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The linear stability threshold of the Rayleigh-Bénard configuration is analyzed with com-
pressible effects taken into account. It is assumed that the fluid under investigation obeys
a Newtonian rheology and Fourier’s law of thermal transport with constant, uniform (dy-
namic) viscosity and thermal conductivity in a uniform gravity field. Top and bottom
boundaries are maintained at different constant temperatures and we consider here me-
chanical boundary conditions of zero tangential stress and impermeable walls. Under
these conditions, and with the Boussinesq approximation, Rayleigh (1916) first obtained
analytically the critical value 27π4/4 for a dimensionless parameter, now known as the
Rayleigh number, at the onset of convection. This manuscript describes the changes of
the critical Rayleigh number due to the compressibility of the fluid, measured by the di-
mensionless dissipation parameter D and due to a finite temperature difference between
the hot and cold boundaries, measured by a dimensionless temperature gradient a. Dif-
ferent equations of state are examined: ideal gas equation, Murnaghan’s model (often
used to describe the interiors of solid but convective planets) and a generic equation of
state with adjustable parameters, which can represent any possible equation of state.
In the perspective to assess approximations often made in convective models, we also
consider two variations of this stability analysis. In a so-called quasi-Boussinesq model,
we consider that density perturbations are solely due to temperature perturbations. In
a so-called quasi-anelastic liquid approximation model (quasi-ALA), we consider that
entropy perturbations are solely due to temperature perturbations. In addition to the
numerical Chebyshev-based stability analysis, an analytical approximation is obtained
when temperature fluctuations are written as a combination of only two modes, one be-
ing the original symmetrical (between top and bottom) mode introduced by Rayleigh,
the other one being anti-symmetrical. The analytical solution allows us to show that the
anti-symmetrical part of the critical eigenmode increases linearly with the parameters
a and D, while the superadiabatic critical Rayleigh number departs quadratically in a
and D from 27π4/4. For any arbitrary equation of state, the coefficients of the quadratic
departure are determined analytically from the coefficients of the expansion of density
up to the degree three in terms of pressure and temperature.

Key words: Rayleigh-Bénard, equation of state, linear stability, Boussinesq approxima-
tion, Anelastic Liquid Approximation.
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2 T. Alboussière and Y. Ricard

1. Introduction

Thermal, or natural, convection results from a complex interaction between dynam-
ical principles and thermodynamics of a fluid. This complexity was an obstacle to the
analysis of even the most idealized configurations. A great simplification, assumed to be
valid when compressibility effects can be ignored, was put forward by Oberbeck (1879),
then Boussinesq (1903), at the expense of thermodynamic coherence. Using Boussinesq’s
equations, Rayleigh (1916) was able to solve the problem of the stability of a fluid layer
heated from below, and obtained a critical value, now expressed as a dimensionless
number named after him, the Rayleigh number. For boundary conditions of no shear
stress with imposed temperatures, the critical Rayleigh number is 27π4/4. Thanks to
the Oberbeck-Boussinesq model, this stability analysis can be done analytically, with a
simple eigenvector spatial structure for temperature perturbations of the form of plane
waves, with lateral wavenumber equal to π/

√
2 and a cosine dependence along the vertical

direction.

Meanwhile, Schwarzschild (1906) proved that a sufficient condition for stability in a
compressible fluid was obtained when the temperature gradient does not exceed the
adiabatic gradient, which can equivalently be stated as the non-decrease of entropy with
height. Then Jeffreys (1930) showed that, in the limit of small compressibility effects, the
critical threshold for convection instability was identical to the original critical Rayleigh
number, as long as the temperature difference is replaced by the excess temperature
difference above the adiabatic temperature difference (usually called the super-adiabatic
temperature difference).

Since these pioneering works, stability of compressible convection has continued to be
an active subject of research. Spiegel (1965) has been studying the convective instability of
a layer of ideal gas. A single small parameter was identified, equivalent to the dissipation
number. It was found that the critical superadiabatic Rayleigh number does not depend
on that parameter at order 1 (when evaluated in the middle of the layer), so that the first
deviation is of order 2. Giterman and Shteinberg (1970) and, more recently, Bormann
(2001) argue essentially that Jeffreys (1930) is correct and the superadiabatic critical
Rayleigh number has small deviations from its Boussinesq value 27π4/4. Another series
of papers have attempted to evaluate the change in critical superadiabatic Rayleigh
number, when compressibility effects are negligible but when the temperature difference
is large (Busse 1967; Paolucci and Chenoweth 1987; Fröhlich et al. 1992). They show
that the deviation from the Boussinesq value scales as the square of the dimensionless
temperature difference between the bottom and top boundaries (Tbottom−Ttop)/T0 (where
T0 is the average temperature (Tbottom + Ttop)/2).

A category of research works are related to the formal derivation of the Boussinesq
equations from the general equations. Spiegel and Veronis (1960) use one small parameter
∆ρ/ρ, Mihaljan (1962) uses two small parameters, αT and the ratio between the dissipa-
tion number and the dimensionless temperature difference, while Malkus (1964) considers
the vanishing limit of the dissipation parameter and of the dimensionless temperature
difference: we shall here choose the same small parameters as Malkus. Another type of
research is highly relevant to the present study, namely the derivation of intermediate
models between the exact and Boussinesq models. A number of ‘sound-proof’ models
have been proposed whose first motivation was to remove sound waves from the set of
solutions to the convection equations. Otherwise, one would like the anelastic models
to be able to model accurately convective phenomena. The anelastic model was derived
first for atmospheric studies by Ogura and Phillips (1961), then for the Earth’s core by
Braginsky and Roberts (1995) and for stellar convection by Lantz and Fan (1999). The
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Rayleigh-Bénard Stability 3

anelastic model is basically a linear expansion of the general equations around an isen-
tropic profile. This is in complete correspondence with Jeffreys (1930), as the reference
takes into account the adiabatic profile already and only superadiabatic quantities are
computed. The anelastic liquid approximation (ALA) was proposed later by Anufriev
et al. (2005), where the contribution of pressure fluctuations are neglected compared
to that of entropy fluctuations. In the present work, we shall test one aspect only of
these models, their ability to provide a good approximation of the critical superadiabatic
Rayleigh number. It should be noted however that we will have to make changes to these
approximation models in order to study their stability: essentially, instead of an adia-
batic base profile, we will need to take a conductive base profile. The adiabatic profile
is indeed unconditionally stable. Other sound-proof models (Durran 1989; Lipps 1990),
used preferentially in stratified cases, will not be considered in this paper.

The structure of the present work is the following. Section 2 will be devoted to the
geometry, notations, governing equations and boundary conditions. Dimensional scales
and dimensionless equations will be defined in section 3, base profile solutions in section 4.
In section 5, we present the linear stability analysis and the determination of eigenvalues
using the tau-Chebyshev expansion. An approximate stability analysis is performed in
section 6 using two modes only for temperature disturbances (with vertical dependence
in cos(πz) and sin(2πz), where −1/2 < z < 1/2 is the range of the dimensionless vertical
coordinate z), allowing us to obtain analytical equations for the critical superadiabatic
Rayleigh number up to degree 2 in the dissipation number and in the dimensionless
temperature difference. In section 7 we introduce the approximation models which will
be tested compared to the exact stability analysis: the quasi-Boussinesq and quasi-ALA
(quasi-Anelastic Liquid Approximation): they have the same features as the Boussinesq
and ALA models, but the base profile is the conduction profile with compressibility
taken into account (for the determination of the profile of density, pressure, entropy...).
In section 8, we consider different equations of state (ideal gas, Murnaghan’s equation for
condensed matter, and a generic equation of state) and solve the linear stability analysis.
We compare the numerical Chebyshev results to the analytical expressions obtained from
the two-modes analysis. Those expressions allow us to predict, for each equation of state,
the accuracy achieved by the approximation models considered, as far as the critical
superadiabatic Rayleigh number is concerned (see section 9). In the same section, we
discuss the validity of the approximation models in geophysical objects. In section 10,
the current state of our knowledge is summarized.

2. Rayleigh-Bénard configuration and governing equations

A horizontal fluid layer of thickness L, in a uniform gravity field g = −gez, is heated
from below: the lower and upper boundaries are maintained at Tbottom and Ttop respec-
tively. The fluid is a Newtonian fluid and obeys the Fourier law of heat conduction.
Its dynamic viscosity µ and thermal conductivity k are taken to be uniform, indepen-
dent of pressure and temperature, for simplicity. The mechanical boundary conditions
are stress-free, impermeable, on the upper and lower planar boundaries. The governing
equations for convection consist in the equations of continuity, momentum conservation
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Figure 1. Rayleigh-Bénard configuration, with imposed temperatures and tangential
stress-free boundary conditions

(Navier-Stokes with no bulk viscosity), entropy balance and an equation of state:

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

ρ
Du

Dt
= −∇p+ ρg + µ

(
∇2u+

1

3
∇ (∇ · u)

)
, (2.2)

ρcp
DT

Dt
− αT

Dp

Dt
= ϵ̇ : τ + k∇2T, (2.3)

ρ = ρ(p, T ), (2.4)

where t, ρ,u, p, T, cp,α are the time, density, velocity vector, pressure, temperature, heat
capacity at constant pressure and expansion coefficient respectively. A vertical coordinate
axis z is defined with its origin on the mid-plane of the layer (see Fig. 1). Horizontal
coordinates x and y form an orthogonal unit reference frame. The boundary conditions
associated with the governing equations are the following:

uz

(
z = ±

L

2

)
= 0, (2.5)

T

(
z =

L

2

)
= Ttop, T

(
z = −

L

2

)
= Tbottom, (2.6)

∂ux

∂z

(
z = ±

L

2

)
= 0, (2.7)

∂uy

∂z

(
z = ±

L

2

)
= 0. (2.8)

The initial condition considered will be a quiescent state and will be described in section
4. The mass of fluid per horizontal unit surface area is set when the density of the base
profile ρ0 is specified at z = 0.

3. Dimensionless formulation

The dimensional quantities will be made dimensionless with the help of the quies-
cent base solution. Density, thermal expansion coefficient and specific heat capacity at
constant pressure of the base solution at z = 0, ρ0, α0 and cp0 will be the scales for den-
sity, thermal expansion coefficient and specific heat capacity at constant pressure, and
T0 = (Ttop + Tbottom) /2 will be the scale for temperature. Pressure p, velocity u, time
t, and spatial coordinates x are made dimensionless using ρ0gL, k/(ρ0cp0L), L2ρ0cp0/k
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and L respectively. The governing equations take the following dimensionless form:

∂ρ

∂t
+∇ · (ρu) = 0, (3.1)

Pr−1ρ
Du

Dt
= −Rath∇p−Rathρez +∇2u+

1

3
∇ (∇ · u) , (3.2)

ρcp
DT

Dt
−DαT

Dp

Dt
= ϵ̇ : τ +∇2T, (3.3)

where Pr = µcp0/k is the Prandtl number, Rath = ρ20gcp0L
3/(µk) is called here the

thermodynamic Rayleigh number and D = α0gL/cp0 is the dissipation number. The
thermal boundary conditions necessitate an additional dimensionless parameter and
we choose the ratio of the temperature difference to the average temperature a =
2 (Tbottom − Ttop) /(Tbottom + Ttop) so that the boundary conditions (2.6) become:

T

(
z =

1

2

)
= 1−

a

2
, T

(
z = −

1

2

)
= 1 +

a

2
. (3.4)

From our choice of dimensional scales, another dimensionless number is obtained from
the product α0T0. The equations of state will also be made dimensionless when they are
considered in section 8. Depending on the equation of state, dimensionless parameters
other than the four numbers listed above may be necessary or not. We have not specified
how the viscous dissipation term ϵ̇ : τ was made dimensionless because this term is
quadratic in terms of velocity disturbances, hence will play no role in the linear stability
analysis.

From this set of dimensionless numbers, it is possible to express the classical Rayleigh
number, Ra, as follows:

Ra = Rathα0(Tbottom − Ttop) = Rathα0T0a. (3.5)

4. Motionless base solution

The base solution is a pure conduction, hydrostatic state. The dynamic and thermal
equations (3.2) and (3.3) lead to the following equations for pb, ρb and Tb, the base
pressure, density and temperature solutions which are functions of z only:

dpb
dz

= −ρb, (4.1)

d2Tb

dz2
= 0. (4.2)

The boundary condition (3.4) for temperature needs to be satisfied. The conduction
solution can be expressed as

Tb = 1− az. (4.3)

The opposite of the temperature gradient is a and the bottom to top temperture ratio
Tbottom/Ttop is r = (2 + a)/(2− a).

5. Eigenvalue equations for infinitesimal disturbances

Infinitesimal disturbances, denoted by primes, are added to the base solution and the
temporal linear stability is analyzed. The governing equations are linearized around the
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6 T. Alboussière and Y. Ricard

base solution and the resulting problem can be written:

∂ρ′

∂t
= −∇ · (ρbu′) , (5.1)

Pr−1ρb
∂u′

∂t
= −Rath∇p′ −Rathρ

′ez +∇2u′ +
1

3
∇ (∇ · u′) , (5.2)

ρbcpb
∂T ′

∂t
−DαbTb

∂p′

∂t
= −ρbcpbu

′

z

dTb

dz
+DαbTbu

′

z

dpb
dz

+∇2T ′, (5.3)

where cpb and αb are the heat capacity and thermal expansivity along the base profile.
The problem does not explicitly depend on time, t, nor on the horizontal directions x
and y. Thus general solutions can be searched in the linear space of plane waves:

T ′ = T̃ (z) exp (σt+ ikxx+ ikyy) , (5.4)

and so on for all variables, where σ is the growth rate of the disturbance, kx and ky its
horizontal wavenumbers. As rotation along a vertical axis leaves the problem unchanged,
we can restrict the analysis to ky = 0 without any loss of generality. Equations (5.1) ,
(5.2) and (5.3) are then changed into the following eigenvalue problem:

σρ̃ = −ikxρbũx − ρb
dũz

dz
−

dρb
dz

ũz, (5.5)

σPr−1ρbũx = −Rathikxp̃−
4

3
k2xũx +

ikx
3

dũz

dz
+

d2ũx

dz2
, (5.6)

σPr−1ρbũz = −Rath
dp̃

dz
−Rathρ̃− k2xũz +

ikx
3

dũx

dz
+

4

3

d2ũz

dz2
, (5.7)

σρbcpbT̃ − σDαbTbp̃ = −ρbcpbũz
dTb

dz
+DαbTbũz

dpb
dz

− k2xT̃ +
d2T̃

dz2
. (5.8)

Finally, the density disturbance ρ̃ is expanded linearly in terms of temperature T̃ and
pressure p̃ disturbances in equation (5.7) when a particular equation of state will be
considered:

ρ̃ =
∂ρ

∂T

∣∣∣∣
p

T̃ +
∂ρ

∂p

∣∣∣∣
T

p̃. (5.9)

Our objective is to obtain the critical value of the thermodynamic Rayleigh number
Rath as a function of the other dimensionless numbers. We restrict our analysis to the
critical threshold, ℜ(σ) = 0. The eigenvalue problem is not self-adjoint in general, unlike
the classical Boussinesq problem, however the imaginary part of the critical eigenvalue is
always found to be zero in our numerical calculations. The first instability takes the form
of a stationary pattern, not a travelling wave. A consequence is that the Prandtl number
is irrelevant in our study, since it appears only as the product σ Pr−1 in the eigenvalue
problem, in equations (5.6) and (5.7).

The eigenvalue problem is solved and the critical Rayleigh number for neutral stability
is obtained. The method is that of Chebyshev collocation expansion and we use the
differentiation matrices provided by the DIFFMAT suite (Weideman and Reddy 2000).
The computations are run in GNU Octave on a laptop. The results of the stability analysis
will be presented in terms of the superadiabatic Rayleigh number, defined as follows:

RaSA = Rathα0T0∆TSA, (5.10)

where ∆TSA denotes the dimensionless superadiabatic temperature difference. The im-
posed total dimensionless temperature difference is a, but there are actually different
possibilities to define the dimensionless adiabatic temperature difference. Here, we sim-
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Rayleigh-Bénard Stability 7

ply take the product of the adiabatic gradient αgT/cp at z = 0 (at conditions ρ = ρ0
and T = T0) with the thickness L, which provides a dimensionless adiabatic temperature
difference equal to D, so that we define ∆TSA as

∆TSA = a−D (5.11)

We could have taken the total temperature difference calculated across a complete adi-
abat, instead. Then, again, different choices of adiabatic profiles are possible: the profile
passing through the same conditions as the conduction profile at z = 0, the profile with
the same total mass... Each choice of an adiabatic temperature profile leads to a different
value of the superadiabatic jump. Because a difference in z2 in the adiabatic temperature
makes no contribution between z = −1/2 and z = 1/2, other definitions would have led
to temperature jumps departing from equation (5.11) by a cubic expression in terms of
a and D. Anticipating on the rest of the analysis, this would change the departure of
the critical Rayleigh number from the Boussinesq limit by quadratic terms in a and D.
This is also the order of departure of the critical Rayleigh number from the Boussinesq
limit that we compute in the following. However, differences of superadiabatic Rayleigh
numbers from different approximations (exact, quasi-ALA and quasi-Boussinesq) will not
depend on that choice of superadiabatic temperature difference, as its contributions will
essentially cancel out.

6. An approximate analysis with two modes

We assume that the imaginary part of the eigenvalue is zero at critical conditions,
σ = 0, and equations (5.5), (5.6), (5.7) and (5.8) take the form:

0 = −ikxρbũx − ρbDũz − ρ′bũz, (6.1)

0 = −Rathikxp̃−
4

3
k2xũx +

ikx
3

Dũz +D2ũx, (6.2)

0 = −RathDp̃−Rath
∂ρ

∂T

∣∣∣∣
P

T̃ −Rath
∂ρ

∂p

∣∣∣∣
T

p̃− k2xũz +
ikx
3

Dũx +
4

3
D2ũz, (6.3)

0 = (−ρbcpbT
′

b +DαbTbp
′

b) ũz − k2xT̃ +D2T̃ . (6.4)

The primes denotes z-derivatives of the base solution profiles, while the symbol D (resp.
D2, D3...) denotes z-derivatives (resp. second, third derivatives...) of the perturbation
variables. Then ũx is substituted using the first equation, and a function of z is introduced
g(z) = (ρbcpbT ′

b −DαbTbp′b)
−1 in order to simplify the fourth equation, which takes the

form ũz = g(z)
(
D2 − k2x

)
T̃ . Note that g(0) = (T ′

b(0)−Dp′b(0))
−1 = (−a + D)−1. The

pressure term is substituted using the second equation into the third one and ũz is
expressed in terms of T̃ using the fourth equation. Finally, we get a single differential
equation for the perturbation T̃ :

0 = −(D2 − k2x)D

(
D+

ρ′b
ρb

)
g(D2 − k2x)T̃ − k2xRath

∂ρ

∂T

∣∣∣∣
p

T̃ + k2x(D
2 − k2x)g(D

2 − k2x)T̃

+
∂ρ

∂p

∣∣∣∣
T

[
1

3
k2x

ρ′b
ρb

g(D2 − k2x)− (D2 − k2x)

(
D+

ρ′b
ρb

)
g(D2 − k2x)

]
T̃ . (6.5)

We now introduce f(z) = ∆TSA g(z) = ∆TSA/(ρbcpbT ′
b −DαbTbp′b), where the superadi-

abatic temperature difference ∆TSA has been defined in euation (5.11). As a consequence
of the choice of superadiabatic temperature difference (5.11), we obtain the value of f at
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z = 0:

f |
0
= −1 (6.6)

the critical disturbance equation can be written:

0 = −(D2 − k2x)D

(
D+

ρ′b
ρb

)
f(D2 − k2x)T̃ −

k2x
α0T0

RaSA
∂ρ

∂T

∣∣∣∣
p

T̃ + k2x(D
2 − k2x)f(D

2 − k2x)T̃

+
∂ρ

∂p

∣∣∣∣
T

[
1

3
k2x

ρ′b
ρb

f(D2 − k2x)− (D2 − k2x)

(
D+

ρ′b
ρb

)
f(D2 − k2x)

]
T̃ . (6.7)

This equation depends on several functions of z, computed along the base profile,
namely f , ρ′b/ρb, ∂ρ/∂T |p, ∂ρ/∂p|T , all depending on the equation of state considered
and on the dimensionless governing parameters a and D. In the limit of vanishing temper-
ature difference across the convecting layer, a << 1, the temperature becomes nearly ho-
mogeneous T ≃ T0. The variation of density with pressure at z = 0, ∂ρ/∂p|T0

= ρ0/KT0

(KT0 is the isothermal incompressibility at z = 0) can be expressed on the following
dimensionless form

∂ρ

∂p

∣∣∣∣
T0

= D̃α0T0, (6.8)

using the general Mayer’s relation

cp − cv =
α2KTT

ρ
, (6.9)

where cv is the heat capacity at constant volume and defining, for the sake of brevity,

D̃ =
D

1− γ−1
0

, γ0 = cp0/cv0, and α̂ = α0T0. (6.10)

Note that D̃ can also be written

D̃ =
1

α̂

ρ0gL

KT0

, (6.11)

The parameter D̃ is therefore the ratio of compressible to thermal effects. No surprise
it will be the central parameter to discuss the compressible effects in thermal convec-
tion. In the limit of a vanishing compressibility (D̃ << 1 or D << 1), the base density
becomes independent of pressure. Therefore, when both a and D are small, the temper-
ature becomes constant, the density independent of pressure and f = −1, ρ′b/ρb = 0,
∂ρ/∂T |p = −α0T0, ∂ρ/∂p|T = 0, and the critical equation becomes the well-known
dispersion relation for Rayleigh-Bénard stability:

(D2 − k2x)
3T̃ + k2xRaSAT̃ = 0, (6.12)

in accordance with Jeffreys analysis (Jeffreys 1930). Under the additional assumption of
a negligible adiabatic gradient compared to the imposed temperature difference, D << a,
the superadiabatic Rayleigh number RaSA is replaced by the classical Rayleigh number
(3.5) in equation (6.12) which then becomes the exact equation solved by Rayleigh (1916)
in the Boussinesq approximation. The thermal perturbation T̃ satisfies T̃ = 0 in z = ±1/2
(fixed temperatures), D2T̃ = 0 (ũz = 0) and D4T̃ = 0 (no-stress conditions). It has non-
zero solutions for a minimal value of RaSA = 27π4/4 and a corresponding wavenumber
kx = π/

√
2. The corresponding eigenvector is a cosine function cos(πz).

Now, for a finite temperature gradient a or dissipation number D, the functions f and
∂ρ/∂T |p, have some z-dependence and the functions ρ′b/ρb and ∂ρ/∂p|T are not zero.
As a consequence, when an even function of z is initially considered for the temperature

Page 8 of 41



Rayleigh-Bénard Stability 9

eigenvector, there are odd contributions generated in (6.7). Hence, the eigenvectors must
be a combination of at least an even and an odd contribution. Hence, we decided to
expand the eigenmodes as

T̃ = cos(πz) + ϵ sin(2πz). (6.13)

The motivation for this particular choice sin(2πz) of odd function of z is that it satisfies
the boundary conditions and that it is the second least dissipative harmonic mode after
cos(πz). In addition, we have checked on some eigenvectors obtained using Chebyshev
expansion that they could be written as the sum of two such modes (6.13) with negligible
residuals (see section 8 and Fig. 9). We wish to achieve a second order accuracy, in the
base temperature gradient a and in the dissipation number D, so that we can evaluate
the change in critical Rayleigh number to a similar degree. We thus expand the functions
of z related to the base profile f , ρ′b/ρb, ∂ρ/∂T |p and ∂ρ/∂p|T in Taylor expansions of
degree two, for instance:

f(z) = f0 +
df

dz

∣∣∣∣
0

z +
1

2

d2f

dz2

∣∣∣∣
0

z2, (6.14)

and similarly for the others. The introduction of the expansions of the form (6.14) and
(6.13) into the critical equation (6.7) generates terms which are products between trigono-
metric functions and powers of z. We project these functions back on the two chosen
modes cos(πz) and sin(2πz). The projection is that associated with the L2 functional
space on [−1/2; 1/2] (see Table 1). The change in the reference profiles due to the dis-
sipation parameter D and finite temperature gradient a affects not only ϵ but also the
critical Rayleigh number by a quantity dRaSA,

RaSA =
27

4
π
4 + dRaSA. (6.15)

For any equation of state from which the stable basic state can be computed and Taylor
expanded (as in (6.14)), our eigenmodes (6.13) introduced into the critical equation
(6.7) lead to two equations (i.e., the terms in factor of cos(πz) and sin(2πz)) those
solutions are the eigenmode amplitude ϵ (from the sin(2πz) part) and the perturbation
of the critical Rayleigh number dRaSA (from the cos(πz) part). A close look to the
equations indicates that ϵ depends linearly on the parameters describing the distance
of the problem to the classical Boussinesq problem (mainly a and D the temperature
gradient and dissipation number) while dRaSA is only affected by terms of order 2.
Similarly the horizontal wavenumber kx is also affected by terms of order 2. Moreover,
because the critical Rayleigh number is also such that dRaSA/dkx = 0 (minimal Rayleigh
number over wavenumbers), the quadratic disturbance of kx does not affect the evaluation
of the quadratic disturbance of RaSA. It is hence correct to use a constant value kx =
π/

√
2 for this analysis.

Let us now provide some details on how the equations for ϵ and dRaSA are derived.
We introduce ũ = f(D2 − k2x)T̃ , a − D times the vertical velocity component ũz, and
ṽ = D(D+ ρ′b/ρb)ũ, which is i(a−D)/kx times the z-derivative of the horizontal velocity

component (from equation (6.1)). Using variables T̃ , ũ and ṽ, the critical equation (6.7)
takes the form:

0 = −(D2 − k2x)ṽ−
k2x

α0T0

RaSA
∂ρ

∂T

∣∣∣∣
p

T̃ + k2x(D
2 − k2x)ũ+

∂ρ

∂p

∣∣∣∣
T

[
4

3
k2x

ρ′b
ρb

ũ−Dṽ + k2xDũ

]
.

(6.16)
Both ũ and ṽ satisfy the same boundary conditions as T̃ (zero in z = ±1/2) so that they
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10 T. Alboussière and Y. Ricard

cos(πz) sin(2πz)

sin(πz) 0 8

3π

z sin(πz) 1

2π
0

z cos(2πz) 0 − 1

4π

cos(2πz) 4

3π
0

z cos(πz) 0 16

9π2

z sin(2πz) 16

9π2 0

z
2 sin(2πz) 0 2π

2
−3

24π2

z
2 cos(πz) π

2
−6

12π2 0

z
2 sin(πz) 0 18π

2
−112

27π3

z
2 cos(2πz) 9π

2
−104

27π3 0

Table 1. Projection coefficients of some functions on the modes cos(πz) and sin(2πz)

are also projected on the same modes defined in (6.13):

ũ = Uc cos(πz) + Us sin(2πz), (6.17)

ṽ = Vc cos(πz) + Vs sin(2πz). (6.18)

From the definition ũ = f(D2 − k2x)T̃ , we have

Uc = −
3π2

2
f0 − 8ϵ

df

dz

∣∣∣∣
0

+

(
−
π
2

16
+

3

8

)
d2f

dz2

∣∣∣∣
0

, (6.19)

Us = −9
π
2

2
ϵf0 −

8

3

df

dz

∣∣∣∣
0

, (6.20)

where the projections determined in Table 1 have been used. Using Maxima, a software for
formal manipulations, we shall obtain the Taylor coefficients for f and other quantities,
once an equation of state will be specified. Next, from ṽ = D(D + ρ′b/ρb)ũ, and using
again Table 1, we obtain:

Vc =

⎛

⎝−π
2 +

1

2

dρ′

b

ρb

dz

∣∣∣∣∣∣
0

⎞

⎠Uc +
8

3

ρ′b
ρb

∣∣∣∣
0

Us, (6.21)

Vs = −4π2Us −
8

3

ρ′b
ρb

∣∣∣∣
0

Uc. (6.22)

Before we can write equation (6.16) onto our two base functions, we need to define two
auxiliary variables with the same zero boundary conditions as T̃ in z = ±1/2:

∂ρ/∂T |p T̃ = Ac cos(πz) +As sin(2πz), (6.23)

ρ′b
ρb

ũ = Bc cos(πz) +Bs sin(2πz), (6.24)
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Rayleigh-Bénard Stability 11

with coefficients:

Ac = −α̂+

(
1

24
−

1

4π2

)
d2 ∂ρ/∂T |p

dz2

∣∣∣∣∣
0

+
16

9π2

d ∂ρ/∂T |p
dz

∣∣∣∣
0

ϵ, (6.25)

As =
16

9π2

d ∂ρ/∂T |p
dz

∣∣∣∣
0

− α̂ϵ, (6.26)

Bc =
ρ′b
ρb

∣∣∣∣
0

Uc +
16

9π2

dρ′

b

ρb

dz

∣∣∣∣∣∣
0

Us, (6.27)

Bs =
ρ′b
ρb

∣∣∣∣
0

Us +
16

9π2

dρ′

b

ρb

dz

∣∣∣∣∣∣
0

Uc, (6.28)

where we have used ∂ρ/∂T |p0 = −α̂. We can now write the projection of equation (6.16)
on cos(πz) and sin(2πz) keeping only the terms of appropriate order:

3

2
π
2Vc −

π
2

2α̂

(
27π4

4
+ dRaSA

)
Ac −

3π4

4
Uc +

∂ρ

∂p

∣∣∣∣
T0

[
2π2

3
Bc −

8

3
Vs +

4π2

3
Us

]

+
d ∂ρ

∂p

∣∣∣
T

dz

∣∣∣∣∣∣
0

[
1

2
Vc −

π
2

4
Uc

]
= 0, (6.29)

9

2
π
2Vs −

π
2

2α̂

27π4

4
As −

9π4

4
Us +

∂ρ

∂p

∣∣∣∣
T0

[
8

3
Vc −

4π2

3
Uc

]
= 0. (6.30)

The second equation (6.30) is used to determine the coefficient ϵ (see 6.13). This co-
efficient ϵ depends linearly on the parameters describing the distance of the problem
to the classical Boussinesq problem, a and D the temperature gradient and dissipation
number. The first equation (6.29) is then solved to obtain dRaSA, the change in critical
Rayleigh number compared to the classical critical Rayleigh number 27π4/4 for no-stress
boundary conditions. This change is thus quadratic in a and D: the terms of order zero
cancel out (Boussinesq limit), the terms of order 1 are found in the (6.30) equation used
to determine the coefficient ϵ of the sin(2πz) mode, and the terms of order 2 balance
dRaSA in (6.29), with Ac containing a term of order 0 in a and D.

Equations (6.30) then (6.29) are solved explicitly in terms of the quantities f , df/dz,
d2f/dz2, ρ′b/ρb, d/dz (ρ

′
b/ρb), ∂ρ/∂T |p, d/dz(∂ρ/∂T |p), d2/dz2(∂ρ/∂T |p), ∂ρ/∂p|T , d/dz(∂ρ/∂p|T ),

evaluated at z = 0. Equation (6.30) leads to

ϵ =
8

117π2

[

9
df

dz

∣∣∣∣
0

−
1

α̂

d

dz

∂ρ

∂T

∣∣∣∣
p0

−
∂ρ

∂p

∣∣∣∣
T0

− 3
ρ′b
ρb

∣∣∣∣
0

]

. (6.31)

Page 11 of 41



12 T. Alboussière and Y. Ricard

With this value for ϵ, dRaSA is obtained from equation (6.29)

dRaSA = −
9

4
π
2 d

dz

ρ′b
ρb

∣∣∣∣
0

−

(

36π2ϵ+

[
2π2 +

64

3

]
∂ρ

∂p

∣∣∣∣
p0

−
64

3

df

dz

∣∣∣∣
0

)
ρ′b
ρb

∣∣∣∣
0

+

(
9π4

32
−

27π2

16

)(
1

α̂

d2

dz2
∂ρ

∂T

∣∣∣∣
p0

−
d2f

dz2

∣∣∣∣
0

)

−

(

36
df

dz

∣∣∣∣
0

−
12

α̂

d

dz

∂ρ

∂T

∣∣∣∣
p0

+ 108
∂ρ

∂p

∣∣∣∣
p0

)

π
2ϵ

+
9π2

4

d

dz

∂ρ

∂p

∣∣∣∣
T0

+ 64
∂ρ

∂p

∣∣∣∣
T0

df

dz

∣∣∣∣
0

. (6.32)

7. The quasi-Boussinesq and quasi-ALA models

We refer to the stability analysis presented in sections 5 and 6 as to the exact model
for Rayleigh-Bénard Stability, since it is based on the continuity, Navier-Stokes and
entropy equations without any approximation. In the exact model the linearized density
perturbation is therefore

ρ′ =
∂ρ

∂T

∣∣∣∣
p

T ′ +
∂ρ

∂p

∣∣∣∣
T

p′, (7.1)

like in (5.9). We will now introduce two models, corresponding to changes in the govern-
ing equations, with different assumptions on compressibility. For both models, the base
solution is kept unchanged, which means that compressible effects are fully taken into
account. The assumptions concern the fluctuations. The quasi-Boussinesq model consists
in neglecting the pressure dependence of the density fluctuations in equation (7.1) and
therefore in using

ρ′ =
∂ρ

∂T

∣∣∣∣
p

T ′. (7.2)

The quasi-Boussinesq critical superadiabatic Rayleigh number RaBSA is obtained from the
same Chebyshev collocation expansion as described in section 5. This model is not called
a Boussinesq model, because the base profile takes into account compressibility effects,
contrary to the original Boussinesq model. Similarly, the quasi-ALA model is reminiscent
but not identical to the anelastic liquid approximation (ALA) as described in (Anufriev
et al. 2005) as the base profile is the conduction profile, not the adiabatic profile. Density
fluctuations are first expressed in terms of fluctuations of pressure and entropy, instead
of pressure and temperature in (7.1):

ρ′ =
∂ρ

∂p

∣∣∣∣
s

p′ +
∂ρ

∂s

∣∣∣∣
p

s′. (7.3)

Then two assumptions are made: the first term is evaluated as though the base density
gradient were close to the adiabat and pressure dependence of entropy fluctuations are
neglected compared to their temperature dependence:

ρ′ = −
1

ρb

dρb
dz

p′ +
∂ρ

∂T

∣∣∣∣
p

T ′. (7.4)

The first assumption on the density gradient does not need to be made in the classical
ALA model, where the solutions are indeed expanded from the (hydrostatic) adiabatic

Page 12 of 41



Rayleigh-Bénard Stability 13

profile which is not possible in a stability analysis, as the adiabatic profile is always stable.
The quasi-ALA critical Rayleigh number RaALA

SA is obtained from a similar analysis
as described in section 5. In summary, the terms −∇p′ − ρ′ez in equation (5.2) are
changed for −∇p′− ∂ρ/∂T |p T ′ez in the quasi-Boussinesq model and for −ρb∇ (p′/ρb)−
∂ρ/∂T |p T ′ez in the quasi-ALA model.
For the quasi-Boussinesq and quasi-ALA models, a two-modes approximation analysis

is also carried out (see section 6), providing ϵB and ϵALA the sin(2πz) contributions
of the eigenmodes of the quasi-Boussinesq and quasi-ALA approximations, as well as
dRaBSA and dRaALA

SA the departures from 27π4/4 of the critical Rayleigh numbers for each
approximation respectively. Equations (6.29) and (6.30) are modified in the following way:
for the quasi-Boussinesq approximation, all terms involving ∂ρ/∂p|T or its derivative with
respect to z are removed, while for the quasi-ALA approximation, ∂ρ/∂p|T is replaced by
−ρ′b/ρb and d/dz (∂ρ/∂p|T ) by −d/dz (ρ′b/ρb). The same changes are therefore made on
the solutions for ϵ and dRaSA in equations (6.31) and (6.32). The differences δϵB = ϵB−ϵ
and δϵALA = ϵALA − ϵ can then be expressed as

δϵB =
8

117π2

∂ρ

∂p

∣∣∣∣
T0

, (7.5)

δϵALA =
8

117π2

(
∂ρ

∂p

∣∣∣∣
T0

+
ρ′b
ρb

∣∣∣∣
0

)
. (7.6)

The differences of dRaSA induced by the quasi-Boussinesq and quasi-ALA approxima-
tions, δRaBSA = dRaBSA − dRaSA and δRaALA

SA = dRaALA
SA − dRaSA, take the following

form

δRaBSA = −

(

36π2δϵB −
[
2π2 +

64

3

]
∂ρ

∂p

∣∣∣∣
p0

)
ρ′b
ρb

∣∣∣∣
0

−

(

36
df

dz

∣∣∣∣
0

−
12

α̂

d

dz

∂ρ

∂T

∣∣∣∣
p0

)

π
2δϵB + 108

∂ρ

∂p

∣∣∣∣
p0

π
2ϵ

−
9π2

4

d

dz

∂ρ

∂p

∣∣∣∣
T0

− 64
∂ρ

∂p

∣∣∣∣
T0

df

dz

∣∣∣∣
0

, (7.7)

δRaALA
SA = −

(

36π2δϵALA −
[
2π2 +

64

3

] [
∂ρ

∂p

∣∣∣∣
p0

+
ρ′b
ρb

∣∣∣∣
0

])
ρ′b
ρb

∣∣∣∣
0

−

(

36
df

dz

∣∣∣∣
0

−
12

α̂

d

dz

∂ρ

∂T

∣∣∣∣
p0

)

π
2δϵALA + 108π2

(
∂ρ

∂p

∣∣∣∣
p0

ϵ+
ρ′b
ρb

∣∣∣∣
0

ϵALA

)

−
9π2

4

(
d

dz

∂ρ

∂p

∣∣∣∣
T0

+
d

dz

ρ′b
ρb

∣∣∣∣
0

)
− 64

(
∂ρ

∂p

∣∣∣∣
T0

+
ρ′b
ρb

∣∣∣∣
0

)
df

dz

∣∣∣∣
0

. (7.8)

8. Stability results for various equations of state

We now consider different equations of state and perform the stability analyses, nu-
merical Chebyshev expansion and two-modes analysis, for the exact, quasi-Boussinesq
and quasi-ALA approximations.

8.1. Ideal gas EoS

The following dimensional equation of state is considered:

p = ρRT, (8.1)
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14 T. Alboussière and Y. Ricard

where R = R/M is the gas constant, while R and M are the universal gas constant
and molar mass of the gas respectively. In addition, ideal gases are characterized by the
choice of a constant heat capacity at constant volume cv. It can then be shown that cp
is constant as well and obeys Mayer’s relation: cp − cv = R. The ratio of heat capacities
is γ = cp/cv. Using the scales already defined, ρ0gL for pressure, ρ0 for density and T0

for temperature, the equation of state takes the following dimensionless form:

p = ρT
1− γ−1

D
=

ρT

D̃
. (8.2)

Finally, for ideal gases, the marginal stability problem depends on four dimensionless
numbers: Rath, D, a and D̃. It can be shown that the product αT is always unity for an
ideal gas. The base thermal profile is given by (4.3). Then the dimensionless hydrostatic
equation dpb/dz = −ρb is used with the equation of state (8.2) to derive the density and
pressure profiles:

dpb
dz

=
1

D̃

(
dρb
dz

Tb + ρb
dTb

dz

)
= −ρb. (8.3)

Having already derived the temperature profile (4.3), this is a differential equation for
ρb. With ρb = 1 when z = 0, imposed by our normalization, the solution is:

ρb = T
−1− D̃

a

b . (8.4)

The corresponding pressure profile can then be derived from the equation of state:

pb =
1

D̃
T

−
D̃

a

b . (8.5)

Every quantity, related to the base profile and needed in the eigenvalue problem (5.5),
(5.6), (5.7) and (5.8), is now available and we can solve exactly for the critical Rayleigh
number using a Chebyshev collocation expansion.

In addition to this exact problem (no approximation was made in the governing equa-
tions), two models are considered: quasi-Boussinesq and quasi-ALA, described in section
7 and using respectively the approximated density variations (7.2) and (7.4). The critical
Rayleigh number is expressed through the superadiabatic Rayleigh number (5.10). The
critical (superadiabatic) Rayleigh numbers for the exact, quasi-Boussinesq and quasi-
ALA models are denoted RaxSA, RaBSA and RaALA

SA , respectively.
We also apply the analysis based on just two eigenmodes (cos(πz) and sin(2πz)),

leading to equations (6.29) and (6.30), which are themselves issued from the critical
relation (6.16). We need to derive some expressions from the equation of state: they are
values of quantities at z = 0, relative to the base profile f , ρ′b/ρb, ∂ρ/∂T |p, ∂ρ/∂p|T
and their derivatives at z = 0. They are listed in Table 2 for the case of an ideal gas.
The expressions for the base profile in Table 2 are simple enough to be substituted in
the two-modes general solutions (6.31) and (6.32). The sin(2πz) contributions ϵ, ϵB and
ϵALA to the exact model, quasi-Boussinesq and quasi-ALA approximations take the form

ϵ =
64

117π2

(
a− D̃

)
, (8.6)

ϵB =
64

117π2

(
a−

7

8
D̃
)
, (8.7)

ϵALA =
64

117π2

(
9

8
a− D̃

)
. (8.8)

The corresponding critical superadiabatic Rayleigh number is obtained from (6.32)
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16 T. Alboussière and Y. Ricard

expression value

df
dz

∣∣
0

a− D̃

d
2f

dz2

∣∣∣
0

(a− D̃)D̃

ρ′b
ρb

∣∣∣
0

a− D̃

d

dz

ρ′b
ρb

∣∣∣
0

(a− D̃)a

∂ρ
∂T

∣∣
p0

−1

d

dz
∂ρ
∂T

∣∣
p0

−2a+ D̃

d
2

dz2
∂ρ
∂T

∣∣∣
p0

−6a2 + 5aD̃ − D̃2

∂ρ
∂p

∣∣∣
T0

D̃

d

dz
∂ρ
∂p

∣∣∣
T0

aD̃

Table 2. Some quantities related to the base flow, needed for the two-modes approximation,
for the equation of state of an ideal gas.

as an expansion of degree 2 in a and D. We also obtain approximate critical Rayleigh
numbers in the quasi-Boussinesq and quasi-ALA approximations. The difference between
these critical Rayleigh numbers and the classical Boussinesq value 27π4/4 are denoted
dRaxSA, dRaBSA and dRaALA

SA

dRaxSA =

[
2π2 −

320

39

]
D̃2 +

[
9π4

8
−

17π2

4
+

512

13

]
aD̃ −

[
27π4

16
−

63π2

8
+

1216

39

]
a2,(8.9)

≃ 11.53D̃2 + 107.02aD̃ − 117.83a2,

dRaBSA = −
736

39
D̃2 +

[
9π4

8
−

9π2

2
+

640

13

]
aD̃ −

[
27π4

16
−

63π2

8
+

1216

39

]
a2, (8.10)

≃ −18.87D̃2 + 114.40aD̃ − 117.83a2,

dRaALA
SA =

[
2π2 −

320

39

]
D̃2 +

[
9π4

8
−

25π2

4
+

64

3

]
aD̃ −

[
27π4

16
−

61π2

8
+

544

39

]
a2, (8.11)

≃ 11.53D̃2 + 69.23aD̃ − 103.07a2.

The eigenmode odd contribution ϵ obtained from the Chebyshev analysis is compared
to that obtained from the two-modes analysis on Fig. 2 and for an ideal gas. As experi-
mentally, it is much easier to impose a large temperature gradient than large compressible
effects, we first consider the case of a negligible dissipation number (D = 10−8). Exact
and approximate eigenmode odd contributions are very similar throughout the whole
range of a (between 0 and 2). Figure 3 shows how the critical Rayleigh number depends
on the dimensionless temperature difference, a, imposed between the bottom and the
top. The Boussinesq value 27π4/4 is obtained in the limit a = 0 (corresponding to a
unity temperature ratio r = 1). Increasing a causes a decrease in the value of the su-
peradiabatic critical Rayleigh number RaxSA. The approximate analysis (8.9) with two
eigenmodes (cos(πz) and sin(2πz)) fits the numerical solution very well up to a = 1.5
(corresponding to r = 7). With a negligible D, the quasi-Boussinesq approximation is
identical to the exact analysis. The quasi-ALA approximation results are also plotted on
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Rayleigh-Bénard Stability 21

8.2. Murnaghan’s EoS

Let us now consider an equation of state suitable for condensed matter, liquid or solid,
proposed by Murnaghan (1951) with a temperature dependence appropriate for models
of solid state planetary interiors (Ricard 2007). This equation of state can be written as

(
ρ

ρ0

)n

= 1 +
np

K0

− nα0(T − T0), (8.14)

with n = 3 or n = 4 for most solid materials and K0 and α0 are constants. The reference
density ρ0 is obtained for the reference temperature T0 and pressure p = 0 (the reference
pressure is irrelevant as only pressure gradients play a role in the dynamical equations).
This equation reproduces the observations that, for liquids and solids, the isothermal
incompressibility KT = ρ ∂p/∂ρ|T increases with compression

KT = K0

(
ρ

ρ0

)n

, (8.15)

and that the coefficient of thermal expansion diminishes with compression

α = α0

(
ρ0
ρ

)n

. (8.16)

We also need to derive the heat capacity from the equation of state. The thermody-
namic relation ∂cv/∂v|T = T ∂2p/∂T 2

∣∣
ν
(where ν is the specific volume 1/ρ) indicates

that for a solid following the equation (8.14), cv is not a function of ρ as the pressure is
linear in T for a given density. So cv can only be a function of temperature T : any choice
is valid in principle. We make the choice of a constant cv0 which is in agreement with the
Dulong and Petit rule for condensed matter. It follows then from Mayer’s relation (6.9)
that

cp = cv0 +
α2
0K0T

ρ

(
ρ0
ρ

)n

. (8.17)

With notations (6.10), using our dimensional scales, Murnaghan’s EoS takes therefore
the following dimensionless form

ρn = 1 + α̂D̃np− nα̂(T − 1). (8.18)

The base profile is determined as follows. The temperature base profile is independent of
the EoS, hence equation (4.3) is still valid. The derivative of (8.18) and the hydrostatic
equation dpb/dz = −ρb lead to a differential equation for the base density profile ρb

dρb
dz

= −α̂D̃ρ2−n
b + α̂aρ1−n

b . (8.19)

This equation is integrated numerically, under the condition that ρb = 1 at z = 0 in
accordance with our choice for the dimensional reference density ρ0. The base pressure
profile pb is then obtained from the equation of state (8.18).

In the resolution of the eigenvalue problem (5.5), (5.6), (5.7) and (5.8), we also need to
determine the base profile for the dimensionless specific heat capacity cpb and expansivity
αb. After nondimensionalisation (8.16) writes

αb = ρ−n
b , (8.20)

and (8.17),

cpb =
1

γ0
+

γ0 − 1

γ0
Tbρ

−1−n
b . (8.21)
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Rayleigh-Bénard Stability 25

With Table 3 and the general solutions (6.31) and (6.32), we have the quadratic de-
parture of the superadiabatic critical Rayleigh number in terms of the parameters a and
D. It would actually be too long to display dRaSA once the quantities in Table 3 are
substituted in those general equations. However, it is possible to do so for the sin(2πz)
contributions: the coefficients ϵ (coefficient of sin(2πz)) obtained by the two-modes anal-
ysis (6.31), (7.5) and (7.6) are the followings, for the exact model, quasi-Boussinesq and
quasi-ALA approximations

ϵx =
8α̂
[
a− D̃

]

117π2

[

9
(n− 1)D −

[
(1− γ−1

0 )(n+ α̂−1)− γ−1
0

]
a

a−D
− n− 2)

]

−
8α̂D̃
117π2

,(8.22)

ϵB =
8α̂
[
a− D̃

]

117π2

[

9
(n− 1)D −

[
(1− γ−1

0 )(n+ α̂−1)− γ−1
0

]
a

a−D
− n− 2

]

, (8.23)

ϵALA =
8α̂
[
a− D̃

]

117π2

[

9
(n− 1)D −

[
(1− γ−1

0 )(n+ α̂−1)− γ−1
0

]
a

a−D
− n− 1

]

. (8.24)

Similarly, the differences between critical superadiabatic Rayleigh numbers obtained from
the quasi-Boussinesq or quasi-ALA approximations and the exact model (7.7) and (7.8)
are also short enough to be shown explicitly

δRaBSA =

[
9n− 1

4
π
2 −

256n− 128

39

]
α̂2aD̃ −

[
9n− 1

4
π
2 −

256n− 416

39

]
α̂2D̃2, (8.25)

δRaALA
SA =

[
9n+ 8

4
π
2 −

256n− 416

39

]
α̂2a2 −

[
9n+ 8

4
π
2 −

256n− 704

39

]
α̂2aD̃. (8.26)

Figure 11 shows the dependence of the critical Rayleigh numbers for the exact model
and quasi-ALA approximation on the base temperature gradient a for a negligible dissi-
pation parameter D = 10−8 and a constant γ0 = 1.03 and n = 3. These critical Rayleigh
numbers are also obtained with the two-modes analysis with an excellent accuracy. Two
different values of α̂ are considered and we can see that the departure of the critical
Rayleigh numbers from 27π4/4 gets smaller as α̂ diminishes. Figure 12 shows the depen-
dence of the asymmetrical contribution of the sin(2πz) mode to the critical eigenmode
on D for a fixed value of the base temperature gradient a = 0.4. The ratio of heat ca-
pacities is kept constant γ0 = 1.03 and two values of α̂ = α0T0 = 0.03 and 0.01 are
considered. The two-modes analysis provides a good fit throughout the whole range of
D. Correspondingly, Fig. 13 shows the dependence of the critical Rayleigh numbers (ex-
act, quasi-Boussinesq and quasi-ALA) on D for the same conditions, with an equally
good fit of the two-modes analysis to the numerical data obtained using the Chebyshev
expansion.

A close-up around small values of D is shown on Fig. 14, emphasizing the quality of the
approximate analysis and its ability to recover small variations of the critical Rayleigh
numbers.

On Fig. 15, we plot the absolute difference of the quasi-ALA and exact critical Rayleigh
numbers, for a negligible dissipation parameter and varying temperature gradients, which
can be seen to be very well approximated by the two-modes analysis. This is also the
case, for a constant temperature gradient a = 0.4 and varying dissipation parameter,
shown on Fig. 16. With a larger temperature gradient a = 1.5, and for the largest
value of the dissipation parameter, we can detect a small deviation from the two-modes
analysis (see Fig. 17). These results, shown on Fig. 16 and 17, confirm that the quasi-
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expression value

df
dz

∣∣
0

α̂
a−D

(
(1−A)a2 +

[
4E − 2 + 1

α̂

]
aD − aD̃ + (2 + F )DD̃

)

d
2f

dz2

∣∣∣
0

α̂
2

(a−D)2

(

2(A+B −A
2 − E)a4 +

[
(−1− 2F )D̃ +

(
4−

8
α̂

)
ED

− 18JD +A

(
4D
α̂

+ 16ED − 6D − 2D̃

)
− 2BD

]
a
3

+

[(
2E +

(
7−

2
α̂

)
F + 3− 6K + 2A(3 + 2F )

)
DD̃ + (1− 2G)D̃2

+

(

−32E2 +

(
14−

8
α̂

)
E − 2

(
1
α̂

− 1

)2

+ 18J

)

D2

]

a
2

+

[
−(3 + F − 6G+ 2L)DD̃2

−

(
18E +

4
α̂

− 2 + 16EF +

(
1 +

2
α̂

)
F − 6K

)
D2D̃

]
a

−
[
4G+ 2F 2 + 3F − 2L

]
D2D̃2

)

ρ′b
ρb

∣∣∣
0

α̂(a− D̃)

d

dz

ρ′b
ρb

∣∣∣
0

α̂
2

[
(−2E + 1)a2 − (2F + 3)D̃a+ 2(1−G)D̃2

]

∂ρ
∂T

∣∣
p0

−α̂

d

dz
∂ρ
∂T

∣∣
p0

α̂
2

[
2(E − 1)a+ (2 + F )D̃

]

d
2

dz2
∂ρ
∂T

∣∣∣
p0

α̂
3

[
(12E − 6− 6J)a2 + (9F − 8E + 14− 4K)aD̃ + (4G− 5F − 8− 2L)D̃2

]

∂ρ
∂p

∣∣∣
T0

α̂D̃

d

dz
∂ρ
∂p

∣∣∣
T0

α̂
2

[
(F + 2)aD̃ + 2(G− 1)D̃2

]

Table 4. Coefficients of Taylor expansion of some quantities related to the base flow, for a
generic equation of state (8.27).

which leads to

cp = 1 + α̂A(T − 1) + α̂2B(T − 1)2 − α̂DT (2Ep+ 6α̂Jp(T − 1) + α̂D̃Kp2), (8.29)

where the p-independent integration term has been expressed up to degree 2 by intro-
ducing two extra coefficients A and B.

The reference temperature is still

Tb(z) = 1− az, (8.30)

with a uniform gradient.
All quantities needed in the approximate analysis have been determined and listed in

Table 4. With Table 4 and the general solutions obtained in sections 6 and 7, the analytic
expression for ϵ and dRaSA (and corresponding results for the quasi-Boussinesq and
quasi-ALA approximations) are explicitly determined. Some results, like dRaSA would
take a page to display when the substitution is made. Others are shorter. For instance,
the relative amplitude of the sin(2πz) component relative to the cos(πz) component can
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be entirely written in terms of the elementary governing coefficients:

ϵx =
8α̂

π
2

[
(1−A)a2 − aD̃ +

[
4E + 1

α̂ − 2
]
aD + (F + 2)D̃D

13(a−D)
−

(1 + 2E)a+ F D̃
117

]

, (8.31)

ϵB =
8α̂

π
2

[
(1−A)a2 − aD̃ +

[
4E + 1

α̂ − 2
]
aD + (F + 2)D̃D

13(a−D)
−

(1 + 2E)a+ (F − 1)D̃
117

]

,(8.32)

ϵALA =
8α̂

π
2

[
(1−A)a2 − aD̃ +

[
4E + 1

α̂ − 2
]
aD + (F + 2)D̃D

13(a−D)
−

2Ea+ F D̃
117

]

. (8.33)

We can also expand the two-modes approximations (7.7) and (7.8), using Table 4, for
the difference between the quasi-Boussinesq approximation and the exact model δRaBSA,
and between the quasi-ALA approximation and exact model δRaALA

SA :

δRaBSA = −
[
−
5

2
π
2 +

224

13
+

9

2
π
2G+

256

39
F

]
α̂2D̃2

−
[
5

2
π
2 −

128

13
+

9

4
π
2F +

512

39
E

]
α̂2aD̃, (8.34)

δRaALA
SA =

[
1

4
π
2 −

320

13
+

(
9

4
π
2 −

256

39

)
F

]
α̂2aD̃

+

[
1

4
π
2 +

224

13
+

(
9

2
π
2 −

512

39

)
E

]
α̂2a2. (8.35)

The two-mode analysis and Table 4 indicate that the quadratic departure of the su-
paradiabatic threshold from the Boussinesq limit (6.32) depends on all coefficients of the
cubic expansion of the generic equation of state (8.27) and on the extra free coefficients
A and B in the expression for the heat capacity (8.29). Only M (related to ∂3ν/∂p3) has
no influence, as expected, because that particular third derivative is not involved in the

relevant coefficients d
2

dz2

∂ρ
∂T

∣∣∣
p0

and d
2f

dz2

∣∣∣
0

. The two-mode analyses of the quasi-Boussinesq

and quasi-ALA models show that the difference of the critical superadiabatic Rayleigh
numbers depends entirely on the second order expansion of the equation of state: J , K,
L, M do not affect the differences (8.34) and (8.35), neither do A and B.

With so many parameters, (9 parameters without counting α̂ and D̃) it is impossible to
show and explore all the possible cases. Similarly to what we have computed for the ideal
gas and the Murnaghan EoS, we start by depicting a few cases where the compressible
effects are small D = 10−8 but the temperature difference large which are conditions that
could be easily reproduced experimentally. In Figs. 18 and 19, we plot the asymmetrical
contributions of the critical eigenmode, ϵ and the corresponding changes in the critical
Rayleigh number when only the second order coefficients of the generic EoS (i.e., E, F
and G) are changed. In agreement with (8.31) or (8.33), when D << 1 and A constant, ϵ
is only a function of E which corresponds very precisely to the numerical estimates (see
Fig. 18). The Rayleigh numbers of the exact and ALA cases are also only functions of
E, (see Fig. 18).

We then compute a few cases with a fixed temperature interval a = 0.4 but for varying
the compressible effects. Like for the cases illustrated in the two previous figures, we
only vary the second order coefficients of the EoS. The asymmetrical contributions of the
critical eigenmode, ϵ and the corresponding change in the critical Ra number are depicted
in Figs. 20 and 21. In the two figures, an asymptote is present at D = 0.4 because of the
singular term in a − D in the various analytical expressions. Here again, the two-mode
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cp is constant and we expand ν = 1/ρ around T = 1 and p = 1/D̃ (the pressure for the
base profile at z = 0) and identify the coefficients of equation (8.27). We obtain:

A = B = E = J = K = 0, F = M = −1, G = L = 1. (8.36)

When these values are substituted in the expressions of Table 4 we obtain exactly the
results obtained for the ideal gas, Table 3.

For Murnaghan’s EoS (8.18), the second order expansion leads to identify:

E = G =
n+ 1

2
, F = −(n+1), L = −K = 3J = −3M =

(n+ 1)(2n+ 1)

2
, (8.37)

and the expansion of cp implies that:

A =
D
α̂D̃

(α̂+ α̂n+ 1), B =
D

2α̂D̃
(α̂(2n+ 1) + 2) (n+ 1). (8.38)

Again, when substituted in the expressions of Table 4 we obtain exactly the results
obtained for the Murnaghan fluid, Table 3. Hence all expressions for the superadiabatic
Rayleigh number are retrieved: (8.25) from (8.34) and (8.26) from (8.35).

8.5. On the singularity at D = a

Singularities at D = a appear in the coefficients obtained for the Murnaghan and generic
equations of state (see Tables 3 and 4). They lead to a divergence of the sin(2πz) coeffi-
cient and of the Rayleigh departure dRaSA. The physical interpretation of this singular
limit is related to the curvature of the adiabatic profile. The conduction profile has no
curvature because we have imposed a uniform thermal conductivity. However, the adia-
batic profile has a non-zero curvature in general, the ideal gas case being an exception.
So the difference between the conduction and adiabatic profiles has a non-zero curvature.
The case D = a corresponds roughly to a vanishing superadiabatic temperature differ-
ence between the bottom and top of the cavity, but the finite curvature implies that half
of the layer is stably stratified and the other half is unstably stratified hence subjected
to instability. When an instability is obtained for a vanishing superadiabatic tempera-
ture difference, the (total) superadiabatic critical Rayleigh number vanishes, hence the
departure dRaSA diverges.

9. Discussion of the stability analysis

Let us first analyze the departure dRaxSA of the critical superadiabatic Rayleigh num-
ber from the Boussinesq limit 27π4/4. The numerical (Chebyshev) results are very well
retrieved by the two-modes analytical results, when D and a are very small and still
reasonably well retrieved over the whole range of a and D. From the two-modes analysis
result (6.32), we can see that those departures are quadratic in a and D̃. A striking point
is that D̃ may reach much larger values than a: although D is restricted to be less than
a so that the configuration is superadiabatic – hence prone to convective instability –
the ratio of specific heat capacities may be very close to one which makes D̃ much larger
than D and potentially much larger than a. A consequence is that pressure effects are
significantly larger than temperature effects on the departure from the Boussinesq stabil-
ity threshold. The quadratic non-Boussinesq departure depends on the structure of the
equation of state: the expansion of density in terms of pressure and temperature has to
be made up to the degree 3 (see equation (8.27)). The fact that the higher degrees play
no role is confirmed by the excellent comparison between numerical Chebyshev results
and the two-modes analytical results.
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The difference of critical threshold between the approximation models and the exact
model are of special interest because we use them as a proxy for the validity of the
Boussinesq and ALA approximations. The corresponding two-modes analytical differ-
ences, (8.12) and (8.13) for ideal gases, (8.25) and (8.26) for a Murnaghan equation of
state, (8.34) and (8.35) for a generic equation of state, have a simple analytical expression.
They are quadratic in a and D̃, but the a2 contribution is zero for the difference between
the quasi-Boussinesq and exact models, while the D̃2 contribution is absent in the dif-
ference between quasi-ALA and exact models. Both differences contain a cross-product
contribution aD̃. As expected, the quasi-Boussinesq approximation is better than the
quasi-ALA when D̃ < O(a), and conversely for large D̃ > O(a). Also, we observe that all
analytical threshold differences are proportional to (α0T0)2 = α̂2. This seems to indicate
that the approximations should always be much better for condensed matter than for
gases, but that conclusion must include a discussion on the Grüneisen number.

We have not mentioned the Grüneisen number so far in this paper. This parameter is a
dimensionless number associated to any equation of state, is often denoted γ, sometimes
Γ, and we choose the latter to avoid any confusion with the ratio of heat capacities
γ = cp/cv:

Γ =
1

ρ

∂p

∂e

∣∣∣∣
ρ

, (9.1)

where e is the specific internal energy. Using the definition of cv and the triple prod-
uct identity, the Grüneisen parameter can be written Γ = α/(cv ∂ρ/∂p|T ). Then using
Mayer’s relation, we obtain:

Γ =
γ − 1

αT
=

γD
α̂D̃

. (9.2)

For condensed matter, theoretical reasons, and more importantly experimental measure-
ments for a range of materials, pressure and temperature, converge towards values of Γ
comprised between 1 and 2 (Anderson et al. 1992) while Mayer’s relation leads to γ ≃ 1.
This implies that choosing a small value for the product αT should imply that the ratio
of specific heat capacities should be chosen accordingly γ − 1 ≃ αT , i.e. α̂ ≃ D/D̃. A
decrease of α̂ implies an increase of D̃ for a given dissipation number D. So, that small
values of α̂ will be completely (for the quasi-Boussinesq difference) or partly (for the
quasi-ALA difference) compensated by an increase in D̃. If the coefficient F is of order
unity, and the Grüneisen parameter of order unity Γ ≃ 1, we may rewrite (8.35) as

δRaALA
SA ∝ α̂aD. (9.3)

This does not apply to ideal gases. They can have a Grüneisen number smaller than
unity, with α̂ = 1 and γ−1 << 1 (polyatomic gases), so that the quasi-ALA may still be
a good approximation for them: an anelastic liquid approximation is indeed an accurate
approximation for a gas with molecules constituted by many atoms.

Let us consider typical results relevant to the mantle and core of the Earth. For the
mantle, we may consider typical values of α0T0 = 0.03, γ = 1.03, D = 0.5 and a tem-
perature ratio of 10 between the bottom of the mantle (CMB, core mantle boundary)
and the surface of the solid Earth. With a Murnaghan EoS with n = 3, we obtain the
following critical superadiabatic Rayleigh numbers:

RaxSA = 664.87, RaBSA = 650.23, RaALA
SA = 662.63. (9.4)

Although the adiabatic temperature difference is only half the total temperature differ-
ence, the quasi-ALA approximation is closer to the exact result than the quasi-Boussinesq
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approximation by a factor 6 to 7. For the Earth’s core (assuming that a free-free top and
bottom boundary conditions are appropriate), the adiabatic temperature difference is
very close to the total temperature difference: we choose r = 2 and D = 0.6. Otherwise,
we use the same parameters as for the typical mantle above. The results are the following:

RaxSA = 927.97, RaBSA = 905.92, RaALA
SA = 926.90. (9.5)

The difference between the critical quasi-ALA and exact Rayleigh numbers is about
20 times smaller than the difference between the critical quasi-Boussinesq and exact
superadiabatic Rayleigh numbers.

10. Conclusions

We have made a contribution to the study of the convection stability beyond that of
Jeffreys: using an approximate analysis based on two functions (cos(πz) and sin(2πz)),
we have shown that the critical superadiabatic Rayleigh number can be expressed as
the sum of the Boussinesq value 27π4/4 and a quadratic function of the dimensionless
temperature gradient a and the dissipation number D. That quadratic function is entirely
dependent on the choice of an equation of state. Rayleigh number may be split into an
adiabatic part (based on the adiabatic gradient) and a superadiabatic part:

Ra = Raad +RaSA. (10.1)

Denoting ∆Tad the adiabatic temperature difference between bottom and top, and ∆T
the imposed temperature difference (Tbottom − Ttop), we have Raad = Ra∆Tad/∆T and
equation (10.1) can be written:

Ra =
RaSA

1− ∆Tad

∆T

, (10.2)

In dimensionless terms, ∆T = a and ∆Tad = D, as defined in section 5. Hence the critical
Rayleigh number can be expressed as:

Rac ≃
27π

4

4
+ dRaSA

1− D

a

, (10.3)

where dRaSA is evaluated correctly up to the second order in the parameters measuring
the distance to the Boussinesq limit, a and D. Note that, because of the singularity in
D = a, the departure of the superadiabatic Rayleigh number dRaSA is not always a
quadratic polynomial in a and D. However dRaSA is always an homogeneous function of
degree 2 in a and D: when both parameters are multiplied by a real constant ξ, dRaSA

is multiplied by ξ2. This is the case when dRaSA is the ratio between a polynomial of
degree 4 in a and D, divided by a polynomial of degree 2 (see equation (6.32), along with
Table 3 or 4).

A typical representation of the departure of the critical superadiabatic Rayleigh num-
ber is shown in Fig. 29 which serves here as a reminder for important features of compress-
ible convection. In the plane (a, D), the Schawrzschild criterion of stability corresponds
to D < a, Jeffreys limit to small a and D, Boussinesq limit to the additional requirement
D << a.

We have also studied two variants of the stability problem (quasi-Boussinesq and quasi-
ALA models), which are in the spirit of the Boussinesq and of the anelastic liquid models.
Approximate analytical expressions have been obtained for the discrepancy of the critical
superadiabatic Rayleigh number obtained with these two models (see the general expres-
sions (8.34) and (8.35)). Although our study does not provide any indication concerning
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in critical suparadiabatic Rayleigh numbers induced in the quasi-Boussinesq and quasi-
ALA approximations have been found to depend on fewer parameters α̂, D, D̃, E, F and
G, in effect on the expansion of the specific volume up to degree two in temperature and
pressure.

Let us summarize our main conclusions, as a list of key points:
(a) a projection of the eigenmode on just two modes, cos(πz) and sin(2πz), provides

a very good approximation of the critical superadiabatic Rayleigh number, without any
assumption on the equation of state;

(b) for small values of the dimensionless temperature gradient and dissipation number,
a and D, the two-modes analysis shows that the critical superadiabatic Rayleigh number,
RaSA, departs quadratically in a and D from Rayleigh’s value 27π4/4;

(c) when comparing compressibility effects to thermal effects, one should in general
compare D̃ to a (rather than D to a);
(d) nevertheless the specific quadratic departure of RaSA from 27π4/4 depends on the

expansion of the equation of state ρ(T, p) up to the degree 3 in T and p;
(e) quasi-anelastic liquid and quasi-Boussinesq approximations have been derived and

compared to the exact analysis: as soon as D̃ exceeds a, the quasi-ALA (quasi anelastic
liquid approximation) performs better than the quasi-Boussinesq approximation;

(f) the differences between the quasi-ALA or quasi-Boussinesq approximations with
the exact analysis depend on the expansion of the equation of state ρ(T, p) up to the
degree 2 only;

(g) those differences do not depend on the exact definition of the superadiabatic tem-
perature difference.

Our results are in principle valid for any equation of state, hence the introduction
of a generic equation of state. We have tested it against the ideal gas equation and
Murnaghan’s equation of state for condensed matter. Other equations of state might be
considered, like those concerning fluids in the vicinity of the critical point, which are the
subject of a number of papers devoted to the threshold of convection (Ahlers et al. 2010;
Mayer and Kogan 2002).

A feature of our two-mode analysis is that we have treated the equations of thermo-
dynamics as rigorously as those of fluid mechanics. There are thermodynamic relations
between α, cp, γ and other parameters (Alboussière and Ricard 2013, 2014), so that it is
not exact to assume independent expansions of all parameters in terms of temperature
and pressure. Our analysis is based on the general form of an equation of state with
coherent associated expressions for the heat capacities.
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