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SUMMARY 
In a dynamic Earth, mantle mass heterogeneities induce gravity anomalies, surface 
velocities and surface topography. These lateral density heterogeneities can be 
estimated on the basis of seismic tomographic models. Recent papers have described 
a realistic circulation model that takes into account the observed plate geometry and 
is able to  predict the rotation vectors of the present plates. The relationship between 
the surface observables and the heterogeneities is sensitive to  the viscosity 
stratification of the mantle. Here we use this model, combined with a generalized 
least-squares method, in order to  infer the viscosity profile of the Earth from the 
surface observations, and. to  get some new insight into the 3-D density structure of 
the mantle. The computed radial viscosity profile presents a continuous increase of 
more than two orders of magnitude. The asthenosphere has a viscosity close to 
2 x lo2’ Pa s. No sharp discontinuity is requested at  the upper-lower mantle 
interface. The largest viscosity 7 X 10” Pas is reached in the middle of the lower 
mantle. A t  greater depth, approaching the core-mantle boundary, the viscosity 
decreases by one order of magnitude. The model suggests that the well-known 
degree-2 and order-2 anomaly in the transition zone of the upper mantle is merely 
the signature of the slabs. It also slightly increases the degree-2 and order-0 in the 
lower mantle and decreases it in the upper mantle. In other words the inversion 
requests a hotter lower mantle beneath the equator and a colder upper mantle at the 
same latitudes. 
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INTRODUCTION 

The problem of deducing density structures from surface 
gravity data is known to lead to non-unique solutions. Of 
course with the assumption that all the mass anomalies lie at 
a prescribed depth or a prescribed interface like the Moho 
or the core-mantle boundary, different authors have 
performed such an inversion (e.g. Hide & Horai 1968). 
More complex methods have also been applied, minimizing 
the shear strain energy (Kaula 1963) or using the maximum 
entropy approach (Rubincam 1982). In all cases, the 
geophysical meaning of the assumptions leading to the 
inversion is, to the least, debatable. In what follows, we 
show that the combined inversion of the various geophysical 
data which are the topography, the geoid, the rotation poles 
and angular velocities of the plates reveals the long- 
wavelength structure of the Earth’s mantle. 

* Permanent address: Laboratory of Geophysics, Academia Sinica, 
Beijing, China. 

The presence of a given mass heterogeneity within the 
mantle not only modifies the gravity field but also induces a 
stress field which can be observed at the surface. This stress 
field affects the topography as well as the horizontal 
velocities. It is obvious that the topography, the geoid, and 
the velocity field are mostly sensitive to density variations 
located at different depths in the mantle. The topography is 
mainly related to the near-surface heterogeneities like the 
undulations of the Moho or the density increase of the 
cooling oceanic lithosphere. The plate motion has often 
been explained by means of two driving forces, slab pull and 
ridge push, counteracted by the mantle drag. These forces 
physically arise from the buoyancy differences between the 
average density of the mantle and the low density associated 
with ridges at depth or the high density associated with 
slabs. In some way, plate motion is revealing the structure 
of the top part of the mantle. In addition, the geoid, which 
is a very smooth integrator of the global mass distribution, 
allows us to put some constraints on the lower mantle 
density variations. Realistic relationships between the mass 
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heterogeneities and their surface expressions, the topog- 
raphy, the geoid and plate motions, are therefore sampling 
the whole mantle. 

THE FORWARD PROBLEM 

The forward problem consists in computing the perturba- 
tions of the surface observables induced by a given mass 
located at a given depth. These computations have been 
carried out by different authors in the framework of purely 
viscous Newtonian Earth models with radial stratification. 
The answer has often been given in terms of Green 
functions. Such Green functions express the responses of an 
Earth model as the location depth of a source mass 
heterogeneity increases. In this formalism the heterogeneity 
has a vanishing thickness and is laterally described by a 
given harmonic degree. For any 3-D mass distribution, the 
solution can be found by a radial convolution and a 
horizontal summation of the spherical harmonics. Some 
authors (Richards & Hager 1984; Ricard, Fleitout & 
Froidevaux 1984) have mainly focused on the topography 
and gravity implications, whereas others have emphasized 
the relationships between mantle heterogeneities and plate 
motion (Forte & Peltier 1987). 

This Green’s function approach was used to constrain the 
viscosity stratification of the mantle (Hager 1984; Forte & 
Peltier 1987; Ricard, Vigny & Froidevaux 1989). However, 
this description suffers from a major drawback which was 
recognized long ago. Such models are unable to describe the 
lithospheric behaviour realistically, and they predict a 
surface motion which is very different from the observed 
one. The computed velocity field is said to be only ‘poloidal’ 
or ‘without radial vorticity’. This means for example, that all 
the observed strike-slips between the plates cannot be 
explained. However for the real Earth the energy contained 
in the other velocity field component, called ‘toroidal’, is 
known to be close to the energy belonging to the poloidal 
field (Hager & O’Connell 1978). 

In recent papers (Ricard & Vigny 1989; Vigny, Ricard & 
Froidevaux 1989; Bai et af. 1989) a new method has been 
proposed which can realistically predict the quasi- 
equipartition of energy between the two modes. The 
computation takes the real geometry of the existing plates 
into account. In this model, the knowledge of the poloidal, 
respectively toroidal, field and of the plate geometry 
imposes the toroidal, respectively poloidal, field. This 
assumption is right except for the toroidal field of degree 1. 
This field, which corresponds to a global rotation of the 
lithosphere is set by construction to zero in our model 
although it seems necessary for the description of the plate 
motions in the hotspots reference frame (Minster et al. 
1974). The dynamics of a mantle overlaid by plates is found 
to be drastically different from what was predicted 
previously. As a consequence, the computed topography 
and gravity field are also affected by the presence of the 
plates. 

The computational procedure is a generalization in 3-D 
spherical coordinates of an approach previously used in 2-D 
Cartesian geometry (Hager & O’Connell 1981). It is also 
akin to a more recent work on convection below rigid plates 
in 3-D parallelepipedic boxes (Gable, O’Connell & Travis 
1988). The mathematical framework described in the papers 

previously quoted can be summarized as follow. First, the 
surface stress field generated by a 3-D mass distribution is 
computed, assuming a no-slip boundary condition at the 
surface of the Earth. Second, from the existing plate 
geometry, the surface stress field induced by a unit rotation 
of each plate around three orthogonal vectors is computed. 
Third, the rotation vectors are chosen in order to ensure 
that, on each plate, the stress field torque induced at step 1 
is exactly balanced by the stress field torque related to plate 
motion. Fourth, with these rotation vectors and the internal 
mass anomalies the geoid and the topography are deduced. 

In our model, the internal mass anomalies and the 
computed observables are expressed in terms of spherical 
harmonic coefficients. For a given viscosity profile and a 
given mass anomaly of degree 1 and order m, the response 
of the model is simply proportional to the amplitude of this 
mass, although this response can be of different degrees and 
orders. On the contrary, or a given mass distribution, the 
predictions of the model are linked to the viscosity profile by 
a non-linear relationship. 

Mathematically, our approach is not entirely self- 
consistent. Indeed, a strict application of the concept of 
plate tectonics will lead to a velocity discontinuity at plate 
boundaries. This discontinuity produces a somewhat 
logarithmic singularity of the divergence of the stress field 
torque induced by forced plate motion, as a function of the 
degree 1 (Hager & O’Connell 1981). In other words, this 
means that we balance the internal stress field by an external 
one with an amplitude which increases with log I,,,, the 
maximum degree used in the description of plate geometry. 

We think however, that this behaviour cannot forbid to 
use this approach for two reasons. First, it is clear that the 
perfect rigidity of the plates is only a mathematical artefact. 
Using a maximum degree I,,, for the computation only 
means that below the associated half-wavelength the plates 
are not rigid but perfectly plastic. Second, this singularity is 
rather smooth. Its effect is even less important if one 
considers the fact that the parameter we will invert for is the 
logarithm of the viscosity. 

In this paper the maximum degree for the description of 
the plates is l,,, = 15, corresponding to a half-wavelength of 
1300 km. Had we assumed the plate to be rigid down to a 
half-wavelength of 100 km, we should have computed the 
stress field up to degree 195. Let us take the example of the 
Indian plate to illustrate the effect of truncation 
quantitatively. We compute the torque exerted by the 
velocity field of the observed plate motion (Minster & 
Jordan 1978) on this plate, for a mantle of uniform viscosity. 
The global velocity field has been truncated after a 
maximum degree I,,, ranging from 1 to 15. Fig. 1 shows the 
dimensionless amplitude (left) and the longitude and 
latitude (right) of the resulting torque as a function of I,,,. 
It is clear that if its amplitude has a singularity; its azimuth 
remains rather constant around 32”E and 63”N. The 
computed dimensionless torque is around 0.64 for I,,, = 15. 
The effect of truncation is therefore to underestimate the 
torques necessary to drive the plates not their directions. 
After balancing the external stresses by the internal ones, 
only the average value of the mantle viscosity needed to 
move the plates will be affected by the truncation, not the 
relative viscosity profile. From Fig. 1, a rough extrapolation 
shows that the dimensionless amplitude of the torque 
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Figure 1. Torque applied on the Indian plate as a function of the truncation degree used for the description of plate motions and geometries. 
In the left graph, its dimensionless amplitude is depicted. In the right graph its longitude (lower branch "E) and latitude (upper branch "N) are 
shown. The direction of the torque remains rather constant whereas its amplitude increases with the logarithm of the truncation degree. 

driving the Indian plate would have been around 1 if the 
computation had been carried out up to degree 195. This 
would have changed the external torque by a factor 1.6 at 
most, and decreased the averaged mantle viscosity 
requested to explain the observed plate velocities by the 
same amount. The viscosity profile on its logarithmic scale 
would have remained within the error bars of our inversion. 
A viscosity increase with depth would have strengthened 
this conclusion. In that case the shorter wavelengths which 
are only sampling the upper part of the mantle are sensitive 
to a lower viscosity than the long wavelengths. This 
decreases the short-wavelength components of the stress 
field. Thus, the torques would have been less affected by 
degree truncation. 

The choice of a given degree truncation does not only 
affect the averaged mantle viscosity requested to explain the 
observed surface velocities but also changes the predicted 
geoid. On the one hand, the geoid component related to 
internal loads and computed with a no-slip boundary 
condition remains the same. On the other hand, the geoid 
component related to imposed surface velocities depends on 
the averaged mantle viscosity. Fortunately, this second 
component is weaker than the first one so that here again 
the problem of truncation does not seem to be crucial. 

Another problem with our approach is related to the 
coupling between modes induced by the presence of plates. 
A mass of a given degree generates a flow also described by 
other degrees. As we only use a truncated series for the 
description of lateral mass anomalies, we cannot know what 
would be the effect of an additional mass with a smaller 
wavelength. However the dynamics of the real Earth with its 
characteristic plates is probably more closely described by 
our model than by the earlier radially stratified ones. In this 
paper, we will use mantle mass heterogeneities related to 
seismic tomography. Only the very large-scale features of 
the mantle (up to degree 6) are actually described. However 
we will show that even a restriction of our data set up to 
degree 5 will lead to comparable results. 

An additional output of our model is the core-mantle 
dynamic topography. In the last few years different 
seismological studies have tried to map this topography. 
Unfortunately the available models are very different 
(Morelli & Dziewonski 1987; Creager & Jordan 1986; 
Doornbos & Hilton 1989) and the amplitudes they predict 

are unlikely to agree with physical constraints deduced from 
magneto-hydrodynamic studies (Hide 1989) or Earth 
rotation studies (Gwinn, Herring & Shapiro 1986). 
Furthermore, a study of the accuracy we can reach from the 
seismological data, in determining the core shape has shown 
that errors have an amplitude close to the detected signal 
(Gudmundsen 1989). It is also possible that the pattern 
observed by seismologists should not be related to a 
dynamic topography but rather to the sampling of D" 
heterogeneities or to the presence of megaliths floating on 
the core. We have prudently chosen to ignore the important 
constraints that could be derived from these emerging 
additional data. 

THE INVERSE PROBLEM 

The forward problem relates the mantle heterogeneities to 
surface observations by means of a model computed on the 
basis of a radial viscosity distribution inside the Earth. The 
model is also slightly dependent upon the radial density of 
the Earth but we will assume this function to be exactly 
known. Our data 4 consists of the harmonic coefficients of 
the topography, the geoid and the poloidal surface field up 
to degree and order 6. The parameters p we want to invert 
for are, in principle, both the radial viscosity structure and 
the 3-D density structure. We will in fact perform two kinds 
of inversion separately, assuming first that the parameters 
are only the viscosities, and second that the densities are the 
unknowns to invert for. We define g as our model result 
such as d=g(p)  and G(p) is the matrix of the partial 
derivatives of g as a function of p. This matrix is also 
computed by our program. The inverse problem is to derive 
p on the basis of the observed d,, and the theoretical models 
g(p) and G(p). Although it may be confusing, the same 
notations g(p) and G(p) are used for the two kinds of 
inversion. In the first case g(p) stands for the function 
relating the synthetic data to the viscosity assuming that the 
density heterogeneities are known. In the second case it 
relates the synthetic data to the density for a given viscosity 
profile. Similarly, G(p) stands for the partial derivatives of 
the synthetic data over the viscosity in the first case, and 
over the densities in the second one. 

We have seen previously that the toroidal field can be 
deduced from the poloidal field, when the geometric 
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description of the plates is given. A perfect prediction of the 
poloidal field alone also leads to a perfect prediction of the 
toroidal field. Nevertheless, as a perfect fit will not be 
reached, inversions based on the toroidal field alone or on 
both fields would lead to different results. We have chosen 
to invert only the poloidal components for numerical 
convenience but we will check the high quality of our 
'hidden' inversion of the toroidal components a posteriori. 

Our inversion algorithm is the one given by Tarantola & 
Valette (1982) and consists in a fully probalistic approach. 
The basic aim of this inversion method is to minimize the 
following quantity: 

This formulation allows for slightly non-linear problems and 
has the advantage of explicitly including the a priori 
knowledge on the parameters. This knowledge enters both 
in the a priori guess for the parameters p(, and in their 
covariance matric Cmrpo. This matrix contains on its diagonal 
the squares of the uncertainties on the parameters and on its 
off-diagonal elements the trade-off between them, related to 
the required smoothness of the results. This formalism also 
requires a data covariance matrix C,,,, which allows the 
non-dimensionalization of the data vector. In addition, for 
the linear case, this method easily gives the resolution and 
the a posteriori covariance matrices describing the 
uncertainties and trade-offs. 

The data vector d,) can be divided into three parts. One 
describes the topography, the second the geoid, and the 
third the poloidal velocity. The amplitude spectra of the 
three components decrease sharply with the degree I. The 
first two components have the dimension of length, the last 
one of velocity. The Earth's topography, corrected from the 
thickness of the oceans and filtered out for degrees larger 
than 6 has a peak-to-peak amplitude around 6000m, the 
geoid around 200m and the poloidal velocity field around 
10 cm yr-'. We chose a purely diagonal data covariance 
matrix and we want to fit the data vector with uncertainties 
corresponding to the root squares of the diagonal elements. 
We admit an uncertainty of 1000 m on the topography, 10 m 
on the geoid and 1 cmyr-l for the velocity. These 
coefficients show that our inversion is weighted in such a 
way that the resulting model mainly tries to fit the geoid 
(10m over 200m), less the velocity (1 cmyr-' over 
10 cm yr-') and least the topography (1000 m over 6000 m). 
Because the elements of the covariance matrix are 
independent of the degree, our inversion will try to model 
the long-wavelength features more precisely than those of 
short wavelength. 

The constraints provided by the topography needs some 
comments. The topography is, of course, mainly due to the 
existence of the Moho. Our model predicts a dynamic 
topography which also includes the isostatic compensation 
of shallow sources. However, such a compensation 
mechanism will not constrain the viscosity profile of the 
mantle. Two different approaches could have been used to 
include the topography in our inversion scheme. First we 
could have considered only the topography related to 
mantle mass heterogeneities. This could be obtained by 
peeling the observed topography from the effects of the 

Moho undulations. The remaining topography includes the 
cooling of the oceanic lithosphere. It may also include other 
features which are very difficult to observe, such as an 
anomalous oceanic topography of degree 2 and amplitude 
around 400 m, highly correlated with the geoid (Cazenave, 
Souriau & Dominh 1989). This feature is possibly related to 
lower mantle convection but may be only an artefact due to 
incomplete data analysis (Colin & Fleitout 1990). Second, 
we can take into account the whole topography corrected 
for the ocean water density, including in our a priori density 
structure the shape of the Moho. For simplicity we chose 
this last solution. Our Moho description (Dziewonski 1984) 
explains, whatever the mantle viscosity may be, 50 per cent 
of the Earth's topography. This means that the constraints 
brought by the topography are very weak since we want to 
explain a remaining topography of about 50 per cent of 
6000 m with uncertainties of 1000 m. 

INVERSION OF T H E  R A D I A L  VISCOSITY 

As a first step will assume the mantle mass heterogeneities 
to be perfectly known and we will invert for the viscosity 
structure. We assume the mantle heterogeneities to be 
proportional to the seismic velocities deduced from the 
tomographic models of Woodhouse & Dziewonski (1984) 
for the upper mantle and Dziewonski (1984) for the lower 
mantle. The proportionality constants dV,/dp and dV, /dp  
have been chosen equal to 6kms-'g-'cm3 and to 
4 km s-'g-'cm3. These derivatives are close to experimen- 
tal results obtained by changing the temperatures of rock 
samples. We have also tested other values and a possible 
depth increase of these coefficients (Hong & Yuen 1989) 
related to a strong decrease in the thermal expansion 
coefficient with depth (Chopelas & Bohler 1989), but our 
results did not differ substantially. 

The geoid and the topography are only related to relative 
variations of the viscosity whereas the velocity depends 
upon the absolute values. The absolute viscosity of the 
Earth can also exhibit very large variations, say from 1019 to 

Pa s. As a consequence, we have chosen our parameters 
to be first, the logarithm of the averaged mantle viscosity 
p(1) = log,,q,, and then, the logarithms of the ratio of the 
viscosity at the radii r,, over the averaged viscosity 
p ( i )  = log,, [ q ( r i ) / q o ] .  The number of radii ri taken into 
consideration is 15. We also need to define the a priori 
viscosity profile and the a priori parameter covariance 
matrix. We have built this matrix with the following form: 

atd,,, if i = 1 or j =  I, 
(ri - rj)' 

a i e x p ( - F ) ,  i f i 2 1  and j # l .  
(2) 

Cww(i, j )  = 

We have chosen an uncertainty a, equal to 2 and a, equal 
to 0.75. This means that we suggest an uncertainty of two 
orders of magnitude on the a priori average viscosity which 
is taken equal to 10" Pas  [ p , ( l )  = 211, and an uncertainty 
less than one order of magnitude on the relative viscosity 
profile [ p o ( i )  = 0, for i = 2 to 161. The correlation length A 
is 400 km in both the upper and lower mantle. 

Tarantola & Valette have proposed different formulations 
of their algorithm, depending on the relative sizes of the 
data and the parameter vectors. In our case, a purely 
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overdetermined problem, we compute the solution itera- 
tively, starting from po and obtaining sucessively pk, pk+l. 
From the solution at the step k we compute Ap given by 

= (cfc& G~ + C;L)-I 

{ G z c &  - g(Pk)l + c& (PO - Pk)). ( 3 4  

(3b) 

Then we deduce the solution at the step k + 1: 

P k + l  = Pk + cyAP 
where I(pkC1) given by equation (1) is minimum under the 
assumption cy E [0, 21. We add this minimization step to the 
Tarantola & Valette procedure where a is 1. A minimum 
has always been found in the direction proposed by equation 
(3) with cy E [0, 21. The stable p model is reached after three 
or four iterations. Without the minimization step, however, 
the convergence is generally slower, and sometimes a stable 
but oscillating behaviour is obtained. 

The resolution and trade-off of the solution can be 
discussed in terms of resolution kernels (Backus & Gilbert 
1970). The computed parameters are in fact the average of 
the real parameters weighted by the resolution matrix. For 
our algorithm, but in the linear case, the resolution matrix 
takes the form (Montagner & Jobert 1981) 

R = (GTC&G + CLL)-'GTC;& G. (4) 

A satisfactory inversion leads to a resolution matrix close to 
identity. In the non-linear case no analytical expression can 
be found. However, we use equation (4), where G is 
computed with the parameters of the solution as a 
qualitative but reliable estimation of the real resolution 
matrix. 

We also use the linear expression of the a posteriori 
covariance matrix as a good estimator of the uncertainties of 
the model: 

C,, = (I - R)C,,. ( 5 )  

In this equation, I is the identity matrix. 
Figure 2 shows the result of the inversion. The dashed line 

depicts the a priori viscosity taken here as uniform, and the 
thick line the inverted profile. One should remember that 
the mantle is overlaid by a rigid lithosphere broken into 11 
main plates. The thin lines are the uncertainties deduced 
from the a posteriori covariance matrix. The solution does 
not exhibit a very sharp viscosity increase near the 
upper-lower mantle interface, but rather a regular slope 
over about two orders of magnitude. The largest viscosity is 
reached in the middle of the lower mantle. A strong 
viscosity decrease also appears near the core-mantle 
boundary. The averaged mantle viscosity related to p(1) is 
'qo = 2 x 1021 Pas. This value is in good agreement with the 
averaged mantle viscosity deduced from post-glacial 
rebound. 

The turning point in the depth derivative of the viscosity 
profile has important implications for the pressure and 
temperature dependence of the rheology and for convection 
studies. The usual viscosity laws are decreasing with 
temperature and increasing with pressure. However we 
cannot easily derive the temperature dependence directly 
from the depth variation of the viscosity, as the temperature 
profile is itself the result of the convective behaviour. When 
the temperature gradient is adiabatic, the pressure effect 

Figure 2. Viscosity of the mantle as a function of depth deduced 
from our inversion (thick line). 15 layers have been considered for 
the inversion. The uncertainties deduced from the diagonal of the a 
posteriori covariance matrix are also depicted (thin lines). Our a 
priori profile is a constant viscosity model (v  = 10" Pas) shown by 
the dashed line. The lithosphere on the top consists of the 11 main 
plates, described as rigid bodies separated by infinitely weak 
boundaries. 

dominates and the viscosity increases with depth. The 
existence of a negative slope in the bottom of the lower 
mantle indicates that the temperature variation overcomes 
the pressure effect. This observtition may reveal the 
presence of a temperature gradient larger than the adiabatic 
one. 

This profile is not greatly changed when a different a priori 
viscosity is chosen. The solution is also quite independent of 
the absolute value of the starting average viscosity p,,(l). 
Fig. 3 (full line) depicts the results obtained when a viscosity 
increase by a factor 10 is imposed in the a priori model at 
the upper-lower mantle interface. The viscosities on both 
sides of this interface are also supposed to be uncorrelated. 
Within their uncertainties, the two profiles of Figs 2 and 3 
are the same. When a larger viscosity increase is proposed, 
the inversion tends to damp it. One can also use an a priori 
solution po equal to the a posteriori solution p of a previous 
inversion. This, of course, leads to an artificial reduction of 
the misfit expressed by the equation (1). However, the 
improvement is small, and the final profile stays very close 
to that depicted in Fig. 2 or 3. The general shape and 
absolute values of our viscosity profile are not drastically 
affected when we use different sets of parameters for the a 
priori covariance matrix or for the proportionality factors 
between seismic velocities and density. 

To verify that our model is not too dependent upon the 
truncation degree used in the description of internal mass 
anomalies, we performed another inversion taking only the 
five first degrees for the internal masses. The derived plate 
motions are always expressed up to degree 15. The inverted 
profile is also plotted in Fig. 3 (dashed line). Despite a 
somewhat larger amplitude the general shape of the profile 
remains the same. 

The topography has a low weight in our inversion, but to 
confirm that we are not mapping errors in the crustal 
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data without taking into account the Moho undulations and 
without fitting the topography. The resulting profile (Fig. 3, 
dotted line) does not differ much from the other ones. 

In a previous paper (Ricard et al. 1989), we have shown 
that a good fit can also be attained with a viscosity profile 
having a hard garnet layer in the transition zone above the 
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upper-lower mantle boundary (Karat0 1989). This result 
was obtained assuming that upper mantle seismic anomalies 
are of chemical origin and using in this layer a density 
distribution mapping the slabs. As satisfactory predictions 
have been obtained in the present study with the simplest 
assumption of thermally induced upper mantle anomalies, 
we did not try our inversion starting from a viscosity profile 
having a hard garnet layer and using density anomalies 
related to slabs in the first 700km depth. However, we 
performed another inversion with the density anomalies 
related to the tomography but assuming an a priori viscosity 
profile with a stiff layer in the bottom of the upper mantle. 
The viscosity of this layer was supposed to be uncorrelated 
with others. We again derived a profile quite close to those 
depicted in Figs 2 and 3. 

The resolution matrix of our inversion is depicted in Fig. 
4. It is computed using the viscosities depicted in Fig. 2, 
deduced from an a priori uniform profile. Nevertheless, the 
resolution matrix is basically the same when other a priori 
parameters are chosen. This resolution is not equal to the 
identity matrix as it would have been for a perfect inversion, 
but the maximum is always reached on the diagonal. Some 
leakage appears between the determined mantle viscosities 
in*the top and bottom of the lower mantle. However we 
think that this resolution matrix shows that our inversion is 
indeed meaningful. 

Figure 5 depicts the fit to the data our inversion reaches. 
We have computed both the correlation coefficients (bottom 
row) and the mean percentages of variance which are 
explained (top row) for the different degrees. The four 
columns successively show the results for the topography, 
the geoid, the poloidal and the toroidal components. As we 
noted before, the real inversion of this last component has 
not been carried out but is naturally achieved by our 
formalism. All but one of the correlation coefficients are 
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Figure 4. Resolution matrix of the inversion leading to the viscosity profile of Fig. 1. The grey scale shows the values larger than 0.3 (darkest), 
between 0.3 and 0.1, and between 0.1 and -0.1 (lighter). The matrix elements in white are between -0.1 and the minimum found to be -0.2. 



Viscosity and 3 - 0  density of the mantle 567 

B j / \  1 i/l tw /j 
0 

6 
DEGREE 

6 1  
DEGREE 

6 1  
DEGREE DEGREE 

DEGREE DEGREE ' DEGREE ' DEGREE 

Figure 5. Correlation coefficients (bottom row) and percentages of 
variance reduction of the data (upper row) as a function of the 
degree 1. From left to right are depicted the results for the 
topography, the geoid, the poloidal components, and the toroidal 
components of surface velocities. A perfect prediction would lead to 
a correlation coefficient equal to 1 and 1 = 100 per cent of 
explanation. A correlation equal to 1 is associated with an 
explanation percentage of 100 per cent only when the amplitudes of 
synthetics and data are equal. 

positive and most of them are meaningful. However, when 
the six degrees are taken together with their relative 
amplitudes, our model only accounts for about 35 per cent 
of the topography, 25 per cent of the geoid, 10 per cent of 
the poloidal field and a few per cent of the toroidal one. 
These last two fields are related to the surface horizontal 
divergence and radial vorticity, two quantities which are 
perhaps more easily understood by our physical intuition. 
The spectra of the horizontal divergence and radial vorticity 
are obtained by multiplying the spectra of the poloidal and 
toroidal fields by 1 ( 1 +  1). The observations show that they 
reach their maxima for 1 = 4 and 1 = 5, the degrees where 
the correlations are found to be significant. One can thus be 
more optimistic about the quality of our fit which explains 
30 per cent of the horizontal divergence and 15 per cent of 
the radial vorticity. 

More satisfactory predictions of the geoid from mantle 
anomalies have been derived using the same approach but 
different density sources (Richards & Hager 1988). The 
discrepancy only occurs from the use of different 
tomographic models. These authors are using the results of 
Clayton & Comer (1983), eventually completed in the upper 
mantle by the model of Tanimoto (1986). They also 
introduced an ad hoc density distribution mapping the slabs 
(Richards & Hager 1988). However, the quality of our fit is 
comparable with what has been obtained elsewhere with the 
tomographic models we use (Forte & Peltier 1987). 
Furthermore the common inversion of geoid, plate motion 
and topography somewhat degrades the fit which might be 
reached from the separate inversions of the three data sets. 
In our inversion we only try to start from the simplest and 
most objective data set. 

INVERSION OF THE 3-D DENSITY 
STRUCTURE 

As a second step we try to solve the more presumptuous 
problem which consists of finding the internal mass 
heterogeneities which are requested by our model to explain 
the surface observations. In this case the viscosity profile is 
supposed to be known and we will take the solution found in 
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Figure 6. Correlation coefficients (bottom row) and percentage of 
variance reduction (upper row) as a function of the degree I ,  after 
the inversion for the density structure. As in Fig. 4, from left to 
right are depicted the results for the topography, the geoid, the 
poloidal components, and the toroidal components. By comparison 
with the previous figure, we note the much higher quality of the fit. 

the previous section. The parameters are the density 
heterogeneities at 15 different depths up to degree and order 
6. Of course, the number of unknowns is now much larger 
than the number of data. The inversion is made possible by 
the a priori knowledge we assume for the definition of the a 
priori density model and its associated covariance matrix. 
We chose this model to be the one used previously; that 
means a density structure simply proportional to the seismic 
tomography. The uncertainties and correlation lengths 
needed in order to build the covariance matrix have been 
chosen in the following way. In the mantle, we take the 
same correlation length as in our previous inversion 
A = 400 km. We assume no correlation between our first 
layer, describing the crustal heterogeneities, and the mantle. 
The uncertainties in the density structure at a given depth 
are proportional to the square root of 1 and amount to 50 
per cent of the variance in the a priori density structure at 
the same depth and for the degree 1 =  1. The absolute 
uncertainties for degree 6 are thus, supposed to be 
2.5 (=G) larger than for degree 1. 

Following Tarantola & Valette (1982) the solution of this 
underdetermined problem reads 

p = po + C,,GT(Cw + GCmGT)-'(d, - GPO). (7) 

In that case, the relationship between parameters and 
density is linear and the solution is reached without 
iterations. We will not discuss the a posteriori covariance 
matrix as its interpretation is too complex, involving the 
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Figure 7. Correlation coefficients as a function of depth between 
the tomographic data and the inverted 3-D density structure. The 
different degrees from 1 to 3 (top row) and 4 to 6 (bottom row) are 
displayed from left to right. The 95 per cent confidence levels are 
also depicted (dashed lines). 
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Figure 8. Comparison between the a priori density anomalies at the depths of 250, 550, 700 and 2200 km which are assumed to be proportional 
to the seismic tomography models (left column) and the density pattern at the same depths deduced from our inversion (right column). The 
high-density anomalies are shown in dark shading. the low-density anomalies in light shading. The scales are the same in a given row. The level 
lines are 8 kg m? apart in the first and third rows, 4 kg m-3 apart in the second and fourth rows. The correlations between two corresponding 
maps are obvious. In the upper mantle the results of our inversion are more clearly underlining the surface tectonic provinces like ridges, old 
cratons or slabs. 
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the slabs, their higher degrees being missed by the 
tomography. In the lower mantle (bottom row), the inverted 
density remains close to the a priori one, although its zonal 
structure has been somewhat enhanced. At this depth, one 
notes the strong anticorrelation between the density 
anomalies and the surface geoid. 

We also performed our inversion without taking into 
aaccount the density anomalies associated with the Moho in 
our a priori density structure and without fitting the 
topography. The inverted density pattern remains un- 
changed except in the first layers for depths smaller than 
100 km. This is a strong indication that, according to our 
choice of the density covariance matrix, the inversion does 
not lead to the spurious mapping of crustal anomalies into 
the mantle. 

cross-correlation products of mass heterogeneities at a given 
depth and given degree and order with other masses at 
different depths, degrees and orders. 

Figure 6 shows the fit between the data d,, and the 
synthetics Gp computed from the 3-D density structure 
obtained after the inversion, Comparing with Fig. 5, which 
depicted the fit deduced from the tomographic models Gp,, 
we see that the correlations (bottom row) and percentage of 
data which are explained (top row) have been significantly 
increased for all degrees. Even for the toroidal part which is 
not explicitly included in our inversion the fit is much better. 
Due to the rapidly decreasing spectra of both the geoid and 
the plate velocities (Hager & O’Connell 1978), the inversion 
procedure has preferentially improved the prediction of the 
lowest degrees. Of course, playing with the a priori 
covariance matrix one can obtain better fits as the inverted 
density structure goes away from the starting one 
proportional to tomography. 

Figure 7 depicts the correlations between the tomography 
and the inverted density structure as a function of depth and 
for the different degrees. We also plot with dashed lines the 
confidence levels at 95 per cent. The correlations for all 
degrees between the starting and the final models are very 
high. The inversion hardly modifies the degree two of our 
starting model which appears to be the best resolved degree 
throughout the mantle. In the upper mantle, the even 
degrees 2,4, and 6 remain more stable than the odd degrees 
1, 3, and 5. This behaviour is consistent with the fact that. 
the upper mantle tomography has much better resolution for 
even degrees than for odd degrees (Woodhouse & 
Dziewonski 1984). 

Previous studies have shown that the tomographic models 
used here cannot predict the correct polar flattening (Ricard 
et al. 1989). The inverted density leads by construction, to a 
better fit. This is obtained by increasing the term of degree 2 
order 0 in the lower mantle and decreasing it in the upper 
one. This means that the algorithm proposes a somewhat 
stronger zonal structure that was suggested by tomography. 
The lower mantle could be less dense near equatorial 
latitudes than polar ones and this structure should be 
reversed in the upper mantle. Of course, because of the 
coupling between modes due to the plates, other degrees 
and orders of the internal mass distribution also contribute 
to the geoid of degree 2 and order 0. 

We have chosen to depict the resulting mass distributions 
at four different depths. Fig. 8 shows the inverted density at 
250, 550, 700 and 2200 km depths (right column) compared 
with the seismic tomography scaled in density for the same 
depths (left column). At shallow depths, our results appear 
to have a better correlation with the tectonic features than 
the tomographic results. In the first row, the low-density 
regions deduced from our inversion follow the ridges 
everywhere with a lower amplitude under the North 
Atlantic. The Antarctic craton is also associated with a 
dense root. The most interesting remark about the results of 
this inversion comes perhaps from the second and third rows 
of Fig. 8. Although at 550 km depth the degree 2 of the two 
maps is quite similar, our inversion underlines more clearly 
the existence of the slabs around the Pacific. Even at 
700 km, one can follow this slab distribution in the western 
part of the Pacific ocean. This suggests that the well-known 
degree 2 in the transition zone could be only the shadow of 

DISCUSSION 

The radial viscosity profile of the Earth is a very debatable 
subject. Different geophysical phenomena are related to this 
quantity, but they are not sampling this parameter during 
the same characteristic times. The post-glacial rebound (e.g. 
Peltier & Andrews 1976; Wu & Peltier 1983) and the related 
effects such as the change in the polar flattening or the 
secular polar wander (Sabadini & Peltier 1981) have 
characteristic time constants of about 10 000 yr. The 
importance of transient rheology cannot be precisely 
quantified and could hide the long-term mantle behaviour. 
The modelling of the geoid, topography and plate motion 
requests time constants of millions of years. The long-term 
true polar wander deduced from palaeomagnetism (Sabadini 
& Yuen 1989) also occurs on the same temporal scale. 

The post-glacial readjustment can be explained by a 
rather uniform mantle where the viscosity jump at the 
upper-lower mantle interface is less than one order of 
magnitude (Mitrovica & Peltier 1989). However some 
authors have performed a satisfactory fit with an 
asthenospheric upper mantle channel on top of a rigid lower 
mantle (Officer et af. 1988). Less extreme stratification has 
also been proposed by Nakada & Lambeck (1989). Their 
model is roughly the same as the one we propose with an 
upper mantle viscosity of about 1020-1021Pa s and a viscosity 
increase by a factor 100 in the lower mantle. It thus seems 
that post-glacial rebound is mainly sensitive to upper mantle 
viscosity and that the upper mantle viscosity it requires 
agrees with ours. 

The studies of observed actual polar wander have also 
favoured a rather uniform mantle structure. However 
depending only on phenomenon of degree 2, their 
resolution of the Earth’s stratification remains poor. 
Furthermore, the data can generally be fitted by two 
different profiles: one with a uniform mantle, and another 
with a strong viscosity increase (Yuen et af. 1986). This last 
solution has sometimes only been discarded in order to 
satisfy some previous post-glacial rebound studies. 

The necessity of an important stratification of the mantle, 
clained by geochemists (e.g. All2gre 1982), has also been 
advocated by other workers following the same approach as 
ours, but with simpler inversion procedures (Hager et al. 
1985). The same viscosity profile also arises from the study 
of long-term polar wander (Sabadini & Yuen 1989; Ricard 
& Sabadini 1990). One can perhaps be more confident in the 
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results of this set of studies dealing with very slow processes 
than on the extrapolation for million years of studies of 
phenomena arising in a few thousand years. 

The viscosity model we have used has a radial symmetry 
but allows for the individual plate displacements. We are  
aware that our approach introduces stress singularities a t  
plate boundary but we think that it catches the basic physics 
of the mantle circulation. The temperature differences that 
induce density variations also lead t o  lateral viscosity 
variations. This effect would modify our results by an 
amount which does not seem to be of prime importance 
(Richards & Hager 1989). The viscosity profile we propose, 
is basically characterized by three points. It exhibits 2 weak 
asthenosphere with low viscosity, 2 X 10” Pa s, which 
allows for the plate motion. No viscosity jump is required at  
the upper-lower mantle interface. After having reached a 
maximum, 7 x Pa s, the viscosity decreases in the  
bottom third of the lower mantle. We hope that these 
results can help constrain the thermal structure of the lower 
mantle and the temperature and pressure dependence of the 
viscosity. 

The mass distribution deduced from our inversion must be 
taken with caution. First, the problem is largely 
underdetermined, and second, the answer is biased by the 
first inversion step. Our viscosity profile indeed favours mass 
heterogeneities close to those of the tomographic models 
used as input in our first inversion. However, the density 
structure derived from our inversion has many simple and 
realistic characteristics. The heterogeneities close t o  the 
surface are even more correlated with the surface tectonics 
than what is suggested by the tomography. The  slabs are the 
major anomalies within the transition zone. W e  may hope 
that in future the improvement of the tomographic models 
and the addition of new data, such as the core-mantle 
topography will allow for a more meaningful inversion. 
Moreover, this kind of geophysical modelling joined with 
seismic tomography shows a possible way t o  distinguish 
between density and elastic property variations. 

Y. Ricard and Bai Wuming 
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