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In the quest to understand the basic universal features of compressible convection, one
would like to disentangle genuine consequences of compression from spatial variations
of transport properties. For instance, one may choose to consider a fluid with uniform
dynamic viscosity, but, then, compressible effects will generate a density gradient and
consequently the kinematic viscosity will not be uniform. In the present work, we consider
a very peculiar equation of state, whereby entropy is solely dependent on density, so
that a nearly isentropic fluid domain is nearly isochoric. Within this class of equations
of state, there is a thermal adiabatic gradient and a key property of compressible
convection is still present, namely its capacity to viscously dissipate a large fraction
of the thermal energy involved, of the order of the well-named dissipation number. In
the anelastic approximation, under the assumption of an infinite Prandtl number, the
number of governing parameters can be brought down to two, the Rayleigh number and
the dissipation number. This framework is proposed as a playground for compressible
convection, an opportunity to extend the vast corpus of theoretical analyses on the
Oberbeck–Boussinesq equations regarding stability, bifurcations or the determination of
upper bounds for the turbulent heat transfer. Here, in a two-dimensional geometry, we
concentrate on the structure of numerical solutions. For all Rayleigh numbers, a change in
the vertical temperature profile is observed in the range of dissipation number between
0 and less than 0.4, associated with the weakening of ascending plumes. For larger
dissipation numbers, the heat flux dependence on this number is found to be well predicted
by Malkus’s model of critical layers. For dissipation numbers of order unity, and large
Rayleigh numbers, dissipation becomes related to the entropy heat flux at each depth,
so that the vertical dissipation profile can be predicted, and so does the total ratio of
dissipation to convective heat flux.
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T. Alboussière and others

1. Introduction

Natural convection is the response of a fluid with a specific equation of state (EoS) subject
to a thermal or compositional buoyancy forcing, for instance an imposed temperature
difference in a gravity field, while conservation laws of mass, momentum and energy
apply. Compressibility effects are inevitable, but in a famous approximation due to
Oberbeck (1879) and Boussinesq (1903), pressure effects are relegated to a secondary
role. The Oberbeck–Boussinesq model is so simple and has become so popular that most
theoretical studies of natural convection are made in its framework. We concentrate on
the Rayleigh–Bénard configuration (Bénard 1901; Rayleigh 1916), mostly relevant to stars
and planets. In these large natural objects, where compressibility plays a large role, fewer
theoretical results have been derived and we think this is essentially due to the absence of
a simple set of equations which could be used as a playground for studies of compressible
convection.

In a simple geometry, the Oberbeck–Boussinesq model has just two dimensionless
parameters, the Rayleigh Ra and Prandtl Pr numbers. The Prandtl number is only relevant
to the inertial effects in the momentum equation. In the limit of infinite Prandtl numbers
as it is the case for convection in the solid mantle of terrestrial planets, this parameter
becomes irrelevant, so that there is a single governing parameter, the Rayleigh number Ra.
Since the stability analysis of Rayleigh (1916), a century of theoretical investigations were
led and thousands of scientific papers have been published using the Oberbeck–Boussinesq
model. As soon as compressibility effects are taken into account, the number of governing
parameters jumps to six (see Curbelo et al. 2019): Pr, Ra, αT , cp/cv , Th/Tc and αgH/cp,
where the symbols α, cp, cv , T , Th, Tc, g and H denote the coefficient of thermal expansion,
heat capacity at constant pressure, heat capacity at constant volume, temperature, hot
imposed temperature, cold imposed temperature, gravity and the height of the fluid layer,
respectively. Depending on the EoS considered, there can be fewer parameters (αT = 1
for ideal gases) or more parameters needed to describe the fluid. This, and numerical
difficulties mentioned in the following, explain why there are comparatively few studies
devoted to compressible convection and stresses the need to propose simple approaches
that might enable the community to identify basic features of compressible effects.
Hopefully our work will contribute to this objective.

Carnot (1824) was the first to suggest that the low temperature at high altitude were due
to adiabatic decompression of air in ascending currents, while descending currents and
adiabatic compression would bring air back to the higher temperature at sea level. This was
later generalized by Schwarzschild (1906) for the temperature profile in convective regions
of stars, while Jeffreys (1930) proved that the stability of compressible convection was
governed by the superadiabatic Rayleigh number with the same threshold (for moderate
compressibility) as obtained by Rayleigh (1916) in the Boussinesq approximation. Later,
stability was studied by a number of authors (Spiegel 1965; Busse 1967; Giterman &
Shteinberg 1970; Paolucci & Chenoweth 1987; Fröhlich, Laure & Peyret 1992; Bormann
2001). More recently, we published a model of stability valid for any arbitrary EoS and
uniform dynamic viscosity and conductivity (Alboussière & Ricard 2017).

A difficulty with the fully compressible (FC) governing equations was soon spotted:
they contain the fast sound wave and the convective timescales. In many instances
those timescales are so different that the numerical task of computing convection is
overwhelming. Anelastic approximations (AAs) were developed for the atmosphere,
Earth’s core and stars (Ogura & Phillips 1961; Braginsky & Roberts 1995; Lantz & Fan
1999), valid in convective regions, consisting of an expansion about an isentropic state.
The simplified anelastic liquid approximation (ALA) was proposed in Anufriev, Jones
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Compressible convection playground

& Soward (2005) in which the role of pressure fluctuations on other thermodynamic
quantities is neglected. In the stably stratified cases, sound-proof models have also been
developed (Durran 1989; Lipps 1990; Vasil et al. 2013) in the pseudo-incompressible
approximation. Lecoanet et al. (2014) note that the pseudo-incompressible EoS introduces
some inaccuracies in the thermodynamic variables.

When compressible effects are present, there is usually a significant range of
temperatures in the system, because the adiabatic gradient is a key feature of compressible
convection. The same is true for pressure, density and so on. A consequence is that
transport coefficients of heat or momentum, thermal conductivity and (dynamic) viscosity,
are usually not uniform. It is then difficult to distinguish between consequences of
compressibility and consequences of non-uniform transport properties. Even in the
classical Boussinesq model can non-uniform transport coefficients be modelled, they are
called the non-Oberbeck–Boussinesq (NOB) effects, for instance in Horn, Shishkina &
Wagner (2013). In the present paper, we try to minimize the NOB effects. For this reason,
we choose uniform constant thermal conductivity and (dynamic) viscosity. However, when
density varies so do kinematic viscosity and thermal diffusivity. Hence, we make a peculiar
choice of EoS, such that density is constant when entropy is constant s(ρ). This ensures
that a nearly isentropic convective region is also a region of nearly uniform density and
kinematic viscosity. We show that the heat capacity cp and thermal diffusivity are also
uniform where entropy is uniform.

In § 2, we discuss the general validity of an EoS and expand the case s = s(ρ). Using
that class of EoSs, § 3 is devoted to the description of the configuration and to writing
the governing equations and AAs. In § 4, we first show results of the initial phase of
convection from rest, with a small superadiabatic Rayleigh number and a large dissipation
number, in order to assess the validity of the different AA models. We then show that
a significant change in temperature profiles occurs at small dissipation number, in § 5.1,
namely the disappearance of the top overshoot on the vertical averaged profile. Top and
bottom asymmetry is further studied in § 5.2 for larger values of the dissipation number.
The basic model of critical boundary layer is applied to the compressible case in § 6
and provides an estimate of the change of heat flux when the dissipation number is
increased. In § 7, we introduce the expressions for the vertical heat flux in the different
models (FC and AAs), as well as that for the dissipation profile, under a form that will
be suited to understand energy transfers in the final sections. The numerical results of
global dissipation relative to the convective heat flux are shown for all models and a
range of superadiabatic Rayleigh numbers and dissipation numbers in § 7.1. A definite
limit is observed at large superadiabatic Rayleigh numbers which is further studied in
§ 7.2. It is interpreted as a local mesoscale equilibrium state whereby the entropy flux
contribution is found to correspond both to energy dissipation and to the main part of the
heat flux. Finally, in § 8, we consider the additional effects of inertia, cavity aspect ratio
and boundary conditions, to show that another state of flow can be obtained which does
not correspond to that local equilibrium and exhibits larger dissipation. However, those last
boundary conditions with impermeable vertical walls are less relevant in the geophysical
and astrophysical context. In conclusion (§ 9), our study gives support to the mesoscale
equilibrium implying that the vertical profile of dissipation takes the form of the function
αg/cp in compressible convection in the limit of large dissipation and superadiabatic
Rayleigh numbers.

Considering the very specific EoS considered here, the condition of infinite Prandtl
number, the two-dimensional geometry and the absence of rotation and magnetic effects,
the results of this study should not be applied to stellar or planetary objects without
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T. Alboussière and others

further investigations. However, they provide a possible asymptotic behaviour for the
large-compressibility, large-Rayleigh-number, limit. It remains to determine under which
conditions that behaviour will be observed.

2. Impossible EoS ρ(T ) and possible EoS ρ(s)

From gases to solids, a wide range of EoSs are possible. From a theoretical point of view,
one can wonder what should be a possible EoS and when a tentative EoS is impossible.
One answer is that one should just start from a fundamental EoS under the form

e = e(s, ρ), (2.1)

where s, e and ρ are the specific entropy, specific energy and density, respectively. From
the Gibbs equation de = T ds + P/ρ2 dρ (where T is temperature and P is pressure), one
just needs T to be positive, if we want to consider real existing conditions

∂e
∂s

∣∣∣∣
ρ

> 0. (2.2)

However, one rarely starts from a fundamental EoS (2.1). Usually, one expresses density ρ

as a function of pressure P and temperature T . The first obvious idea when one wishes to
get rid of compressible effects, and jump immediately into the Boussinesq approximation,
is to state that density is independent of pressure

ρ = ρ(T). (2.3)

We now investigate the consequences of this assumption (2.3) (see also Grandi & Passerini
2021). We derive a general relationship, equation (A7) in Alboussière & Ricard (2013),
on the partial derivative of enthalpy h = e + P/ρ with respect to pressure at constant
temperature

∂h
∂P

∣∣∣∣
T

= 1 − αT
ρ

, (2.4)

which is obtained from the Gibbs equation under several forms (using the differential
of h and that of Gibbs free energy g = h − Ts) and deriving Maxwell relations. Note
that the right-hand side, assuming (2.3) and, hence, α = −ρ′/ρ where the prime denotes
derivative with respect to the single variable T , is a function of T only, that we denote by
A:

A = 1
ρ

+ ρ′T
ρ2 , (2.5)

Equation (2.4) is integrated to give an expression for the enthalpy

h = AP + B, (2.6)

where B is another function of temperature. This expression is used to write dh which is
then substituted into the Gibbs equation dh = T ds + dP/ρ leading to

ds = A′P + B′

T
dT + ρ′

ρ2 dP. (2.7)

Considering that A′ = T(ρ′/ρ2)′ from (2.5), (2.7) implies the following form for s

s = ρ′

ρ2 P + C, (2.8)
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Compressible convection playground

where C is yet another function of T which turns out to be an integral of B′/T . We can
now write an expression for the Gibbs free energy g = h − Ts

g = P
ρ

+ B − TC. (2.9)

A condition of stability of a material substance (Bazarov 1989) is that its Gibbs free energy
g should be a concave function of P and T . If not, the substance would split into two
different phases that have together a larger entropy, as for instance in the phase-change
region of the Van der Waals model. Locally, a necessary condition is that the Hessian of g
(its matrix of second partial derivatives) is a negative-definite matrix, i.e. has alternatively
negative and positive leading principal minors according to Sylvester’s criterion (Gilbert
1991). The Hessian matrix is ⎡

⎢⎢⎢⎣
∂2g
∂T2

∣∣∣∣
P

∂2g
∂T∂P

∂2g
∂P∂T

∂2g
∂P2

∣∣∣∣
T

⎤
⎥⎥⎥⎦ . (2.10)

The first leading principal minor is ∂2g/∂T2 at constant pressure. From Gibbs equation
dg = −s dT + dP/ρ, we have

∂g
∂T

∣∣∣∣
P

= −s,
∂g
∂P

∣∣∣∣
T

= 1
ρ

(2.11a,b)

and, hence,

∂2g
∂T2

∣∣∣∣
P

= − ∂s
∂T

∣∣∣∣
P

= −
(

ρ′

ρ2

)′
P − C′ = −

(
ρ′

ρ2

)′
P − B′

T
, (2.12)

from (2.8), which can indeed be made negative for an appropriate choice of the function
ρ(T) and B(T). Now, the second and last leading principal minor (in dimension two) is
the determinant of the whole Hessian matrix. From (2.11a,b), we can see that the second
derivative of g with respect to P will be zero. The determinant of the Hessian matrix is
then just equal to

det

⎡
⎢⎢⎢⎣

∂2g
∂T2

∣∣∣∣
P

∂2g
∂T∂P

∂2g
∂P∂T

∂2g
∂P2

∣∣∣∣
T

⎤
⎥⎥⎥⎦ = −

(
∂2g

∂P∂T

)2

= −
[

∂

∂T

(
1
ρ

)∣∣∣∣
P

]2

. (2.13)

It is negative, meaning that g is not a concave function of T and P. The only way to save
that EoS would be to make this determinant zero: because it is the partial derivative of
1/ρ with respect to T at constant P, it is zero only when ρ is a constant. Such an EoS is
not interesting for thermal convection as no buoyancy variations would exist. Hence, we
consider (2.3) as an impossible EoS. Another related aspect can be noted from Mayer’s
relationship

cp − cv = − T
ρ2

∂P
∂T

∣∣∣∣
ρ

∂ρ

∂T

∣∣∣∣
P

. (2.14)

That difference is infinite because ∂P/∂T is infinite at constant ρ, from Euler’s chain
rule ∂P/∂T|ρ∂T/∂ρ|P∂ρ/∂P|T = −1. Hence, the choice of meaningful heat capacities is
impossible.

940 A9-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e,
 o

n 
su

bj
ec

t t
o 

th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.216


T. Alboussière and others

We now investigate another simple form of EoS, such that density is a function of
entropy only and show that it satisfies marginally the criterion of stability, as noted in
Scott (2001). Let us identify all possible EoSs such that density is solely a function of
entropy, or reciprocally such that entropy is solely a function of density

s = s(ρ). (2.15)

The thermodynamics Gibbs equation can be written

de = Tds − Pdv =
(

Ts′ + P
ρ2

)
dρ, (2.16)

where v is the specific volume (v = 1/ρ) and the primes now denote the usual derivative
with respect to the single variable ρ. It follows from the previous equation that e is also
solely a function of ρ,

e = e(ρ). (2.17)

The next consequence, by definition, is that the heat capacity at constant volume cv is zero

cv ≡ ∂e
∂T

∣∣∣∣
v

= ∂e
∂T

∣∣∣∣
ρ

= 0. (2.18)

This shows that our choice is a limit case of valid EoSs, a negative cv would not be realistic.
Instead of considering that entropy is a function of density only, had we added a tiny
dependence on temperature, we would probably have been able to obtain a strictly positive
and small value for cv and that EoS would have been perfectly valid. Equation (2.16) can
also be written

Ts′ = e′ − P
ρ2 . (2.19)

Multiplying (2.19) by ρ2 and deriving with respect to temperature T at constant pressure
P leads to the following expression for the coefficient of thermal expansion

α ≡ − 1
ρ

∂ρ

∂T

∣∣∣∣
P

= ρs′

−(ρ2e′)′ + T(ρ2s′)′
. (2.20)

Using the Gibbs equation (2.19) to extract P/ρ, we express the specific enthalpy h as
follows

h ≡ e + P
ρ

= e + ρe′ − ρTs′. (2.21)

From (2.21) and (2.20), after straightforward but slightly tedious steps, we derive an
expression for the heat capacity at constant pressure

cp ≡ ∂h
∂T

∣∣∣∣
P

= −ρTαs′. (2.22)

At this point, from (2.20) and (2.22), we note that αT/cp, which multiplied by gravity g
expresses the adiabatic gradient, is solely a function of ρ

αT
cp

= − 1
ρs′ , (2.23)

so that, in an isentropic region under a uniform gravity field, one can expect to observe a
uniform adiabatic temperature gradient. The condition s′ < 0 is needed to avoid a negative
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Compressible convection playground

α or worse a negative cp according to (2.23). However, cp and αT are functions of ρ and T ,
hence will not be uniform in an isentropic region. In order to avoid complexity, we assume,
in addition to s being a function of ρ, that (ρ2e′)′ is zero, hence

e = K
ρ

, (2.24)

up to an irrelevant additive constant, and where the multiplicative constant K is a parameter
whose value can be freely specified. This eliminates the temperature dependence of αT and
cp. With (2.24) we have

αT = ρs′(
ρ2s′)′ , (2.25)

cp = − ρ2s′2(
ρ2s′)′ . (2.26)

The condition of stability on the leading principal minors of the Hessian matrix of g is
now examined. With our choice for energy (2.24) and the form of h in (2.21), Gibbs free
energy g ≡ h − Ts takes the form g = −T(ρs)′. Using (2.11a,b), we obtain

∂2g
∂T2

∣∣∣∣
P

= − ∂s
∂T

∣∣∣∣
P

= −s′ ∂ρ

∂T

∣∣∣∣
P

, (2.27)

∂2g
∂P2

∣∣∣∣
T

= − 1
ρ2

∂ρ

∂P

∣∣∣∣
T

, (2.28)

∂2g
∂T∂P

= − ∂s
∂P

∣∣∣∣
T

= −s′ ∂ρ

∂P

∣∣∣∣
T

. (2.29)

In order to evaluate these second derivatives, we need expressions for the partial
derivatives of density with respect to temperature and density. From (2.19), we obtain

∂P
∂ρ

∣∣∣∣
T

=
(
ρ2e′

)′ − T
(
ρ2s′

)′ = −T
(
ρ2s′

)′
, (2.30)

owing to our choice (ρ2e′)′ = 0. The inverse of (2.30) provides ∂ρ/∂P whereas (2.25)
is used to express ∂ρ/∂T . When substituted in (2.27), (2.28) and (2.29), we obtain the
Hessian matrix ⎡

⎢⎢⎢⎣
∂2g
∂T2

∣∣∣∣
P

∂2g
∂T∂P

∂2g
∂T∂P

∂2g
∂P2

∣∣∣∣
T

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ρ2s′2

T
(
ρ2s′)′ s′

T
(
ρ2s′)′

s′

T
(
ρ2s′)′ 1

ρ2T
(
ρ2s′)′

⎤
⎥⎥⎥⎦ . (2.31)

The first leading principal minor is negative when (ρ2s′)′ < 0, so that this condition must
be fulfilled. The second minor is the whole determinant of the Hessian matrix and it is
easy to check that it is zero. In that sense the EoS s(ρ) is just marginally stable.

There is still a large set of possibilities because we are free to consider any function s(ρ),
provided (ρ2s′)′ < 0 and s′ < 0 if one wishes to restrict the analysis to positive values of

940 A9-7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e,
 o

n 
su

bj
ec

t t
o 

th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.216


T. Alboussière and others

α. Let us choose a set of such decreasing functions, defined as one of the following up to
an irrelevant additive constant

s(ρ) = a ln(ρ), (2.32)

or s(ρ) = aρn, for n > 0 a real number, (2.33)

where a < 0 is a negative constant real parameter. With the logarithm function s ∼ ln(ρ),
we have αT = 1 and a constant cp = −a. With a power law s ∼ ρn, we have a constant
αT between 1 and 0 whose value can be tuned by choosing the positive exponent n and cp
is a function of ρ

αT = 1
n + 1

, cp = −a
n

n + 1
ρn, for n > 0. (2.34a,b)

Other relations are needed, namely the expressions of P and h

P = −K − aTρ, h = −aT, (2.35a,b)

or P = −K − naTρn+1, h = −naTρn, for n > 0. (2.36a,b)

We first remark that one of these EoSs is an ideal gas equation: this is the case of (2.32)
when K = 0, a = −cp and corresponds to an ideal gas with cv = 0. The marginal stability
of this EoS is reflected by the infinite speed of sound that results from a finite cp and a null
cv .

Although our EoS was built from theoretical arguments, one may try to find real
substances with a similar behaviour, at least in some range of temperature and pressure: a
monoatomic gas with large molar mass has a small cv for instance. Radon gas is a good
example. Next, the ratio cp/cv can be made large (diverging to infinity) near the critical
point, so that radon near the critical point would have the expected behaviour concerning
heat capacities. However, the thermal expansion coefficient also diverges near the critical
point and that does not match our EoS.

Among the large class of EoSs such that entropy is a function of density, driven by a
principle of simplicity, we have identified a set of such equations, with αT constant ranging
from 1 (log function) to zero asymptotically (power law with n → ∞). For all of them, cp
and the expected adiabatic gradient are functions of density only.

3. Rayleigh–Bénard configuration and governing equations

We define the geometric configuration and boundary conditions that are investigated in
this paper (figure 1). Different convection models are considered: complete continuum
thermodynamic and dynamic equations (FC), AA, ALA and a further simplified model
(SCA for ‘simple compressible approximation’).

3.1. FC model
For simplicity, we take the infinite Prandtl number approximation which eliminates inertia.
This limit has been studied mathematically (Wang 2004) and used for the study of mantle
dynamics (Ricard 2015) for which Prandtl numbers are estimated around 1025: the effective
kinematic viscosity of solids is much larger than their thermal diffusivity. Other objects,
such as the Earth’s core, the interior of stars and of gaseous planets have low Prandtl
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z = H/2
T = Tc

T = Th

g
x

z

x = –L/2 x = L/2

Periodic
conditions
along x

uz = 0

uz = 0

∂ux/∂z = 0

∂ux/∂z = 0

z = –H/2

Figure 1. Geometry and boundary conditions. A typical vertical temperature profile is sketched (solid line)
with an adiabatic, isentropic, temperature profile (dashed line).

numbers (Schaeffer et al. 2017; Fuentes & Cumming 2020; Garaud 2020). For infinite
Prandtl numbers, the governing equations of thermal convection are the following

Dρ

Dt
= −ρ∇ · u, (3.1)

0 = −∇P + ρg + η
[
∇2u + 1

3∇ (∇ · u)
]
, (3.2)

ρT
Ds
Dt

= �̇� : 𝞽 + ∇ · (k∇T) , (3.3)

where u is the velocity field, g is the gravity field, η is the dynamic viscosity of the fluid, k
is its thermal conductivity, D/Dt = ∂/∂t + u · ∇ is the material derivative, �̇� denotes the
tensor of rate of deformation and 𝞽 is the Newtonian stress tensor defined as

τij = 2η
[
ε̇ij − 1

3 (∇ · u) δij

]
, (3.4)

using Stokes’ assumption regarding the bulk viscosity.
We consider a two-dimensional rectangular domain, with horizontal periodic boundary

conditions. In a Cartesian frame (x, z), the horizontal axis is x whereas the vertical axis is
z. The height of the cavity is H and its length is L. The aspect ratio is set to L/H = 4

√
2,

corresponding to twice the horizontal period of the stability analysis in the Boussinesq
approximation for an infinite layer. Gravity is uniform g = −gez along the direction of the
unit vertical vector ez. The thermal boundary conditions are that of a hot temperature Th
at the bottom and a cold temperature Tc at the top. At the top and bottom boundaries, the
normal velocity component is zero and so is the tangential viscous stress, i.e. ∂ux/∂z =
0. Because there is no natural constraint on the horizontal velocity, we impose that the
horizontal average of ux is zero on the top boundary. Finally, instead of imposing some
pressure value, we impose that the average density in the domain is ρ0

1
HL

∫
ρ dx dz = ρ0. (3.5)

This condition is an initial condition and that integral cannot change in time with
impermeable or periodic boundaries.

The set of equations is complete when an EoS is specified. In this paper, as we
consider the class of EoS such that entropy is a function of density (2.15), we have
Ds/Dt = s′Dρ/Dt. Using the continuity equation (3.1), equation (3.3) can be written in
the following form

− ρ2Ts′∇ · u = �̇� : 𝞽 + ∇ · (k∇T) , (3.6)

which is now an elliptic equation for temperature. When P is expressed in terms of T and
ρ, see (2.35a,b) or (2.36a,b), the Stokes’s equation (3.2) also becomes a Poisson equation
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for velocity (along with the continuity equation). By the way, it is already clear that the
constant K in the expression for the internal energy (2.24) and in that for pressure (2.35a,b)
or (2.36a,b) is completely irrelevant in the governing equations for convection: internal
energy does not appear explicitly and taking the gradient of pressure eliminates K from
the momentum equation (3.2).

The next step consists in defining dimensional scales and in writing the equations in
dimensionless form. We have already mentioned a scale for density, ρ0 which is the average
density in the domain that remains constant with the imposed boundary conditions. Next,
we define T0 = (Th + Tc)/2 the average temperature of the hot and cold boundaries. Then,
we need to choose either a log or power-law EoS along with an exponent n. We specify
cp0 the value of cp at the conditions T = T0 and ρ = ρ0, which is equivalent to specifying
the constant a. From the logarithmic equation s ∼ log ρ, we have cp0 = −a whereas for
the power law s ∼ ρn and (2.34a,b), we have

cp0 = −a
n

n + 1
ρn

0 , for n > 0. (3.7)

From (2.32) and (2.33), we derive an expression for s′ which is valid for both the
logarithmic (n = 0) and power-law (n > 0) EoSs

s′(ρ) = −(n + 1)
cp0

ρ0

(
ρ

ρ0

)n−1

, for n ≥ 0. (3.8)

Similarly, a generic expression is obtained for the pressure gradient, from (2.35a,b) and
(2.36a,b),

∇P = (n + 1)cp0

(
ρ

ρ0

)n

[(n + 1)T∇ρ + ρ∇T] , for n ≥ 0. (3.9)

We consider a uniform thermal conductivity k, so that a scale for thermal diffusivity
is κ = k/(ρ0cp0). We now make all variables dimensionless using H, κ/H, H2/κ , T0, ρ0,
cp0, ρ0cp0T0, κ/H2 and ηκ/H2, for length, velocity, time, temperature, density, entropy,
pressure, deformation rate and stress. Using the same symbols for dimensionless variables,
the equations of continuity, momentum and entropy become

Dρ

Dt
= −ρ∇ · u, (3.10)

0 = −Rasa(n + 1)

ε

(
ρn

D [(n + 1)T∇ρ + ρ∇T] + ρez

)
+ ∇2u + 1

3
∇ (∇ · u) , (3.11)

0 = −(n + 1)ρn+1T∇ · u + εD
Rasa

�̇� : 𝞽 + ∇2T, (3.12)

where the following dimensionless numbers appear, the superadiabatic Rayleigh number
Rasa, the dissipation number D, the ratio of superadiabatic temperature difference over the
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Compressible convection playground

average temperature ε and implicitly the product α0T0, as a function of n:

Rasa = ρ0gα0ΔTsaH3

ηκ
, (3.13)

D = α0gH
cp0

, (3.14)

ε = ΔTsa

T0
, (3.15)

α0T0 = 1
n + 1

. (3.16)

The dissipation number D is one of the possible measures for compressibility, of the
same nature as the number of scale heights in astrophysics (Spiegel & Veronis 1971). It
was introduced by Gebhart (1962), motivated by the context of cooling turbine blades by
natural convection. Interestingly, the dissipation number can be defined in the framework
of the Boussinesq approximation, although compressibility is absent and despite the fact
that its value has no effect on the solutions. Moreover, it can be shown rigorously from the
Boussinesq equations that the integral of viscous dissipation is equal to the product of the
dissipation number D and the convective heat flux in a Rayleigh–Bénard cavity (Howard
1963). The superadiabatic temperature difference ΔTsa is equal to the difference between
the imposed hot and cold temperatures minus the temperature difference along the adiabat

ΔTsa = Th − Tc − α0gT0H
cp0

. (3.17)

When writing the dimensionless momentum equation (3.11), we use (3.9) to express
the pressure gradient in terms of density and temperature gradient. When writing the
dimensionless entropy equation (3.12), we use (3.6) and (3.8). It can be checked that
the final set of dimensionless equations (3.10), (3.11) and (3.12) takes a generic form for
any real value of n ≥ 0: the case n = 0 corresponds to the logarithmic relationship (2.32)
whereas the cases n > 0 correspond to the power laws (2.33). The choice of n amounts to
choosing the product α0T0, see (3.16).

As initial conditions, we set the velocity to zero, and density, pressure and temperature
fields satisfying the (potentially unstable) hydrostatic conduction regime, with an
additional random temperature field of magnitude 10−6. The boundary conditions on the
velocity and temperature fields are the following

∂ux

∂z
= 0, when z = ±1

2
, (3.18)

uz = 0, when z = ±1
2 , (3.19)∫ L/(2H)

−L/(2H)

ux

(
x, z = 1

2

)
dx = 0, (3.20)

T = Th

T0
, when z = −1

2
, (3.21)

T = Tc

T0
, when z = 1

2
. (3.22)

The stress-free, non-penetrative conditions (3.18) and (3.19) do not constrain the mean
horizontal velocity, hence an arbitrary condition of zero average horizontal velocity (3.20)
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is imposed on the upper boundary. The imposed temperature ratios are linked to the values
of the dissipation number and the superadiabatic temperature coefficient

Th

T0
= 1 + D + ε

2
, (3.23)

Tc

T0
= 1 − D + ε

2
. (3.24)

As shown in Curbelo et al. (2019), the equations of convection with infinite Prandtl
number are subjected to viscous relaxation, and the associated relaxation time limits the
time steps to D/Rasa for numerical calculations. Let us determine here the expression for
this relaxation time scale, for our particular class of EoSs. We consider a small planar
disturbance with respect to the steady solution (ρ = 1, T = 1 − Dz, u = 0) with ε = 0

ρ′ = ρ̃ eikx+ωt, T ′ = T̃ eikx+ωt, u′
x = ũx eikx+ωt, (3.25a–c)

where ρ̃, T̃ and ũx are scalars. The governing equations (3.10), (3.11) and (3.12) are
linearized near z = 0 (the steady solution is nearly constant T = 1) and lead to

ωρ̃ = −ikũx, (3.26)

0 = −Rasa(n + 1)

εD
[
(n + 1)ikρ̃ + ikT̃

]
− 2

3
k2ũx, (3.27)

0 = −(n + 1)ikũx − k2T̃. (3.28)

Eliminating ũx and T̃ , leads to a single equation for ρ̃

0 = −Rasa(n + 1)2

εD
[
kρ̃ + ω

k
ρ̃
]

− 2
3

kωρ̃, (3.29)

admitting non-trivial solutions when

ω = −3
2

Rasa(n + 1)2

εD
[
1 + ω

k2

]
, (3.30)

implying that the magnitude of the rate of decay |ω| is bounded from above as

|ω| <
3
2

Rasa(n + 1)2

εD , (3.31)

irrespective of the wavenumber k. In practice, we make it slightly safer by changing the
prefactor from 3/2 to 1, and our numerical scheme is always found to be stable with time
steps δt smaller than

δt ≤ εD
Rasa(n + 1)2 = εD (α0T0)

2

Rasa
. (3.32)

This makes it difficult to calculate flows with large superadiabatic Rayleigh numbers, small
dissipation numbers, small superadiabatic parameters ε or small products αT0 (large n).

We are now going to write a series of anelastic models from the most to the least faithful
approximation of the FC equations.
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Compressible convection playground

3.2. Anelastic approximation
The first model is called simply the anelastic model and corresponds to the early models by
Ogura & Phillips (1961) for the atmosphere, Lantz & Fan (1999) for stellar convection and
Braginsky & Roberts (1995) for the Earth’s core. It corresponds to a first-order expansion
modelling of thermodynamic variables with respect to a hydrostatic isentropic state. In our
case, the structure of the well-mixed isentropic region is simple, with a uniform density
and uniform temperature gradient: in dimensionless form

ρa = 1, (3.33)

Ta = 1 − Dz, (3.34)

where Ta is the isentropic profile. We have set arbitrarily Ta = 1 at z = 0 (mid-height) but
we show later that this does not constrain the anelastic solution. Let us denote with tildes
the two-dimensional and time-dependent departures of each variable from its isentropic
counterpart. From the standard procedure of linearization of the functions of state about
the adiabatic profile (Anufriev et al. 2005), and with a change in the dimensional scale for
temperature (ΔTsa instead of T0), pressure (ρ0cp0ΔTsa instead of ρ0cp0T0) and entropy
(cp0ΔTsa/T0 instead of cp0), we obtain the following dimensionless anelastic equations:

∇ · u = 0, (3.35)

0 = −Rasa

D ∇P̃ + Rasas̃êz + ∇2u, (3.36)

D
Dt

(Tas̃) = −Duzs̃ + D
Rasa

ε̇ : τ + ∇2T̃. (3.37)

For our EoS, s̃ is proportional to ρ̃ (see (3.8)) and linearizing (2.35a,b) or (2.36a,b) leads
to

s̃ = −(n + 1)ρ̃, (3.38)

ρ̃ = − T̃
(n + 1)Ta

+ P̃
(n + 1)2Ta

, (3.39)

and, therefore,

s̃ = T̃
Ta

− P̃
(n + 1)Ta

. (3.40)

Because of the new temperature scale ΔTsa, the temperature boundary conditions
become

T̃
(

z = ±1
2

)
= ∓1

2 . (3.41)

The boundary conditions for pressure are obtained from the condition of mass
conservation. With our choice in (3.33), the (uniform) adiabatic density profile
corresponds already to the total mass in the fluid layer, the integral of the departure ρ̃

must be zero at all times. This might be achieved by imposing an appropriate value of
pressure at the top or at the bottom of the cavity. However, an easier way is to impose that
the mean value of P̃ on the top boundary is equal to the mean value at the bottom. This
can be seen on (3.36) by integration along z. The integral of density in the cavity is zero,
the viscous term ∇2u in (3.36) integrates into the difference of averaged viscous traction
τzz = 2∂uz/∂z between top and bottom boundaries. The continuity equation (3.35) leads
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to τzz = −2∂ux/∂x whose integral of each boundary is zero with periodic conditions on x.
The condition on pressure is, thus,∫ L/H

0
P̃
(

x, z = 1
2

)
− P̃

(
x, z = −1

2

)
dx = 0. (3.42)

An invariance property of these AA equations can be put in evidence. As the anelastic
equations have been obtained by linearization around the adiabatic profile, one expects that
a shift in the superadiabatic temperature conditions should leave the solution unchanged,
with the same total mass. From a (possibly time-dependent) solution (u, P̃, T̃) to the
equations above, we just add a constant c to the temperature boundary conditions, now
becoming T̃(z = ±1/2) = ∓1/2 + c. We can check that (u, P̃ + c/(n + 1), T̃ + c) is a
solution to the AA equations with the shifted temperature boundary conditions.

3.3. Anelastic liquid approximation
In that approximation, departures of entropy from the adiabatic profile are considered to be
due only to temperature departures, whereas departures in pressure are neglected in (3.40)
(Anufriev et al. 2005). The governing equations are still (3.35), (3.36) and (3.37) where s̃
is changed in each instance into

s̃ = T̃
Ta

. (3.43)

When applying the boundary conditions, we now find that it is not possible to impose
the obvious temperature boundary condition (3.41): if we did so, it is most likely that
the integral of T̃/Ta over the fluid domain would not be zero. However, because of the
ALA, entropy departures are linked to T̃/Ta which are themselves proportional to density
departures, because of the EoS. Hence, a non-zero integral of T̃/Ta implies that the total
mass of the fluid is not conserved at first order. Thus, we keep the condition (3.42) on
pressure, which ensures total mass conservation and we consider that only the imposed
temperature difference is meaningful between two isothermal boundaries,

∂T̃
∂x

= 0, z = ±1
2
, (3.44)

T̃
(

x, z = −1
2

)
− T̃

(
x, z = 1

2

)
= 1. (3.45)

Coming back to the pressure constraint (3.42), any additive constant to P̃ is irrelevant
because only the gradient of pressure plays a role in the ALA equations. In conclusion, we
may decide to set the mean value of P̃ to zero (or any other constant) on both hot and cold
boundaries. Equation (3.42) is changed for∫ L/H

0
P̃
(

x, z = ±1
2

)
dx = 0. (3.46)

The invariance mentioned for the solutions to the AA equations is no longer relevant
in the ALA equations. Now, the mass balance imposes that the integral of T/Ta must be
zero over the whole domain because density fluctuations are solely functions of entropy
fluctuations, which are themselves solely functions of temperature fluctuations in the ALA
approximation. That cannot be changed by another choice of pressure offset.
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3.4. Simple compressible approximation
We now introduce a new approximation aiming at getting a very simple system of
equations where compressible effects are still present. In the ALA approximation, the
adiabatic temperature profile appears explicitly in the equations and we consider replacing
Ta by a constant value equal to 1, the value of Ta in the mid-plane of the cavity. We
certainly lose connection to thermodynamics with that move, but compressible work is
still present and it will be interesting to investigate which compressible effects are still
well accounted for in this approximation. Note that this SCA model is equivalent to a
version of the ‘extended Boussinesq approximation’ (EBA) (King et al. 2010), where the
background density is assumed to be uniform (with our EoS, this is the case of all our
anelastic models) and where the background temperature is also assumed to be uniform.
The SCA model is still defined by (3.35), (3.36) and (3.37), where the expression for
entropy (3.43) is changed for

s̃ = T̃, (3.47)

and Ta is also changed for the constant value 1 is the left-hand side term of (3.37). Under
this approximation, the equations are very similar to the classical Boussinesq equations,
except for viscous heating and adiabatic cooling that play a significant role when the
dissipation number is of order one.

The boundary conditions are similar to those for the ALA equations. Now, the average
of the temperature departure T̃ on the whole domain is zero thanks to the condition on
pressure (3.46). An important invariance is valid only in the case D = 0. This corresponds
to the Boussinesq equations with another change in pressure scale, from ρ0cp0ΔTsa to
α0ΔTsaρ0gH. In that case only (D = 0), the equations are invariant by symmetry about
the mid-plane. More precisely, if (ux, uz, P̃, T̃) is a solution (possibly time-dependent),
then the fields (ux(x, −z, t), −uz(x, −z, t), P̃(x, −z, t), −T̃(x, −z, t)) constitute another
solution. This implies that the solutions to the incompressible Rayleigh–Bénard system
are bottom-up invariant: ascending and descending plumes are statistically symmetrical.
However, when D /= 0, that invariance does no longer hold, for none of the compressible
models presented here, FC, AA, ALA nor the last SCA. We have the opportunity to
investigate that non-invariance in the following sections.

All numerical results, FC, AA, ALA and SCA have been obtained with the software
Dedalus (Burns et al. 2020). For the FC model a Runge–Kutta model of order one was
used (RK111 in Dedalus) and of order four for the anelastic models (RK443 in Dedalus).
The number of Fourier modes in the horizontal direction nx is four times that of Chebyshev
modes nz in the vertical direction. A dealiasing factor of 3/2 has been used in all cases.
The value of nz we used goes from 32 at low superadiabatic Rayleigh numbers to 512
at Rasa = 109. Time steps have been set by half the short viscous relaxation time in the
FC model and by a Courant condition for anelastic models with a safety factor set to 0.9.
Noise on the initial conduction temperature field, of magnitude 10−6 has been added in all
models to trigger convection.

The complete set of equations FC, AA, ALA and SCA, with boundary conditions, are
written in their explicit forms in Appendix A. The parameters of all simulations are listed
in Appendix B. The files used for each convection model FC, AA, ALA and SCA are
provided as supplemental materials available at https://doi.org/10.1017/jfm.2022.216 or
available at github https://github.com/RayleighBenardModels/Compressible_PLG.
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Figure 2. Upper and lower heat flux (Nusselt number) during the initial transient from rest to steady rolls, at
Rasa = 104 and D = 1.5.

4. From rest to steady rolls at Rasa = 104, D = 1.5

In this section, we just analyse the transition from an unstable superadiabatic motionless
state to steady rolls of convection, for a moderate superadiabatic Rayleigh number of
Rasa = 104 and a large dissipation number of D = 1.5. We do that for different values
of the dimensionless parameter α0T0 = 1, 0.5 and 0.1 (with n = 0, 1 and 9) and the
different models of convection: FC, AA, ALA and SCA. In figure 2, we plot the upper
and lower heat fluxes (on the top and bottom boundaries) for all values of α0T0 and all
models. Only the heat fluxes above the conduction flux along the adiabatic gradient are
represented: this is straightforward in the anelastic model as the conduction flux along the
adiabat is not computed, whereas for the FC model we just remove the contribution of
conduction along the adiabatic gradient. Then, the remaining part of the flux is scaled by
the conduction heat flux driven by ΔTsa, the superadiabatic temperature difference: again,
this is natural in the anelastic models where temperature intervals are already scaled by
ΔTsa, whereas in the FC model the temperature scale is T0 and the flux has to be rescaled
by ΔTsa corresponding to a division by the superadiabatic fraction ε = ΔTsa/T0. In the
present FC calculations, the superadiabatic fraction ε is set to 0.1. The initial (unstable)
conduction state corresponds to a heat flux unity, whereas when a convective steady state
of convection is reached, the heat flux is around five or slightly less. This dimensionless
flux is the classical Nusselt number, which will also be used in the next sections. The
blue/green colours correspond to the heat flux at the upper boundary, whereas red/purple
colours correspond to the heat flux on the lower boundary (for all values of α0T0 and FC,
AA and ALA). The SCA model is plotted with a black colour: it can be shown easily that
upper and lower heat fluxes coincide at all times for this model. All plots have been shifted
in time so that the maximum upper flux is at t = 0. The real starting time of the simulation
depends on the model considered and is made visible by a small transient period, as we
have started the simulations from our approximations of the conductive hydrostatic state.
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Figure 3. Difference between the heat flux (Nusselt number) on the upper boundary obtained with FC and
AA, ALA and SCA, respectively, at Rasa = 104 and D = 1.5, for n = 0 (α0T0 = 1), n = 1 (α0T0 = 0.5) and
n = 9 (α0T0 = 0.1) from left to right.

The time needed to develop the convective instability depends on the model of convection,
and weakly on α0T0 for FC. For all models FC, AA and ALA, the curves of upper and
lower heat fluxes are rather similar, we return to the small differences in the following. In
all cases, in the beginning of the convective instability, the heat flux on the upper boundary
grows rapidly to a large value (around 11), whereas the heat flux on the lower boundary
decreases rapidly to negative values (around −4). Then follows a series of oscillations of
decreasing amplitude, with a phase shift of approximately π/2 between upper and lower
fluxes, until a steady state is reached with equal upper and lower fluxes (around five or
slightly less).

In figure 3, we take the difference on the upper flux between the FC model and the
approximations AA, ALA and SCA. Unsurprisingly, the smallest difference is obtained
with the AA approximation, followed by the ALA and, finally, the SCA approximation. We
also observe that the difference between AA and ALA approximations becomes smaller
as the product α0T0 decreases. This was expected from (3.40) as the effect of pressure is
divided by n + 1, i.e. decreases with α0T0.

5. Top/bottom asymmetry

The top/bottom symmetry is observed to hold for all models in the limit of vanishing
compressibility effect D −→ 0. In the case of the FC model one must also have a
top/bottom temperature ratio close to one, but that condition has a small effect on
the asymmetry compared with that of the dissipation parameter. However, when D is
non-zero we will see that a distinct difference appears between the top and bottom parts
of the average temperature profile, or between raising and descending plumes. Perhaps
surprisingly, the asymmetry becomes very clear from relatively small values of the
dissipation number, D ∼ 0.1 (§ 5.1), and continues to exist when D is further increased
(§ 5.2). In addition, increasing the superadiabatic Rayleigh number does not seem to
change that asymmetry.

5.1. Change of temperature profile with moderate compressibility
We examine now the effect of a small compressibility on the structure of convection.
From this point until the end of the paper, the value of α0T0 is set to 1 (n = 0).
When the dissipation number D is increased from 0 to a moderate value of 0.1 to 0.4,
a change in the averaged vertical temperature profile is observed. In the absence of
compressible effects (D � 0), the temperature profile is symmetrical with respect to the
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Figure 4. Time and horizontal averaged superadiabatic temperature profiles along the vertical direction z, for
(a) Rasa = 106 and (b) Rasa = 108, for D between 0 and 0.4, α0T0 = 1, obtained in the AA.

horizontal mid-plane as a result of the invariance of the Boussinesq equations under the
transformation T(x, z) → −T(x, −z), ux(x, z) → −ux(x, −z) and uz(x, z) → uz(x, −z). It
is also well-known that overshoots in the temperature profile occur near the top and bottom
thermal boundary layers (Sotin & Labrosse 1999). These overshoots have an amplitude
(and extent) decreasing with increasing Rayleigh numbers, but are always present. We
observe here that the overshoot near the top is nearly eliminated when the dissipation
number D exceeds 0.2. In figure 4, D is increased from 0 to 0.4 in AA calculations and
the time and horizontally averaged superadiabatic temperature profiles are plotted along
the vertical direction for two values of the superadiabatic Rayleigh number Rasa = 106

and Rasa = 108. The inset shows an enlarged view of the top overshoot in the temperature
profile. A tiny value of D = 0.05 already has a noticeable effect, and when D = 0.2 most
of the change has been made. Conversely, the bottom overshoot is nearly unchanged. As a
result, the nearly constant mean value of temperature is increased, an observation that will
be related to the behaviour of the Nusselt number in § 6.

The disappearance of the top superadiabatic temperature overshoot under moderate
compressibility can be connected to the fact that ascending plumes fail to reach the top
of the cavity. In figure 5, we show snapshots of the superadiabatic temperature fields,
obtained in the AA, for Rasa = 107 and two values of the dissipation number D = 0.05 and
D = 0.2. In the first case, ascending plumes initiated at the bottom reach the top boundary
and spread horizontally, creating the top temperature overshoot. Similarly descending
plumes initiated at the top reach the bottom and spread. When D = 0.2, however, most
ascending plumes get mixed with the surrounding fluid before they reach the top, hence
the absence of top overshoot in the temperature profile. Descending plumes can still reach
the bottom.

One should not think that compressible effects are always associated with stronger
descending plumes. This property seems to be related to the EoS. In another paper (Ricard
et al. 2022), we consider an EoS suitable for planetary mantles and in that case, the
opposite is true: with compressible effects, ascending plumes are stronger.

5.2. Asymmetry at larger compressibility
We have seen in the previous section that a relatively moderate dissipation number of
D = 0.2 introduces a top–bottom asymmetry in thermal convection. In this section, we
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Figure 5. Snapshots of superadiabatic temperature fields for Rasa = 107, α0T0 = 1, with (a) D = 0.05 and
(b) D = 0.2 obtained in the AA.

consider a large dissipation number D = 1.2 and investigate the asymmetry of convection
depending on the four models presented earlier: FC, AA, ALA and SCA. In figure 6,
averaged entropy profiles are shown. They are conditional profiles obtained for selected
values of the vertical velocity in bins centred around the indicated values, i.e. entropy
profiles for parcels of a given vertical velocity. Negative velocity values put the emphasis
on descending plumes, positive values on ascending plumes. We can see that there
are more profiles with negative velocities. This is because there are strong descending
plumes and weak ascending plumes, a tendency already seen in the previous section for
moderate dissipation numbers. The FC results are well-recovered in the anelastic models
AA and ALA which show perhaps a slight increase in the asymmetry with fewer curves
corresponding to positive velocity. The entropy scale of the FC plot is exactly 10 times
smaller than in the other models as a result of the choice of the superadiabatic parameter
ε = 0.1 in the FC calculations. This difference comes from the choice of temperature
scale: it is T0 for the FC model and ΔTsa for the AA, ALA and SCA models.

A striking feature of these profiles, and in particular the overall mean profiles (dashed
lines) is that the top boundary layer has a much larger entropy drop compared with
the bottom layer in the FC, AA and ALA cases. We show in the next section that the
superadiabatic temperature drop varies slowly with the dissipation number, and the entropy
drop is essentially equal to the temperature drop divided by temperature. At D = 1.2, the
adiabatic temperature ratio is equal to four, hence an entropy drop nearly four times larger
at the top compared with that at the bottom. Meanwhile, as can be seen in the anelastic
equation (3.36), entropy is the driving force for convection. This explains why descending
plumes are stronger than ascending plumes. In that respect, the situation gets somewhat
similar to the case of convection cooled from the top and thermally insulated bottom, or
equivalently to the case of volumic heating with fixed boundary temperatures (Sotin &
Labrosse 1999).

Note, however, that other hand-waving arguments can be proposed indicating that
ascending plumes (not descending) should be stronger in compressible convection. For
instance, the increasing value of thermal expansion as altitude increases is thought to
be such an argument leading to the strengthening of ascending plumes and weakening
of descending plumes. This seems to apply in mantle convection (Ricard et al. 2022).
However, we have the opposite effect in the present paper, although thermal expansion
also increases with altitude.
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Figure 6. Vertical profiles of conditional entropy, depending on the vertical velocity scaled by Ra2/3
sa , for the

FC equations and anelastic models AA, ALA and SCA, Rasa = 3 × 105, D = 1.2 and α0T0 = 1. For FC, a
value ε = 0.1 has been taken for the superadiabatic temperature difference. The dashed profile is the overall
mean entropy profile.

In terms of entropy jump, the asymmetry of the thermal boundary layers is very much
reduced in the SCA model (see figure 6) because the adiabatic gradient is ignored in
this model and the entropy drop is identical to the temperature drop. In the SCA case,
the top–bottom asymmetry still exists, but its origin has been shifted in the thermal
equation (3.37). In that equation, the term −DuzT̃ is negative in ascending and descending
plumes, and consequently favours descending plumes while impeding rising plumes.
This feature of the thermal equation is really specific to the SCA model. For the other
anelastic models AA and ALA, this is not the case, because the left-hand side term
and the first term on the right-hand side of (3.37) combine to form a conservative
term D(Tas̃)/Dt.

In figure 7, we have plotted the distribution of vertical velocities for the same simulations
as those in figure 6. A symmetrical top–bottom configuration would lead to contour
plots symmetrical with respect to the central point (z = 0, uz = 0). The asymmetry of
convection under D = 1.2 is clear, with distributions extending further toward the negative
velocities (descending plumes), whereas the returning ascending flow is more broadly
distributed on smaller values of positive velocity. Here, again, the AA and ALA models
capture very well the distribution of velocities obtained in the FC model, although maybe
with a lower probability of large values than for the FC case. However, the SCA model
displays an exaggerated asymmetry and stands clearly away from the other models.
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Figure 7. Probability density function (pdf) of the vertical velocity uz in logarithmic scale, depending on the
altitude z, for FC, AA, ALA and SCA models, Rasa = 3 × 105, D = 1.2 and α0T0 = 1. Velocity is scaled by
Ra2/3

sa .

6. Malkus-type model of heat flux

The total heat flux across the fluid layer is split into the heat conducted along the adiabat
and the superadiabatic heat flux. The superadiabatic heat flux is split itself into the
conduction heat flux due to the superadiabatic temperature difference and the convective
heat flux. Finally, as we show in § 7, the convective heat flux is split into the convective
transport of enthalpy and the power of viscous forces.

Here, we consider the superadiabatic flux and scale it with the heat conducted along the
superadiabatic temperature difference, which is known as the Nusselt number Nu. In the
FC model, we have to subtract the adiabatic conduction heat flux (D in this paper) to the
total flux, so that the Nusselt number is defined as

Nu = QFC − D
ε

. (6.1)

One of the simplest models for the heat flux in the Boussinesq approximation is that
proposed by Malkus (1954) (see also Howard 1966), also known as the ‘critical boundary
layer’ model. In this model, heat flux is independent of the depth of the fluid layer.
In dimensionless terms, this leads to Nu ∼ Ra1/3. Let us adapt this model to the case
of compressible convection. Let δc and δh be the dimensionless thicknesses of the top
and bottom boundary layers, whereas ΔTc and ΔTh are the dimensionless superadiabatic
temperature jumps across these layers. The heat flux conducted through both layers must
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be equal to the superadiabatic heat flux, so that

Nu ∼ ΔTc

δc
= ΔTh

δh
, (6.2)

whereas, obviously, the sum of both temperature jumps must be equal to the superadiabatic
temperature difference, in dimensionless terms:

ΔTc + ΔTh = 1. (6.3)

Concerning local Rayleigh numbers at the scale of each boundary layer, we can build them
from (3.13) keeping in mind that α0 should be changed accordingly (other parameters are
uniform with our EoS). From (3.16), we can relate the local value of α to the local adiabatic
temperature. Finally, the local Rayleigh numbers can be written

Rac = Rasa
δ3

cΔTc

Tac
= Rasa

δ3
cΔTc

1 − D/2
, (6.4)

Rah = Rasa
δ3

hΔTh

Tah
= Rasa

δ3
hΔTh

1 + D/2
. (6.5)

Assuming that the local Rayleigh numbers remain equal to a number RaBL independent of
D, combining (6.2), (6.3), (6.4) and (6.5) leads to the following relationship

Nu ∼
(

Rasa

RaBL

)1/3
[(

1 − D
2

)1/4

+
(

1 + D
2

)1/4
]−4/3

. (6.6)

Assuming that the boundary layer Rayleigh number RaBL does not depend on the
dissipation number, this expression (6.6) provides a prediction on the effect of the
dissipation number on the Nusselt number. The Rayleigh number RaBL defined above
should not be confused with the critical Rayleigh number for the onset of convection
(based on the height of the cavity). The latter is close to Rayleigh’s value 27π4/4 for a
nearly uniform density (Alboussière & Ricard 2017).

Figure 8 shows the Nusselt number as a function of the dissipation number, for three
values of the superadiabatic Rayleigh number in the higher range Ra = 107, Ra = 108 and
Ra = 109. From D = 0 to approximately D = 0.4, a reduction of the Nusselt number is
observed: this should be understood as a consequence of the structure change discussed
in § 5.1 where the ascending plumes are shown to weaken with the disappearance of the
top overshoot of the superadiabatic temperature profile. Then for larger values of D, the
Nusselt number increases, as predicted by our model (6.6) and even a little faster. The three
lines in figure 8 correspond to (6.6) each with a boundary Rayleigh number RaBL adjusted
to fit the numerical Nusselt numbers at different Ra. A general good agreement is obtained
from the model of boundary layer Rayleigh number (6.6).

It should be noted that a more sophisticated version of heat transfer model exists for
compressible convection. The model of Jones, Mizerski & Kessar (2022) is designed
as an extension of a model of heat transfer by Grossmann & Lohse (2000) valid in the
Boussinesq approximation. These models provide expressions for the Nusselt number
as a function of the Rayleigh number, Prandtl number and dissipation number in the
compressible case. They apply in a domain of finite aspect ratio, i.e. bounded by vertical
walls, as assumptions are made on the large-scale velocity field. The Prandtl number can
be small or large, but not infinite. In the compressible case (Jones et al. 2022), the model
takes a different form depending on whether dissipation occurs mostly in the boundary
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Figure 8. Nusselt number normalized by Ra1/3
sa in the anelastic model. The Nusselt number is defined as the

ratio of the superadiabatic heat flux to the superadiabatic pure conduction flux. The solid lines correspond to the
expression (6.6) with boundary layer Rayleigh numbers equal to RaBL = 14.1, RaBL = 17.5 and RaBL = 19.4,
such that they are quadratic best fits of the numerical Nusselt between D = 0.4 and D = 1.8.

layers or in the bulk. Unfortunately, these models have been developed in the no-slip
boundary condition and the case of dissipation mostly in the bulk is associated with small
Prandtl numbers, and turbulence cascade. This makes it rather difficult to apply in our case
of infinite Prandtl number and free-slip boundary conditions, even though dissipation is
mainly in the bulk in the upper range of our superadiabatic Rayleigh numbers. Moreover,
the model by Jones et al. (2022) has been developed for an EoS of a perfect gas. This
model predicts a decrease of the Nusselt number with the dissipation number for a fixed
value of the Rayleigh (and Prandtl) number, which is not compatible with our results.
That discrepancy is not relevant, however, given the mismatch between the conditions of
validity of the model and our configuration.

7. Heat flux and dissipation in the different models

The expression for the vertical heat flux across horizontal planes takes a specific form for
each model of convection. In the FC model, we take (3.12), integrate by parts the viscous
dissipation term and use the dot-product of (3.11) with velocity u to obtain an expression
for the heat flux as a function of height z

QFC(z) = (n + 1)Tρn+1uz − εD
Rasa

ujτzj − dT̄
dz

, (7.1)

where the overline ·̄ denotes the average over horizontal planes, or constant-z surfaces, and
over time. This is fully in accordance with the general expression for the heat flux (see, for
instance, (4.5) in Curbelo et al. 2019)

QFC(z) = ρhuz − εD
Rasa

ujτzj − dT̄
dz

, (7.2)
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as from (2.35a,b) and (2.36a,b), the dimensionless expression of h is

h = (n + 1)Tρn, for n ≥ 0. (7.3)

In the statistically stationary case considered here, the function QFC(z) must be
independent of z, and we may equally denote it by QFC.

In the AA, (3.37), (3.36) and (3.40) lead to the following expression for the
superadiabatic heat flux

QAA(z) =
(

T̃ + n
n + 1

P̃
)

uz − D
Rasa

ujτzj − dT̃
dz

. (7.4)

This is again compatible with the general anelastic expression (see, for instance, (4.6) in
Curbelo et al. 2019)

QAA(z) = ρah̃uz − D
Rasa

ujτzj − dT̃
dz

, (7.5)

with ρa = 1, uniform within the class of EoSs considered in this paper, and the following
linearized expression for enthalpy, from (7.3) and using (3.39)

h̃ = T̃ + n
n + 1

P̃, for n > 0. (7.6)

In statistically stationary cases, the time-averaged heat flux is independent of z and its
value can be obtained by integrating (7.4) over the height of the fluid domain, leading to

QAA =
〈
T̃uz

〉
+ n

n + 1

〈
P̃uz

〉
+ 1, (7.7)

because the power of viscous forces can be shown to integrate to zero, because of the
continuity equation ∇ · (ρau) = ∇ · u = 0 in the AA, as ρa = 1.

In the ALA, the expression for the superadiabatic flux, obtained in the similar way as
for AA, is

QALA(z) =
(

T̃ + P̃
)

uz − D
Rasa

ujτzj − dT̃
dz

. (7.8)

In a statistically stationary situation, the heat flux can be computed as

QALA =
〈
T̃uz

〉
+
〈
P̃uz

〉
+ 1. (7.9)

These expressions correspond to the limit n → ∞ of those obtained in the general AA,
which also corresponds to the limit αT → 0.

Finally, in the SCA, the expressions for the heat flux are identical to those in the ALA.
However, the heat flux can be written differently than in the expressions above. For

instance, in the AA, instead of (7.4), (7.5) or (7.7), one can base it on the flux of entropy.
From the Gibbs equation dh = T ds + dP/ρ, expression (7.5) can be written

QAA(z) = Tas̃uz + P̃uz − D
Rasa

ujτzj − dT̃
dz

. (7.10)

In the same time, from the horizontal and time average of the dot-product of Navier–Stokes
with velocity, one obtains the expression for the viscous dissipation at each vertical
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position
D

Rasa
ε̇ : τ(z) = Ds̃uz − d

dz

[
P̃uz − D

Rasa
ujτzj

]
. (7.11)

Introducing

G(z) = P̃uz − D
Rasa

ujτzj, (7.12)

equations (7.10) and (7.11) can be rewritten

QAA(z) = Tas̃uz + G(z) − dT̃
dz

, (7.13)

D
Rasa

�̇� : 𝞽(z) = Ds̃uz − dG(z)
dz

. (7.14)

It can be noted that these expressions are valid for any general EoS and can also be
generalized when inertia and possible Lorentz forces are included: it suffices to add the
flux of inertia to the expression of G(z), as detailed in Appendix C. In the ALA, the
expression for G(z) is unchanged and the flux and dissipation profiles become

QALA(z) = T̃uz + G(z) − dT̃
dz

, (7.15)

D
Rasa

�̇� : 𝞽(z) = D T̃uz

Ta
− dG(z)

dz
. (7.16)

In the simplest SCA approximation, G(z) is still the same and the flux and dissipation
profiles are

QSCA(z) = T̃uz + G(z) − dT̃
dz

, (7.17)

D
Rasa

�̇� : 𝞽(z) = DT̃uz − dG(z)
dz

. (7.18)

7.1. Global dissipation
The total dissipation is expressed as a fraction of the heat flux, more specifically the
superadiabatic convective heat flux. The reference result is obtained in the Boussinesq
approximation, where it has been shown that the integrated viscous dissipation is equal to
the product of the dissipation number and the convective heat flux (Howard 1963; Hewitt,
McKenzie & Weiss 1975). We express the total viscous dissipation as a fraction of the
conduction heat flux along the superadiabatic gradient and denote it Dν . In the FC model,
the integrated viscous dissipation divided by ΔTsa has the following expression

Dν = D
Rasaε

〈�̇� : 𝞽〉 . (7.19)

In the approximated models (AA, ALA and SCA), the expression is

Dν = D
Rasa

〈�̇� : 𝞽〉 , (7.20)

because the dimensionless temperature is scaled using ΔTsa for these models. Considering
the expressions for the Nusselt number in § 6, the ratio E of viscous dissipation to the
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Figure 9. Excess of the ratio of dissipation to convective heat flux relative to D, as a function of
D, for FC, AA, ALA and SCA models, α0T0 = 1, D in [0.25, 0.5, 0.75, 1.0, 1.25, 1.5], Rasa in
[103, 103.5, 104, 104.5, 105, 105.5, 106, 106.5].

convective heat flux takes the same expression for all models

E = Dν/(Nu − 1). (7.21)

The classical Boussinesq result on dissipation comes from integrating the dot-product of
Navier–Stokes with the velocity field. It follows that viscous dissipation is exactly equal
to the convective heat flux multiplied by the dissipation number (Howard 1963), hence
E =Dν/(Nu − 1) = D in the Boussinesq limit. For this reason, we call the quantity E − D
the ratio of dissipation to convective flux in excess of D. It is zero in the Boussinesq case
and we compute it for compressible convection FC, AA, ALA and SCA.

The numerical results concerning viscous dissipation are shown in figure 9. For small
values of D, all results are close to zero, indicating that the Boussinesq results apply:
dissipation is equal to the product of the convective heat flux and the dissipation number.
When the dissipation number is increased, the SCA model goes to slightly negative
values, whereas all other models go to positive values. Thus, for all models except SCA,
viscous dissipation becomes larger than predicted by the Boussinesq approximation. That
departure increases with the dissipation number D and also with the superadiabatic
Rayleigh number Rasa (better seen in figure 10).

Let us consider some limits to the dissipation results. First, we have rigorous upper (and
lower) bounds, since the papers of Backus (1975) and Hewitt et al. (1975). Taking (3.37),
dividing by Ta and integrating by parts leads to

Ds̃
Dt

− ∇ ·
(

∇T̃
Ta

)
= D

Rasa

ε̇ : τ

Ta
+ ∇T̃ · ∇Ta

T2
a

, (7.22)

where we recognize the positive sources of entropy due to irreversible viscous dissipation
and conduction on the right-hand side. The upper bound for total dissipation occurs for
negligible conduction (as an entropy source) and in the case when dissipation takes place
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Figure 10. Excess of the ratio of dissipation to convective heat flux relative to D, as a function of Rasa (same
values as in figure 9).

at the largest possible temperature Ta = 1 + D/2, at the bottom of the domain. Integrating
(7.22) over the whole domain leads to

Dν

1 + D
2

< Nu

⎡
⎢⎣ 1

1 − D
2

− 1

1 + D
2

⎤
⎥⎦ , (7.23)

implying the upper bound
Dν

Nu − 1
< D + D2

2 − D , (7.24)

in the limit of a large Nusselt number Nu � 1.
Another possible limit case is shown to correspond to our numerical results at large

Rayleigh number in § 7.2. That limit is that of a vanishing contribution of the G(z)
component of the heat flux defined in (7.12) in the AA. It corresponds to the case when the
heat flux is carried entirely by the flux of entropy Tas̃uz (outside top and bottom conduction
layers) whereas the energy dissipation at each height is Ds̃uz, as can be seen from (7.13)
and (7.14). Under that assumption, the integral of energy dissipation is equal to

Dν = Nu
∫ 1/2

1/2

D
Ta

dz, (7.25)

leading to the expression
Dν

Nu − 1
= log

(
1 + D/2
1 − D/2

)
. (7.26)

The expressions for the upper bound (7.24) and for the ‘entropy flux’ model (7.26) are
plotted in figure 9. It can be seen that the upper bound curve (7.24) lies far above the
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numerical results and that the ‘entropy flux’ expression (7.26) seems to correspond to the
limit of the numerical results when the Rayleigh number is increased, for the FC, AA
and ALA models. For small (supercritical) Rayleigh numbers, dissipation is close to the
‘Boussinesq’ limit. For the SCA model, the behaviour is different: starting from negative
values at small Rasa numbers, the ‘Boussinesq’ limit is reached for large Rasa numbers.
However, from a fundamental perspective, the SCA model does not behave differently
from the other models if one considers the consequences of the ‘entropy flux’ assumption,
because of the different expressions for the flux and dissipation. From (7.17) and (7.18), it
is clear that the assumption of a negligible G contribution leads to the usual ‘Boussinesq’
limit for the SCA model. Thus, in the limit of large Rasa, when the contribution of G
is small, it is expected that dissipation becomes close to the product of the dissipation
number and the convective heat flux. This is what we observe in figures 9 and 10.

It is striking that in figure 10 at low Rayleigh number, the ALA, FC and AA results differ
significantly. Dissipation is smallest with AA, then FC and highest with ALA. Typically
AA excess dissipation goes to zero near the critical Rayleigh number, whereas ALA excess
dissipation shows an increase to some finite value. FC results are intermediate. When the
superadiabatic Rayleigh number becomes larger, the difference between AA, FC and ALA
tends to shrink until the predicted dissipation is the same above 105 or 106.

7.2. Convergence of heat flux and dissipation profiles
In this section, we focus on the convergence of the entropy heat flux and of the
dissipation profiles towards universal limit profiles, when the superadiabatic Rayleigh
number becomes large. We have restricted our analysis to a maximum value of Rasa = 109,
so that a spatial resolution of 512 vertical and 2048 horizontal modes was able to capture
thin plumes and boundary layers. For simplification and ease of calculation, we consider
the AA only: from the previous § 7, we have seen that the global amount of dissipation
does not seem to depend on the model FC, AA or ALA, at large Rasa numbers, so that we
expect the same convergence for FC and ALA than that from AA (SCA is different, as we
have seen).

Figure 11 shows the ratio of the entropy heat flux Tas̃uz to the uniform total heat
flux QAA, see (7.13). For both values of the dissipation number D = 0.8 and D = 1.6,
the entropy heat flux profile converges (slowly) towards the uniform value 1, except in
thin boundary layers: their thickness is of order Ra−1/3

sa and conduction is the only way
to transfer heat in the vicinity of the top and bottom boundaries. This implies that the
other flux contributions, called together G(z), see (7.12) and (7.13), become increasingly
negligible as the superadiabatic Rayleigh number is increased.

As expected, as G(z) becomes small (and without variations at some small scale), so
does dG(z)/dz, implying that the profile of viscous dissipation becomes close to Ds̃uz, see
(7.14). As Tas̃uz is close to 1 at large Rasa, we have a dissipation profile close to 1/Ta(z)
(see Appendix C for a general dimensional expression). Figure 12 shows the change in
dissipation profiles as the superadiabatic Rayleigh number increases from 104 to 109,
for two different values of the dissipation number, D = 0.8 and D = 1.6. As expected
from (7.14), the profile converges towards 1/Ta(z) in both cases, however the ‘entropy’
component of dissipation being multiplied by D, the convergence looks more obvious for
the larger value of D.

We give a quantitative measure of the convergence of the entropy flux contribution
(towards 1) and dissipation profiles (towards 1/Ta(z)) in figure 13. The measure is defined
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Figure 11. Entropy flux contribution for D equal to (a) 0.8 and (b) 1.6, for a superadiabatic Rayleigh number
up to 109 in the AA and α0T0 = 1.
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Figure 12. Dissipation profile for D equal to (a) 0.8 and (b) 1.6, α0T0 = 1, for a superadiabatic Rayleigh
number up to 109 in the AA.

in each case as the logarithm of the L1 distance. The larger the dissipation number, the
faster the convergence is.

In an attempt to understand how the heat flux contributions G(z) become negligible
as Rasa is increased, we plot a snapshot of the superadiabatic temperature field for
three different values of the dissipation number D = 0.05, 0.4 and 1.6 at Rasa = 109

in figure 14. At small D sparse plumes go from bottom to top or top to bottom and a
velocity field is generated with a length-scale comparable to the height of the cavity,
in the case considered here of infinite Prandtl number. At moderate D the top–bottom
asymmetry is strong, more plumes are present and smaller scales are visible. At the largest
D, numerous plumes exist and they cannot cross the whole height of the cell (not even
the descending ones) without their heads detaching from their tails and continue their
course as isolated blobs. The length-scale of typical distance between adjacent plumes l is
reduced significantly compared with the height H of the cavity. If U is a typical scale for
velocity, then we expect the local viscous dissipation �̇� : 𝞽 to scale as U2/l2, while ujτzj
scales as U2/l. Once averaged in time and horizontally, that quantity depends smoothly on
z on the global scale H, so that d/dz(ujτzj) scales as U2/(lH), i.e. l/H smaller than viscous
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Figure 13. Relative distance (L1-norm) of the entropy to total heat flux profile (a) and of the dissipation

profile to the limit (C6).

(a)

(b)

(c)

Figure 14. Snapshot of the superadiabatic temperature field for (a) a very small D = 0.05, (b) moderate D =
0.4 to (c) a large dissipation number D = 1.6, for Rasa = 109, in the AA with α0T0 = 1. In the enlarged views,
the distribution of viscous dissipation ε̇ : τ (left) and entropy flux s̃uz (right) are shown.

dissipation. Extending this result on deviatoric stress work to pressure work, this explains
that dG(z)/dz becomes negligible compared with dissipation, see (7.14).

In figure 15, we plot the energy spectrum of one component of the deformation rate
tensor, ∂uz/∂z, for a large Rayleigh number Ra = 109 and different dissipation numbers,
in the AA. As the dissipation number is increased, a shift of the whole spectrum towards
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Figure 15. Energy spectrum of ∂uz/∂z: the Fourier coefficients of this component of the velocity gradient are
computed along the x direction and the square of their complex magnitude F(kx) is plotted as a function of the
wavenumber (kx = 1 corresponds to a signal of period L the length of the domain along x, and for any value of
kx the corresponding mode is exp(ikx2πx/L)). Those Fourier coefficients are averaged over a central vertical
extent from z = −0.11 to z = 0.11.

larger wavenumbers is observed. At small values of D, the spectrum has a maximum
around kx = 4, whereas at large D the maximum is close to kx = 10. This indicates that
for a given integral of viscous dissipation, the fraction of heat flux carried by the work
done by viscous stresses becomes smaller and smaller as the dissipation number D is
increased.

This idea of smaller scales for velocity gradients at larger superadiabatic Rayleigh
numbers can also give a hint on why the AA, FC and ALA results converge at large Rasa,
as shown in figure 10. An estimate of pressure contributions to entropy fluctuations in
Anufriev et al. (2005), obtained from the analysis of the order of magnitude of the forces
in the momentum equation, is adapted to a length scale of convection l: from Stokes’
equation, an order of magnitude of pressure is αρg(δT)l and from ds = cp/TdT − α/ρdP,
we evaluate the ratio of pressure over temperature to be of order αTDl/H. In Anufriev
et al. (2005), the length scale l is taken to be of order H and the condition of validity for
the ALA approximation is given as αTD � 1. If, however, a smaller length scale l prevails,
the left side of the inequality is multiplied by l/H making the ALA approximation more
valid.

At large dissipation number and large superadiabatic Rayleigh number, typically our
last case of figure 14, we thus propose that the time and horizontal average of viscous
dissipation is linked to the time and horizontal average of the product s̃uz (see (7.14) with
negligible term dG/dz). However, both quantities �̇� : 𝞽 and s̃uz are not pointwise (and
timewise) correlated. This is illustrated in the enlarged views in figure 14 where �̇� : 𝞽 and
s̃uz are plotted in a small region of the fluid domain. The quantity s̃uz (right enlarged
view) represents well the plumes whereas dissipation �̇� : 𝞽 (left enlarged view) looks more
like a halo around the plumes. This is also a consequence of the different symmetries
concerning each quantity: for a supposedly straight descending plume, s̃uz is maximum on
the centreline of the plume, however dissipation must be zero on that centreline (where
vertical gradients are smaller than horizontal gradients, i.e. not ahead of the tip of the
plume).
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8. Effect of confinement and inertia

Different results were obtained in Currie & Browning (2017), where a larger dissipation
than our limit (7.25) is obtained. There are actually several differences in the configuration
they have studied: (i) they use an EoS of an ideal gas, (ii) they model conduction using
the gradient of entropy, (iii) they use a boundary condition of a fixed flux (bottom),
(iv) they consider inertia (Pr = 1 or 10), (v) they have a square domain and (vi) they
have non-penetrative conditions on lateral walls. In this section, we test changes in our
configuration regarding the last three points (iv), (v) and (vi) that can be implemented
easily in our code. It turns out that we need to make all three changes to recover the results
of Currie & Browning (2017).

In the results presented here, we have kept the same EoS as in the beginning of the
paper, with s = s(ρ). We have kept the same top and bottom boundary conditions. We have
included inertia with a Prandtl number Pr = 10. We have changed the aspect ratio from
4
√

2 to 1 (square domain). Then, we consider two cases, one with periodic lateral boundary
conditions as before in this paper and one with a non-penetrative boundary condition. This
last case is that considered in Currie & Browning (2017) and corresponds to a vanishing
perpendicular velocity component ux = 0 and no shear stress ∂uz/∂x = 0. This is achieved
numerically in Dedalus by choosing the so-called SinCos base of functions for horizontal
decomposition, instead of the complete Fourier base for periodic boundary conditions.

Figure 16(a) shows the averaged vertical profiles of different components of the heat
flux identified in (C5): the entropy flux fraction of the heat flux ρaTauzs̃, the kinetic energy
flux 1/2ρau2uz, the viscous work −uiτiz and the pressure work P̃uz. In figure 16(b), the
averaged profiles of viscous dissipation are plotted for Pr = 10, Rasa = 107 and D = 1.6.
With periodic boundary conditions, we observe some departure from the results we had
previously (without inertia and in a long cavity) in the top half of the cavity, but this does
not change the total dissipation significantly. In the contrast, with the confined boundary
condition on lateral boundaries (SinCos in Dedalus), the fraction of entropy heat flux
exceeds 1 by 75 % in the bottom half, and as a consequence of (7.13) and (7.14), viscous
dissipation reaches much larger values there. This brings the total dissipation in the range
of that obtained by Currie & Browning (2017). Looking at this in more detail, the flux
of kinetic energy is very significantly negative in the SinCos case, causing a significant
increase of the entropy flux in the lower half of the fluid domain. In figure 17, we compare a
snapshot of the superadiabatic temperature field in both cases (periodic or SinCos). We can
see that the vertical ‘walls’ in the SinCos case, and inertia, are capable of channelling the
descending plume that dissipates its kinetic energy at the bottom. A large-scale circulation
is created. Note that Tilgner (2011) has led numerical simulations in the FC case with
explicit vertical walls. In the periodic case however, descending plumes still cannot reach
the bottom (even with Pr = 10 instead of Pr = ∞) and finer scales develop. Another
feature of the periodic box is the large scale shear deformation, induced by Reynolds
stresses (with a finite Prandtl number), which is suppressed in the wall-bounded geometry.

Thus, it seems that there are two possible convection states. One that is dominated
by the entropy flux, where G(z) in the flux profile (7.13) and in the dissipation profile
(7.14) is negligible. The length scales of convection are small. In our work, this state is
obtained in the limit of large superadiabatic Rayleigh numbers, although that limit might
be difficult to reach for small dissipation numbers. A second state, observed by Currie
& Browning (2017), can be seen when inertia is introduced and when vertical walls are
present. Convection is large-scale, descending plumes are stuck to a wall (the left wall
in the particular snapshot in figure 17) and viscous dissipation is enhanced compared to
the first state. Our investigations concerning the effect of inertia and confinement have
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Figure 16. Profiles of (a) heat flux components from (C5) except conduction terms and (b) dissipation profile,
for an aspect ratio unity and a Prandtl number equal to 10, Rasa = 107 and D = 1.6. Comparison between
a periodic boundary conditions (square periodic, in green) and horizontal confinement with no shear stress
(square SinCos, in red).

(a) (b)

Figure 17. Snapshot of the superadiabatic temperature field for Pr = 10, Rasa = 107, D = 1.6 and α0T0 = 1,
in a domain of aspect ratio unity. In (a), there are periodic boundary conditions in the horizontal direction,
whereas there are impermeable no-shear-stress walls for the calculation in (b).

not been systematic and complete and they only concern the AA. We have tested all
combinations of two aspect ratios (our usual 4

√
2 and 1), two types of boundary conditions

in the horizontal direction (periodic or SinCos) and two values of the Prandtl number
(Pr = ∞ and Pr = 10). Yet, that second state was only seen when we had simultaneously
vertical walls (SinCos boundary condition), inertia (Pr = 10) and an aspect ratio equal
to one. Incidentally, this configuration is that of most experiments where the ‘ultimate’
regime of thermal convection is investigated, for instance in Roche et al. (2002).

In their paper, Currie & Browning (2017) have tested the model (that we call ‘entropy
flux’) leading to the global dissipation (7.26), but they discard it on the basis of their
numerical results. However, they write ‘Often it is assumed that in the bulk of the
convection zone, the total heat flux is just equal to the convective flux . . .’, where
they call ‘convective flux’ that part of flux we call here ‘entropy flux’, Tas̃uz. This
corresponds precisely to the assumption of negligible contribution of G(z) to the heat

940 A9-33

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e,
 o

n 
su

bj
ec

t t
o 

th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.216


T. Alboussière and others

flux in (7.13). Thus, the idea has been expressed already and was seemingly well-accepted
in astrophysics, but we could not find a precise reference for it until now.

At this point, it is important to have in mind the specific nature of the present
study. The EoS considered here is peculiar: a limit case retaining the thermal features
of compressibility (adiabatic gradient, adiabatic cooling), but minimizing the actual
changes in density (nearly uniform density). Previous works on stellar or gas planet
convection with an ideal gas EoS have mostly shown that the flux of kinetic energy
corresponds to a significant fraction of the total heat flow (Chan & Sofia 1989; Viallet
et al. 2013; Featherstone & Hindman 2016; Käpylä et al. 2019). These studies report the
existence of deep convective plumes crossing the whole adiabatic layer. The effect of
density stratification in an adiabatic region is highlighted by Anders, Lecoanet & Brown
(2019) who point out its effect on descending plumes that can be sometimes compacted
and accelerated downward. However, their authors also insist on the gap between the
values of the stellar Rayleigh number and those actually accessible numerically. In their
three-dimensional calculations, the Rayleigh number based on the heat flux is restricted
to be less than RaF = 107.5 (under a classical scaling Nu ∼ Ra1/3, this corresponds to a
Rayleigh number based on a temperature difference of Ra = Ra3/4

F = 105.625). In these
papers, it is also reported that the numerical models overestimate stellar convective
velocities compared to the observations: this might be related to the relative small
values of the numerically accessible Rayleigh numbers. For instance, Featherstone &
Hindman (2016) reported a slow tendency of the spectrum of convection to shift to larger
wavenumbers as the Rayleigh number is increased. This is also something we observe
(see figure 15) and we associate this to a slow convergence toward a regime of heat flow
dominated by the entropy flux. In the context of the Boussinesq approximation, Goluskin
et al. (2014) showed how shear flow is generated by convection in a periodic domain,
leading to a reduction of the vertical heat transfer. In their two-dimensional case, they
can reach Rayleigh numbers of 1010. In addition to the role of the EoSs, other features of
the model can potentially affect the final structure of the flow: imposed temperatures vs
imposed heat flux, sub-grid-scale models in particular under the form of a Fourier heat flux
proportional to the gradient of entropy, etc. Finally, the very important effects of rotation
and magnetic field are not considered here: for instance, the dynamics of the Earth’s core
is dominated by the influence of the Coriolis force and one consequence is that kinetic
energy is negligible despite the small value of the Prandtl number (Schaeffer et al. 2017).

9. Conclusions

In this paper, we have taken the limit case of a class of EoSs such that entropy is a
function of density. In the assumption of an infinite Prandtl number, we have written the
FC governing equations of convection as well as AAs of increasing simplification: AA,
ALA and SCA. Under that choice, a nearly uniform entropy field implies that density is
nearly uniform. A consequence is that, with a uniform (dynamic) viscosity, we also have
a nearly uniform kinematic viscosity and a uniform thermal diffusivity. With such a class
of EoSs, there is still an adiabatic temperature gradient and its effect in heat transport is
still present. The idea is to keep features of compressible convection and to discard effects
related to non-uniform fluid properties, sometimes called NOB effects. The AA is based
on a linear expansion about a state of uniform entropy, in the ALA pressure variations are
neglected on all thermodynamic quantities, and in our SCA even the adiabatic gradient
of temperature is eliminated. In that last approximation, thermodynamics is badly treated,
however adiabatic heating and cooling is retained and the mathematical structure of the
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equations contains the key ingredients of compressible convection. It has the advantage
of simplicity with just two scalar parameters Rasa and D. There is no need to determine
a profile of adiabatic temperature. Applied mathematicians might want to play with that
system (see also Appendix A.4) and determine fundamental properties of its solutions,
which might then have applications in the more physical models.

The genuine compressible effects are governed by the dissipation parameter D. Around
D = 0.1 (between 0.05 and 0.2), compressible effects create a top–bottom asymmetry.
Ascending plumes starting from the bottom thermal boundary layer do no longer reach
the top. This leads to a change in the temperature profile with the loss of the overshoot
near the top of the superadiabatic temperature profile. At larger values of the dissipation
number, the change in the global heat flux under a constant superadiabatic Rayleigh
number is compatible with the model of critical boundary layer of Malkus (1954). As we
have shown in § 6, increasing the dissipation number leads to an increase of heat transfer
owing to the asymmetry of heat transfer resistance of the top and bottom thermal boundary
layers.

With significant compressible effect (D large enough) and in the limit of very large
superadiabatic Rayleigh numbers, we have shown that a state of ‘local equilibrium’ is
reached, where the heat flow due to the flux of entropy fluctuations is accompanied with
the corresponding viscous dissipation at the same height. This is a small-scale process
which is consistent with the observation that heat flux components such as shear-stress
or pressure fluxes are negligible. In that limit, we can predict the vertical profile of
viscous dissipation, as soon as the profile of α, g and cp are known from (C6). A similar
process takes place in the simplest SCA model: however, due to its extreme simplicity, it
ignores the depth dependence of the expansion coefficient and a constant heat flux with
depth leads to a constant profile of viscous dissipation (see (7.17) and (7.18)). Although
the result is different, and certainly less relevant to geophysics and astrophysics, it is
still mathematically interesting to investigate the consequences of the SCA model on
dissipation distribution. It still contains viscous heating and adiabatic cooling in the
thermal equation. These terms, particularly at high superadiabatic Rayleigh numbers, are
capable of driving the system in a state of mesoscale equilibrium between themselves and
lead to a dominant mode of heat transfer due to the flux of entropy, while other modes
(kinetic energy flux, pressure and stress terms) become small. If this process is understood
in the simpler SCA model, then it could certainly help understand the behaviour of the
other models.

Other works, in particular in Currie & Browning (2017), find that a different type of flow
can exist, with large-scale circulation and more dissipation for the same heat flux. In that
case, the vertical profile of dissipation has larger values in the lower half of the domain
where temperature is large (and less in the upper half): this explains how the entropy
budget is balanced despite an increased global dissipation. We have observed that this
type of convection can be reached only when the Prandtl number is finite, vertical walls
are present and the aspect ratio of the domain is not large. In geophysical or astrophysical
contexts, vertical walls certainly do not exist and that second type of flow appears unlikely
to develop.

Regarding the different models, we find a good agreement between FC and AA, as
expected, except at large dissipation numbers and small superadiabatic Rayleigh numbers
(above threshold). We also find the ALA approximation to be good, especially for small
values of α0T0 (as expected again), and at large superadiabatic Rayleigh numbers: that
last feature may be due to the fact that we obtain solutions with small convective scales
(mesoscale equilibrium) for which pressure variations are small. The differences would be
larger in the case of large-scale circulations. The SCA model gives different results, but
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there are good reasons for that. As explained previously, this model is not meant to provide
realistic results. It should be seen as a simple set of equations where compressible effects
can still be studied.

In future works, it seems important to investigate precisely the conditions of existence
of both types of flow. The following features should be studied: realistic EoSs,
three-dimensional flows, electromagnetic forces and effect of rotation. If the flux of kinetic
energy or the Poynting flux cannot compete with the entropy flux, then it is likely that the
model of ‘local equilibrium’ applies, embodied by the vertical distribution of dissipation
(C6).

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.216.
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Appendix A. Equations for FC, AA, ALA and SCA models

The velocity boundary conditions are common to all models: stress-free, non-penetrative
conditions, with an additional constraint on the average horizontal velocity since Galilean
invariance does not constrain it,

∂ux

∂z
= 0, when z = ±1

2 , (A1)

uz = 0, when z = ±1
2 , (A2)∫ L/(2H)

−L/(2H)

ux

(
x, z = 1

2

)
dx = 0, (A3)

The non-dimensional equations of the different models studied (FC, AA, ALA and SCA)
and other boundary conditions are as follows.

A.1. FC model
The governing equations are

Dρ

Dt
= −ρ∇ · u, (A4)

0 = −Rasa(n + 1)

ε

(
ρn

D [(n + 1)T∇ρ + ρ∇T] + ρez

)
+ ∇2u + 1

3
∇ (∇ · u) , (A5)
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Compressible convection playground

0 = −(n + 1)ρn+1T∇ · u + εD
Rasa

ε̇ : τ + ∇2T. (A6)

Temperatures are imposed at the top and bottom

T = 1 + D + ε

2
, when z = −1

2 , (A7)

T = 1 − D + ε

2
, when z = 1

2 . (A8)

A.2. AA model
The governing equations are

∇ · u = 0, (A9)

0 = −Rasa

D ∇P̃ + Rasa

(
T̃
Ta

− P̃
(n + 1)Ta

)
êz + ∇2u, (A10)

D
Dt

(
T̃ − P̃

n + 1

)
= −Duz

(
T̃
Ta

− P̃
(n + 1)Ta

)
+ D

Rasa
ε̇ : τ + ∇2T̃, (A11)

and boundary conditions

T̃
(

z = ±1
2

)
= ∓1

2 , (A12)∫ L/H

0
P̃
(

x, z = 1
2

)
− P̃

(
x, z = −1

2

)
dx = 0. (A13)

A.3. ALA model
The governing equations are

∇ · u = 0, (A14)

0 = −Rasa

D ∇P̃ + Rasa
T̃
Ta

êz + ∇2u, (A15)

DT̃
Dt

= −Duz
T̃
Ta

+ D
Rasa

ε̇ : τ + ∇2T̃, (A16)

and boundary conditions

∂T̃
∂x

= 0 z = ±1
2 , (A17)

T̃
(

x, z = −1
2

)
− T̃

(
x, z = 1

2

)
= 1, (A18)∫ L/H

0
P̃
(

x, z = ±1
2

)
dx = 0. (A19)
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A.4. SCA model
The governing equations are

∇ · u = 0, (A20)

0 = −Rasa

D ∇P̃ + RasaT̃ êz + ∇2u, (A21)

DT̃
Dt

= −DuzT̃ + D
Rasa

ε̇ : τ + ∇2T̃, (A22)

and boundary conditions

∂T̃
∂x

= 0 z = ±1
2 , (A23)

T̃
(

x, z = −1
2

)
− T̃

(
x, z = 1

2

)
= 1, (A24)∫ L/H

0
P̃
(

x, z = ±1
2

)
dx = 0. (A25)

Appendix B. Tables of simulation parameters

The parameters of infinite Prandtl number, 4
√

2 aspect ratio, simulations are as follows:

Rasa D α0T0 ε nx nz Model Duration

12 runs 104 1.5 1.0/0.5 0.1 128 32 FC/AA 0.3
0.1 ALA/SCA

5 runs 106 0/0.05/0.1 1.0 256 64 AA 0.5
0.2/0.4

5 runs 108 0/0.05/0.1 1.0 512 128 AA 10−2

0.2/0.4
2 runs 107 0.05/0.2 1.0 256 64 AA 0.1
4 runs 3.0 × 105 1.2 1.0 0.1 256 64 FC/AA 0.5

ALA/SCA
192 runs 103/3.5/4/4.5 0.25/0.5/0.75 1.0 0.1 256 64 FC/AA 1.0

105/5.5/6/6.5 1.0/1.25/1.5 ALA/SCA
17 runs 107 0.001/0.01/0.02 1.0 512 128 AA 0.1

0.03/0.04/0.05
0.07/0.1/0.2/0.3
0.5/0.7/1.0/1.2
1.4/1.6/1.8

8 runs 108 0.05/0.1/0.2/0.4 1.0 1024 256 AA 0.03
0.8/1.2/1.6/1.8

8 runs 109 0.05/0.1/0.2/0.4 1.0 2048 512 AA 0.01
0.8/1.2/1.6/1.8
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Compressible convection playground

Two additional runs have been performed with a Prandtl number equal to 10 in a cavity
of aspect ratio 1, with the following parameters:

Rasa D α0T0 nx nz Model Duration Lateral condition

1 run 107 1.6 1.0 512 128 AA 0.1 x-periodic
(Fourier)

1 run 107 1.6 1.0 512 128 AA 0.1 wall-bounded
(SinCos)

Appendix C. Dimensional anelastic heat flux and dissipation profiles

From the dimensional anelastic equations for a general EoS, we derive expressions for the
horizontal and time average of the vertical heat flux and dissipation profile. The anelastic
equations are

∇ · (ρau) = 0, (C1)

ρa
Du
Dt

= −ρa∇
(

P̃
ρa

)
+ ρaαaTag

cpa
s̃êz + ∇ · τ. (C2)

ρa
D (Tas̃)

Dt
= −ρaαaTag

cpa
uzs̃ + �̇� : 𝞽 − ∇ ·

(
φa + φ̃

)
, (C3)

where φa and φ̃ are the conduction heat flux along the adiabat and the superadiabatic
temperature, respectively. The scalar product of the Navier–Stokes equation is averaged
horizontally and temporally (denoted by an overline) in the assumption of a statistically
stationary flow, to obtain the dissipation profile (after integrating by parts the last term)

ε̇ : τ(z) = ρaαaTag
cpa

uzs̃ − d
dz

[
ρa

u2

2
uz + P̃uz − uiτiz

]
. (C4)

Taking the horizontal and temporal average of the energy equation (C3), eliminating ε̇ : τ

using (C4), shows that the following function is independent of z whereas it is obviously
equal to the heat flux at the top and bottom

QAA(z) = ρaTauzs̃ +
[
ρa

u2

2
uz + P̃uz − uiτiz

]
+ φa + φ̄. (C5)

If the heat flux components in brackets converge toward zero, for instance when the
Rayleigh number increases to large values, then the main part of the flux is carried by
the entropy flux ρaTauzs̃, except in small layers at the top and bottom where thermal
conduction can compete. In the statically stationary case, the heat flux is uniform along z.
From (C4), it can be seen that the dissipation profile converges toward ρaαaTag/cpauzs̃, so
that the dissipation profile becomes a well-defined function of height

ε̇ : τ(z) � αag
cpa

QAA, (C6)

depending on the vertical profiles of αa, cpa and g.
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