we must have qo¼qf. Reciprocally,

when o¼1, we should have qo¼qm. This prompts us to define

interface values by

qo ¼ 1�oð Þqf +oqm [224]

Notice in the expressions of the interface velocity vo, eqn

[223], and interface value qo, eqn [224], that o and 1�o are

interchanged.

The right side of eqn [220] contains two new expressions in

addition to the usual terms (heat production, diffusion, and

deformational work). The first term includes the changes in

porosity Dof/Dt times the difference in pressures between

phases, DP. The other term contains the difference in the

specific enthalpies DH¼Hm�Hf where the enthalpy of phase

j is defined by Hj¼U j+Pj/rj. A similar term was found for

components reacting in a solution [162].
7.02.5.2.4 Entropy production and phenomenological laws
Entropy conservation is needed to constrain the pressure jump

between phases and the melting rate. Starting from entropy

conservation and following Sramek et al. (2007)

@

@t
frSf + 1�fð ÞrmSm½ � ¼�—�JS +HS [225]

where JS is the total entropy flux andHS is the internal entropy

production, we compare the energy and the entropy

equations [220] and [225] taking into account that, for each

incompressible phase, dSj¼Cj dT/T¼dU j/T. After some alge-

bra, one gets

JS ¼frfSfvf + 1�fð ÞrmSmvm +
q

T
[226]

THS ¼�1

T
q�—Τ �DP

Dof
Dt

+DmDG+C + rH [227]

where we have introduced the difference in chemical potentials

between the two phases

Dm¼DH�TDS [228]

and DS¼Sm�Sf is the change in specific entropies.

Following the standard procedure of nonequilibrium

thermodynamics, we choose q¼�krT and we assume that

there is a linear relationship between the two thermody-

namic fluxes, Dof/Dt and DG, and the two thermodynamic

forces � DP and Dm since they have the same tensorial rank.

We write
Dof=Dt
DG

� �
¼ m11 m12

m21 m22

� �
�DP
Dm

� �
[229]

The matrix of phenomenological coefficients mij is positive

definite and symmetrical by Onsager’s theorem,m12¼m21 (see

Sramek et al., 2007). For a 2�2 matrix, it is rather simple to

show that the positivity implies m22>0, m11>0, and

m11m22�m12
2 >0 (positivity of the determinant).

The form of the phenomenological coefficients mij can be

constrained through thought experiments. First, using mass

conservations [205] and [206] and the definitions of vo and

ro, [223] and [224], we can combine equations [229] to get

DP¼� m22

m11m22�m2
12

1�oð Þ 1�fð Þ—�vm�of—�vf +
ro

rfrm
�m12

m22

� �
DG

� �
[230]

In the limiting case where the two phases have the same

density rf¼rm¼ro, melting can occur with no motion,

vm¼vf¼0, and eqn [230] should therefore predict the equality

of pressure between phases, DP¼0. In this case, we must

choose m12/m22¼1/rf¼1/rm. Let us consider now a situation

of homogeneous isotropic melting where the melt has such a

low viscosity that it cannot sustain viscous stresses and cannot

interact with the solid by Darcy terms. For such an inviscid

melt, o¼0, ro¼rf and vo¼vm. In this case, since the melt can

escape instantaneously, the matrix should not dilate, rvm¼0,

and thus, the two pressures should also be the same, DP¼0. In

this situation, all the terms in eqn [230] are 0 except for the

term proportional to DG. Thus, in the general case,

m12

m22
¼ ro

rfrm
[231]

Using this condition and introducing two positive coeffi-

cients, z¼m22/(m11m22�m12
2 ), andR¼m22, we can recast eqn

[229] as

DP¼�z
Dof
Dt

� ro

rfrm
DG

� �
[232]

DG¼R Dm� ro

rfrm
DP

� �
[233]

The first equation establishes a general relation controlling

the pressure drop between phases. The coefficient z that links
the pressure jump between the two phases to the porosity

changes in excess of the melting rate is in fact equivalent to a

bulk viscosity as introduced in Section 7.02.3.2 (see also the

summary in Section 7.02.5.2.5). The physical requirement

that the two-phase mixture should have the incompressible

properties of either the matrix or the fluid when f¼0 or

f¼1 imposes a porosity dependence to z with limf!0z(f)¼
limf!1z(f)¼+1. Simple micromechanical models (e.g.,

Bercovici et al., 2001a; Nye, 1953; Schmeling, 2000; Simpson

et al., 2010b) allow us to estimate the bulk viscosity as

z¼K0
�f + �mð Þ
f 1�fð Þ [234]

The dimensionless constant K0 accounts for grain/pore

geometry and is of O(1).
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A more general, but more hypothetical, interpretation of the

entropy positivity could argue that some deformational work,

C, might affect the pressure drop of eqn [232]. This hypothesis

led to a two-phase damage theory developed in Bercovici and

Ricard (2003, 2005), Bercovici et al. (2001a,b), and Ricard and

Bercovici (2003) (see also Bercovici et al., this volume). Here, we

assume that the system remains close enough to mechanical

equilibrium that damage does not occur.

The second equation [233] controls the kinetics of the

melting/freezing and, by consequence, defines the equilibrium

condition. In the case of mechanical equilibrium, when there is

no pressure drop between the two phases, the melting rate

cancels when there is equality of the chemical potentials of

the two single phases. In case of mechanical disequilibrium,

(DP 6¼0), the chemical equilibrium does not occur when the

two chemical potentials are equal. We define a new effective

chemical potential,

m*i ¼U i +
Po

ri
�TSi [235]

where i stands for f or m, and write the kinetic equation [233],

DG¼RDm* [236]

Chemical equilibrium imposes the equality of the effective

potentials on the interface, at the pressure Po at which the

phase change effectively occurs.

Using eqns [232] and [233], we can show that the entropy

production is indeed positive and given by

THS ¼ k
1

T
j—Tj2 + DP2

z
+R Dm*ð Þ2 +C +rH [237]

Chemical relaxation and bulk compression are associated

with entropy sources, in addition to diffusion, viscous

dissipation, and radioactive heating (see also Rudge et al., 2011).
7.02.5.2.5 Summary equations
For convenience, we summarize the governing equations when

the matrix is much more viscous than the fluid phase (�f��m)

as typical for melting scenarios, which implies that

tf ¼ 0, o¼ 0, ro ¼ rf , P
o ¼ Po ¼ Pf , and vo¼vm.

The mass conservation equations are [205] and [206]. The

equation of conservation of momentum for the fluid phase is

�f— Pf + rfgz½ �+ cDv¼ 0 [238]

(assuming z positive upward). This is the Darcy law with

c¼�ff
2/k(f), where k is the permeability (often varying as k0f

n

with n¼2 or 3 (Simpson et al., 2010b)). The secondmomentum

equation could be the matrix momentum (eqn [212]) or a

combined force-difference (or action–reaction) equation:

�— 1�fð ÞDP½ �+ 1�fð ÞDrg+—� 1�fð Þtm

 �

� cDv

f
¼ 0 [239]

where the deviatoric stress in the matrix is given by

tm ¼ �m —vm + —vm½ �T�2

3
—�vmI

� �
[240]

and the pressure jump between phases, eqn [232], becomes
DP¼�z 1�fð Þ—�vm [241]

if an equivalent bulk viscosity is used, or

DP¼�K0�m
—�vm
f

[242]

from the micromechanical model, eqn [234], of Bercovici et al.

(2001a) or of Simpson et al. (2010b).

The action–reaction equation [239] can also be written in a

different way, for example, by elimination of Dv taken from the

Darcy equilibrium [238],

�—Pf +—� 1�fð Þtm*

 �

+rg¼ 0 [243]

where tm* includes the DP term and is defined by

tm*¼ �m —vm + —vm½ �T�2

3
—�vmI

� �
+ z 1�fð Þ—�vmI [244]

This shows that if the pressure is defined everywhere as the

fluid pressure, then it is equivalent to use for the matrix a

rheology (see eqn [95]), with a bulk viscosity (1�f)z�z
(McKenzie, 1984). This analogy only holds without surface

tension between phases (Bercovici and Ricard, 2003;

Bercovici et al., 2001a; Ricard et al., 2001).

The rate of melting is controlled by

DG¼R DU +Pf
1

rm
� 1

rf

� �
�TDS

� �
[245]

and the energy equation is

rffCf
DfT

Dt
+ rm 1�fð ÞCm

DmT

Dt
�DHDG

¼ rH�—�q +
DG2

R
+K0�m

1�f
f

—�vmð Þ2 +C [246]

where we have assumed the relation [242].

These equations have been used by many authors with

various levels of approximation (Simpson et al., 2010a). The

most benign have been to replace 1�f by 1. Most authors

have also considered the bulk viscosity z as a porosity-inde-

pendent parameter (e.g., Choblet and Parmentier, 2001; Katz

et al., 2004; Kelemen et al., 1997; McKenzie, 1984; Ribe,

1985a,b; Richter and Mckenzie, 1984; Scott and Stevenson,

1984, 1986, 1989; Spiegelman and Kelemen, 2003;

Spiegelman et al., 2001; Stevenson, 1989). This overestimates

the possibilities of matrix compaction at low porosity.

Porosity-dependent parameters have been explicitly accounted

for in other papers (e.g., Bercovici et al., 2001a; Connolly and

Podladchikov, 1998; Fowler, 1985; Rabinowicz et al., 2002;

Ricard et al., 2001; Schmeling, 2000; Sleep, 1988).

For direct application to magma extraction, an earlier work

by Spiegelman and McKenzie (1987) imposed matrix motions

and solved for the magma trajectories that were found attracted

toward ridges and subduction corners. The melting rates were

later sometimes imposed (e.g., Turcotte and Morgan, 1992),

sometimes solved according to the energy equation, assuming

univariant melting (Fowler, 1989; Hewitt and Fowler, 2008;

Sramek et al., 2007) or even multiple component melting

(Hewitt, 2010; Rudge et al., 2011). Surface tension (between

matrix and magma and between matrix grains) has been con-

sidered (Bercovici and Ricard, 2003; Bercovici et al., 2001a;
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Hier-Majumder et al., 2006; Riley et al., 1990). The situation

where the melt is denser than the matrix has been considered

by Karato et al. (2006) and by Hernlund and Jellinek (2010)

for applications to the mantle transition zone and to the deep

mantle, two layers where the presence of magma is suspected

from seismological observations (Tauzin et al., 2010; Williams

and Garnero, 1996). The interaction between the matrix and

the magma can lead to the channelization of the melt (Hewitt

and Fowler, 2009; Weatherley and Katz, 2012) and to the

development of a fabric of the matrix that favors the migration

of the melt to the ridge (Holtzman et al., 2003).

Similar equations have also been used to describe the inter-

action between iron and silicates near the CMB (Buffett et al.,

2000) or during the segregation of planetary cores (Golabek

et al., 2008; Ricard et al., 2009; Sramek et al., 2010, 2012), the

formation of dendrites (Poirier, 1991), the compaction of lava

flows (Massol et al., 2001; Michaut and Bercovici, 2009), and

the dynamics in volcanic conduits (Bercovici and Michaut,

2010; Michaut et al., 2009, 2013).
7.02.6 Specifics of Earth’s Mantle Convection

In this last section, we discuss various aspects of physics unique

to large-scale mantle convection. We are aware of the impossi-

bility to be exhaustive, but most of the important points are

more deeply developed in other chapters of the treatise (in

particular, we leave the problems of partial melting to Parmen-

tier and to Ito and Van Keken, the connections with geoch-

emistry to Tackley, and the aspects of plate tectonics to

Bercovici et al., this volume; see also the books by Schubert

et al. (2001) and Davies (1999)).
7.02.6.1 A Negligible Inertia

The most striking difference between mantle convection and

most other forms of convection is that inertia is totally negli-

gible. This is because the Prandtl number is much larger than

the (already very large) Rayleigh number. This implies that the

mantle velocity flow obeys

—� rvð Þ¼ 0

�—P +—�t + drg +rdg¼ 0

r2c¼ 4pGdr

dg¼�—c [247]

in agreement with eqn [137]. In this set of equation, we keep

the self-gravitation term as appropriate at long wavelengths. If

the internal loads dr are known, the flow can be computed

independently of the temperature equation. This time-

independent system has been used by many authors to infer

the mantle flow properties.

7.02.6.1.1 Dynamic models
The system of eqn [247] can been solved analytically for a

depth-dependent viscosity, when variables are expressed on

the basis of spherical harmonics (see Hager and Clayton,

1989 and also Ribe, this volume and Forte, vol. 3). Various

possible surface observables (geoid height or gravity free-air
anomalies, velocity divergence, amplitude of deviatoric stress

at the surface, surface dynamic topography, CMB topography,

etc.) can be expressed on the basis of spherical harmonics with

components Olm. Through eqn [247], they are related to the

spherical harmonics components of the internal density varia-

tions drlm(r) by various degree-dependent Green functions

(Green, 1793–1841):

Olm ¼
ð
GO

l rð Þdrlm rð Þdr [248]

(see Ribe, this volume, for analytic details). The Green func-

tions Gl
O(r) can be computed from the averaged density and

viscosity profiles.

Before seismic imaging gave us a proxy of the 3-D density

structure of the mantle, various theoretical attempts have tried

to connect models of mantle convection to plate velocities

(Hager and Oconnell, 1979; Hager and O’Connell, 1981), to

Earth’s gravity field (or to the geoid, proportional to the poten-

tial c), to the lithospheric stress regime, or to the topography

(Bai et al., 1992; Lago and Rabinowicz, 1984; Parsons and

Daly, 1983; Ricard et al., 1984; Richards and Hager, 1984;

Runcorn, 1964).

An internal load of negative buoyancy induces a downwel-

ling flow that deflects the Earth’s surface, the CMB, and any

other internal compositional boundaries, if they exist. The

amount of deflection corresponds to the usual isostatic rule

for a load close to an interface: the weight of the induced

topography cancels to first order the weight of the internal

load. The total gravity anomaly resulting from a given internal

load is affected by the mass anomalies associated with the

flow-induced boundary deflections as well as by the load itself.

Due to the deflection of the Earth’s surface, the geoid pertur-

bation induced by a dense sinking anomaly is generally nega-

tive (e.g., free-air gravity has a minimum above a dense load).

However, when the mantle viscosity increases significantly

with depth, by 1–2 orders of magnitude, a mass anomaly

close to the viscosity increase, induces a larger CMB deforma-

tion and a lower surface deformation. The resulting gravity

anomaly corresponds to a geoid high. The fact that cold sub-

duction zones correspond to a relative geoid high suggests a

factor �30 viscosity increase around the upper–lower mantle

interface (Hager et al., 1985; Lago and Rabinowicz, 1984;

Ricard et al., 1984; Richards and Hager, 1984). Shallow anom-

alies and anomalies near the CMB, being locally compensated,

do not contribute to the long-wavelength gravity field. The

lithospheric stress field, like the geoid, is affected by mid-

mantle density heterogeneities. The surface deflection induced

by a deep-seated density anomaly decreases with the depth of

this anomaly, but even lower mantle loads should significantly

affect the surface topography.
7.02.6.1.2 Mantle flow and postglacial models
As soon as seismic tomography started to image the mantle

structures, these seismic velocity anomalies have been used to

further constrain the mantle viscosity. The fact that the geoid

and seismic velocity anomalies are positively correlated around

the transition zone but negatively in the deep mantle hetero-

geneities suggests a viscosity larger than 10 but not too large

(less than 100); otherwise, the mantle would be everywhere
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positively correlated with gravity (Hager and Clayton, 1989;

Hager et al., 1985; King and Hager, 1994; Ricard et al., 1984;

Richards and Hager, 1984) (see Figure 6). The same modeling

approach, assuming a proportionality between seismic velocity

anomalies and density variations, was also used to match the

observed plate divergence (Forte and Peltier, 1987), the plate

velocities (Ricard and Vigny, 1989; Ricard et al., 1991), and the

lithospheric stresses (Bai et al., 1992; Lithgow-Bertelloni and

Guynn, 2004). The initial Boussinesq models were extended to

account for compressibility (Forte and Peltier, 1991). The

instantaneous flow computations that were initially restricted

to long-wavelength patterns have recently capitalized on

advances in adaptative mesh refinements on parallel com-

puters to reach very fine resolutions, down to kilometer scales

(Alisic et al., 2012; Stadler et al., 2010).

Joint inversions of gravity with postglacial rebound were also

performed to further constrain the mantle viscosity profile. The

viscosity increase required by subduction was initially thought

to be too large to reconcile with postglacial rebound (Peltier,

1996). The various approaches (time-dependent for the post-

glacial models and time-independent for the geoid models)

seem to have converged to a standard viscosity profile with a

significant increase with depth (Mitrovica and Forte, 1997).

Whether this viscosity increase occurs across a discontinuity (at

the upper–lower mantle interface or deeper) or as a gradual

increase is probably beyond the resolution of these approaches.

Although these dynamic models explain the observed

geoid, they require surface topography of order 1 km, induced

by mantle convection and called dynamic topography (in con-

trast to the isostatic topography related to crustal and litho-

spheric density variations). The direct observation of dynamic

topography, however, is not evident in Earth’s topography

corrected for isostatic crustal contributions (e.g., Colin and

Fleitout, 1990; Kido and Seno, 1994; Lestunff and Ricard,

1995; Lithgow-Bertelloni and Silver, 1998). However, in recent

years, the role of a deep dynamic support to explain the

present-day topography and the flooding and emergence of

continent interiors during the geologic times have been docu-

mented by various authors (Conrad and Gurnis, 2003; Conrad

and Husson, 2009; Flament et al., 2013; Husson and Conrad,

2006; Moucha et al., 2008).

7.02.6.1.3 Time-dependent models
The thermal diffusion in the mantle is so slow that even over

100–200 My, it can be neglected in some long-wavelength

global models. Equation [247] can thus be solved by imposing

the known paleoplate velocities at the surface and advect the

mass anomalies with the flow without explicitly solving the

energy equation. This forced-convection approach has shown

that the deep mantle structure is mostly inherited from the

Cenozoic and Mesozoic plate motion (Lithgow-Bertelloni and

Richards, 1998; Richards and Engebretson, 1992). From plate

paleoslab reconstructions only, a density model can be obtained

that gives a striking fit to the observed geoid and is in relative

agreement with long-wavelength tomography (Ricard et al.,

1989). This approach was also used to study the hot spot fixity

(Richards, 1991; Steinberger and O’Connell, 1998), the sea level

changes (Lithgow-Bertelloni and Gurnis, 1997), or the polar

wander of the Earth (Richards et al., 1997; Spada et al., 1992a).

Instead of an imposed forced convection, a promising

method proposes to infer self-coherently the past mantle
structure from the whole set of convection equations, includ-

ing temperature evolution (Bunge et al., 2003; Ismail-Zadeh

et al., 2004; Liu and Gurnis, 2008). Using tools of variational

data assimilation developed bymeteorologists, the past density

heterogeneities can be considered as unknowns to be inverted

for in such a way that their time evolution is in agreement with

present-day observations (e.g., with tomographic models),

paleoreconstructions (the geometry and velocities of plates),

or paleogeography (Shephard et al., 2010).
7.02.6.2 A Mantle with Internal Heating

When the top and bottom boundary conditions are the same

(i.e., both free-slip or both no-slip), purely basally heated

convection in a Cartesian box leads to a perfectly symmetrical

system. We could simultaneously reverse the vertical axis and

the color scale of Figure 4 and get temperature patterns that are

also convective solutions. The convective fluid has a near adi-

abatic core and the temperature variations are confined into

two boundary layers, a hot bottom layer and a cold top layer.

The thicknesses of these two boundary layers and the temper-

ature drops across them are the same. The middepth tempera-

ture is simply the average of the top and bottom temperatures.

Instabilities develop from the bottom layer (hot rising plumes)

and the cold layer (cold downwelling plumes). They have a

temperature hotter or colder than the depth-dependent average

temperature. They are active structures driven by their intrinsic

positive or negative buoyancy. The Earth’s mantle has however

a large number of characteristics that break the symmetry

between upwellings and downwellings.

What is probably the major difference between mantle

convection and purely basally heated convection is that the

Earth is largely powered by radiogenic heating from the decay

of uranium, thorium, and potassium and loss of primordial

heat left over from its accretion. Convection purely heated

from within is depicted in Figure 7. In the extreme case

where the fluid is entirely heated from within, the fluid has

no hot bottom boundary layer. There are only concentrated

downwelling currents sinking from the top cold boundary

layer. The downwellings are active as they are moved by their

own negative buoyancy. To compensate for the resulting

downwelling flow, the background rises passively, that is,

without being pushed up by a positive buoyancy (Bercovici

et al., 2000). In the case of basal heating, any plume leaving the

top or bottom boundary layer travels adiabatically (neglecting

diffusion and shear heating). However, in the case of internal

heating, while the rapid downwellings remain close to adia-

batic, the radioactive decay can accumulate heat within the

slow upwellings. This heating is opposite to the adiabatic cool-

ing and the average temperature in an internally heated system

remains more homogeneous and with a significant subadia-

batic gradient (Parmentier et al., 1994).

The Earth’s mantle is however not in such an extreme

situation. Some heat flow is extracted across the CMB from

the molten iron outer core. This basal heat flux drives active

upwellings (hot spots). The ratio of the internal radioactive

heat to the total heat extracted at the Earth’s surface is called the

Urey number (Urey, 1951). Geochemical models of mantle

composition (McDonough and Sun, 1995; Rudnick and

Fountain, 1995) imply that about 50% of the surface heat

flux is due to mantle and core cooling and only 50% or even
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Figure 6 Correlations between gravity and the synthetic tomographic SMEAN model (Becker and Boschi, 2002) as a function of degree l and
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less (Lyubetskaya and Korenaga, 2007) to radioactive decay.

Generally, geophysicists have difficulties with these numbers as

they seem to imply a too large mantle temperature in the past

(Davies, 1980; Schubert et al., 1980). From convection model-

ing of the Earth’s secular cooling, they often favor ratios of the

order of 80% radioactive and 20% cooling. A more complex
coupling between core and mantle cooling (Labrosse et al.,

2007), or the peculiar properties of the lithosphere, may rec-

oncile the thermal history of the Earth with a low radiogenic

content (Grigne et al., 2005; Korenaga, 2003) (see Jaupart et al.

and Hernlund and McNamara, this volume). The basal heat

flux at the CMB represents the core cooling component that is
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part of the total cooling rate of the Earth. The secular cooling

and the presence of internal sources tend to decrease the thick-

ness of the hot bottom layer compared to that of the cold top

layer, increase the active role of downwellings (the subducting

slabs), and decrease the number or the strength of the active

upwellings (the hot spots).
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7.02.6.3 A Complex Rheology

We have shown that the rheological laws of crystalline solids

may be linear or nonlinear, depending on temperature, grain

size, and stress level. Various deformation mechanisms (grain

diffusion, grain boundary diffusion, dislocation creep, grain

boundary sliding, etc.) act simultaneously. The equivalent vis-

cosity of each individual mechanism can be written in the form

�¼AI
� n�1ð Þ

2
2 d�mexp

E� + PV�

RT
[249]

where E* and V* are the activation energy and volume, P and T

the pressure and temperature, R the perfect gas constant, d the

grain size, m the grain size exponent, I2 the second stress

invariant, and n a stress exponent (Ranalli, 1995; Weertman

and Weertman, 1975). The multiplicative factor A varies with

water content, melt content, and mineralogy. In general, the

composite rheology is dominated by themechanism leading to

the lowest viscosity.

In Figure 8, we plot as a function of temperature, and for

various possible grain sizes (0.1 mm, 1 mm, and 1 cm), the

stress rate at which the strain rate predicted for the dislocation

mechanism and that for diffusion mechanism are the same

(see eqns [108] and [107]). The data correspond to dry upper

mantle (Karato and Wu, 1993). Low stress and temperature

favor diffusion creep, while high stress and high temperature

favor dislocation creep. These experiments suggest that in the

upper mantle or at least in its shallowest part, nonlinear creep

is likely to occur. At greater depth, the decrease in the average
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Figure 7 Convection patterns of a fluid entirely heated from inside at Rayle
Dubuffet). Cold fingerlike instabilities are sinking from the top boundary layer a
(compare with convection patterns for a fluid heated from below, Figure 4).
deviatoric stress should favor a diffusive regime with a Newto-

nian viscosity. The observation of rheological parameters at

lower mantle conditions is more difficult, but the lower mantle

should mostly be in diffusive creep regime except the zones of

intense shear around subductions (McNamara et al., 2001).

The lateral variations of viscosity due to each separate

parameter, stress exponent, temperature, water content, or

grain size can potentially be very large. Surprisingly, attempts

to deduce these variations directly from geodynamic observa-

tions have not been very successful. Attempts to explain the

Earth’s gravity from internal loads do not seem to require

lateral viscosity variations in the deep mantle (Zhang and
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Christensen, 1993). Near the surface, viscosity variations are

present, at least between continental and oceanic lithospheres

(Cadek and Fleitout, 2003; Ricard et al., 1991). The gain in

fitting the Earth’s gravity or postglacial rebound data with 3-D

viscosity models remains rather moderate compared to the

complexities added to the modeling (Gasperini et al., 2004),

and most models of mantle viscosity are restricted to radial

profiles (Mitrovica and Forte, 1997). Even the modeling of

slabs, their curvatures, and their stress patterns do not really

require that they are much stiffer than the surrounding mantle

(Tao and Oconnell, 1993).

7.02.6.3.1 Temperature dependence of viscosity
Mantle viscosity is a strong function of temperature and the

cold lithosphere seems to have a viscosity of order 1025 Pa s

(Beaumont, 1978), 4–6 orders of magnitude stiffer than the

asthenosphere. The activation energy E* is typically from 300

to 600 kJ mol�1 (Drury and FitzGerald, 1998) the lowest

values being for diffusion creep. This implies a factor �10 in

viscosity decrease for a 100 K temperature increase (using

T�1600 K). The effect of temperature dependence of viscosity

on the planform of convection was recognized experimentally

using oils or syrups (Booker, 1976; Nataf and Richter, 1982;

Richter, 1978; Weinstein and Christensen, 1991). In the case of

a strongly temperature-dependent viscosity, the definition of

the Rayleigh number is rather arbitrary as the maximum, the

minimum, or some average viscosity can be chosen in its

definition. Another nondimensional number (e.g., the ratio

of viscosity variations, �max/�min) must be known to character-

ize the convection.

Not surprisingly, two extreme regimes are found. For a

viscosity ratio lower than about 100, the convection pattern

remains quite similar to convection with uniform viscosity. On

the other hand, if the viscosity of the cold boundary layer (the

lithosphere) is more than 3000 times that of the underlying

asthenosphere, the surface becomes stagnant (Solomatov,

1995). Below this immobile lid, the flow resembles convection

below a rigid top surface (Davaille and Jaupart, 1993). In

between, when the viscosity ratios are in the range 100–3000,

the lithosphere deforms slowly, and in this sluggish regime, the

convection cells have large aspect ratios.

Convection with temperature-dependent viscosity has been

investigated by various authors (Christensen, 1984b; Kameyama

and Ogawa, 2000; Parmentier et al., 1976; Tackley et al., 1993;

Trompert and Hansen, 1998b). Since the top boundary layer is

stiffer than the bottom boundary layer, the top boundary layer is

also thicker than the bottom one. This impedes surface heat

removal, reduces the heat flux across the bottom boundary

layer, and raises the average mantle temperature. Convection

patterns computed with T-dependent viscosity remain however

quite far from Earth-like convection. The major difference is that

when the T dependence is too strong, the surface freezes and

becomes immobile, while on the real Earth, the lithosphere is

highly viscous but broken into tectonic plates separated by weak

boundaries. Without mechanisms other than a simple T depen-

dence of viscosity, the Earth would be in a stagnant-lid regime

(see Bercovici et al., this volume).

Various modelers have thus tried to use T-dependent rhe-

ologies but have imposed a platelike surface velocity. This has

been very useful to understand the initiation of subduction
(Toth and Gurnis, 1998), the interaction of slabs with the

phase changes in the transition zone (Christensen, 1996,

1997b), and the relationship between subduction and gravity

(King and Hager, 1994). These numerical experiments, mostly

intended to model slabs, compare satisfactorily with labora-

tory experiments (Guilloufrottier et al., 1995; Kincaid and

Olson, 1987).

To conclude this brief section on temperature dependence

of viscosity, we discuss the general concept of self-regulation of

planetary interiors (Tozer, 1972). If a planet were convecting

too vigorously, it would lose more heat than radioactively

produced. It would therefore cool down until the viscosity is

large enough to reduce the heat transfer. In contrast, a planet

convecting too slowly would not extract its radioactive energy

and would heat up until the viscosity is reduced sufficiently to

increase the surface heat flow (see also Jaupart et al. this vol-

ume). The internal temperature of planets is mostly controlled

to the activation energy (or rather enthalpy) of the viscosity

(assuming that planets have similar amount of heat sources).

To first order, large and small terrestrial rocky planets probably

have the same internal temperatures.

7.02.6.3.2 Depth dependence of viscosity
The activation volume V* of the viscosity [249] is typically

around 10�5 m3 mol�1. Extrapolating to CMB conditions,

this suggests a large viscosity increase throughout the mantle.

However, measurements of viscosity at both high T and P

conditions are very difficult (see also Weidner, vol. 2). The

viscosity increase by a factor 30–100 suggested by geodynamics

(see Section 7.02.6.1) is probably as robust a constraint as

could be deduced from mineral physics experiments.

The effect of a depth-dependent viscosity on the planform

of convection has been studied by, for example, Gurnis and

Davies (1986), Cserepes (1993), and Dubuffet et al. (2000). At

least two important geodynamic observations can be explained

by an increase of viscosity with depth. One is the relative

stability of hot spots. A sluggish lower mantle where convec-

tion is decreased in intensity by a larger viscosity (and also by a

smaller expansivity and a potentially larger thermal conductiv-

ity as discussed in Section 7.02.6.5.3) favors the relative hot

spot fixity (Richards, 1991; Steinberger and O’Connell, 1998).

A second consequence is a depth dependence of the wave-

lengths of the thermal heterogeneities. A viscosity increase

(together with the existence of plates and continents that

impose their own wavelengths (see Section 7.02.6.7)) induces

the existence of large-scale thermal anomalies at depth (Bunge

and Richards, 1996). A slab crossing a factor 30–100 viscosity

increase should thicken by a factor of order 3–5 (Gurnis and

Hager, 1988; Ribe et al., 2007). This thickening is observed in

tomographic models (van der Hilst et al., 1997) and can be

inferred from geoid modeling (Ricard et al., 1993a). When the

viscosity increases with pressure, the self-regulation effect

causes the mantle to heat up. The temperature dependence of

the viscosity then mitigates the effects of the pressure depen-

dence (Tackley et al., 2013).

7.02.6.3.3 Stress dependence of viscosity
Starting from Parmentier et al. (1976), the effect of a stress-

dependent viscosity has been studied by Christensen (1984a),

Malevsky and Yuen (1992), van Keken et al. (1992), and Larsen
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et al. (1993), assuming either entirely nonlinear or composite

rheologies (where deformation is accommodated by both linear

and nonlinear mechanisms). At moderate Rayleigh number, the

effect of a nonlinear rheology is not very significant. In fact,

the nonlinearity in the rheology is somewhat opposed to the

temperature dependence of the rheology. As shown by

Christensen (1984a), a T-dependent, nonlinear rheology with

an exponent n�3 leads to convection cells rather similar to

what would be obtained with a linear rheology and an activa-

tion energy divided by�n. Convectionwith both nonlinear and

T-dependent rheology looks more isoviscous than convection

with only stress-dependent or only T-dependent rheologies.

At large Rayleigh number, however, nonlinear convection

becomes more unstable (Malevsky and Yuen, 1992), and the

combination of nonlinear rheology, T-dependent rheology,

and viscous dissipation can accelerate the rising velocity of

hot plumes by more than an order of magnitude (Larsen and

Yuen, 1997).

7.02.6.3.4 Grain size dependence of viscosity
In the diffusion regime, the viscosity [249] can be strongly

variable as controlled by the grain size d to a power m of

order 3 (Karato et al., 1986). The difficulty to estimate the

rheological conditions of the mantle is that the grain size d of

eqn [249] has its own dynamics with various feedbacks with

the deformation itself. In the diffusive regime, the grains are

slowly coarsening: the slight overpressure of small grains due

to their surface tension drives a diffusional flow toward the

larger grains (e.g., Hillert, 1965). In contrast, grains undergo-

ing dislocation creep can go through recrystallization and

therefore can reduce in size. These two opposite mechanisms

should drive the mantle material in a situation where diffusion

and dislocation creeps have roughly the same efficiency (De

Bresser et al., 2001; Rozel et al., 2011). The existence of an

equilibrium grain size related to the average deviatoric stress is

observed in laboratory experiments (Karato, 2008; Vanderwal

et al., 1993) and inferred from thermodynamic considerations

(Austin and Evans, 2007; Bercovici and Ricard, 2005; Ricard

and Bercovici, 2009).

There is a potential feedback interaction between deforma-

tion, grain size reduction by dynamic recrystallization, viscosity

reduction, and further localization (Braun et al., 1999; Jaroslow

et al., 1996; Kameyama et al., 1997). However, in its simplest

version, this localizing mechanism is problematic as it implies

simultaneously dynamic recrystallization and diffusion creep

that ostensibly occur in exclusive domains of deformation

space. It has however been proposed that the presence of

minormineralogical phases can both hinder the grain coarsening

(Hiraga et al., 2010) and ease the recrystallization, thus providing

a consistent mechanism for localization (Bercovici and Ricard,

2012, 2014; Warren and Hirth, 2006). The effect is potentially

important in the mantle and even more important in the litho-

sphere. More details are given in Bercovici et al. this volume.
7.02.6.4 Importance of Sphericity

An obvious difference between the convection planform in a

planet and that of in an experimental tank is due to the sphe-

ricity of the former. In the case of purely basally heated con-

vection, the same heat flux (in a statistical sense) has to be
transported through the bottom boundary layer and the top

boundary layer. However, as the CMB surface is about four

times smaller than the top surface, this implies a four times

larger thermal gradient through the bottom boundary layer

than across the lithosphere. A large gradient across the bottom

boundary layer reinforces the upwelling hot instabilities with

respect to the downgoing cold instabilities. Sphericity affects

the average temperature and the top and bottom boundary

layer thicknesses in a way totally opposite to the effects of

internal sources (see Section 7.02.6.2) or T-dependent viscos-

ity (see Section 7.02.6.3). Although numerically more time-

consuming, spherical convection models are more and more

common (Bercovici et al., 1989a,b, 1992; Bunge et al., 1997;

Choblet et al., 2007; Glatzmaier, 1988; Tackley et al., 1993;

Zhong et al., 2000). In the last years, they reached a spectacular

resolution (down to length scales of 1 km (Alisic et al., 2012;

Stadler et al., 2010)) and robustness (handling up to 19 orders

of magnitude variations in viscosity (Tackley, 2008)).

7.02.6.5 Other Depth-Dependent Parameters

7.02.6.5.1 Thermal expansivity variations
The thermal expansivity varies with depth, as predicted by the

EoS [80], from which we can easily deduce that

a¼ a0
r=r0ð Þn�1+ q + a0 T�T0ð Þ

[250]

where n�1+q’3.

It decreases with both temperature and density and thus

with depth. The expansivity varies from �4�10�5 K�1 near

the surface to �8�10�6 K�1 near the CMB (Chopelas and

Boehler, 1992). This diminishes the buoyancy forces and

slows down deep mantle convection (Hansen et al., 1993).

Like the increase of viscosity with depth, a depth-dependent

thermal expansivity broadens the thermal structures of the

lower mantle and suppresses some hot instabilities at the

CMB. On the other hand, hot instabilities gain buoyancy as

they rise in the mantle, which favors their relative lateral sta-

tionarity. In addition to its average depth dependence, the

temperature dependence of the expansivity also affects the

buoyancy of slabs (Schmeling et al., 2003).

7.02.6.5.2 Increase in average density with depth
To take into account compressibility and the depth depen-

dence of density, the Boussinesq approximation has been

replaced by the anelastic approximation in several studies.

Such investigations have been carried out by Jarvis and

Mckenzie (1980), Glatzmaier (1988), and Bercovici et al.

(1992) and since extended to higher Rayleigh numbers (e.g.,

Balachandar et al., 1992, 1993; Zhang and Yuen, 1996).

One of the difficulties with compressible fluids is that the

local criterion for instability (see Section 7.02.4.2.3) is related

to the adiabatic gradient. Depending on assumptions about

the curvature of the reference geotherm with depth (the slope

of the adiabatic gradient), part of the fluid can be unstable

while the other part is stable. Assuming a uniform adiabatic

gradient does not favor the preferential destabilization of

either the upper or the lower mantle. On the other hand,

assuming that the reference temperature increases exponen-

tially with depth (i.e., taking eqn [123] with constant
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parameters) would lead to an easier destabilization of the top

of the mantle than of its bottom as a much larger heat flux

would be carried along the lower mantle adiabat. In the real

Earth, the adiabatic gradient (in K km�1) should decrease with

depth (due to the decrease in expansivity a with depth insuffi-

ciently balanced by the density increase; see eqn [123]). Since

less heat can be carried out along the deep mantle adiabat,

compressibility should favor the destabilization of the deep

mantle.

Compressible convection models generally predict down-

going sheets and cylindrical upwellings reminiscent of slabs

and hot spots (e.g., Zhang and Yuen, 1996). Viscous dissipa-

tion is positive (as an entropy-related source) but maximum

just below the cold boundary layer and just above the hot

boundary layer, where rising or sinking instabilities interact

with the layered structures of the boundary layers. On the

contrary, the adiabatic source heats the downwellings and

cools the upwellings. On average, it reaches a maximum abso-

lute value in the midmantle. Locally, viscous dissipation and

adiabatic heatings can be larger than radiogenic heat produc-

tion, although integrated other the whole mantle and averaged

over time, the adiabatic and dissipative sources cancel out (see

eqn [61]).
7.02.6.5.3 Thermal conductivity variations
The thermal conductivity of a solid is due to two different

effects. First, a hot material produces blackbody radiation

that can be absorbed by neighboring atoms. This radiative

transport of heat is probably a minor component since the

mean free path of photons in mantle materials is very small.

Second, phonons, which are collective vibrations of atoms, are

excited and can dissipate their energies by interacting with

other phonons, with defects and with grain boundaries. The

free paths of phonons being larger, they are the main contrib-

utors to the thermal conductivity.

According to Hofmeister (1999), thermal conductivity

should increase with depth by a factor �2–3. The recent obser-

vations of phase transitions in the bottom of the lower mantle

should also be associated with another conductivity increase

(Badro et al., 2004); this is one more effect (with the viscosity

increase and the thermal expansivity decrease) that should

decrease the deep mantle convective vigor. Thermal conductiv-

ity increase with depth also broadens the thermal anomalies

and thins the bottom boundary layer (Dubuffet et al., 1999).
7.02.6.6 Thermochemical Convection

7.02.6.6.1 Density variations in the mantle
Except in Section 7.02.5, a simple negative relationship was

assumed between density variations and temperature varia-

tions, through the thermal expansivity, Dr¼�arDT. However,

in the mantle, several sources of density anomalies are present

(see also, Stixrude, vol. 1). The density in the mantle varies

with the temperature T for a given mineralogical composition,

or phase content, symbolized by the symbol f (e.g., for a given

proportion of oxides and perovskite in the lower mantle). The

mineralogy for a given bulk elemental composition w (e.g., the
proportion of Mg, Fe, and O atoms) evolves with pressure and

temperature to maintain the Gibbs energy minimum. The
variations of density in the mantle at a given pressure have

potentially three contributions that can be summarized as

Dr¼ @r
@T

� �
f
DT +

@r
@f

� �
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[251]

The first term on the right side is the intrinsic thermal effect

computed assuming a fixed mineralogy; we have already dis-

cussed this term. The second term is a thermochemical effect.

The density is a function of the mineralogical composition

controlled at uniform pressure and elemental composition,

by the temperature variations. This effect is responsible for a

rise in the 410 km deep interface and it deepens the 660 km

interface in the presence of cold downwellings (Irifune and

Ringwood, 1987). The last term is the intrinsic chemical effect

(related to variations of the mineralogy due to changes in the

elemental composition at constant temperature). The three

contributions have very similar amplitudes and none of them

is negligible (Ricard et al., 2005).

7.02.6.6.2 Phase changes
The effect of the second term has been rather well studied

(Christensen, 1996; Christensen and Yuen, 1984; Machetel

and Weber, 1991; Peltier and Solheim, 1992; Schubert et al.,

1975; Tackley, 1995; Tackley et al., 1993). Phase changes in cold

downgoing slabs occur at shallower depth in the case of exo-

thermic phase changes and at greater depth for endothermic

phase changes (the ringwoodite to oxides plus perovskite

phase change at 660 km depth is endothermic; all the important

other phase changes of the transition zone are exothermic).

These sources of anomalies and their signs are related to the

Clapeyron slope of the phase transitions (Schubert et al., 1975).

The existence of latent heat release during phase change (see eqn

[165]) is a secondary and minor effect. The recent discovery of a

phase transformation in the deep lower mantle (Murakami

et al., 2004) (the postperovskite phase) suggests that part of

the complexities of the D00 layer is related to the interaction

between a phase change and the hot boundary layer of the

mantle (Nakagawa and Tackley, 2006) (see also Irifune, vol. 2).

The fact that below the normal 660 km depth interface there

is a region where slabs remain in a low-density upper mantle

phase instead of being transformed into the dense lower mantle

phase is potentially a strong impediment to slab penetration.

The idea that this effect induces a layering of convection at

660 km or a situation where layered convection is punctuated

by large ‘avalanche’ events dates back to Ringwood and Irifune

(1988) and was supported by numerical simulations in the

1990s (e.g., Honda et al., 1993; Machetel and Weber, 1991;

Tackley, 1995). It seems however that the importance of this

potential effect has been reduced in recent simulations with

more realistic Clapeyron slopes, phase diagrams (taking into

account both the pyroxene and the garnet phases), thermody-

namic reference values (the phase change effect has to be com-

pared with thermal effects and thus an accurate choice for the

thermal expansivity is necessary), and viscosity profiles.

7.02.6.6.3 Abyssal layers
In the last years, various complexities were discovered in the

deep lower mantle that was previously considered as rather



62 Physics of Mantle Convection
homogeneous. At small scale, a laterally intermittent layer at

the base of D00 (ULVZ, ultralow-velocity zone), with a maxi-

mum thickness near 40 km and a strong decrease of the com-

pressional wave velocity, is most simply explained as the result

of partial melt at this depth (Williams and Garnero, 1996).

A pair of seismic discontinuities observed in some fast (cold)

regions of D00 could be the result of a double-crossing of the

postperovskite phase boundary by the geotherm at two differ-

ent depths (Hernlund et al., 2005). Two deep slow velocity

anomalies under West Pacific and Africa (roughly underneath

the two maxima of the geoid) have unusual seismic properties.

They have an anomalously large ratio of compressional to

shear velocity ratio, vp/vs (Masters et al., 2000), and an antic-

orrelation between density and seismic velocities (Ishii and

Tromp, 1999) and between bulk and shear velocities

(Kennett and Gorbatov, 2004) (the bulk velocity is defined asffiffiffiffiffiffiffiffiffiffi
Ks=r

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p � 4=3ð Þv2s

q
). These anomalous regions have very

sharp boundaries (Ni et al., 2002) and depending on the

authors have been named megaplumes, thermochemical

piles, or LLSVP (large low-shear-velocity province, according

to Garnero and McNamara (2008)). Notice, however, that as

these LLSVPs only cover part of the CMB surface, which is itself

four times smaller than the Earth’s surface, and as they only

extend up to a few hundred kilometers, their total volume is

not so large but only of order three times larger that of the

continental crustal volume (Hernlund and Houser, 2008).

These observations of the deep mantle heterogeneity can-

not easily be explained by temperature variations. They seem to

require lateral variations of Fe or Si contents in the mantle

(Bolton and Masters, 2001; Saltzer et al., 2004), although

some authors interpret these observations in the framework

of pure thermal models (e.g., Davies et al., 2012). The LLSVP

should be intrinsically denser to resist entrainment by convec-

tion. The stability of deep dense layers has been discussed by

various authors (Davaille, 1999; Kellogg et al., 1999; LeBars

and Davaille, 2002; Samuel and Farnetani, 2003; Tackley and

Xie, 2002). These compositional pyramids may anchor the hot

spots (Davaille et al., 2002; Jellinek and Manga, 2002). The

presence of a petrologically dense component of the source of

hot spots also seems necessary to explain their excess temper-

ature (Farnetani, 1997). These abyssal heterogeneities help to

bridge the gap between geochemical observations and convec-

tion modeling (Coltice and Ricard, 1999; Coltice et al., 2011;

van Keken et al., 2002).

Deep mantle heterogeneities may be a consequence of plate

tectonics or be relics of the early evolution of our planet.

A large well-documented elemental differentiation is between

the oceanic crust (poor in Mg and rich in Al and Si) and the

mantle. The oceanic crust in its high pressure eclogitic facies is

�5% denser that the average mantle density in most of the

mantle except in the shallowest 100 km of the lower mantle

where it is lighter (Irifune and Ringwood, 1993).

In the deepest mantle, it is not yet totally clear whether the

eclogite remains denser, neutrally buoyant, or even slightly

lighter than the average mantle (e.g., Ricolleau et al., 2004).

Thermochemical simulations starting with the pioneering

paper of Christensen and Hofmann (1994) show the possibil-

ity of a partial segregation of oceanic crust during subduction,

forming pyramidal piles on the CMB. These results have been

confirmed (e.g., Davies, 2002; Nakagawa and Tackley, 2006;
Tackley, 2000b). Not only present-day subductions can gener-

ate compositional anomalies in the mantle. Geochemists have

often argued for a deep layer of primitive material. A possible

origin of the LLSVP could be related to the formation of the

core in the Hadean time. The presence of patches of melt on

top of the CMB (Williams and Garnero, 1996) suggests that in

the past, a much thicker deep magma ocean may have existed

in between a deep solid mantle and the liquid core (Labrosse

et al., 2007). The fractionation during the freezing of this

magma could have resulted in a progressive enrichment of

the residue (the LLSVP) and of the melt (the ULVZ) in dense

components. This model therefore proposes a scenario for the

formation of petrologic anomalies in the deep mantle (Coltice

et al., 2011). This subject of mantle dynamics near the CMB is

covered in greater detail by Hernlund and McNamara, this

volume.
7.02.6.7 A Complex Lithosphere: Plates and Continents

The lithosphere is part of the convective circulation and plate

tectonics and mantle convection cannot be separated. The fact

that the cold lithosphere is much more viscous and concen-

trates most of the mass heterogeneities of the mantle makes it

behaving to some extent like a membrane on top of a less

viscous fluid. This suggests some analogy between mantle con-

vection and what is called Marangoni convection (Marangoni,

1840–1925). Marangoni convection (Nield, 1964) is con-

trolled by temperature-dependent surface tension on top of

thin layers of fluids.

The Earth’s mantle is certainly not controlled by surface

tension and Marangoni convection, strictly speaking, has noth-

ing to do with mantle convection. However, the equations of

thermal convection with internal heating and with a highly

viscous lithosphere can be shown to be mathematically related

(through a change of variables) to those of Marangoni convec-

tion (Lemery et al., 2000). There are large differences between

mantle convection and surface-driven convection, for example,

because the presence of subducting slabs throughout the man-

tle affects the flow differently than what surface tractions can

do. However, this analogy has sometimes been advocated as a

‘top-down’ alternative to mantle convection (Anderson, 2001),

which is really not that different fromwhat has been known for

30 years using boundary layer theory. Classically, the interpre-

tation of plate cooling in terms of ridge-push force (Turcotte

and Schubert, 1982) or the analysis of tectonic stresses using

thin sheet approximations (England and Mckenzie, 1982)

belongs to the same top-down approach.

Due to the complexities of the lithosphere properties, the

boundary condition at the surface of the Earth is far from being

a uniform free-slip condition. Both continents and tectonic

plates impose their own wavelengths and specific boundary

conditions on the underlying convecting asthenosphere. Of

course, the position of the continents and the number and

shape of the plates are themselves consequences of mantle

convection. The plates obviously organize the large-scale flow

in the mantle (Hager and Oconnell, 1979; Ricard and Vigny,

1989). They impose a complex boundary condition where the

angular velocity is piecewise-constant. The continents with

their reduced heat flow ( Jaupart and Mareschal, 1999) also

impose a laterally variable heat flux boundary condition.
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Convection models with continents have been studied

numerically (Grigné and Labrosse, 2001; Gurnis and Hager,

1988) and experimentally (Guillou and Jaupart, 1995). Conti-

nents with their thick lithosphere tend to increase the thickness

of the top boundary layer and the temperature below them (see

Figure 9). Hot rising currents are predicted under continents

and downwellings are localized along continental edges. The

existence of a thick and stable continental root must be due to a

chemically lighter and more viscous subcontinental litho-

sphere (Doin et al., 1997). The ratio of the heat flux extracted

across continents compared to that extracted across oceans

increases with the Rayleigh number. This suggests that the

continental geotherms were not much different in the past

when the radiogenic sources were larger; it is mostly the oce-

anic heat flux that was larger (Lenardic, 1998). Simulating

organized plates self-consistently coupled with a convective

mantle has been a very difficult quest. The attempts to generate

plates using T-dependent or simple nonlinear rheologies have

failed. Although in 2-D some successes can be obtained in

localizing deformation in platelike domains (Schmeling and

Jacoby, 1981; Weinstein, 1996; Weinstein and Olson, 1992),

they are obtained with stress exponents (e.g., n�7) that are

larger than what can be expected from laboratory experiments

(n�3). The problems are however worst in 3-D. Generally,

these early models do not predict the important shear motions

between plates that we observe (Christensen and Harder, 1991;

Ogawa et al., 1991).

Some authors have tried to mimic the presence of plates by

imposing platelike surface boundary conditions. These studies

have been performed in 2-D and 3-D (Gable et al., 1991; King

et al., 1992; Monnereau and Quéré, 2001; Ricard and Vigny,

1989). Although they have confirmed the profound effect of

plates on the wavelengths of convection, on its time depen-

dence and on the surface heat flux, these approaches cannot

predict the evolution of surface plate geometry. Figure 10
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Figure 9 Convection patterns in the presence of four continents. The
total aspect ratio is 7; the continents are defined by a viscosity increase
by a factor 103 over the depth 1/10. The viscosity is otherwise constant.
The Rayleigh number based on the total temperature drop (bottom
panels) or on the internal radioactivity (top panels) is 107. The
downwellings are localized near the continent margins. A large difference
in heat flux is predicted between oceans and continents. In the case of
bottom heating, hot spots tend to be preferentially anchored below
continents where they bring an excess heat. This tends to reduce the
surface heat flux variations.
illustrates the organizing effect of plates in spherical, internally

heated compressible convection with depth-dependent viscos-

ity (Bunge and Richards, 1996). To obtain a self-consistent

generation of surface plates, more complex rheologies that

include brittle failure, strain softening, and damage mecha-

nisms must be introduced (e.g., Auth et al., 2003; Bercovici,

1993, 1995; Moresi and Solomatov, 1998). The existence of

plates seems also to require the existence of a weak sub-

lithospheric asthenosphere (Richards et al., 2001). In the last

ten years, the first successes in computing 3-D models that

spontaneously organize their top boundary layer into plates

have been reached using viscoplastic rheologies (Foley and

Becker, 2009; Stein et al., 2004; Tackley, 1998, 2000c,d,e;

Trompert and Hansen, 1998a; van Heck and Tackley, 2008).

This important breakthrough made by the modelers allows

convection simulations that display increasingly realistic sea-

floor spreading and continental drift, with plates, continents,

ridges and one-sided subductions (Coltice et al., 2012; Rolf

and Tackley, 2011; Rolf et al., 2012) (see Figure 11).

The Earth’s plate boundaries keep the memory of their

weakness over geologic times (Gurnis et al., 2000). This

implies that the rheological properties cannot be a simple

time-independent function of stress or temperature but have

a long-term memory. The rheologies that have been used to

predict plates in convective models remain empirical and their

interpretation in terms of microscopic behavior and damage

theory remains largely to be done (Bercovici and Ricard, 2005,
Imposed plate motion

Upper mantle Lower mantle

Figure 10 This figure depicts spherical compressible internally
heated convection models where the viscosity increases with depth
(simulations by Peter Bunge). In the first row, a uniform free-slip
condition on top has been used. In the second row, the present-day
observed plate motion is imposed at the surface. The left column shows
the temperature field in the middle of the upper mantle and the right
column in the middle of the lower mantle. This figure summarizes various
points discussed in the text: the presence of linear cold downwellings,
the absence of active upwellings in the absence of basal heating, and the
enlargement of thermal structure in the more viscous lower mantle
(top row). Although the modeling is not self-consistent (i.e., the presence
of plates and the constancy of plate velocities are totally arbitrary), it is
clear that the presence of plates can change radically the convection
patterns (compare top and bottom rows).
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2012, 2013, 2014). Reviews on the rapid progress and the

limitations of self-coherent convection models can be found

in Bercovici et al. (2000), Tackley (2000a), and Bercovici

(2003) and are discussed in Bercovici et al., this volume.
7.02.6.8 Super-Earths

The study of the other planets of the solar system and their

differences and similarities with the Earth is a very active

research field described in the vol. 10 of the treatise. To the
0.5
500000

Figure 11 Viscosity and velocity fields at the surface of a 3-D spherical
convection solution with platelike behavior and continental lithosphere.
The red color is for the highest viscosity in the nucleus of continental
lithosphere, surrounded by dark green weaker continental lithosphere.
The light green is the viscosity of unstrained oceanic lithosphere, while
blue represents low-viscosity regions where deformation localizes. The
major divergent zones are highlighted by red curves, and the major
convergent zones by blue curves. The surface velocity is close to that of
rigid plates moving relative to each other. Courtesy of T. Rolf, N. Coltice
and PJ. Tackley.
four terrestrial planets and the various dwarf planets and sat-

ellites of the solar system, many terrestrial extrasolar planets

have been added in the last decade (e.g., Valencia et al.,

2007b). A subset of these planets, approximately one to ten

times as massive as Earth, have been termed super-Earths,

because they are presumably analogous to our own planet.

One can speculate that plate tectonics is a favorable condition

for the existence of life. Plate tectonics buffers the climate by

controlling the atmospheric carbon dioxide level with erosion,

weathering, and subduction (Walker et al., 1981). Plate tecton-

ics may also be necessary for the existence of life by providing a

source of thermodynamic disequilibrium through continuous

recycling of the surface (e.g., Southam and Westall, vol. 10).

The question of whether super-Earths are more or less favor-

able to plate tectonics has therefore been debated.

The topic is both controversial and somewhat academic.

First, we do not have a decisive argument to explain why plate

tectonics exists on Earth and not on other planets of the solar

system (and particularly not on the Earth’s sister planet,

Venus). Second, the direct observations of the presence or

absence of plate tectonics on super-Earths may also not happen

in a close future. The debate on the propensity on plate tecton-

ics on other planets illustrates our limits in the understanding

of our own planet. The first papers on the subject had reached

opposing conclusions about the likelihood of plate tectonics

on super-Earths, inevitable for Valencia et al. (2007a) while

less probable for O’Neill and Lenardic (2007).

The following studies, with all variables properly scaled, have

concluded that plate tectonics is as favorable or more favorable

on larger terrestrial planets than on Earth (Foley et al., 2012;

Korenaga, 2010; Valencia and O’Connell, 2009; van Heck and

Tackley, 2011). The stress level imposed by a more vigorous

convection on larger planets (containing more radioactive ele-

ments and keeping its initial accretion heat a longer time) is

higher. Combined with a thinner and weaker lithosphere, the

internal stresses are more likely to induce the yielding of this

lithosphere and to produce plate tectonic convection. However,

other effects, namely, the surface temperature of the planet

(Bercovici and Ricard, 2014; Foley et al., 2012) and the presence

of water (Korenaga, 2010), have been shown equally or more

important than the internal temperature for reaching plate tec-

tonic convection. A hot temperature favors the healing of the

lithosphere and makes plate tectonics less likely. Water lubri-

cates the faults and makes plate tectonics more likely. This

suggests that the climate of a planet controlling both the surface

temperature and the water content may affect or even cause

plate tectonics (Landuyt and Bercovici, 2009; Lenardic et al.,

2008). The age of the planet since its accretion seems also an

important parameter to consider (Lenardic and Crowley, 2012).
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