
manuscript submitted to JGR: Solid Earth

Quantifying Intrinsic and Extrinsic Contributions to1

Radial Anisotropy in Tomographic Models2

J. K. Magali1, T. Bodin1, N. Hedjazian1, Y. Ricard1, Y. Capdeville2, E.3

Debayle14

1Univ Lyon, Univ Lyon 1, ENSL, UJM-Saint-Etienne, CNRS, LGL-TPE, F-69622, Villeurbanne, France5
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Abstract15

Seismic anisotropy in the Earth’s mantle inferred from seismic observations is usually16

interpreted in terms of intrinsic anisotropy due to Crystallographic Preferred Ori-17

entation (CPO) of minerals, or extrinsic anisotropy due to Shape Preferred Orien-18

tation (SPO). The coexistence of both contributions confuses the origins of seismic19

anisotropy observed in tomographic models. It is thus essential to discriminate CPO20

from SPO. Homogenization/upscaling theory provides means to achieve this goal. It21

enables computing the effective elastic properties of a heterogeneous medium, as seen22

by long-period waves. In this work, we investigate the effects of upscaling an intrin-23

sically anisotropic and highly heterogeneous Earth’s mantle. We show analytically in24

1-D that the observed radial anisotropy parameter ξ∗ is approximately the product of25

the intrinsic ξ∗CPO and the extrinsic ξ∗SPO components:26

ξ∗ ≈ ξ∗CPO × ξ∗SPO,27

when the correlation between the isotropic and anisotropic heterogeneities are ne-28

glected. This law is verified numerically in the case of a homogenized 2-D marble29

cake model of the mantle in the presence of CPO obtained from a micro-mechanical30

model of olivine deformation. Our numerical findings predict that for wavelengths31

smaller than the scale of deformation patterns, tomography may overestimate intrin-32

sic anisotropy due to significant extrinsic anisotropy. At longer wavelengths, intrinsic33

anisotropy is always underestimated due to spatial averaging. Therefore, we show that34

it is imperative to homogenize a CPO evolution model first before drawing compar-35

isons with tomographic models. As a demonstration, we use our composite law with36

a homogenized CPO model of a plate-driven flow underneath a mid-ocean ridge, to37

estimate the SPO contribution to an existing tomographic model of radial anisotropy.38

Plain Language Summary39

Small-scale heterogeneities may generate long-period seismic observations that40

are identical to those produced by large-scale mantle flow and deformation. Because41

of this, it is difficult to distinguish in the observed seismic anisotropy what is related to42

the intrinsic crystalline anisotropy and what may be due to the laminated structure of43

isotropic materials. In this work, we undertook an analytical method and a numerical44

experiment to identify the separate effects of intrinsic and apparent anisotropy in a45

long wave-length tomographic image. We show that the ambiguity depends on the46
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relation between the wavelength of the observed wavefield and the scale of convection47

patterns in the mantle. This motivated us to develop a simple composite law that can48

be used to quantify the two separate contributions.49

1 Introduction50

Seismic anisotropy in the Earth’s mantle originates from various processes and51

can be observed at different spatial scales (Kendall, 2000; Hansen et al., 2021). At52

the mineral scale, crystallographic preferred orientation (CPO) of anisotropic mantle53

minerals due to progressive shearing over time produces large-scale intrinsic anisotropy54

(Nicolas & Christensen, 1987; Maupin & Park, 2015). On the other hand, rock-scale55

shape preferred orientation (SPO) such as layered heterogeneous materials, seismic56

discontinuities, preferentially-oriented cracks or conduits containing fluid intrusions57

unresolved by long-period seismic waves are mapped as large-scale extrinsic anisotropy58

(Backus, 1962; Crampin & Booth, 1985).59

Although these two mechanisms are completely different, a medium may be ei-60

ther (or both) intrinsically anisotropic and extrinsically anisotropic at a given scale,61

depending on the minimum wavelength of the observed wavefield used (Maupin et al.,62

2007; Wang et al., 2013; Fichtner et al., 2013a; Bodin et al., 2015). Backus (1962)63

showed that a horizontally-layered isotropic medium is equivalent to a homogeneous64

radially anisotropic medium with a vertical axis of symmetry when sampled by seis-65

mic waves whose wavelength is much longer than the thickness of layers. This urged66

seismologists to interpret tomographic models separately depending on the type of67

data used (i.e., different data-types sample different length scales). Scattering studies68

use high frequency body waves and interpret small-scale isotropic heterogeneities in69

terms of phase changes (e.g. Tauzin & Ricard, 2014) or chemical stratification (e.g.70

Tauzin et al., 2016). On the other hand, long-period surface waves with typical wave-71

lengths of the order 102 km retrieve a smooth anisotropic mantle with scales consistent72

with convective flow (e.g. Beghein et al., 2010; Debayle & Ricard, 2013; Bodin et al.,73

2015; Maupin & Park, 2015). Surface waves however lack the resolving power to re-74

cover sharp seismic discontinuities and instead, map these as long wavelength radial75

anisotropy (Backus, 1962; Capdeville et al., 2013). The ambiguity on the origin of76

observed anisotropy (i.e. whether a material is intrinsically anisotropic or strongly het-77

–3–



manuscript submitted to JGR: Solid Earth

erogeneous) may mislead seismologists in interpreting the structural origin of seismic78

anisotropy observed in tomographic images.79

1.1 Intrinsic anisotropy due to Crystallographic Preferred Orientation80

Intrinsic anisotropy results from the preferred alignment of anisotropic crystals81

in an aggregate when subjected to a macroscopic deformation. In the mantle, single82

crystal olivine exhibits orthorhombicity, and hence suffers variations in fast and slow83

P- and S-wave velocities up to 20 % (Kumazawa & Anderson, 1969). When olivine84

and pyroxene form a polycrystalline aggregate and are subsequently deformed in the85

mantle flow, their CPO can be described at first order in terms of a hexagonally86

symmetric medium (e.g. Montagner & Nataf, 1988).87

Observations of large-scale anisotropy in tomographic models appear to be ubiq-88

uitous in regions associated with strong deformation, and have often been interpreted89

in terms of convective flow (McKenzie, 1979; Long, 2013). For instance, tomographic90

imaging has revealed the presence of strong azimuthal and radial anisotropy in the91

upper ∼250 km of the mantle (refer to Long and Becker (2010) for a comprehensive92

review). Long wavelength seismic anisotropy is also prevalent in the transition zone93

(e.g. Trampert & van Heijst, 2002; Wookey & Kendall, 2004) although its origin is still94

highly debated (Chen & Brudzinski, 2003; Chang & Ferreira, 2019; Sturgeon et al.,95

2019). Probing deeper depths, the lower mantle appears to be isotropic (e.g. Meade et96

al., 1995) barring the D” layer where enough evidence have shown it to be anisotropic97

(e.g. Kendall & Silver, 1998; McNamara et al., 2002; Beghein et al., 2006; Panning &98

Romanowicz, 2006).99

Since CPO maps the deformation patterns, CPO may deviate from the flow100

direction. This is because the deformation patterns relate not to the velocity field itself,101

but to the velocity gradient. Moreover, CPO is not instantaneous, but depends on the102

history of the deformation. As a result, regions with short deformation trajectories103

such as beneath mid-ocean ridges appear to have under-developed CPO, and would104

lag behind the direction of shear deformation (Kaminski & Ribe, 2002).105

Based on laboratory experiments of simple shear, the fast axis of olivine tends106

to align parallel to the long axis of the finite strain ellipsoid (FSE) at low strains due107

to plastic deformation (Zhang & Karato, 1995). At larger strains, dynamic recrys-108
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tallization facilitates the alignment of the olivine fast axis towards the direction of109

shear (Zhang & Karato, 1995; Bystricky et al., 2000). Mechanical models of CPO110

evolution, coupled with geodynamic flow modeling have been developed to replicate111

these results and have been extrapolated at scales consistent with mantle deformation112

patterns. Among these is the viscoplastic self-consistent (VPSC) model which is used113

to explain the mechanical response of polycrystals to plastic deformation (Tommasi et114

al., 2000). Such tools however are computationally expensive, especially when applied115

to 3-D and non-steady state flows (Lev & Hager, 2008). Another well-received method116

is the D-Rex model, that utilizes a simple kinematic approach (Kaminski et al., 2004).117

The predicted CPO is then converted to an elastic medium in which seismic waves can118

propagate, and may explain anisotropic signatures observed in seismic data recorded119

at the surface.120

1.2 Extrinsic anisotropy due to Shape Preferred Orientation121

Extrinsic anisotropy is observed under two conditions: (1) when the scale of the122

heterogeneities is much smaller than the minimum wavelength of the observed wave-123

field, and (2) when the contrast between seismic wave velocities (i.e. the amplitude of124

heterogeneities) is large.125

One of the known configurations at which extrinsic anisotropy is produced is rock-126

scale shape preferred orientation (SPO). In the Earth’s mantle, rock-scale SPO can127

be the result of igneous differentiation, or more generally of the stirring of chemical128

heterogeneities by tectonic or convective deformation (e.g. Faccenda et al., 2019).129

Since magmatically differentiated oceanic lithosphere is composed of a basaltic crustal130

layer blanketed by a depleted harzburgitic mantle (Allègre & Turcotte, 1986), mantle131

structure is often modeled in terms of a mechanical mixture of these two end-member132

compositions (e.g. Hofmann, 1988; Xu et al., 2008; Ballmer et al., 2015).133

Large-scale thermal convection in the mantle triggers the constant injection of134

oceanic lithosphere into the mantle (Coltice & Ricard, 1999). It then mechanically135

stirs with the surrounding mantle and experiences a series of stretching and thinning136

due to the normal and shear strains associated with convection (Allègre & Turcotte,137

1986). This led Allègre and Turcotte (1986) to develop a geodynamic model of the138

mantle that would depict marble cake-like patterns. In their model, the layering may139
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be erased either by dissolution processes when the stripes become thin enough that140

chemical diffusion becomes efficient, or by mantle reprocessing at mid-ocean ridges.141

Assuming that the mixing preserves the physical properties of the two-end members142

with depth and over geological time scales, such processes may explain rock-scale seis-143

mic heterogeneities observed in the mantle in agreement with the spectrum of isotropic144

anomalies observed along ridges (Agranier et al., 2005; Xu et al., 2008; Stixrude &145

Jeanloz, 2015).146

1.3 Long-Period Tomography147

There are a plethora of ways to extract interpretable information from seismic148

data. Tomographic imaging techniques however are limited by the type of data used149

due to both computational, and theoretical considerations. Long-period tomography150

uses the relatively low-frequency components of a seismogram such as low-frequency151

travel time residuals, surface wave data, and normal-mode spectral measurements (e.g.152

T. G. Masters et al., 1996; Resovsky & Ritzwoller, 1999) to image mantle structure.153

In practice, they are primarily used to invert for absolute VS structures and S−wave154

anisotropy (e.g. Gung et al., 2003; Panning & Romanowicz, 2006; French et al.,155

2013), although some studies have already documented the use of similar techniques156

to reconstruct VP structures (e.g G. Masters et al., 2000; Koelemeijer et al., 2016).157

In the context of inversion for radial anisotropy, long-period tomography fails to158

distinguish between an intrinsic or an extrinsic origin. For instance, some tomographic159

models of radial anisotropy inferred from surface wave inversions cannot be explained160

with mineralogical models alone. These profiles of radial anisotropy are instead partly161

interpreted as unmapped small-scales either due to fine-layering, or by sharp gradients162

of lateral heterogeneities (e.g. Schlue & Knopoff, 1977; Montagner & Jobert, 1988;163

Friederich & Huang, 1996; Debayle & Kennett, 2000; Kawakatsu et al., 2009).164

Indeed, the scale of these heterogeneities are far smaller in comparison with the165

wavefield considered in long-period tomography, and for this reason, the small-scales166

are being mapped as extrinsic anisotropy. Anisotropic structures retrieved from to-167

mography may therefore be a combination of extrinsic anisotropy due to SPO and168

deformation-induced intrinsic anisotropy. However, separating the intrinsic and the169

extrinsic contributions to the observed anisotropy is much difficult in full generality.170
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To simplify the problem, we will focus on quantifying the separate contributions to171

S−wave radial anisotropy. This follows most studies that explored the extrinsic con-172

tributions to radial anisotropy (Fichtner et al., 2013b; Wang et al., 2013; Bodin et173

al., 2015; Alder et al., 2017). Furthermore, we will also ignore the contributions of174

P−wave anisotropy which are not well-constrained by long-period tomography, par-175

ticularly in the upper-mantle which is mostly constrained by surface waves that have176

little sensitivity to P properties (Takeuchi & Saito, 1972).177

In this paper, we extend the work of Alder et al. (2017) by estimating the long-178

wavelength effective equivalent of a marble cake mantle as hypothesized by Allègre and179

Turcotte (1986), but in the presence of intrinsic anisotropy. Our aim is to quantify the180

level of effective radial anisotropy resulting from elastic homogenization, that is, the181

relegated version of the true Earth as seen by long-wavelength seismic tomography.182

Section 2 is a brief overview of the homogenization theory and provides a definition183

of some terms and notations to guide the reader throughout the paper. Section 3184

shows 1-D analytical expressions for homogenization and highlights a composite law185

that separates intrinsic and extrinsic radial anisotropy for a layered and anisotropic186

media. Here, we demonstrate that the effective radial anisotropy varies with the187

square of isotropic heterogeneities, as well as with the square of anisotropic hetero-188

geneities, plus a cross term related to their coupling. In section 4, we build a 2-D189

media analogous to the marble cake model where we consider a mechanical mixture of190

two end-member compositions. We follow this by introducing intrinsic anisotropy due191

to mantle deformation associated with convection patterns consistent with the marble192

cake model. We compute the long-wavelength effective equivalent of the 2-D models193

using the Fast-Fourier Homogenization algorithm (Capdeville et al., 2015). Section194

5 presents the results of the previous section: one of the major findings is that in195

the absence of isotropic heterogeneities, intrinsic anisotropy is always underestimated196

upon homogenization due to the spatial averaging of the preferred orientation of the197

anisotropic minerals. We also verify numerically that the composite law derived in198

section 3 can be extended to 2-D media. Finally in section 6, we apply the composite199

law to infer the extrinsic component of radial anisotropy from a tomographic model200

of the upper-mantle beneath a mid-ocean ridge with the help of a homogenized CPO201

model.202
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Figure 1. Homogenization of different Earth models and their respective outputs. The true

Earth mantle (top middle box) is described by an average isotropic model S0, isotropic het-

erogeneities, δSI and intrinsic anisotropy SA, the sum of which being the elastic model S that

tomography tries to recover. However, tomographic methods have only access to a homogenized

model H(S) (or full effective medium). This model has both isotropic components symbolized by

I(H(S)) and anisotropic components, A(H(S)). The goal of this paper is to quantify the differ-

ences between A(H(S)) and A(S), I(H(S)) and I(S). Numerically we can also discuss how an

anisotropic model without isotropic heterogeneities (boxes on the left) can be recovered and if

the tomographic inversion can lead to apparent isotropic heterogeneities. Reciprocally (boxes on

the right), one can quantify how much a pure isotropic model is recovered by the tomographic

inversion and what is the level of extrinsic anisotropy (SPO) that can be estimated.

2 Elastic homogenization203

Even assuming perfect data coverage, seismic tomography is only able to recover204

a smooth representation of the real Earth due to the limited frequency band of seis-205

mic data. This smooth average, however, is not just a simple spatial average but is206

produced from highly non-linear upscaling relations. In the context of wave propaga-207

tion, such upscaling relations, also known as elastic homogenization, remove seismic208

heterogeneities whose scales are much smaller than the minimum wavelength of the209

observed wavefield, and instead replace them with effective properties.210
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Hereafter, what we refer to as the true elastic structure S(r) is an elastic model211

of the real Earth varying in space r that accounts for both intrinsic anisotropy due to212

CPO and small-scale isotropic heterogeneities that resemble marble cake-like patterns.213

One can express S(r) in terms of a spatially-varying isotropic tensor SI(r) defined by214

the two Lamé parameters: λ(r) and µ(r), plus an intrinsically-anisotropic component215

SA(r) related to CPO:216

S(r) = SI(r) + SA(r), (1)217

where SI(r) can be decomposed further into:218

SI(r) = S0 + δSI(r). (2)219

Here, S0 is an isotropic tensor uniform in space, and δSI(r) is a deviation from S0220

related to small-scale isotropic heterogeneities. The true elastic structure becomes:221

S(r) = S0 + δSI(r) + SA(r). (3)222

For convenience, let us introduce an operator I that extracts the isotropic component223

from S , and an operator A that extracts the anisotropic component from S:224

I(S(r)) = SI(r) = S0 + δSI(r)

A(S(r)) = S0 + SA(r),

(4)225

where I extracts the isotropic component by first computing the dilatational and Voigt226

stiffness tensors followed by the computation of the bulk and the shear moduli (Cowin227

& Mehrabadi, 1987), and A performs similar to the elastic decomposition method of228

Browaeys and Chevrot (2004) where the anisotropic component is treated as a sum of229

orthogonal projections belonging to several symmetry classes.230

These notations will be used heavily in the rest of the text to denote the isotropic231

and anisotropic components of an elastic medium. Radial anisotropy, in particular,232

quantifies the level of anisotropy when the medium is averaged azimuthally (Montagner,233

2007; Maupin et al., 2007). In such a vertically transverse isotropic medium (VTI),234

the level of S−wave radial anisotropy is given by (VSH/VSV )2, where VSV is the ve-235

locity of vertically traveling S−waves or horizontally traveling S−waves with vertical236

polarization, and VSH is the velocity of horizontally traveling S−waves with horizontal237

polarization. The intrinsic S−wave radial anisotropy extracted from A(S) (i.e. due238

to the component SA) will be denoted by ξCPO.239
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In the event where long-period waves sample the true elastic structure, small-240

scale heterogeneities are seen only through their effective properties. Computing these241

effective properties is designated by a mathematical operator H called upscaling or242

homogenization. Setting aside the imperfections of inversion algorithms and data cov-243

erage, performing seismic tomography can be viewed as applying the operator H that244

homogenizes S. The seismic tomography model/long-wavelength effective medium of245

S is then H(S) = H(S0+δSI+SA) which we now refer to as the full effective medium.246

The anisotropic component of the full effective medium given by A(H(S)) will be re-247

ferred hereafter as the full effective anisotropy and its isotropic component I(H(S)) is248

the full effective isotropy. We will symbolize the full effective radial anisotropy corre-249

sponding to A(H(S)) with ξ∗.250

On the other hand, the homogenized counterpart of a pure anisotropic Earth251

(i.e., a model where only the anisotropic component varies spatially) is H(A(S)) =252

H(S0 + SA) where A(H(A(S))) is the effective intrinsic anisotropy. The effective253

intrinsic radial anisotropy corresponding to A(H(A(S))) will then be designated as254

ξ∗CPO. Note that due to the non-linearity of H, homogenization creates apparent255

isotropic heterogeneities in the elastic tensor I(H(A(S))) as a byproduct, albeit of low256

amplitude.257

Finally, the tomographic counterpart of a pure isotropic Earth (i.e., a model258

where the isotropic component varies spatially, and the anisotropic component is zero)259

is H(I(S)) = H(S0 + δSI) where the non-negligible apparent anisotropic compo-260

nent due to SPO A(H(I(S))) is called extrinsic anisotropy. Here, extrinsic radial261

anisotropy will be denoted by ξ∗SPO (Refer to Figure 1 for a comprehensive summary).262

3 Analytical expressions in the 1-D case263

3.1 Backus homogenization264

A vertically transverse isotropic (VTI) medium is an elastic medium with hexag-265

onal symmetry and vertical symmetry axis. It can be described by five elastic param-266

eters A, C, F , L, and N , also known as the Love parameters (Love, 1906). Supposing267

that axis 3 is the symmetry axis, the local S for a VTI solid can be expressed in Mandel268
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notation as:269

S =



A A− 2N F 0 0 0

A− 2N A F 0 0 0

F F C 0 0 0

0 0 0 2L 0 0

0 0 0 0 2L 0

0 0 0 0 0 2N


. (5)270

In a weakly anisotropic medium, SV− and SH− waves are sensitive to the elastic271

parameters L and N , respectively, according to the formula:272

VSV =

√
L

ρ
(6)273

VSH =

√
N

ρ
, (7)274

275

where ρ is density. The level ofS−wave radial anisotropy is controlled by the anisotropic276

parameter:277

ξ =

(
VSH

VSV

)2

=
N

L
. (8)278

Backus (1962) explicitly showed analytical upscaling relations for seismic waves propa-279

gating in a 1-D stratified medium. For a 1-D layered medium where each layer is a VTI280

medium, the long-wavelength effective medium is also a VTI medium. The effective281

equivalent of the elastic constants, for instance, N and L concerning the shear wave282

velocities are given by an arithmetic mean and a harmonic mean, respectively:283

N∗ = 〈N〉 , (9)284

L∗ = 〈1/L〉−1
, (10)285

286

where 〈.〉 refers to the spatial average over a wavelength of any periodic function (in287

this case, N and 1/L), and ∗ denotes a long wavelength effective property. The effective288

density ρ∗ is simply the arithmetic mean of the local density ρ:289

ρ∗ = 〈ρ〉 . (11)290

The effective S−radial anisotropy ξ∗ is essentially the ratio between the effective equiv-291

alents of N and L:292

ξ∗ =
N∗

L∗ = 〈N〉 〈1/L〉 . (12)293
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In this way, for a 1-D fine-scale medium where each layer is isotropic (N = L), the294

long-wavelength effective medium is transversely isotropic, and the level of extrinsic295

radial anisotropy is given by 〈N〉〈1/N〉 (Alder et al., 2017).296

3.2 An analytical expression to quantify CPO and SPO in a 1-D lay-297

ered media298

Let us consider an intrinsically anisotropic (CPO component) and finely-layered299

(SPO component) 1-D VTI medium. Assuming in the matrix (5), no P−wave300

anisotropy (i.e., C = A) and setting F = A−2L, one can express the isotropic rigidity301

as (Montagner, 2007; Maupin et al., 2007):302

µ =
1

3
(2L+N). (13)303

Knowing equations (8) and (13), one can re-write N and L in terms of µ and ξCPO =304

N/L giving:305

N = ξCPO
3µ

2 + ξCPO
, (14)306

L =
3µ

2 + ξCPO
. (15)307

308

To calculate the long-wavelength effective equivalent of such a medium, let us309

first write the parameters µ and ξCPO as:310

µ(z) = 〈µ〉+ δµ(z), (16)311

ξCPO(z) = 〈ξCPO〉+ δξCPO(z), (17)312
313

where 〈µ〉 and 〈ξCPO〉 are the spatially-averaged counterparts. δµ and δξCPO are314

small-scale radial heterogeneities (i.e., layering) in the shear modulus and intrinsic315

radial anisotropy, respectively, where 〈δµ〉 and 〈δξCPO〉 = 0.316

The long-wavelength effective equivalents N∗ and 1/L∗ are:317

N∗ = 〈N〉 =

〈
ξCPO

3µ

2 + ξCPO

〉
=

〈
(〈ξCPO〉+ δξCPO)

3(〈µ〉+ δµ)

2 + 〈ξCPO〉+ δξCPO

〉
, (18)318

1/L∗ = 〈1/L〉 =

〈
2 + ξCPO

3µ

〉
=

〈
2 + 〈ξCPO〉+ δξCPO

3(〈µ〉+ δµ)

〉
. (19)319

320

We can simplify equations (18) and (19) by assuming a weak contrast in the shear321

modulus δµ� 〈µ〉 . Using a second-order Taylor expansion, we get:322

N∗ ≈ 3〈µ〉
2 + 〈ξCPO〉

(
〈ξCPO〉 −

2〈δξ2CPO〉
(2 + 〈ξCPO〉)2

+
2〈δµ · δξCPO〉
〈µ〉(2 + 〈ξCPO〉)

)
, (20)323

1/L∗ ≈ 2 + 〈ξCPO〉
3〈µ〉

(
1 +
〈δµ2〉
〈µ〉2

− 〈δµ · δξCPO〉
〈µ〉(2 + 〈ξCPO〉)

)
. (21)324

325
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Note that we have used a parameter which is 〈ξCPO〉 = 1 in the absence of intrinsic326

anisotropy in all layers. We could have used, instead, a parameter that cancels in327

the absence of intrinsic anisotropy, for example, the fractional change in shear wave328

velocities γ = (VSH − VSV )/VS (e.g. Xie et al., 2013, 2017). This parameter is also329

used in the Thomsen notation (Thomsen, 1986; Bakulin, 2003) but the two parameters330

are simply related by γ = 1−
√
ξ. We decide to keep ξ since this is the parameter that331

is most often used to observe large-scale mantle anisotropy.332

Using equation (12), we multiply equations (20) and (21) and neglect terms333

higher than order two to obtain the full effective radial anisotropy ξ∗ due to both334

fine-layering and intrinsic radial anisotropy:335

ξ∗ ≈ 〈ξCPO〉 −
2

(2 + 〈ξCPO〉)2
〈δξ2CPO〉+

〈ξCPO〉
〈µ〉2

〈δµ2〉+
2− 〈ξCPO〉

〈µ〉(2 + 〈ξCPO〉)
〈δµ · δξCPO〉. (22)336

Equation (22) explicitly shows the separate effects of the small-scales in the isotropic337

component and in the intrinsically anisotropic component onto the effective radial338

anisotropy as ’seen’ by long-period seismic waves.339

Assuming the medium to be devoid of intrinsic radial anisotropy (i.e., ξCPO = 1340

and δξCPO = 0), the full effective radial anisotropy ξ∗ directly relates to the variance341

of small-scale heterogeneities
〈
δµ2
〉

in the shear modulus δµ. It can be interpreted342

as the extrinsic radial anisotropy ξ∗SPO due to the seismically unresolved small-scale343

isotropic heterogeneities. It varies as the square of the heterogeneities, in agreement344

with the result of Alder et al. (2017).345

On the other hand, when the isotropic component is uniform (i.e., δµ = 0), ξ∗346

also varies with the square of heterogeneities, but now in intrinsic radial anisotropy.347

This can be interpreted as the effective intrinsic radial anisotropy ξ∗CPO, i.e. the in-348

trinsic radial anisotropy that gets smoothed out as a result of upscaling. Interestingly,349

its overall effect is to reduce the level of intrinsic radial anisotropy as indicated by the350

minus sign in front of the second term. In the absence of small-scale isotropic hetero-351

geneities, we anticipate radial anisotropy to be always underestimated by tomography.352

Finally, equation (22) suggests the existence of a cross-term 〈δµ · δξCPO〉 due to353

the spatial correlation between intrinsic radial anisotropy and shear modulus. Sup-354

posing spatial variations in both components are significant such as at major seismic355
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discontinuities, the correlation term should influence the anisotropy mapped in tomo-356

graphic models.357

Similarly, the effective Voigt-averaged shear modulus µ∗ is given by:358

µ∗ =
2L∗ +N∗

3
. (23)359

Plugging equations (20) and (21) into equation (23), we get:360

µ∗ = 〈µ〉− 2

〈µ〉(2 + 〈ξCPO〉)
〈δµ2〉− 2〈µ〉

(2 + 〈ξCPO〉)3
〈δξ2CPO〉+

4

(2 + 〈ξCPO〉)2
〈δµ·δξCPO〉. (24)361

Ignoring intrinsic radial anisotropy (i.e., ξCPO = 1 and δξCPO = 0), the effective shear362

modulus µ∗ is always smaller than its spatially-averaged version 〈µ〉. Such a result363

is logical in the 1-D case. Here, radial anisotropy induced by fine-layering is always364

positive (equation (22)) thereby having N∗ > L∗. Since L ’counts’ twice and N once in365

its isotropic average, its long-wavelength effective equivalent µ∗ is always slower than366

〈µ〉. Contrastingly, if one neglects isotropic heterogeneities and only consider variations367

in intrinsic radial anisotropy, homogenization also results in the underestimation of368

the shear modulus. One would predict that homogenization leads to the creation of369

apparent isotropic heterogeneities due to small-scale variations in CPO. Lastly and370

as expected, the cross term recurs due to the spatial correlation between the shear371

modulus and intrinsic radial anisotropy.372

Although the homogenized equations (22) and (24) make clear that homogeniza-373

tion leads to correction terms that are only second-order, these effects may not be374

negligible. First, the equations that we obtained are also valid in situations where375

〈ξCPO〉 = 1 but where 〈δξ2CPO〉, 〈δµ2〉, or 〈δξCPOδµ〉 are different from zero, in which376

case, all observed anisotropy would be related to second order effects. In the case377

of SPO, the variance in the shear modulus µ can be extreme in the presence of par-378

tial melt or water in the mantle (e.g Hacker et al., 2003; Auer et al., 2015) . An379

increase in seismic wavespeed variations of about 20% underneath mantle wedges can380

result from the full hydration of periodotite and eclogite (Hacker et al., 2003). This381

may then significantly contribute to the effective radial anisotropy mapped in tomo-382

graphic images. Contrastingly, significant second-order effects due to CPO-related383

radial anisotropy may only be possible if there are relatively fast spatial variations384

in intrinsic anisotropy. For instance, parts of the lithosphere, especially underneath385

oceanic basins, may harbor layering that is composed of frozen-in CPO transported386
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from the ridge (Becker et al., 2008; Hansen et al., 2016; Hedjazian et al., 2017) and387

the isotropic mantle lithosphere. This layering may produce sharp spatial variations388

in intrinsic radial anisotropy. According to equation (22),this would tone down the389

level of the observed radial anisotropy.390

The homogenized expressions given by equations (22) and (24) in terms of the391

isotropic shear modulus µ may not be particularly convenient for seismologists. In392

practice, spatial distributions in VS , and not in µ, are observed. If one assumes that393

density is uniform, then δµ/µ can be simply replaced by 2δVS/VS . On the other hand,394

if one assumes that density increases with VS , one could also establish long-wavelength395

effective expressions for VS in the same manner as µ using simple empirical relations396

for density such as that of Tkalčić et al. (2006).397

In the Earth’s asthenosphere where large-scale anisotropy due to mantle deforma-398

tion is prevalent, the expected shear modulus heterogeneities between mineralogical399

phases seem at most 10% (e.g. Xu et al., 2008; Stixrude & Jeanloz, 2015). To perform400

a numerical estimate, let us examine a stack of planar layers with alternating shear401

moduli values differing by 20% (Figure 2a middle panel) . The 1-D depth profiles402

depict periodic variations with layers of equal thicknesses of 20 km. Positive intrinsic403

radial anisotropy (ξ = 1.2) is prescribed in the even layers, whereas the odd layers404

are isotropic (ξ = 1) (Figure 2a right panel). After upscaling over a wavelength much405

larger than 20 km, the resulting profiles for N∗ and L∗ are homogeneous, and simply406

given by their arithmetic and harmonic means, respectively (Figure 2a left panel).407

Once the long-wavelength effective N∗ and L∗ are acquired, we can compute the full408

effective radial anisotropy ξ∗ through equation (12) (solid red line in Figure 2a right409

panel), and the effective shear modulus µ∗ through equation (23) (solid red line in410

Figure 2a middle panel). Figure 2b illustrates a different scenario where ξ only exists411

in the odd layers (Figure 2b right panel). In essence when the shear modulus and412

intrinsic radial anisotropy are uncorrelated, the homogenized parameters µ∗ and ξ∗413

should be the same regardless. However, a slight offset in µ∗ and ξ∗ of Figure 2b with414

respect to Figure 2a can be observed which is exclusively attributed to this cross term415

as hinted by equations (22) and (24). Strictly speaking, the reduction in the ampli-416

tude of the effective properties arises from the switch in signs in the cross term from417

positive to negative 〈δµ · δξ〉, implying that in the second scenario, the shear modulus418

and intrinsic radial anisotropy are anti-correlated.419
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To validate the second-order approximation, we also show ξ∗ and µ∗ using equa-420

tions (22) and (24) respectively (dashed blue lines in Figures 2a and 2b middle and421

right panels). Clearly by applying equation (22), the intrinsic component (first term)422

contributes the most to the effective radial anisotropy with 1 − 〈ξCPO〉 = 0.1. Its423

spatial variations’ (second term) overall effect is to tone-down the amplitude of ra-424

dial anisotropy by ∼ 1%. This is followed by the SPO component (third term) which425

is responsible for the amplification of radial anisotropy by ∼ 10%. Lastly, the cross426

term provides the least contribution (less than ±1%) and therefore can reasonably427

be ignored in this case. The ± sign denotes that it may increase or decrease radial428

anisotropy depending on the coupling pattern between the shear modulus and intrinsic429

radial anisotropy.430

3.3 Composite law for S−wave radial anisotropy431

In this section, we show how the effective radial anisotropy can be expressed in432

terms of its intrinsic and extrinsic contributions. For that, we investigate two special433

cases: (1) a purely isotropic 1-D layered medium, (2) an anisotropic 1-D medium434

(i.e., no spatial variations in isotropic component), and find equivalent expressions for435

extrinsic radial anisotropy ξ∗SPO and effective intrinsic radial anisotropy ξ∗CPO. By doing436

so, we elicit a simple composite law related to equation (22) that can be extrapolated437

to 2-D and 3-D media.438

In the case of an isotropic medium with spatially-varying shear modulus, the439

radial anisotropy is entirely due to SPO. Equation (22) reforms into:440

ξ∗SPO ≈ 1 +
〈δµ2〉
〈µ〉2

. (25)441

On the other hand, an anisotropic medium without spatial variations in the shear442

modulus leads to an effective intrinsic radial anisotropy:443

ξ∗CPO ≈ 〈ξCPO〉 −
2〈δξ2CPO〉

(2 + 〈ξCPO〉)2
. (26)444

By taking the product between equations (25) and (26), neglecting terms higher than445

order two, one has simply:446

ξ∗CPO × ξ∗SPO ≈ 〈ξCPO〉 −
2〈δξ2CPO〉

(2 + 〈ξCPO〉)2
+
〈ξCPO〉〈δµ2〉
〈µ〉2

, (27)447

which is approximately equal to ξ∗ in equation (22) but without the cross term. There-448

fore, ignoring spatial correlations between intrinsic radial anisotropy and shear mod-449
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Figure 2. 1-D binary and periodic media with 20% isotropic heterogeneities in shear modulus

prescribed across: (a) even layers, and (b) odd layers. Upon homogenization, the resulting pro-

files are homogeneous (variables denoted by (*)). The dashed blue lines at the middle (µ∗
approx)

and right panels (ξ∗approx) correspond to the predicted long-wavelength effective equivalents using

the second order approximations from equations (24) and (22), respectively. The difference in the

homogenized shear moduli and radial anisotropy between (a) and (b) is attributed to the cross

term as implied by equation (22). Since the medium is periodic, it is enough to only display a

portion of the medium.
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ulus, the full effective radial anisotropy can be quantified through the following com-450

posite law:451

ξ∗ ≈ ξ∗CPO × ξ∗SPO. (28)452

In practice, ξ∗ can be estimated from a tomographic inversion (Debayle & Ken-453

nett, 2000; Plomerová et al., 2002; Gung et al., 2003; Nettles & Dziewoński, 2008a;454

Fichtner et al., 2010). Seismologists often compare ξ∗ with the intrinsic radial anisotropy455

ξCPO computed from a geodynamically-based CPO model (Becker et al., 2003, 2006;456

Ferreira et al., 2019; Sturgeon et al., 2019). The comparison should be done instead457

with an effective model ξ∗CPO, which is difficult to estimate without access to any458

elastic homogenization tools. Furthermore, equation (22) suggests that there is a non-459

negligible extrinsic component of radial anisotropy due to the unresolved small-scale460

isotropic heterogeneities. While it is difficult to rigorously establish analytical solu-461

tions in the case of a 2-D/3-D complex media, following the logic above, we hypothesize462

that the mismatch often observed between homogenized CPO models and tomographic463

models is the extrinsic radial anisotropy ξ∗SPO.464

4 Methods for 2-D media465

4.1 Homogenization in 2-D and in 3-D media466

The classic homogenization method of Backus is only applicable in 1-D to media467

exhibiting spatial periodicity. The true Earth, however, is a complex 3-D and multi-468

scale medium. To alleviate this problem and quantify effective elastic properties in469

a mantle-like medium, we rely on the non-periodic elastic homogenization technique470

developed by Capdeville and Marigo (2007); Capdeville et al. (2010); Guillot et al.471

(2010); Capdeville et al. (2015). Originally, this method has been developed as a pre-472

processing step enabling one to solve the elastostatic wave equation using a simple473

mesh, speeding up the computations for wave propagation in complex media. It has474

also been used to improve the convergence and computational cost of full waveform475

inversion (Capdeville & Métivier, 2018; Hedjazian et al., 2021). Most homogenization476

methods rely on a ”cell” problem: a set of static elasticity problems whose solutions477

are the base of the effective medium (Sanchez-Palencia, 1980). In the 1-D case, this478

”cell” problem has an analytical solution which leads to explicit formulas for the ef-479

fective medium such as the one found in Backus (1962). In higher dimensions, this480
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analytical solution does not exist and we need to rely on a numerical solver to obtain481

the solutions of the cell problem. Finite element methods are classically used for this482

purpose. Nevertheless, solvers based on the periodic Lippman-Schwinger equation and483

fast Fourier transforms (Moulinec & Suquet, 1998) can also be very efficient leading484

to a mesh-less tool (Capdeville et al., 2015).485

In the non-periodic case, the homogenization is not performed with respect to the486

periodicity of the medium, but with respect to the minimum wavelength present in the487

wavefield. The assumption that this minimum wavelength λmin exists is required for488

non-periodic medium with no scale separation such as the true Earth. Scales smaller489

than λmin are seen by the wavefield only through their effective properties. To sep-490

arate the small and the large scales, we need to define a threshold wavelength λh,491

called the homogenization wavelength. λh is a user-defined parameter, and all scales492

smaller than λh are homogenized. Numerical examples suggest that, for all natural493

media, homogenization with a value λh = 0.5λmin is sufficient to accurately reproduce494

the complete wavefield (Capdeville et al., 2010). Hence, this value is chosen in the495

rest of the present study. Computing the effective properties of an elastic medium496

with homogenization wavelength λh requires to solve an elastostatic problem numer-497

ically. To do this, we use the 3-D Fast-Fourier Homogenization algorithm developed498

by Capdeville et al. (2015).499

In practice, two factors prevent the recovery of the true Earth by tomographic500

methods: (1) limited frequency band of the recorded seismic signals, and (2) limited501

data coverage of ray paths. In the context of full-waveform inversions with perfect502

coverage (i.e., where sources and receivers are densely distributed at the surface of the503

volume to image), Capdeville and Métivier (2018) numerically verified that a seismic504

tomography model and the homogenized model are in agreement at spatial wavelengths505

higher than λh . Hence, homogenization can be viewed as a first-order tomographic506

operator assuming perfect data coverage. We will consider the homogenized model as507

the best image one could get from seismic tomography. This can be translated to:508

S∗ = H(S) (29)509

where H is the tomographic operator, S is the true elastic structure, and the homoge-510

nized model S∗ is the full effective medium (i.e., the best recovered image as seen by a511

wavefield of a given minimum wavelength λmin and assuming perfect data coverage).512
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In this paper, we apply this ’tomographic operator’ to a 2-D composite medium by513

upscaling the marble cake model in the presence of deformation-induced anisotropy.514

Note that the effect of limited data coverage could be simply accounted for by apply-515

ing the tomography resolution matrix to S∗ (Simmons et al., 2019). For simplicity, we516

ignore this effect in this work.517

4.2 Isotropic heterogeneities in a 2-D mechanically-mixed mantle518

To define our 2-D incompressible flow model imitating mantle convection, we use519

a stream function similar to that of Alder et al. (2017):520

Ψ(x, z, t) = sin(aπz)
[

sin(bπx) + α(t) sin((b+ 1)πx) + β(t) sin((b+ 2)πx)
]

(30)521

where α(t) and β(t) are sinusoidal functions of time that introduces chaotic mixing.522

The variables a and b relate to the number of distinguishable convection cells and are523

chosen arbitrarily. The form of the function Ψ ensures free-slip boundary conditions.524

Finally, the resulting velocity field is scaled using a reference value of 1 cm·yr−1.525

We replicate the marble cake patterns by deforming a circular anomaly at the526

center of the box using our prescribed flow field. To do this, control points that define527

the contour of the anomaly are advected using fourth-order Runge Kutta methods528

with variable time-stepping (Press et al., 1992). To achieve a final configuration for the529

anomaly, we define an advection mixing time TSPO. Figure 3 illustrates the evolution530

of the pattern when subjected to the flow field defined in equation (30). Setting531

a = 1, b = 2, and TSPO = 75 My, we have a mechanically-mixed medium with two532

characteristic convection cells.533

Using the last panel of Figure 3, the binary system is defined by assigning a534

reference S-wave velocity value VS2
= 4.52 km·s−1 to the yellow region, and VS1

=535

3.7 km·s−1 to the purple region so that the level of isotropic heterogeneities is given536

by 100% × (VS1 − VS2)/(VS1 + VS2)) = 10%. P−wave velocities are computed by537

imposing a constant ratio VP /VS = 1.7 (Obrebski et al., 2010). Following the work538

of Tkalčić et al. (2006), we compute the density ρ using the empirical relation ρ =539

2.35 + 0.036(VP − 3)2. These values are used to define the local isotropic tensor SI in540

equation (1).541
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Figure 3. Initially a circle, the anomaly is deformed progressively until the medium reaches a

stage resembling marble cake-like patterns.

4.3 Modeling of Crystallographic Preferred Orientation542

Using the velocity gradient tensor derived from the stream function Ψ described543

previously, we then model CPO evolution of olivine aggregates using D-Rex, a program544

that calculates strain-induced CPO by plastic deformation, and dynamic recrystalliza-545

tion (Kaminski et al., 2004). The activities of olivine slip systems are chosen to corre-546

spond to dry mantle conditions, while other parameters are taken as in the reference547

D-Rex model. To control the level of intrinsic anisotropy, we assume that CPO only548

developed in the last TCPO of the simulation.549

In our numerical experiments, we compute CPO everywhere irrespective of the550

actual mineralogical phase. We scale the elastic tensor derived from D-Rex so that its551

isotropic component is identical to the binary system derived in Section 4.2. The true552

elastic structure can be constructed from equation (1) where SI now relates to the553

small-scale isotropic heterogeneities in the mechanically-mixed mantle, and SA is the554

intrinsically anisotropic component computed with D-Rex.555
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4.4 Quantifying the level of anisotropy556

In this section, we define two ways to quantify the level of seismic anisotropy557

for any given elastic tensor S. The first one is radial anisotropy. We project the558

elastic tensor in terms of an azimuthally-averaged vertically transverse isotropic (VTI)559

medium to obtain a tensor described as in equation (5). Here, the parameters L and560

N can be computed from S as follows (Montagner & Nataf, 1986):561

L =
1

2
(S44 + S55) (31)562

N =
1

8
(S11 + S22)− 1

4
S12 +

1

2
S66. (32)563

564

The level of radial anisotropy is then given by equation (8).565

Another convenient way to quantify anisotropy is to compute the percentage of566

total anisotropy by taking the L2-norm fraction of the anisotropic part of the elastic567

tensor with respect to the isotropic part. This quantity is called the anisotropy index568

and is given by:569

anisotropy index =
||S− SI||
||SI||

. (33)570

5 Elastic homogenization of a 2-D mechanically-mixed mantle in the571

presence of CPO572

Figure 4 displays some seismic properties of the true elastic structure S before573

and after homogenization in a 1000 km × 1000 km box. The left panels are the574

true structures, whereas the middle and right panels are the structures equating to575

the full effective medium H(S) at homogenization wavelengths λh of 200 km and576

500 km, respectively. The first row depicts the S−wave velocities, the second, the577

radial anisotropy, and the third, the anisotropy index. Each pixel initially contains an578

isotropic part derived from the marble cake model with a mixing time for advection579

TSPO ∼75 My , and an anisotropic part computed from a CPO model with a time580

scale for CPO evolution of TCPO ∼40 My corresponding to a moderately developed581

crystal fabric.582

Several glaring features can be observed such as the presence of positive radial583

anisotropy (ξ > 1) at the top and bottom boundaries where flow is sub-horizontal,584

and likewise negative (ξ < 1) at regions where the flow is sub-vertical. As expected,585

homogenization results in the smoothing of the structures with the level of smoothing586
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modulated by λh. However, homogenization is not just a simple spatial average but587

a product of highly non-linear upscaling relations. With increasing homogenization588

wavelengths, the full effective medium becomes devoid of anisotropy in some areas.589

After decomposing S into an isotropic tensor I(S) and an anisotropic tensor A(S)590

through equations (2) and (4), one can also homogenize and analyze each component591

separately, i.e. H(I(S)) and H(A(S)). Figure 5 shows the level of effective radial592

anisotropy of these two separate components after homogenization. The top panels593

recreate the results of Alder et al. (2017). Indeed, homogenizing the fine-layered594

isotropic medium produces extrinsic radial anisotropy ξ∗SPO (i.e., radial anisotropy of595

model H(I(S))). Notice that the patterns of effective intrinsic radial anisotropy and596

extrinsic radial anisotropy maps are roughly similar. For example, they both induce a597

positive radial anisotropy ξ > 1 in the horizontal layers: the stretched heterogeneities598

that induce SPO become elongated along the direction of the maximum principal strain599

rate that also controls the CPO.600

Figure 6 depicts the apparent isotropic heterogeneities created upon homoge-601

nization of A(S). It produces maximum velocity perturbations of about 0.25 % at602

λh = 200 km and 0.2 % at λh = 500 km. It appears to be a small effect, especially603

considering the large and sharp variations of intrinsic anisotropy in our CPO model.604

To better illustrate the behaviour of different contributions to radial anisotropy,605

we plot in Figure 7 the amplitude of radial anisotropy (in terms of its standard de-606

viation over the entire 2-D model domain) against the wavelength of homogenization607

λh. In the following cases, the intrinsic anisotropy component of S is computed for608

a CPO developing over increasing duration TCPO of 5, 40, or 75 Myr. Several points609

can be noted in Figure 7:610

(i) The resulting intrinsic radial anisotropy ξCPO in terms of its standard devi-611

ation over the entire region (dashed lines) increases with TCPO, although some sat-612

uration is observed (i.e., the orientation of crystals depends mostly on their recent613

deformation, and lose the memory of the deformation they underwent too long ago).614

(ii) The level of intrinsic radial anisotropy is diminished upon homogenization.615

ξ∗CPO (hollow squares) is always lower than the reference value ξCPO (dashed lines), and616

diminishes with λh. This effect can be easily understood. For small λh, the wavelength617
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Figure 4. Seismic properties of the true elastic structure S before and after homogenization.

The model dimensions are 1000 km × 1000 km. Here, each pixel contains an S which consists of

small-scale isotropic heterogeneities and an intrinsically anisotropic perturbation computed with

D-Rex (Kaminski et al., 2004). The present-day marble cake patterns correspond to a mixing

time for advection TSPO ∼ 75 My, whereas the time scale for CPO evolution is TCPO ∼ 40 My.

We homogenized S using the Fast-Fourier homogenization algorithm of Capdeville et al. (2015).

(From left to right) First row: Vs models derived from S, H(S) at λh = 200 km, and H(S) at

λh = 500 km. Second row: ξCPO, ξ∗ at λh = 200 km, and ξ∗ at λh = 500 km. Last row: Total

anisotropy in terms of the norm fraction of S, H(S) at λh = 200 km, and H(S) at λh = 500

km. Elastic homogenization can be viewed as the best possible model reconstructed by seismic

tomography assuming perfect ray-path coverage.
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Figure 5. Extrinsic radial anisotropy ξ∗SPO (i.e., radial anisotropy of model H(I(S))) (top

panels) at two different wavelengths of homogenization λh. It is computed following the pro-

jection of the homogenized elastic tensor into an azimuthally-averaged VTI tensor as ’seen’ by

surface waves (Montagner & Nataf, 1986). Here, ξ∗SPO > 1 is now interpreted as horizontal lay-

ering whereas < 1 as vertical layering. The bottom panels show the effective intrinsic radial

anisotropy ξ∗CPO (i.e., radial anisotropy of model H(A(S))).
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Figure 6. Apparent isotropic velocity perturbations with respect to a mean velocity VS at

two different wavelengths of homogenization λh. H(A(S)) pertains to the homogenized model of

an anisotropic medium. Even when placed in a very favorable scenario for intrinsic anisotropy,

homogenizing an anisotropic medium produces a meager 0.25% artificial heterogeneities at λh =

200 km and 0.2% at λh = 500 km.

of homogenization is small compared to the scale of deformation patterns (of order 100618

km). At each point of the 2-D map, the direction of CPO is therefore locally constant619

over λh, which yields ξ∗CPO ≈ ξCPO. At larger scales, when λh increases compared to620

the scale of convection, this direction becomes likely random and CPO heterogeneities621

averaged over λh have different orientations: there is less of a preferential direction622

and the averaged level of CPO anisotropy is diminished.623

(iii) On the contrary, the full effective radial anisotropy ξ∗ at short wavelengths624

of homogenization λh is larger than ξCPO. This is in agreement with the analytical625

expression given by equation (22). This additional anisotropy is of course due to626

the existence of SPO (black circles) which reinforces the total level of effective radial627

anisotropy.628

(iv) Both ξ∗CPO and ξ∗ converge toward ξCPO at infinitely short homogenization629

wavelengths. Only in this unrealistic case (i.e., the perfect recording of the seismic630

wavefield up to infinitely short periods), would seismic tomography be able to map the631

true intrinsic radial anisotropy.632
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Figure 7. Effective radial anisotropy in terms of its standard deviation σξ over the entire 2-D

image, plotted as a function of homogenization length. The time scales indicated in million years

pertain to the evolution history of CPO (a larger time scale leads to stronger CPO). Dashed

lines represent the standard deviation of ξCPO in model S and serve as reference values. In this

experiment, ξ∗SPO of model H(I(S)) (black circles) deemed to be five times smaller than ξ∗CPO of

model H(A(S)) (hollow squares). Since SPO is mostly in-phase with CPO, the two anisotropic

components add constructively giving the full effective radial anisotropy ξ∗ (solid line-dots).
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(v) Extrinsic radial anisotropy ξ∗SPO here has an amplitude that is five times633

smaller than ξ∗CPO. Such a result, of course, is specific to this numerical experiment,634

and that CPO is indeed stronger than SPO might not be always true. For instance, a635

longer mixing time would have resulted in a thinner and more complex layering that636

would have increased the SPO. We are unfortunately limited by the number of tracers637

necessary to describe the phase stirring which is exponentially increasing with time.638

5.1 Verifying the composite law ξ∗ = ξ∗CPO × ξ∗SPO in 2-D639

In this section, we aim to numerically verify equation (28) in 2-D by plotting ξ∗SPO640

× ξ∗CPO against ξ∗ for each pixel in our 2-D maps of radial anisotropy. Here again, the641

three quantities ξ∗SPO, ξ∗CPO, and ξ∗ are respectively computed fromH(I(S)),H(A(S)),642

and H(S). We emphasize that since CPO is computed everywhere, there are no CPO643

discontinuities between the yellow and the purple stripes of our 2-D marble cake model;644

the radial anisotropy is almost uniform across thin laminations. Since the cross-term645

in equation (22) depends on small-scales in ξCPO, we expect that there should be646

minimal spatial correlation between CPO and isotropic heterogeneities, and thus the647

effect of the cross-term is effectively mitigated. Figure 8b shows this for two different648

homogenization wavelengths λh. We can see that the relation holds exceptionally well649

even for large λh.650

In practice however, tomographic models of ξ∗ are interpreted in terms of intrinsic651

anisotropy, and directly compared with ξCPO computed from CPO models (Becker et652

al., 2003, 2006; Ferreira et al., 2019). We mimic this scenario by comparing ξ∗SPO653

× ξCPO instead with ξ∗ (Figure 8a). As it turns out, the relation only holds for654

small values of λh. At larger values of λh, the trend appears to be more dispersed as a655

consequence of the averaging process, losing its viability to some extent. In the absence656

of a homogenized CPO model, we project that this composite law would remain true657

in general under the condition that the minimum wavelength used in tomography is658

sufficiently small.659

To test the effect of the rigidity-anisotropy cross-term, we consider another man-660

tle model where CPO is only present in one of the two phases of the 2-D marble661

cake illustrated in Figure 3. We impose that the purple component remains isotropic662

and we increase the percentage of isotropic heterogeneities in VS to 15%. These two663
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Figure 8. Figure 8a: plot of the full effective radial anisotropy ξ∗ as a function of ξCPO ×

ξ∗SPO. CPO is computed everywhere in this case. The media S and I(S) are homogenized at

wavelengths of 50 km (left panel) and 200 km(right panel) to obtain ξ∗ and ξ∗SPO, respectively.

Figure 8b: the full effective radial anisotropy is now plotted against ξ∗CPO × ξ∗SPO. The disper-

sion of the data is immensely reduced when the CPO is homogenized according to equation (28).

Figure 8c: the purple phase is now assumed isotropic and the isotropic heterogeneities are in-

creased to 15%. The cross-term, neglected in equation (28), increases moderately the dispersion

compared to figure 8b.
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modifications would increase the correlation between the shear modulus and intrinsic664

radial anisotropy following equation (22). Figure 8c displays the numerical solution at665

λh = 50 km and 200 km when CPO is computed in the yellow phases alone. In this666

scenario, CPO now varies sharply and in the same places as isotropic discontinuities667

(i.e., δξCPO terms in equation (22) are much larger), and as expected the cross-term668

is much more apparent. Nonetheless, this only produces small departures from the669

composite law (red line), implying that the predictions carried out by the composite670

law are robust.671

5.2 Discussion672

We investigated the effects of elastic homogenization to a specific class of fine-673

scale, marble cake-like models of the mantle in the presence of deformation-induced674

anisotropy. The homogenization procedure can be viewed as a tomographic operator675

applied to a reference elastic model (Capdeville et al., 2013).676

We showed that the extrinsic radial anisotropy produced by fine-layering could677

reach up to 2% (see Figure 7) assuming 10% of isotropic heterogeneities. This radial678

anisotropy is much lower than the one induced by crystallographic preferred orientation679

(CPO) where the effective intrinsic radial anisotropy could peak at nearly 11%. This680

result is however modulated by some parameters that regulate the level of effective681

radial anisotropy. For example, the layered filaments contrived from our marble cake682

models are of the order 10−100 km whereas of those proposed by Allègre and Turcotte683

(1986) are much thinner and can stretch even further down to the centimeter scale.684

Because heterogeneities in a mechanically-mixed mantle follow a 1/k power spectrum685

(where k is wavenumber) (Ricard et al., 2014; Mancinelli et al., 2016; Alder et al.,686

2017), meaning that heterogeneities exist at all scales, thinner filaments may induce687

larger extrinsic radial anisotropy by increasing the volume of the mantle where homog-688

enized heterogeneities produce SPO. In addition, effective anisotropy is also affected689

by the level of intrinsic anisotropy. Since CPO results from finite strain accumulation690

over time, the amplitude of intrinsic anisotropy increases with the time scale for CPO691

evolution TCPO. Such presumptions may only be valid in regions where rock defor-692

mation varies over extended periods of time, although recrystallization and damage693

would limit the CPO that can be eventually accumulated (Ricard & Bercovici, 2009).694

Furthermore, we considered olivine of type-A crystal fabric as the solitary anisotropic695
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mineral in our mantle models. Because of this, the intrinsic anisotropy produced from696

finite deformation should be seen as an upper bound. Inclusion of other anisotropic697

minerals such as pyroxene which make up a fraction in mantle periodotite (Maupin698

& Park, 2015) would change the net anisotropy. For instance, we anticipate that699

including a substantial amount of enstatite would dilute the amount of anisotropy700

(e.g. Kaminski et al., 2004). Therefore, whether CPO accounts for most of the bulk701

anisotropy observed in tomographic images remains inconclusive and needs further702

verification.703

In light of the simulations conducted, we expect large-scale anisotropy to be only704

overestimated when CPO coexists with significant shape preferred orientation (SPO)705

as exemplified in our simulations. In the absence of SPO, homogenization can only706

decrease the strength of anisotropy. By accounting for both contributions, we showed707

that ξ > 1 is attributed to a combination of lateral flow and horizontal layering, and708

ξ < 1 is a combination of flow ascent and vertical layering. Indeed, the direction of709

shear not only dictates the preferred orientation of the anisotropic minerals, but also710

of the orientation of the folded strips that gives rise to fine-layering and SPO.711

The repercussion of homogenizing intrinsic anisotropy alone amounts to the712

convection-scale averaging of the CPO as evidenced by our simulations. When713

long-period observations sample an intrinsically anisotropic medium, the wavefield714

spatially-averages these orientations. As a result, preferential orientations that are715

products of imbricated convection tend to appear more heterogeneous, thereby osten-716

sibly losing intrinsic anisotropy upon homogenization. In contrast, spatially-coherent717

preferential orientations produced by simpler convection patterns are less susceptible718

to the dilution of intrinsic anisotropy.719

The applicability of equation (28) in a 2-D complex media may be of interest720

to geodynamicists and tomographers alike. Not only does it permit one to directly721

quantify the discrepancy between the full effective radial anisotropy inferred from722

a tomographic model and the effective intrinsic radial anisotropy computed from a723

homogenized CPO model, it further solidifies the supposition that the mismatch is724

indeed a result of extrinsic radial anisotropy due to the seismically-unresolved small-725

scale isotropic heterogeneities. We have conducted several numerical experiments to726

show that the composite law still holds even when the rigidity-intrinsic anisotropy727
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cross term is amplified. However, the fact that the effect of the cross term is small728

may not be true for all cases, and thus caution must still be undertaken when applying729

the composite law.730

The conclusions reached in this section are based on a number of simplifying as-731

sumptions: (1) The current forms of the homogenized analytical expressions given by732

equations (22) and (24) neglect P−wave anisotropy. Our argument was based on how733

P−wave-related structures are poorly constrained by long-period tomography. How-734

ever, Fichtner et al. (2013b) showed that the effective S−wave radial anisotropy of an735

isotropic-equivalent medium (i.e., fine-layering) also depends on P−wave anisotropy.736

They concluded that some small-scale isotropic equivalents that give rise to extrin-737

sic anisotropy may be eliminated in the picture if P−wave anisotropy is known with738

considerable precision. Thus, further developments in our study should address this739

point. (2) We held the isotropic velocity contrast at a fixed value and assumed it to740

be representative of the entire mantle. In reality however, VS variations generally de-741

crease with depth (Xu et al., 2008; Stixrude & Jeanloz, 2015). This is not to mention742

the local presence of melt and water that contributes to the variations in wave ve-743

locities, and hence the strength of heterogeneities which completely alters the level of744

apparent anisotropy. (3) We disregarded the dependency of the elastic constants built745

from our mantle models on pressure P and temperature T . Future avenues one could746

take would be to incorporate P − T dependence using empirical relations constrained747

from laboratory experiments. For instance, one may compute P −T dependence using748

first-order corrections around a reference elastic tensor at ambient P − T conditions749

(Estey & Douglas, 1986). The availability of self-consistent thermodynamic models750

based on free-energy minimization schemes (J. A. Connolly, 2005; J. Connolly, 2009)751

can also be employed in lieu of the simpler relations for more accurate predictions of752

seismic wave velocities in any given bulk composition (Stixrude & Lithgow-Bertelloni,753

2011).754

6 Separating SPO from CPO in tomographic models: Application to755

radial anisotropy beneath oceanic plates756

Following the verification of the composite law in a 2-D complex medium, in this757

section we present its application to a real-Earth problem. Here, our goal is to assess758

the discrepancy between a tomographic model and a CPO model of upper-mantle759
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radial anisotropy underneath a mid-ocean ridge. In our hypothesis, this difference760

should be explained by the extrinsic radial anisotropy due to the unresolved small-761

scales in seismic velocities.762

6.1 Radial anisotropy beneath oceanic plates763

Within the context of seismic tomography, surface waves offer the capability764

to image upper-mantle structure providing an in-depth view of large-scale anisotropy765

(e.g. Rychert et al., 2018). Surface wave tomography images positive radial anisotropy766

underneath oceanic basins (VSH > VSV ), characterized by a layer of strong signatures767

lying in between ∼ 80 − 200 km depth, corresponding to the asthenosphere (e.g.768

Montagner, 1985; Ekström & Dziewonski, 1998; Panning & Romanowicz, 2006; Nettles769

& Dziewoński, 2008b). The maximum positive vertical gradient of ξ∗, at ∼ 80 km770

depth, independent of plate age, is a recurrent feature in these tomographic models.771

This has raised questions about the potential use of radial anisotropy as a marker772

of the lithosphere-asthenosphere boundary (LAB), which is expected on the contrary773

to deepen with plate age (Rychert & Shearer, 2011; Burgos et al., 2014; Beghein et774

al., 2019). The strong radial anisotropy in the asthenosphere is usually explained by775

geodynamic models including CPO evolution (Becker et al., 2006, 2008).776

Across the oceanic lithosphere, plate-averaged radial anisotropy (i.e., all points777

in the radial anisotropy models with the same plate age are averaged) displays modest778

levels of about 1−3%. Several models have been proposed to explain these observa-779

tions. Hansen et al. (2016) and Hedjazian et al. (2017) suggest that CPO-related radial780

anisotropy developed below the ridge is subsequently frozen in the lithosphere, lead-781

ing to an age-independent signature. It has also been proposed quasi-laminated melt782

structures, preserved during lithospheric thickening, can also explain this frozen-in783

signature of anisotropy (e.g. Auer et al., 2015; Debayle et al., 2020). Hence SPO may784

also be a potential explanatory mechanism, and a substantial fraction of the observed785

lithospheric anisotropy may be due to small-scale isotropic heterogeneities (Wang et786

al., 2013; Kennett & Furumura, 2015).787
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6.2 The tomographic model788

In conjunction with the pre-existing global VSV model of the upper-mantle con-789

strained from Rayleigh wave data DR2012 (Debayle & Ricard, 2012), we adopt the790

recent global VSH model CAM2016SH of Ho et al. (2016) to acquire a plate-averaged791

2-D profile of radial anisotropy associated with slow-spreading oceanic ridges.792

The VS models were reconstructed by independently inverting Love (for VSH793

models) and Rayleigh (for VSV models) waveforms up to the fifth overtone between794

the period range 50 − 250 s using an extension of the automated waveform inversion795

approach of Debayle (1999). We refer the reader to Debayle and Ricard (2012) and796

Ho et al. (2016) for a more detailed description of the inversion procedure.797

From the VSV and VSH models of the upper-mantle, we compute the tomographic798

counterpart of radial anisotropy using ξ∗ = (VSH/VSV )2. Here, ξ∗ is not directly799

inferred from simultaneous inversions of Love and Rayleigh data but is a rudimentary800

estimate from the two S−wave velocity models that may conceivably have different801

qualities. We view the following exercise as only a proof-of-concept and therefore the802

results should be interpreted with caution.803

The depth distribution of ξ∗ spanning from 35−400 km is shown in Figure 9 (top804

panel). Positive radial anisotropy values (ξ∗ > 1) are confined in the upper ∼ 200 km of805

the model domain which is in close agreement with previous studies (e.g. Montagner,806

1985; Ekström & Dziewonski, 1998; Panning & Romanowicz, 2006). Although the807

origin of anisotropy imaged in the asthenosphere is well-understood purely in terms of808

CPO, anisotropy observed in the lithosphere may be a combination of CPO and SPO809

(Wang et al., 2013). Here our task is to invoke the composite law to isolate SPO from810

CPO in this tomographic model with the help of a homogenized CPO model.811

6.3 The CPO model812

In this section, we re-interpret the results of Hedjazian et al. (2017) where they813

examined radial anisotropy profiles predicted from CPO models produced by plate-814

driven flows underneath a mid-ocean ridge. From their work, we borrowed two CPO815

models that correspond to a fast-developing CPO and a slow-developing CPO. The816

rate is dictated by the dimensionless grain boundary mobility parameter M which817
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controls the kinetics of grain growth (and hence, the degree of dynamic recrystalliza-818

tion) (Kaminski et al., 2004). In the first case, a value of M = 125 constrained from819

laboratory experiments (Nicolas et al., 1973; Zhang & Karato, 1995) corresponding820

to CPO produced from uniform deformation and initially-random CPO was imposed821

(Kaminski et al., 2004). Subsequently, the second case considers a case where M =822

10 (i.e., slower CPO evolution) which also reproduces experimental results but in the823

case of an initially developed CPO (Boneh et al., 2015). We homogenize the two CPO824

models, obtain their long-wavelength effective equivalent, and appraise the resulting825

profiles in comparison with the tomographic model.826

6.3.1 The intrinsic CPO mineralogical model827

2-D surface-driven mantle flows were acquired using the code Fluidity (Davies828

et al., 2011). In both models, upper-mantle deformation is governed by a composite829

dislocation and diffusion creep rheology following the implementation of Garel et al.830

(2014). D-Rex was used to model CPO evolution. A complete description of the831

methodology can be found in Hedjazian et al. (2017).832

Figure 9 displays the intrinsic radial anisotropy profiles ξCPO belonging to the833

fast-evolving CPO with reference D-Rex values M = 125 (model A) and the slow-834

evolving CPO with M = 10 (model B). Model A predicts a layer with strong levels835

of intrinsic radial anisotropy of about 10% (ξCPO ≈ 1.1) at a depth of ∼ 80 km836

starting at approximately 20 My. At about the same depth, tomographic models837

yield approximately 5% radial anisotropy (e.g. Panning & Romanowicz, 2006; Nettles838

& Dziewoński, 2008b; Burgos et al., 2014). Hence, it has been argued that model A839

overpredicts the observed level of large-scale anisotropy in the upper-mantle (Hedjazian840

et al., 2017). On the contrary, model B predicts modest levels of intrinsic radial841

anisotropy, about 5% (ξCPO ≈ 1.05) across the oceanic lithosphere which is more842

consistent with tomographic observations. In total agreement with Hedjazian et al.843

(2017), these models apparently favor a low grain boundary mobility.844

6.3.2 The homogenized CPO model845

Figure 9 now shows the effective intrinsic radial anisotropy profiles ξ∗CPO of model846

A∗ and model B∗. In both cases, the ensuing patterns of radial anisotropy are smoothed847
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out as a result of homogenization and more so for the fast mobility model A which848

predict a shallow CPO. For instance, the apparent two-layered distribution of intrinsic849

radial anisotropy with depth (down to ∼ 250 km) in model A vanishes after homoge-850

nization. The depth profile of effective intrinsic radial anisotropy as a result contain851

one layer of radial anisotropy centered at ∼ 100 km depth, making it now compati-852

ble with tomographic models of the asthenosphere. Furthermore, it was inferred that853

radial anisotropy predicted with typical laboratory-derived parameters exceeds tomo-854

graphic observations. Here, we argue that due to finite-frequency effects and eventu-855

ally limitations in resolution power, seismic tomography instead may underestimate856

the strength of intrinsic anisotropy, which further reinforce the need for the presence857

of a non-negligible SPO. As opposed to common practice, the physical parameters858

used in CPO models of which are initially constrained by experimental data may need859

not be manually tuned, and perhaps that the action of varying such parameters to860

conform with tomographic observations deems unnecessary. We therefore conclude861

that direct visual comparison between a CPO model and a tomographic model could862

lead to wrong interpretations, and that homogenization is necessary to have correct863

interpretations of the CPO models.864

6.4 Deriving an SPO model865

The SPO models of Figure 9 (models C and D) can be estimated by using our866

composite law in equation (28). The extrinsic radial anisotropy is obtained by simply867

dividing the tomographic model of radial anisotropy by that of the homogenized CPO868

model:869

ξ∗SPO =
ξ∗

ξ∗CPO

. (34)870

In this way, models C and D are obtained from models A∗ and B∗, respectively.871

Strong levels of positive extrinsic radial anisotropy near the ridge axis may be872

due to the inability of surface waves to register vertical flow because of its limited873

lateral resolution. Model D, associated with the slow-evolving CPO model B, is almost874

devoid of SPO. This is expected since model B was tailored to fit seismic tomography875

observations from CPO only. Based on our results, one should favor SPO model C876

that corresponds to a fast-evolving CPO model. It displays positive extrinsic radial877

anisotropy above 200 km depth. This is more consistent with the existence of lateral878
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fine-scale structures at the base of the lithosphere (e.g. Auer et al., 2015; Kennett &879

Furumura, 2015).880

7 Conclusion881

Differentiating the relative contributions of crystallographic preferred orientation882

(CPO) and shape preferred orientation (SPO) to the full effective medium is not a883

simple, straightforward process. The tomographic operator (here approximated by H)884

acts as a smoothing operator, and its inverse is highly non-unique. It is therefore clearly885

impossible to separate the CPO and SPO contributions in a tomographic model. One886

of the most logical courses of action is to compare tomographic models of anisotropy887

with existing micro-mechanical models of CPO evolution (e.g. Becker et al., 2003,888

2006; Ferreira et al., 2019). Here, we proposed an approximated composite law that889

directly relates the separate contributions of CPO and SPO to the full effective radial890

anisotropy ξ∗ inferred from tomographic models:891

ξ∗ = ξ∗SPO × ξ∗CPO,892

which we have numerically verified using simple 2-D toy models of an intrinsically893

anisotropic and a heterogeneous mantle. Although our numerical experiments were894

mainly a proof-of-concept, comparing a CPO model directly to an existing tomographic895

model is unwarranted and we highly recommend homogenizing a CPO model as an896

intermediate step.897
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Figure 9. Plate-averaged radial anisotropy across the upper-mantle beneath oceanic basins

with ages ranging between 0 and 80 Myrs obtained from a tomographic model (top panel),

reference CPO models corresponding to fast and slow-evolving textures (models A and B), ho-

mogenized versions of model A (model A∗) and of model B (model B∗). The sudden discoloration

centered at 50 My in the tomographic model may have resulted from the independent inversions

for VSH and VSV . This artifact may be eliminated by jointly inverting Love and Rayleigh wave-

forms for the radial anisotropy instead. Models C and D, respectively, are the extrinsic radial

anisotropy profiles computed by dividing ξ∗ of the tomographic model, by ξ∗CPO of model A∗

and B∗, using the composite law. Positive lithospheric radial anisotropy in model C implies the

existence of horizontally-laminated structures. This is absent in model D which is expected since

model B∗ is designed to fit observations.
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Nettles, M., & Dziewoński, A. M. (2008b). Radially anisotropic shear velocity struc-1139

ture of the upper mantle globally and beneath north america. Journal of Geo-1140

physical Research: Solid Earth, 113 (B2).1141

Nicolas, A., Boudier, F., & Boullier, A. (1973). Mechanisms of flow in naturally and1142

experimentally deformed peridotites. American Journal of Science, 273 (10),1143

853–876.1144

Nicolas, A., & Christensen, N. I. (1987). Formation of anisotropy in upper mantle1145

peridotites-a review. Composition, structure and dynamics of the lithosphere-1146

asthenosphere system, 16 , 111–123.1147

Obrebski, M., Kiselev, S., Vinnik, L., & Montagner, J.-P. (2010). Anisotropic strat-1148

ification beneath africa from joint inversion of sks and p receiver functions.1149

Journal of Geophysical Research: Solid Earth, 115 (B9).1150

Panning, M., & Romanowicz, B. (2006). A three-dimensional radially anisotropic1151

model of shear velocity in the whole mantle. Geophysical Journal Interna-1152

tional , 167 (1), 361–379.1153
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