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Abstract6

Although the mass distribution of planetesimals during the early stages of planetary formation
has been discussed in various studies, this is not the case for their temperature distribution. Mass
and temperature distributions are closely linked, since the ability of planetesimals to dissipate the
heat produced by both radioactive decay and impacts is related to their size and hence mass. Here,
we propose a simple model of the evolution of the joint mass-temperature distribution through a
formalism that encompasses the classic statistical approach of Wetherill (1990). We compute the
statistical distribution of planetesimals by using simple rules for aggregation. Although melting
temperatures can be easily reached, the formation of molten planetary embryos requires that
they be formed in only a few 100 kyr. Our aggregation model, which even ignores fragmentation
during collision, predicts that planetesimals with radii less than approximately 20 km will not
melt during their formation.
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1. Introduction8

During the earlier stages of planetary accretion, the mass distribution of planetesimals evolved9

through collisions (i.e., merging of planetesimals). This process of planetary accretion has been10

initially described analytically with conceptual and statistical models (Wetherill & Stewart, 1989;11

Wetherill, 1990) and then including a more realistic physics (e.g., Kenyon & Luu, 1998). Re-12

cently the dramatic increase in computer capabilities has allowed the researchers to simulate the13

accretion with N-body simulations. However, models that end up with a planetary system some-14

what akin to ours are still based on assumptions that are not fully justified and are sometimes15

contradictory such as a specific density profile in the nebula (Izidoro et al., 2014), a complex16

radial drift of the giant planets (the grand tack model of Walsh et al. (2011)) or a specific pro-17

duction of small scale planetesimals (the pebble model of Lambrechts & Johansen (2012) and18

Levison et al. (2015)). For obvious computational limitations, the N-body codes can only deal19

with a large but limited number of gravitating objects and a limited number of simulations and20

therefore does not efficiently explore the field of possible solutions. The exact distribution of21

planetesimal sizes as a function of time and distance to the sun is still poorly known.22

Although the distribution of planetesimal sizes has been addressed, this is not the case for23

their thermal evolution and distribution in temperatures. In between collisions, the internal tem-24

perature of the planetesimals varied by radioactive heat release, mostly the decay of 26Al, (Lee25

et al., 1976) and radiative heat loss at their surface. Collisions were also accompanied by a par-26

tial release of the impactor’s kinetic energy into the target planetesimal (Tonks & Melosh, 1993;27
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Monteux et al., 2009). Gravitational energy release during planetesimal differentiation was a last28

source of thermal energy (Birch, 1965; Flasar & Birch, 1973; Ricard et al., 2009). Dissipation29

of impact energy and gravitational heat release, related to gravity, required an already large mass30

for the planetesimal.31

Various studies have produced models of accretion for a planetesimal by imposing a given32

history of formation (e.g., Senshu et al., 2002; Yoshino et al., 2003; Merk & Prialnik, 2003;33

Walter & Tronnes, 2004; Merk & Prialnik, 2006; Sramek et al., 2012). However, as the resulting34

temperatures are strong functions of the accretion history (Merk et al., 2002; Sramek et al.,35

2012), a statistical evaluation of the joint distribution of temperatures and sizes is needed and36

is therefore presented in the rest of this paper. For this novel attempt, it would be a formidable37

task to couple the most sophisticated N-body models of planetary accretion to a precise model38

of temperature evolution inside each planetesimal. We therefore use the classic and versatile39

statistical approach of Wetherill (1990) for accretion and put our effort onto the thermal evolution40

of the planetesimals.41

2. Statistical distribution of masses and temperatures42

2.1. Mass distribution evolution during coalescence43

There are various domains of science where large bodies are produced by a discontinuous44

coalescence of smaller units. Such processes occur in chemistry (e.g., in polymer production;45

Stockmayer, 1943), in aerosol formation and growth (e.g., Gelbard & Seinfeld, 1979; Pilinis,46

1990), in life science (e.g., during cellular or population growth; Neelamegham et al., 1997;47

Ackleh & Fitzpatrick, 1997) and is central to planetary accretion (Wetherill & Stewart, 1989;48

Wetherill, 1990; Inaba et al., 1999, 2001). The reverse process occurs in the case of forming49

small bodies by fragmentation of a larger one (Wetherill & Stewart, 1993; Collet, 2004). In a50

very general approach, the number of bodies dN with masses between m − dm/2 and m + dm/251

(or with size R, between R − dR/2 and R + dR/2, although using a conserved quantity like52

mass is more convenient) is defined by a distribution functionV(t,m) in kg−1 (i.e., in number of53

planetesimals in a mass interval of 1 kg)54

dN = Vdm. (1)55

This mass distribution evolves with time according to56

dV
dt

= Γ (2)57

where Γ(t,m,V) (in kg−1s−1) is the rate of formation of bodies of size m at time t; Γ must58

also satisfy mass conservation and is therefore a function of the distribution V(t,m) itself. In59

equation (2), we use a d/dt for the time derivative instead of a ∂/∂t to remind that the distribution60

can also be advected by a velocity field. Analysis of the evolution of size distribution has long61

history starting from von Smoluchowski (1917) (see reviews from Collet & Goudon (2000);62

Collet (2004); Leyvraz (2005)).63

2.2. Mass distribution evolution by continuous process64

Contrary to the ”discontinuous” processes of coalescence/fragmentation that change the num-65

ber of objects that are interacting, ”continuous” processes can modify the mass distribution of66
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a collection of objects without changing their number. For exemple, in material sciences, the67

size distribution of solid grains solidifying from a melt and their coarsening through time has68

been the subject of research for many decades (e.g., Lifshitz & Slyozov, 1961; Hillert, 1965).69

The population of grains of a given mass evolves continuously by mass diffusion with grains70

belonging to immediate neighboring populations (i.e., the population of masses in the range71

[m − dm/2,m + dm/2] gets or loses mass from populations in the ranges [m − 3dm/2,m − dm/2]72

and [m + dm/2,m + 3dm/2]). This process has been described by the equation73

dV
dt

+
∂ṁV
∂m

= 0, (3)74

where ṁ is the rate of change of mass for a given coarsening grain (Lifshitz & Slyozov, 1961;75

Hillert, 1965). Notice that equation (3) is the four-dimensional generalization of the usual con-76

servation equation in three dimensions; to wit, in the space (x, y, z,m), the velocity is v4 =77

(vx, vy, vz, ṁ), the gradient operator is ∇4 = (∂/∂x, ∂/∂y, ∂/∂z, ∂/∂m) and the distribution obeys78

∂V/∂t+∇4(v4V) = 0. This 4-D formalism used in Ricard & Bercovici (2009) could be extended79

to account for other continuous variables (see e.g., Randolph & Larson, 1988).80

2.3. General mass distribution evolution81

Of course, both continuous and discontinuous processes can occur simultaneously, controlled82

by an equation of the general form83

dV
dt

+
∂ṁV
∂m

= Γ. (4)84

We proposed a model for the grain size evolution of planetary mantle material based on this85

equation where grain coarsening occurs continuously but where grain comminution (recrystal-86

lization, fragmentation) occurs discontinuously (Ricard & Bercovici, 2009). This approach has87

been shown to be in agreement with experiments (Rozel et al., 2011) and when coupled with a88

rheological model and extended into two-phases to allow interaction between immiscible com-89

ponents, i.e. through Zener pinning, can be used to help explain the occurrence on plate tectonics90

on Earth (Bercovici & Ricard, 2012, 2013, 2014).91

2.4. Mass and thermal energy distribution of planetesimals92

We now add the thermal energy as a new variable and identify a planetesimal in mass and93

energy space with the notation “(m, ε)”, which in fact represents a planetesimal with mass and94

thermal energy in the ranges [m−dm/2,m + dm/2] and [ε−dε/2, ε+ dε/2]. There are dn(t,m, ε)95

such planetesimals so that96

dn =W dmdε (5)

whereW(t,m, ε) (in kg−1J−1) is the mass and energy distribution of planetesimals.97

The histogram of planetesimal propertiesW(t,m, ε) evolves by merging and breaking plan-98

etesimals. It also evolves by radioactive heat production, dissipation, heat diffusion and radiation99

of each planetesimal. We call Θ(t,m, ε,W) (in kg−1J−1s−1) the rate of creation or annihilation100

of a planetesimal of mass m and energy ε, by discontinuous processes. This accounts for either101

the formation of a new body (with unique mass and energy) from the collision of two smaller102

planetesimals, or the “disappearance” of a body from the mass-energy space after its collision103
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with another planetesimal. This rate is a function of time and of the dynamics of the planetesi-104

mals; e.g., the interaction of planetesimals depends on their effective collisional cross sections,105

which are related to their masses (i.e., to their radii or their gravity which, assuming that they106

have comparable densities, are simple functions of their masses). Mass and energy conserva-107

tion laws require that Θ(t,m, e,W) is also a function of the distribution W(t,m, ε) itself (e.g.,108

planetesimals that do not exist cannot disappear, thus Θ(t,m, ε,W) cannot be negative when109

W(t,m, ε) = 0). On the contrary, radioactive decay and heat radiation change the energy of an110

isolated planetesimal and thus are continuous processes. We call ε̇(t,m, ε) the rate at which a111

planetesimal (m, ε) increases its internal energy. The evolution of the mass-energy distribution112

W(t,m, ε) is governed by113

dW
dt

+
∂ε̇W

∂ε
= Θ. (6)114

This is akin to (3) with ε instead of m being a continuous variable. This equation (6) can be115

integrated over all possible energies. The total number of planetesimals dN between masses116

m − dm/2 and m + dm/2, whatever their energies (defined in eq.(1)), is related to dn by dN =117 ∫
ε

dn = dm
∫
ε
Wdε where the integration is over all possible energies. ThereforeW and V are118

related by119

V =

∫
ε

Wdε, (7)

and V is the marginal probability ofW. Similarly, the integration over all possible energies of120

Θ (the rate of creation/annihilation or a planetesimal of given mass and energy) is Γ (the rate of121

creation/annihilation or a planetesimal of given mass)122

Γ =

∫
ε

Θdε. (8)

The integration in energy of the second term of the left side of (6) is zero as it is [ε̇W]∞ε=0 = 0123

(ε̇ = 0 for ε = 0 and there are no planetesimals of infinite energy). Therefore the equation (2)124

results from the integration over all energies of the equation (6).125

3. Changes in thermal energy and number of planetesimals126

3.1. Continuous change of thermal energy of a planetesimal127

We define the thermal energy of each planetesimal128

ε(t) =

∫
4πr2ρC (T (r, t) − T∞) dr (9)

where C is heat capacity, ρ density, T∞ the background temperature in the nebula (numerical129

values are listed in Table 1) and T (r, t) the radial temperature profile in the planetesimal at radius130

r and time t. In between collisions, the thermal energy of each planetesimal varies according to131

the heat equation132

ε̇(t) =
∂ε

∂t
= −φ(t) + mH0e−t/τ (10)

where φ(t) = 4πR2q(t) is the heat flow radiated at the surface of a planetesimal, q(t) the time133

dependent local heat flow, H0 the initial radioactive power content in W kg−1 and τ the radioactive134

decay time.135
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To solve the differential equation (10), we need to relate the heat flow φ(t) to the thermal136

energy ε(t). This can only be done approximately as it would be numerically impossible to137

monitor the temperature profile in each of the planetesimals that we want to consider (we will138

use typically 1024 planetesimals in our simulations). We therefore assume that the temperature139

in the planetesimals are self-similar with140

T (r, t) = T∞ + (T (0, t) − T∞) f (r/R) (11)

where T (0, t) is the central temperature of the planetesimals and where the boundary conditions141

are f (0) = 1, f (1) = 0. The self similarity of the thermal profile is a strong assumption that142

should be valid before planetesimals start to convect. Using (9) and (11) it is easy to compute143

that the thermal energy is144

ε(t) = 4πρC(T (0, t) − T∞)R3
∫ 1

0
f (u)u2 du (12)

and the surface heat flow with q = −kdT/dr|r=R145

φ(t) = −4πRk(T (0, t) − T∞) f ′(1) (13)

where f ′(1) is the derivative of f (u) for u = 1. The unknown temperature increase T (0, t) − T∞146

can be eliminated between (12) and (13) and expressing R as a function of m, we write the heat147

equation as148

ε̇(t) = −a
(

4πρ
3

)2/3

κε(t)m−2/3 + mH0e−t/τ (14)

where κ is the thermal diffusivity and a is the constant149

a = f ′(1)/
∫ 1

0
f (u)u2 du. (15)

The exact value of the constant a depends of course of the temperature profile and therefore of150

f (u). However whether we assume that the temperature profiles are linear with the radius (i.e.,151

f (u) = 1 − u), quadratic ( f (u) = 1 − u2) or cubic ( f (u) = 1 − u3), the resulting value of a is not152

very different as these choices lead to a = 12, a = 15 and a = 18, respectively. In our code we153

use a = 15 which corresponds to an assumed parabolic temperature profile in the planetesimals.154

This estimate of the diffusive heat flow is exact for a planet in steady state equilibrium.155

In deriving this model of heat transfer we make various assumptions. First, we considered156

that the characteristic length of thermal diffusion is the planetesimal radius R. This holds until157

temperatures reach ≈1300 K and above, when the metal and then the silicates start melting and158

convecting (Agee et al., 1995; Hirschmann, 2000). At such large temperatures, the diffusive159

transfer of energy occurs through a boundary thickness δ. For example, Spohn & Schubert160

(1982) use, for a generic planet, q(t) = k(T (0, t) − T∞)/δ where δ ∝ Ra−1/3 is a function of the161

Rayleigh number, Ra, of the convecting planetesimal. This has not been done here but could be162

implemented by choosing a rheology for the planetesimals. The latent heat of melting could also163

be accounted for.164

We also considered that planetesimal accretion occurs at constant background temperature165

T∞. The temperatures arrived at from various nebular models (e.g., Morfill & Wood, 1989)166
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Parameters
ρ density 4028 kg m−3

κ diffusivity 3. × 10−6 m2 s−1

C heat capacity 938 J K−1 kg−1

H0 initial radioactive power 1.5 × 10−7 W kg−1

τ1/2
26Al half life 0.717 Myr

τ 26Al decay constant 1.034 Myr
σ Stefan-Bolzmann constant 5.67 × 10−8 W m−2 K−4

15(4πρ/3)2/3κ see (14) 0.03 kg2/3 s−1

Table 1: Parameters used in the calculations following Sramek et al. (2012).

range from 1000 K decreasing to ≈ 300 K at 3 AU (Weidenschilling, 1988). We assume that the167

accretion occurs locally without a global drift of the planetesimals with respect to the sun. In this168

case, all the temperatures that we discuss later are in fact temperature differences with respect to169

T∞ and when needed in numerical estimates we use T∞ = 300 K.170

At last we assume that the surface temperature remains equal to T∞. This is reasonable171

because the heat flow of internal origin q(t) is negligible in comparison to the equilibrium black-172

body radiation σT 4
∞ (σ is the Stefan-Boltzmann constant). The surface temperature of a plan-173

etesimal T (R, t) must only be a few K above T∞ to radiate its internal heat according to the heat174

flow balance175

σT (R, t)4 = σT 4
∞ + q(t). (16)

For example, a 500 km radius planetesimal (Vesta size) formed where the background tempera-176

ture was T∞ = 300 K only needed to have a surface temperature 15 K hotter than T∞ to radiate177

the internal heat flow q = ρH0R/3 (see numerical values in Table 1, and we will see later that178

this heat flow corresponding to that released at steady state by a planetesimal with a constant179

and uniform radioactive power is largely overestimated). For a planet, the difference between180

T (R, t) and T∞ is larger as it increases with the internal heat flow (proportional to R for a con-181

stant heat source), but the average temperature of a large body is mostly a function of its internal182

radioactivity and gravitational energy and not of its surface condition.183

3.2. Discontinuous changes of thermal energy during impact184

Assuming that two planetesimals of masses mi and mk and equal density ρ are attracted185

from an infinite distance by their respective gravities, their kinetic energy just before collision186

(assuming they can be considered as point masses) is187

K = G
(

4πρ
3

)1/3 mimk

m1/3
i + m1/3

k

(17)

During the collision, most of this kinetic energy is rapidly radiated away but some is buried in188

the resulting planet by the penetration of the impactor and the propagation and dissipation of189

a shock wave. A fraction f = 20-40% of the impactor kinetic energy is typically converted to190

thermal energy (depending of the impactor mass, obliquity of the impact, etc. see e.g. O’Keefe191

& Ahrens, 1977; Pierazzo & Melosh, 2000; Sramek et al., 2012). We therefore consider that192

a thermal energy ∆ε = f K with f = 0.2 is deposited in the newly formed planetesimal. The193
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temperature increase mostly occurs in a volume beneath the impact point. However a large194

number of impacts occur randomly at the surface of each planetesimal in time intervals short195

compared to their accretion time. Therefore in our simple thermal model we can assume that this196

energy input is immediately redistributed throughout the whole planetesimal which then keeps197

its self similar and radially symmetric thermal profile. Mathematically, each impact corresponds198

in our model to a discontinuous increase of the temperature T (0, t) of the planetesimal and of its199

radius R (see (11)).200

The importance of impact heating depends of the rate of collision, however, a simple nu-201

merical estimate using (17) shows that until impactors reach 1020 kg (≈ 181 km radius), the202

temperature increase due to the collision of planetesimals, ∆ε/(mi + mk)C, is only 1.96 K. This203

thermal contribution increases very rapidly with the radius of impacted planetesimal and be-204

comes the major cause of melting in planetary embryos. More precisely, the dissipation of the205

total kinetic energy of all the impactors that formed a planet of radius R or mass M (often called206

the gravitational energy of a planet, Solomon (1979), see also Sramek et al. (2010)) is associated207

with the temperature increase208

∆Tg = f
4π
5

GρR2

C
= f

3
5

(
4πρ

3

)1/3 GM2/3

C
. (18)

In the following, we will show simulations of planet accretion starting from a swarm of total209

mass M = 1024 kg. Therefore a source of gravitational potential energy which is able to raise the210

temperature by ≈2000 K is available if the simulation results in the formation of a single planet.211

3.3. Changes of the planetesimal distribution212

Although we are far from having discussed the necessary properties of Θ(t,m, ε,W) and the213

general solutions of equation (6), it is instructive to describe first how we deal numerically with214

the problem before presenting more theoretical considerations. The mathematical tools involve215

multiple integrals and distributions and therefore a level of complexity that obscures the physical216

simplicity of the process. The process is indeed straightforward and reflects the principle of the217

Smoluchovski aggregation with a drift term:218

1. Jump: in the mass-energy distribution, we consider the planetesimals (m1, ε1) and (m2, ε2);219

if they merge at time t, we remove them from their respective distributions (i.e., subtract 1220

each fromW(t,m1, ε1) and fromW(t,m2, ε2)) and add a new planetesimal (m1 + m2, ε1 +221

ε2 + ∆ε) to the appropriate distribution (i.e., add 1 toW(t,m1 + m2, ε1 + ε2 + ∆ε) as mass222

is conserved and as thermal energy can be increased by impact heating ∆ε).223

2. Drift: during a time step dt, each planetesimal changes its energy continuously, so that each224

planetesimal (m, ε) leaves the distribution to be reintroduced as (m, ε + ε̇dt) (i.e., subtract225

1 fromW(t,m, ε), and add 1 toW(t,m, ε + ε̇dt))226

The numerical code corresponding to this process, generalizes in the m − ε space what has227

been used in Inaba et al. (1999, 2001) following Wetherill (1990). We sample the m − ε space in228

[i, j] bins; each bin contains Ni j planetesimals with masses betweenMi andMi+1 and energies229

between E j and E j+1 (see Fig. 1). The total mass of all the planetesimals of the bin [i, j] is Mi j230

and their total energy is Ei j, so that each planetesimal of the bin [i, j] has, on average, a mass mi j231

withMi ≤ mi j ≤ Mi+1,232

mi j =
Mi j

Ni j
(19)
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and an energy εi j with E j ≤ εi j ≤ E j+1,233

εi j =
Ei j

Ni j
(20)

We call Λ(i, j, k, l) (in s−1) the rate at which planetesimals in bins [i, j] and [k, l] can merge.234

It seems reasonable to assume that the rates of collision are functions of the planetesimal cross235

sections related to their radii and masses, not of their internal energies (although, one may argue236

that the sticking efficiency of a planetesimal collision may be affected by their thermal energies,237

see Wettlaufer (2010)). We therefore consider that Λ(i, j, k, l) is only a function of the the masses238

mi j and mkl of the colliding planetesimals) and write it Λ(mi j,mkl). The rate Λ(mi j,mkl) is usually239

call the “coagulation kernel” (e.g. Wetherill, 1990; Collet, 2004).240

The number of collisions during the time step dt, between the planetesimals of two different241

interacting bins is242

dN = Ni jNklΛ(mi j,mkl)dt. (21)

Planetesimals can also coalesce with planetesimals from the same bin in which case243

dN =
1
2

Ni j(Ni j − 1)Λ(mi j,mi j)dt (22)

(a given planetesimal cannot merge with itself and the factor of 1/2 precludes counting [i, j] and244

[k, l] = [i, j] as two different populations). Therefore using a Kronecker symbol δi j (unity for245

i = j, and zero otherwise), we have, in the general case, dN collisions between bins [i, j] and246

[k, l] with247

dN =
Ni j(Nkl − δikδ jl)

1 + δikδ jl
Λ(mi j,mkl)dt. (23)

The merging of the planetesimals (mi j, εi j) and (mkl, εkl) results in a planetesimal (mpq, εpq) be-248

longing to the bin [p, q] (i.e.,Mp ≤ mi j +mkl <Mp+1 and Eq ≤ εi j +εkl +∆ε < Eq+1). Therefore,249

in the bin [i, j] we remove dN planetesimals, decrease the total mass by mi jdN and the total250

energy by εi jdN, in the bin [k, l] we also remove dN planetesimals, decrease the total mass by251

mkldN and the total energy by εkldN, while in the bin [p, q] we add dN planetesimals, and in-252

crease the total mass by (mi j + mkl)dN and the total energy by (εi j + εkl + ∆ε)dN. Notice that the253

bin [p, q] can be identical to the bin [i, j] that contained the largest planetesimals when a large254

target receives a small impactor (see green dots in Fig. 1)255

During the time dt, the energy εi j of a planetesimal belonging to the bin [i, j] changes con-256

tinuously by dεi j257

dεi j = ε̇(t,mi j, εi j)dt. (24)

This change of energy brings these planetesimals to the bin [i, k] (the mass bin i does not change258

but they move to the energy bin k where Ek ≤ εi j + dεi j ≤ Ek+1). We therefore remove the Ni j259

planetesimals, with their total mass Mi j and total energy Ei j from the bin [i, j] and add these Ni j260

planetesimals, with their total mass Mi j and total energy Ei j + Ni jdεi j in the bin [i, k]. The bin261

[i, k] may or may not be the same as the bin [i, j] (see the blue and purple dots of Fig. 1).262

Although this redistribution of the planetesimals in the (m, ε) space may seem convoluted, it263

is simple to code. A difficulty is the fact that the number of planetesimals is an integer number.264

The number of collisions dN is rounded to the integer below or above using a random function265

so that we only form an integer number of planetesimals and never a fraction of planetesimal,266
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Figure 1: Evolution ofW(m, ε) in the m − ε space during discontinuous and continuous processes. Two planetesimals
(m1, ε1) and (m2, ε2) can collide and merge to form the new planetesimal (m3, ε3) (red and green). The new planetesimal
has a mass m3 = m1 + m2 and an energy ε3 = ε1 + ε2 + ∆ε. Between the episodes of collision, the thermal energy of the
planetesimal can also decrease by diffusion and radiation or increase by internal radioactivity decay (blue and purple).
The final bin is sometimes identical to the initial bin (green or purple cases).

which would be unphysical. To choose the time stepping dt we compute the changes dNi j (which267

are proportional to dt, at least if one neglects the random rounding of numbers) in the bins that268

contain Ni j planetesimals and impose269

max
(

−dNi j

0.1(Ni j − 1) + 1

)
= 1 for dNi j < 0 (25)

so that, when Ni j is large, the number of planetesimals that can be removed from the bin [i, j] is270

at most 10% of the population, but in the case where there is just 1 planetesimal in the bin [i, j],271

it can be removed.272

Finally, because of the exponential nature of the aggregation process, we use an exponen-273

tial distribution of the bins for the mass (i.e., the mass bin i corresponds to the interval in kg,274

[δi−3/2, δi−1/2] with δ = 1.15 (starting from 1 kg pebbles to built an embryo of O(1020) kg, the275

maximum number of mass bin imax must be at least 330). Instead of discussing our results276

in terms of thermal energies, we rather present our results in terms of temperature excess, i.e.,277

εi j/(mi jC) and for the temperature description we sometimes use a linear distribution for the tem-278

perature bins ∆T [ j−3/2, j−1/2], with a temperature interval ∆T of typically 5 K , sometimes an279

exponential distribution in K, [δ j−3/2, δ j−1/2] (with typically δ = 1.15, the first interval is replaced280

by [0,
√
δ]). The code being barely four embedded loops explores (imax × jmax)2 combinations281

per iteration in time (imax and jmax are maximum number of bins in mass and energy), we try282

to keep imax × jmax reasonably small to run a simulation in less than a few days on our standard283

workstation.284
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3.4. Remarks on dimensions285

We write Λ(m,m′) = cΛ̃(m̃, m̃′) where Λ̃ is a dimensionless function of the dimensionless286

masses m̃ = m/m0 and m̃′ = m′/m0 where m0 is the mass of the smallest planetesimals. In this287

case, the constant c is in s−1. We then normalize the number of planetesimal of a given size by288

N0, the initial total number of planetesimals, and rewrite (23) as289

dÑ ≈
Ñi jÑkl

1 + δikδ jl
Λ̃(m̃i j, m̃kl) dt̃. (26)

(neglecting the very small δikδ jl/N0) where we have defined the non-dimensional time t̃ = cN0t,290

wherein 1/(cN0) becomes the intrinsic time scale. Normalizing ε by m0H0/(cN0), the energy291

evolution (14) becomes292

dε̃
dt̃

= −Aε̃m̃−2/3 + m̃e−t̃/τ̃ (27)

where all the variables with tilde are non dimensional and293

A = 15
(

4πρ
3m0

)2/3
κ

cN0
and τ̃ = cN0τ (28)

We can therefore explore our parameter space by choosing the time scale 1/(cN0) and the initial294

mass m0 of the smaller planetesimals assuming their density and thermal diffusivity are known.295

The joint mass-temperature distribution depends on the choices of the aggregation kernel, the296

time scale and the mass of the smallest pebbles. However, the mass distribution integrated in en-297

ergyV only depends on the aggregation kernel as (26) does not include any other free parameter.298

3.5. Continuous representation of the changes of the planetesimal distribution299

Although the numerical implementation of the equations that we have discussed may suf-300

fice, a few useful properties can be derived by using a continuous representation of the mass and301

energy distribution. This representation will also make the connection with the classic Smolu-302

chovski formalism (von Smoluchowski, 1917) and with other results (Collet & Goudon, 2000;303

Collet, 2004; Leyvraz, 2005).304

A new planetesimal (m, ε) can be formed by merging the planetesimal (m′, ε′) with m′ < m305

with the complementary planetesimal (m”, ε”) with m” = m −m′, and ε” = ε − ε′ − ∆ε. The rate306

of merging is therefore related to the product of the number of planetesimals of mass and energy307

of both (m′, ε′) and (m − m′, ε − ε′ − ∆ε) times the rate of reaction Λ(m′,m − m′) between these308

two populations. We assume this rate to be independent of the energies and only related to their309

masses. The increase of planetesimal population due to planetesimal merging is therefore310

Θ1(m, ε) =
1
2

∫∫
Λ(m′,m − m′)W(m′, ε′)W(m − m′, ε − ε′ − ∆ε) dm′dε′ (29)

where the dependence on t is implicit. The integrals are over all possible masses and energies311

where the quantities of (29) are defined and the factor 1/2 takes into account the fact that the312

same merging pair is counted two times (i.e. as (m′, ε′) − (m”, ε”) and as (m”, ε”) − (m′, ε′)).313

Of course, in this merging process, the number of planetesimals in the bin [m, ε] decreases314

at the rate Θ2(m, ε) because these planetesimals merge with over planetesimals in the bin [m′, ε′]315

and thus leave their original bin. The rate of decrease is related to the number of planetesimals316
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in [m, ε] times the number of planetesimals in [m′, ε′] times their rate of interaction Λ(m,m′),317

Θ2(m, ε) = −

∫∫
Λ(m,m′)W(m, ε)W(m′, ε′) dm′dε′ (30)

The total rate of planetesimal exchange through discontinuous process is therefore the sum318

Θ = Θ1 + Θ2. This sum generalizes the coagulation equations proposed by von Smoluchowski319

(1917) to include energy distributions, and a symmetrical relation for it can also be derived,320

similar to what is obtained in Leyvraz (2005):321

Θ =
1
2

∫∫∫∫
R(m′,m”, ε′, ε”)D(m,m′,m”, ε, ε′, ε”) dm′dm”dε′dε” (31)

where322

R = Λ(m′,m”)W(m′, ε′)W(m”, ε”)
D = δ(m − m′ − m”)δ(ε − ε′ − ε” − ∆ε) − δ(m − m′)δ(ε − ε′) − δ(m − m”)δ(ε − ε”).

(32)

In this last expression δ is the Dirac distribution. This complex expression simply summarizes323

with a continuous representation what we have discussed in the presentation of the numerical324

implementation.325

The integral of the three Dirac delta-functions of D containing energies, over all possible326

energies ε in (32), are each time 1, and therefore the evolution of the distribution integrated over327

all possible energies satisfies (2) with328

Γ =

∫
Θde =

1
2

∫∫
R̃(m′,m”)D̃(m,m′,m”)dm′dm” (33)

where329

R̃ = Λ(m′,m”)V(m′)V(m”)

D̃ = δ(m − m′ − m”) − δ(m − m′) − δ(m − m”).
(34)

This is exactly equivalent to the classic coagulation equations of Smoluchowski, (2) (von Smolu-330

chowski, 1917; Leyvraz, 2005). Using the continuous expressions (31)-(32), we verify in the331

Appendix that our formalism conserves mass, leads to a decrease in the number of planetesi-332

mals, and provides an expression for the evolution with time of the total thermal energy of the333

swarm.334

4. Benchmark test: thermal “mixing” of a swarm with Λ(m, m′) = cmm′335

4.1. Analytical solutions336

Although no analytic solutions for a mass-energy distribution W satisfying (6), (31) and337

(32) exist, a few solutions are known for mass distribution V =
∫
W de when Λ is simple338

enough, i.e., when Λ(m,m′) = c, Λ(m,m′) = c(m + m′), or Λ(m,m′) = cmm′ and c constant339

(von Smoluchowski, 1917; Safronov, 1962; Trubnikov, 1971; Wetherill, 1990; Collet & Goudon,340

2000).341

These solutions assume that all the planetesimals are formed by the successive coalescence342

of planetesimals of initial, identical masses m0, so that all planetesimals have a mass multiple343
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of m0 and that the nondimensional kernels of the interaction of planetesimals of nondimensional344

masses i and j are Λi j = 1, i + j or i× j. The number nk of planetesimals of mass km0 is therefore345

dnk

dt
=

1
2

∑
i

∑
j

Λi jnin j(δ(k − i − j) − δ(k − i) − δ(k − j)) =
1
2

∑
i+ j=k

Λi jnin j − nk

∑
i

Λikni. (35)

This equation is the discrete equivalent of (31) integrated in energy, see (33). We refer to Collet346

& Goudon (2000) or Leyvraz (2005) for the details of finding solutions, but we can briefly sketch347

the method here. First, we note that when Λik = 1, the last term of (35) is
∑

i Λikni =
∑

i ni = N(t)348

where N(t) is the total number of objects, which is a known quantity because according to (A.6),349

Ṅ(t) = −(c/2)N(t)2. Similarly this last term of (35) is also known when Λik ∝ i as
∑

i Λikni ∝350 ∑
i ini = M0 the total mass of planetesimals, which is constant (the nondimensional total mass351

is also the initial number of pebbles N0). Therefore when Λi j = 1, Λi j = i + j, or Λi j = i × j,352

the sum appearing in the last term of (35) is analytically known and the solution can be found by353

recurrence as the evolution of nk is only related to the total mass (a constant), the total number of354

planetesimals (known, see A.6) and the number of planetesimals of masses smaller than k. The355

discrete equation (35) or its continuous equivalent (2), (33) and (34) have therefore been solved356

analytically in the three cases described above and numerically in other cases.357

In a physical problem with no intrinsic length scale, solutions can be searched on the form of358

self similar expressions and therefore assuming359

V(t,m) = F(t)G
(

m
m(t)

)
(36)

where m(t) is the average mass of the planetesimals at time t and G a shape function. The360

conservation of the mass of the planetesimal swarm (i.e., the conservation of
∫

mV dm) readily361

implies that the amplitude F(t) is proportional to m(t)−2. By plugging the expression (36) into362

(2), (33) and (34), self similar solutions can be found after some algebra (see Ricard & Bercovici,363

2009). In the case where Λ(m,m′) varies like (m + m′)α or (mm′)α/2, it can be shown that dm/dt364

must be proportional to mα. When α is 0, 1, or 2 (e.g., when Λ(m,m′) = c, c(m + m′) or cmm′),365

self similar solutions if they exist, imply that the average mass of the planetesimals m increases366

like m0 + a0t, m0 exp(a1t) and m0/(1 − a2t) respectively (with a0, a1 and a2 constants). In the367

following, we will also discuss the cases Λ = c(m+m′)2/3 and c(m+m′)4/3 which should have self368

similar solutions with m varying like m0 + a4t3 and m0/(1− a5t3) (with a4 and a5 constants). The369

existence of self similarity implies that m2V(t,m) ∝ u2G(u) plotted as a function of u = m/m(t)370

is independent of time, and plotted as a function of m looks like propagating as a function of time371

(or of m(t) which is an increasing function of time, Ohtsuki et al. (1990), Wetherill (1990)).372

The existence of self similar solutions for (2) does not mean that these solutions are indeed373

chosen in a naturally evolving situation. In fact, these self similar solutions are the correct ones374

only in the case α < 1; this corresponds to what Wetherill called an orderly growth of the375

planetesimal swarm. When α > 1 the average mass seems surprisingly to reach infinity after376

a finite time which is obviously absurd as m is necessarily bounded by the initial mass of the377

swarm. What happens in these cases, is a phenomenon called “gelation”. After a critical time,378

the mass distribution splits and a single large body escapes from the continuous distribution.379

This “runaway” planetesimal is known to be formed during planet accretion and the critical time380

at which it is formed defines the early stage of runaway growth to the later stages of oligarchic381

growth where several planet embryos interact (Kortenkamp et al., 2000).382
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As the formation of planets occurred in a runaway process, it involved a coagulation kernel383

where masses appeared with a power α larger than 1. We therefore benchmark our code in384

the case Λ(m,m′) = cmm′ with the analytic non-dimensional solution found when Λi j = i × j.385

According to Trubnikov (1971), the number nk of planetesimals of mass k is386

nk = N0
kk−2

k!
tk−1 exp(−kt) ≈ N0

exp(k)
√

2πk5
tk−1 exp(−kt) (37)

where the approximation makes use of Stirling’s formulae (i.e., the approximation of a factorial387

for large numbers). This solution is valid until the runaway occurs at t = 1. At this time, a single388

runaway planet is formed and leaves a swarm of small planetesimals with a distribution still given389

by (37) (i.e., (37) remains correct except that it misses a single large planetesimal when t > 1;390

see e.g., Wetherill, 1990).391

4.2. Mixing two populations with Λ(m,m′) = cmm′ and ε̇ = 0392

We choose as a benchmark test, Λ(m,m′) = cmm′ with arbitrarily cN0 = 1 Myr−1. This is393

similar to what has been used in Wetherill (1990) and the critical time for the onset of runaway394

is 1/(cN0) = 1 Myr. We assume ε̇ = 0 but start from N0 = 1024 planetesimals with equal masses395

(1 kg) where half of them are cold (T1 = 0 K) and half of them hot (T2 = 1000 K). We therefore396

study the mixing of these two populations and not surprisingly we expect that the accretion will397

lead to planetesimals of intermediate temperatures.398

Starting from a distribution where all planetesimals have the same mass, our test simulation399

must lead to a distributionW(t,m, ε) which, when integrated over energy, corresponds to (37).400

Specifically, nk in (37) is the number of planetesimals of mass km0, while in our numerical code401

we compute a number of planetesimals Nk j in bins of finite dimensions, where j is an energy402

bin and k the mass bin of width ∆mk that includes km0, thus, one expects that when ∆mk > 1,403 ∑
j Nk j ≈ nk∆mk.404

In Figure 2a, we plot the total number of planetesimals per mass interval whatever their405

thermal energies (i.e.
∑

j Nk j/∆mk) at various times. The results are similar to those depicted406

by Wetherill (1990, Fig. 5) and in close agreement with (37). The initial distribution (a Dirac δ407

at t = 0), becomes wider until t ≥ 1 Myr where a single embryo is formed reaching already a408

size of 1017 kg at t = 1.006 Myr. This embryo and its evolution cannot be plotted on the same409

graph (too large abscissae and too small ordinate). Simultaneously the remaining continuous410

distribution of sizes (with masses smaller than ≈ 106 kg) starts to shrink as the planetesimals411

fall on the runaway embryo. The total number of planetesimals per mass interval varies as m−5/2
412

around the critical time t = 1 Myr(Trubnikov, 1971). The total number of planetesimals (Figure413

2b) decreases linearly with time until t = 1 Myr (as the average planetesimal mass increases as414

1/(1 − a2t) for the kernel Λ(m,m′) = cmm′, before the embryo runaway); after t = 1 Myr, it415

decreases exponentially with time (Wetherill, 1990).416

The novelty of our model is in the joint evolution of mass and temperature distributions,417

which describes the mixing and aggregation of the two original populations (See Fig. 3). The418

distribution in mass-temperature space remains symmetric with respect to the average initial419

temperature (Fig. 3). The distribution of planetesimal temperatures is shown in Figure 4. A420

number of planetesimals of a few m0 masses and temperatures of order (n1T1 + n2T2)/(n1 + n2)421

where n1 and n2 are small integer numbers are rapidly formed. Not surprisingly, the runaway422

embryo formed at t ≈ 1 Myr has the average temperature of the two original swarms. The423

embryo contains already ≈ 50% of the total initial mass at t = 1.68 Myr (Fig. 3e). A large424
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Figure 2: Panel a: Evolution of the number of planetesimals per mass interval when the rate of merging is Λ(m,m′) =

cmm′. The simulation starts with N0 = 1024 identical planetesimals. Some bins with low masses are empty as the
merging of planetesimals of mass m0 cannot give a planetesimal of mass smaller than 2m0 which populates the 7th bin
(we use δ = 1.15 and δ7−3/2 ≤ 2 ≤ δ7−1/2). At t = 1 Myr, in agreement with the analytical solution, the distribution
of planetesimals becomes discontinuous and a single runaway embryo is formed (not shown). After the embryo is
formed, the number of small planetesimals decreases at they fall onto the runaway embryo, with the population of large
planetesimals being depleted first. Panel b: Total number of planetesimals as a function of time. This number decreases
linearly with time until the runaway embryo is formed (at t = 1 Myr), later the decrease becomes exponential (Wetherill,
1990).
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Figure 3: Joint mass-temperature distribution of planetesimals at different times, for the rate of merging Λ(m,m′) =

cmm′. We neglect radioactivity and heat diffusion. The swarm of planetesimals
at t = 0 is made of two populations with temperatures 0 and 1000 K. The number of planetesimals
per mass bin, integrated for all possible temperatures, is depicted in Figure 2. The number of
planetesimals per temperature bin, integrated for all possible sizes, is depicted in Figure (4). Not
surprisingly, the largest planetesimals, and the subsequent planet embryo, have approximatively
the average temperature 500 K. The slight dissymmetry of the distribution with respect to the
average distribution is rather introduced by the plotting method than by the stochastic rounding
of our code. In the panel (e), we changed the horizontal scale to show the large runaway embryo
of mass ≈ 5 × 1023 kg that has been formed.

number of very small planetesimals still survive at t = 3 Myr, slowly falling on the embryo (Fig.425

3f).426

5. Temperature evolution of a swarm of planetesimals427

5.1. The aggregation kernels428

As our code has now been benchmarked we can use it for more realistic simulations. Terres-429

trial planets were formed by settling of dust toward the mid-plane of a solar nebula. Before km-430

size planetesimals were formed, the gravitational attraction of the planetesimals themselves was431

negligible. Gas was present in the nebula and there was a mass-dependent difference between the432

velocities of refractory nebular masses (Whipple, 1964; Nakagawa et al., 1986; Youdin, 2010).433

While the larger bodies (with sizes ≥ 10 m) maintained mostly Keplerian orbits, the smallest434

grain-sized bodies (say ≤ 1 cm in size) were primarily swept along by the gas rotation and had435

smaller orbital velocities. This favored the growth of the largest grains that were gathering more436

slowly moving dust and smaller grains. This period of growth of small bodies could have been437
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Figure 4: Temperature distribution of planetesimals at times 0.2, 1 and 1.68 Myr corresponding the mass-temperature
distributions of Figure (3), panels (a), (d) and (e).

favored by gravitational instabilities in the planetary disk as a whole, at least if the turbulent mo-438

tions that might have been induced in the disk by shearing instabilities between the disk and the439

gas above and below it, were not too large (Wetherill, 1990). The coagulation of dust or grains440

requires the presence of some stickiness between the grains whose physical basis is debated441

(Wettlaufer, 2010).442

A planetesimal of radius R and mass M, orbiting the proto-Sun with a relative velocity Vrel,443

sweeps through the volume per unit time Ω̇ = πR′2Vrel where R′ ≥ R as gravitation draws in other444

planetesimals. An impactor reaching tangentially this planetesimal with an impact velocity Vi has445

an angular momentumViR and comes from the distance R′, radial to the planetesimal trajectory446

such that ViR = VrelR′. As by energy conservation V2
i = V2

rel + V2
esc, where the gravitational447

escape velocity is448

Vesc =

√
2GM

R
=
√

2G
(

4πρ
3

)1/6

M1/3, (38)

a planetesimal orbiting the proto-Sun sweeps through the volume per unit time449

Ω̇ = πR′2Vrel = πR2

1 +

(
Vesc

Vrel

)2 Vrel. (39)

The typical relative velocity of a dust grain is Vrel =1-50 m s−1, thus planetesimals need to reach450

masses M ≈ 1016 kg (i.e., radius R of order 10 km) for their gravitational escape velocity, Vesc451

to exceed Vrel. The rate at which a small planetesimal (R << 10 km) can grow, related to the452
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volume it sweeps per unit time is Ω̇ ≈ πR2Vrel, which is itself proportional to its mass to the 2/3453

power. This suggests that a coagulation kernel of the form Λ(m,m′) ∝ (m + m′)2/3 might be a454

reasonable proxy for the first phase of coagulation (Wetherill, 1990). This initial phase does not455

lead to the formation of a runaway planetary embryo since the kernel has a power 2/3 smaller than456

1.457

During this initial phase, radioactivity is very inefficient at warming up planetesimals. A458

1-km body has a diffusion time tD ≈ R2/κ of only ≈10 kyr. If the body accretes in a time smaller459

than tD (i.e., t ≤ tD << τ), then its maximum temperature increase is lower than460

TH =
H0τ

C
(1 − e−t/τ) ≈

H0t
C
≈ 50 K, (40)

neglecting diffusion. If it accretes in a time larger than tD, then its maximum temperature increase461

is lower than462

TE =
H0R2

6κC
≈ 8.6 K, (41)

which would be the maximum temperature of a planetesimal in thermal steady state equilibrium463

with a uniform and constant radiogenic heating H0. These estimates, either (40) or (41), show464

that km-size planetesimals cannot reach high temperatures. It is only when they reach tens of465

kilometers that they may become hot enough to melt, but then the kinetic energy due to impacts466

cannot be neglected.467

As a large planetesimal orbits the proto-Sun, it sweeps through a volume dominated by its468

effective gravitational cross-section, which is a function of relative and escape velocities – i.e.,469

Ω̇ ≈ πR2V2
esc/Vrel. Therefore, since both R and Vesc are proportional to M1/3, a coagulation kernel470

of the form Λ(m,m′) ∝ (m + m′)4/3 gives a reasonable proxy for a second phase of coagulation471

that involves gravitational focussing (Wetherill, 1990). This second phase leads to a runaway472

growth of planetesimals forming a limited number of planetary embryos of lunar or Martian473

masses, say 1022 − 1023 kg (see e.g. Kortenkamp et al., 2000). During this period, the source474

of heating is still radiogenic but the dissipation of kinetic energy during the impacts becomes an475

increasingly significant heat source.476

The use of coagulation kernels with masses to the powers 2/3 or 4/3 is a relatively crude ap-477

proximation of the real physics of accretion. The relative velocity Vrel in (39) should itself be478

a function of the dynamics of the planetesimal formation (see e.g., Stewart & Wetherill, 1988;479

Wetherill & Stewart, 1989). However we will use these simple kernels corresponding to situa-480

tions with or without runaway growth in order to focus on the implications for the temperature481

distribution of planetesimals.482

In the last phase of oligarchic growth, the successive collisions and merging of planetary483

embryos leads to the formation of planets like our solar-system’s current planets via giant im-484

pacts. This late stage is accessible to models, wherein the trajectories can be computed exactly485

(Morbidelli et al., 2009). In this case, dissipation of kinetic energy during impacts is the major486

source of heating (with the minor addition of core-mantle differentiation, Ricard et al., 2009));487

by this time radiogenic heating from 26Al decay becomes negligible, while the heating by slowly488

decaying elements (U, Th, K) has yet to become significant.489

5.2. Non-gravitational coagulation490

Assuming that a Λ = c(m + m′)2/3 kernel is a reasonable guess for the earlier stages of491

planetesimal formation, we perform various simulations with different time constants, starting492
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Figure 5: Mass distributions multiplied by m2 plotted as a function of planetesimal masses for different dimensionless
times (these times are indicated in Myr). As the aggregation kernel Λ(m,m′) ∝ (m + m′)2/3 has a mass exponent smaller
than 1, the distribution is self similar with an average mass m̄(t) increasing with t̃3.

from a swarm of net mass M0 = 1024 kg made of 1024 pebbles of sizes 1 kg. As already discussed,493

the mass distribution as a function of dimensionless time, integrated in energy, does not depend494

on heat production or dissipation. For a kernel with a mass exponent smaller than 1, the solutions495

become rapidly self similar; i.e. m2V(t,m) = m2
∫
W(t,m, e)de is a function of m/m̄(t) and with496

the same shape for all time (Fig. 5). The self-similarity of the mass distribution is obvious in497

Figure 5: the discrete and stochastic nature of this distribution becomes evident at the largest time498

when the number of planetesimals in the bins becomes small. The mass distributionsV(t,m) are499

simple decreasing functions of m (like in the case depicted in Figure 2).500

We perform simulations with the same non dimensional aggregation kernels but using shorter501

and shorter time constants 1/(cN0) of 5 yr, 1.5 yr, 0.5 yr and 0.05 yr. We run the computations502

starting at time t = 0 with the initial 26Al content controlling the heat production H0, until503

the largest planetesimal reaches a size of order 1020-1021 kg. The average mass, the average504

temperature of the planetesimals (the mass averaged temperature of all the planetesimals of the505

swarm
∑

i j Ni jεi j/(M0C)) and the temperature of the hottest planetesimal of the swarm can be506

readily extracted from the calculations (see Fig. 6). Notice that what we report as maximum507

temperature is the average temperature of the hottest planetesimal; the ”maximum maximorum”508

temperature, i.e., the maximum temperature in the hottest planetesimal, assuming a parabolic509

profile should be 5/2 larger. The average temperature (Fig. 6a) is the smooth function. The510

maximum temperature (Fig. 6b) is that of the bin with largest temperature that is populated.511

The various average planetesimal masses would be superposed if expressed as a function of the512

dimensionless time. The maximum planetesimal mass (not shown in Figure 6), for the chosen513

kernel, is ≈3000 times larger than the average mass.514

In all cases, planetesimals have a negligible temperature until they reach a significant average515

18



108

1010

1012

1014

1016

1018
A

ve
ra

ge
 M

as
s 

(k
g)

0.1

1

10

100

1000

A
ve

r. 
Te

m
p.

 (K
)

0.001 0.01 0.1 1 10 100
Time (Myr)

1

10

100

1000

M
ax

.T
em

p.
 (K

)

a

b

c

Figure 6: Evolution of mass and temperature for a planetesimal swarm heated by 26Al and impact dissipation. Panel
a: average planetesimal mass as a function of time. The maximum planetesimal in each situation is 3000 times more
massive than the average planetesimal mass. Panel b: average temperature of the swarm of planetesimals as a function
of time. The black and red dashed lines correspond to cases where gravitational heating is neglected. Panel c: average
temperature of the hottest planetesimal. The aggregation kernels are Λ = c(m,m′)2/3 with 1/(cN0) equal to 5, 1.5, 0.5
and 0.05 yr, for the black, red, green blue lines, respectively.
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Figure 7: Joint mass-temperature distribution of planetesimals at different times, when the rate of merging is Λ(m,m′) =

(m + m′)2/3. The simulation starts with N0 = 1024 identical planetesimals and a time constant 1/(cN0)=1.5 yr. Note the
change of temperature scale in the different panels. After 3 Myr, the cooling of the swarm is clearly visible. The average
mass and temperature evolution of this swarm are depicted with red lines in Figure 6.

size (average mass ≈ 1011 kg, or radius ≈ 180 m; maximum mass ≈ 3 × 1014 kg, or maximum516

radius 2.5 km). Radiogenic heating becomes inefficient after a couple of radioactive decay times517

τ. The maximum temperature reached in a swarm (Fig. 6c) is significantly larger than the average518

temperature in the case of slow accretion (a factor ≈ 6, compare the black lines of Figures 6 b519

and c) but only 3 times as large for a fast case (Fig. 6, b and c, blue lines). The impact heating520

remains rather inefficient until the average mass is ≈ 1018 kg and the largest mass ≈ 3 × 1021 kg521

(the thin black line in Fig. 6 panel b, shows a case without impact heating). This is in agreement522

with (18) which, for these masses, predicts thermal contributions of 0.22 K and 45 K.523

Figures 7 and 8 depict the distribution of temperatures and sizes of the planetesimal swarms524

at different times for the cases reported with the red and blue lines in Figure 6. Each color525

dot represents the number of planetesimals in a bin of given mass and temperature. In a slow-526

accretion scenario (Fig. 7, with 1/(cN0) = 1.5 yr), the 26Al is exhausted before the impact heating527

becomes significant, and the planetesimals should not melt before a second phase of temperature528

increase related to impact heating. In a fast-accretion scenario (Fig. 8, with 1/(cN0) = 0.05529

yr), radiogenic and collisional heating act simultaneously. In all cases, only the distribution of530

planetesimals in the mass range 1016-1017 kg show significant dispersion of temperature.531

20



0

100

200

T
em

pe
ra

tu
re

108 1012 1016 1020

t=60 kyr a) 

0

200

400

600

108 1012 1016 1020

t=90 kyr b) 

0

500

1000

T
em

pe
ra

tu
re

108 1012 1016 1020

t=120 kyr c) 

0

500

1000

1500

2000

108 1012 1016 1020

t=150 kyr d) 

0

1000

2000

T
em

pe
ra

tu
re

108 1012 1016 1020

Mass

t=180 kyr e) 

0

1000

2000

3000

4000

108 1012 1016 1020

Mass

t=240 kyr f)  

100 101 102 103 104 105 106 107 108

Number of Planetesimals

Figure 8: Same as Figure 7 but with a faster rate of aggregation (1/(cN0)=0.05 yr).

5.3. Kernels with gravitational attraction532

To simulate the runaway formation of planetesimals in which gravitational self attraction533

becomes important, we performed further simulations with the aggregation kernel534

Λ(m,m′) = c
(
(m + m′)2/3 +

(m + m′)4/3

(2µ)2/3

)
. (42)

This kernel accounts for the enhanced cross sections of the planetesimals when their masses535

are larger than µ. We choose µ = 3 × 1016 kg so that the escape velocity from a planetesimal536

of mass µ is comparable to the relative dust grain velocity in the nebula. The evolution of the537

mass distribution (Fig. 9) shows that until planetesimals become heavier than ≈1016 kg, their538

the evolution is the same as for a purely collisional kernel Λ(m,m′) ∝ (m + m′)2/3 (see Fig.539

5). For heavier planetesimals, the evolution accelerates (in the first phase, the black, red, green540

and blue distributions correspond to times successively multiplied by 3, in the second phase the541

times between purple and cyan is only multiplied by 1.1), the distribution widens, the number of542

large planetesimals per bin becomes small and stochastic, and gaps appear in the distribution. A543

runaway planetesimal is formed when critical masses of about 1021 kg are present.544

The joint mass and temperature evolutions for the composite kernel (42) (Fig. 10) can be545

compared with that without gravitational attraction (Fig. 6). Although the first phase of evolution546

for the two kernels is similar, the second phase, when gravitational attraction becomes efficient,547

leads to very fast accretion and runaway embryo growth. The resulting embryo grows in a few548

10 kyr by capturing most of the other planetesimals and its temperature jumps very rapidly549

according to the estimate given by (18), i.e., approximately 2000 K. Depending on when the550
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critical time of runaway (cyan), the distribution becomes discontinuous for large planetesimals and the low number of
planetesimals in each mass bin makes the statistical character of the accretion conspicuous.

runaway coagulation starts, the final temperature of the embryo ranges between 2000 and 4000551

K. An excessively slow aggregation rate allows the radioactive heat to be lost (Fig. 10, black552

curve) and the final temperature is around 2000 K. Very fast aggregation does not leave sufficient553

time for the radiogenic heat to accumulate before the formation of a planet, which therefore554

only heats up later. The maximum temperature, which is significantly larger than the average555

temperature (by a factor varying from 3 to 6), approaches the average temperature when most of556

the mass of the initial swarm is contained in the runaway embryo.557

The distribution of temperatures and sizes of the planetesimal swarms at different times using558

the kernel (42) can also be inferred (Fig. 11). For less massive planetesimals (i.e., for which the559

kernel terms that go as m2/3 are still significant), the evolution is identical to that of the collisional560

kernels, as expected (Fig. 7). By 900 kyr (Fig. 11a), some planetesimals with masses larger than561

µ = 3 × 1016 kg start to attract the smaller planetesimals and grow faster, with a temperature562

close to the average of that of the largest planetesimals (Fig. 11c). Approximately 200 kyr later,563

a planetary embryo leaves the distribution (Fig. 11d) and concentrates most of the mass of the564

swarm (Fig. 11e). The cold and low masses remaining in the swarm are rapidly removed (Fig.565

11f).566

6. Discussion567

We can summarize the findings of our model by considering three different accretion cases,568

in particular, fast accretion (wherein a planet embryo appears in 40 kyr), intermediate accretion569

(the embryo forms in 400 kyr) and slow accretion (the embryo appears in 4 Myr); see Fig. 12a,570
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Figure 10: Evolution of mass and temperature for a planetesimal swarm heated by 26Al and impact dissipation. Unlike
the calculations shown in Figure 6, the aggregation kernel now accounts for the gravitational attraction between plan-
etesimals, which leads to a runaway embryo growth. Panel a: average planetesimal mass as a function of time. Panel
b: average temperature of the swarm as a function of time. The black and red dashed lines correspond to cases where
gravitational heating is neglected. Panel c: temperature of the hottest planetesimal. The aggregation kernel is discussed
in the text and we use 1/(cN0) equal to 5, 1.5, 0.5 and 0.05 years, for the black, red, green blue lines, respectively.
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where blue, green and black curves represent fast, intermediate and slow accretion, respectively.571

The expression (40) that neglects diffusion and impact heating (orange curve) is sometimes used572

as a estimate for planetesimal temperature. It is however off by orders of magnitude for the573

case of slow accretion (Fig. 10 c, black curves) since the heat production has sufficient time to574

diffuse through the planetesimals and radiate away. Even in the case of a fast accretion, in which575

the thermal blanketing of rapidly added mass helps retain heat in the growing planetesimal, the576

maximum temperatures are 2-4 times lower than the estimate of equation (40). The average577

temperatures are themselves 2-10 times smaller that the maximum temperature, since most of578

the planetesimals are smaller and colder than the largest ones. For two faster-growth scenarios,579

the influence of radiogenic heating before runaway growth ensues is moderate, and thus leads to580

temperature increases of a couple of hundred degrees. For the fastest accretion case, 26Al decay581

is active during growth of the embryo and thus drives a significant increase in temperature. In582

contrast, 26Al becomes extinct during the slowest accretion scenario, and the embryo undergoes583

cooling (see Fig. 10). In the case of intermediate accretion, where an embryo is formed after584

400 kyr, the planet reaches high enough temperatures for partial melting before runaway embryo585

growth.586

The time and the mass of the largest planetesimal are directly related to each other for a given587

aggregation kernel, thus we can consider the embryo temperatures as a function of maximum588

planetesimal mass (Fig. 12b). We can then compare the maximum swarm temperatures to the589

estimates for steady state temperature with no impact heating (41) (Fig. 12b brown line) and590

with impact heating without 26Al radioactivity and diffusion (18) (Fig. 12b purple line). The591

maximum swarm temperatures are in between these two estimates. Small planetesimals are592

colder than the no-impact heating estimate, because the quantity of 26Al decreases with time593

and their temperatures are diluted by the accretion of smaller and colder objects. When embryo594

masses exceed ≈ 1021 kg, their temperature increase as they accumulate more mass, as expected595

for gravitational or impact heating.596

Overall, the role of intense, short-lived radiogenic heating before the formation of solid plan-597

ets is at most moderate. Either the objects are too small to conserve radiogenic heat, or they598

accrete too rapidly with respect to the 26Al decay half-life. In the rapid-accretion case, the initial599

burst of radioactivity eventually plays an important role, but only after the planets are mostly600

formed. For example, we consider cases for the evolution of dwarf-planet sized bodies that re-601

main isolated after slow (i.e. after 4 Myr), intermediate (400 kyr) and fast (40 kyr) accretion602

scenarios (Fig.13). For each accretion scenario, we consider final dwarf-planets that are either603

Vesta-size (3 × 1020 kg, Ghosh & McSween, 1998) or smaller (i.e. 1018 kg and 1016 kg). Fol-604

lowing equation (14) (where m remains constant), the temperature evolves but melting can never605

happen in the slow accretion scenario: a Vesta size object must have been formed in less than606

2 Myr to melt (i.e., to reach 900 K). A smaller object of 1018 kg or radius of 38 km (Fig. 13607

blue curves) only melts if formed in less than 1 Myr. An even smaller object of 1016 kg or radius608

or 8 km (Fig. 13, green curves) can never reach a high enough temperature to melt, no matter609

when it is formed. However, note that we only consider here the very first planetesimals that610

reach a given dwarf-planet size; later in the accretion process other planetesimals with the same611

mass are formed. These subsequent planetesimals are generally colder because they remained612

small for a longer period during which thermal diffusion was therefore more efficient; moreover,613

they acquired much of the mass later, when radiogenic heating had diminished. However, the614

heaviest planetesimals are not necessarily always the hottest (Fig. 7 or 11). The distribution of615

maximum temperatures for planetesimals of a given size could be derived from our formalism,616

but this exercise is left for future work.617
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7. Conclusion618

With our relatively simple accretion model, we have shown that the temperature distribution619

of planetesimals during their formation is feasible with a limited number of assumptions. Our620

approach is therefore significantly different to previous ones that only discuss the thermal evo-621

lution of a single accreting body assumed to be typical of a planetesimal swarm (e.g., Senshu622

et al., 2002; Yoshino et al., 2003; Merk & Prialnik, 2003; Walter & Tronnes, 2004; Merk & Pri-623

alnik, 2006; Sramek et al., 2012). For the sake of clarity, we purposely did not include various624

complexities that could easily be taken into account. For example, the model could consider the625

phenomenon of fragmentation during impact rather than assuming perfect coalescence (Wether-626

ill & Stewart, 1993; Kobayashi et al., 2010). Further effects could be included as well, such as627

the temperature in the accretion disk, other radiogenic heat sources such as 60Fe (Quitte et al.,628

2011), and more realistic heat deposition (during impact), transport (via convection) as well629

as the buffering effect of latent heat. All these possible improvements would not significantly630

change our numerical code or its execution time.631

Our model suggests that melting of asteroids or minor planets (say masses ≈ 1020 kg) occurs632

only for those that are formed in less than 1-2 Myr. Most planetesimals of a given mass are,633

however, significantly colder than the leading planetesimal that has reached this mass, so that634

the leading planetesimal of mass 1020 kg has probably reached that size in less than a few 100635

kyr (see Fig. 13). The melting of objects lighter than ≈ 1017 kg appears to be unlikely if not636

impossible. The temperature distribution that can be derived from our model can be compared637

with observations of meteorites, asteroids and dwarf planets. However, such a comparison must638

take into account the observational bias due to the fact that objects that have been molten (e.g.639

iron meteorites) have probably a higher survival rate. The fragmentation of minor planets very640

early during the accretion may also have replenished the disk with objects of small mass but that641

went through high temperature conditions. At any rate, out study shows that instead of focussing642

on the specific thermal history of a given object we can perform a statistical analysis of the643

conditions that prevailed in a planetesimal swarm. For the same final masses, different dwarf644

planets or different meteorites may have undergone very different thermal histories.645
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Appendix A. General conservation laws648

For any quantity x(m, ε, t) specific to each planetesimal, the total quantity for the ensemble649

of planetesimals is650

X =

∫∫
xW dmdε. (A.1)

If x ≡ 1, m or ε, then X is the total number N, the total mass M or the total energy E of all651

planetesimals, respectively. Because the integration limits of (A.1) are from 0 to ∞, the rate of652

change of X is simply653

dX
dt

=

∫∫
∂xW
∂t

dmdε =

∫∫ (
x
∂W

∂t
+W

∂x
∂t

)
dmdε (A.2)
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Figure 12: Panel a: Average temperature (thin) and maximum temperature (thick) in the planetesimal swarm as a function
of time. The slow (black, 1/(cN0) = 5 yr), intermediate (green, 1/(cN0) = 0.5 yr), and fast (blue, 1/(cN0) = 0.05 yr)
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(41) of diffusive thermal equilibrium in the absence of impact heating, and (18) of pure impact heating.
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and according to (6),654

dX
dt

=

∫∫ (
xΘ − x

∂ε̇W

∂ε
+W

∂x
∂t

)
dmdε (A.3)

The second term in the integral can be integrated by parts (i.e., xd(ε̇W) = d(xε̇W) − ε̇Wdx),655

and the integral of d(xε̇W) cancels, leading to656

dX
dt

=

∫∫ (
xΘ +W

[
∂x
∂t

+ ε̇
∂x
∂ε

])
dmdε (A.4)

The term within the square brackets is the total variation of x so that657

dX
dt

=

∫∫ (
xΘ +W

dx
dt

)
dmdε (A.5)

This expression can be used to compute the rate of change of the total number, the total mass658

and the total energy of the planetesimal swarm. The total number of planetesimals N (using659

x = 1 and dx/dt = 0 in (A.5)) varies as660

dN
dt

=

∫∫
Θ dmdε =

∫
Γ dm = −

1
2

∫∫
R̃(m′,m”) dm′dm” ≤ 0 (A.6)

(since
∫

D̃ dm =
∫

(δ(m − m′ − m”) − δ(m − m′) − δ(m − m”)) dm = −1). The total number of661

planetesimals therefore decreases as R̃(m′,m”) ≥ 0. In the case R̃(m′,m”) = 1, one has simply662

dN/dt = −cN2, i.e., the average mass of planetesimals, M/N increases linearly with time.663

The total mass of planetesimals, M is conserved (using x = m in (A.5), and given that there664

is no continuous mass exchange ṁ = 0)665

dM
dt

=

∫∫
mΘ dmdε =

∫
mΓ dm = 0 (A.7)

since
∫

mD̃ dm =
∫

m[δ(m −m′ −m”) − δ(m −m′) − δ(m −m”)] dm = (m′ + m”) −m′ −m” = 0.666

If x ≡ ε, X is the total energy of planetesimals E, which evolves according to667

dE
dt

=

∫∫
(εΘ +W

dε
dt

) dmdε , 0 (A.8)

The integral of εΘ can be computed as
∫
εD dmdε =

∫
ε[δ(ε − ε′ − ε” − ∆ε) − δ(ε − ε′) − δ(ε −668

ε”)] dε = (ε′ + ε” + ∆ε)− ε′ − ε” = ∆ε. Therefore using (14) and (17), the total energy evolution669

becomes670

dE
dt

=MH0 exp(−t/τ)

+G
(

4πρ
3

)1/3 ∫∫
m′m”

m′1/3 + m”1/3 Λ(m′,m”)V(m′)V(m”)dm′dm”

−15κ
(

4πρ
3

)2/3 ∫∫
W(m, ε)εm−2/3 dmdε , 0

(A.9)

where the radiogenic heating, gravitational heating and heat loss controlled by diffusion are671
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evident in the first, second and third terms on the right side (A.9), respectively. Therefore, the672

total number of planetesimals is decreasing, their total mass is conserved and their total energy673

can increased by radiogenic and/or impact heating, or decreased by diffusive heat loss.674
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