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SUMMARY 
The rotational behaviour of a stratified visco-elastic planet submitted to changes in 
its inertia tensor is studied in a viscous quasi-fluid approximation. This approxima- 
tion allows for large displacements of the Earth rotation axis with respect to the 
entire mantle but is only valid for mass redistribution within the planet occurring on 
the time scale of a few million years. Such a motion, called true polar wander 
(TPW), is detected by palaeomagneticiens assuming that the Earth's magnetic field 
remains on average aligned with the spin axis. Our model shows that a downgoing 
cold slab induces a TPW which quickly brings this slab to the pole for a mantle of 
uniform viscosity. The same slab is slowly moved toward the equator when a large 
viscosity increase with depth takes place in the mantle. Our model is also suitable to 
investigate the effects of a non-steady-state convection on the Earth's rotation. We 
discuss these effects using a simple mass redistribution model inspired by the 
pioneering paper of Goldreich & Toomre (1969). It consists of studying the TPW 
induced by a random distribution of slabs sinking into the mantle. For such a mass 
redistribution, only a strongly stratified mantle can reduce the Earth's pole velocity 
below l"Ma-', which is the upper bound value observed by palaeomagnetic 
investigations for the last 200 Ma. Our model also shows that when corrected for the 
hydrostatic flattening, the Earth's polar inertia generally corresponds to the 
maximum inertia, as it is presently observed. However, this may not be the case 
during some short time periods. We also discuss The amount of excess polar 
flattening that can be related to tidal deceleration. This frozen component is found 
to be negligible. 
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DYNAMIC EQUATION O F  A DEFORMABLE 
ROTATING B O D Y  

The equation of motion of a rotating body in a rotating 
frame is the well known Euler dynamic equation. When no 
external torque is applied, it reads 

d 
- ( J - w ) + w A J . w = O .  
dt 

where J is the second-order symmetric inertia tensor and o 
is the angular velocity. Both are expressed in a rotating 
Earth-tixed coordinate system. This equation also holds 
when J is a time-dependent function (Munk & MacDonald 
1960). In this case, it takes the name of Liouville equation. 

The inertia tensor J is traditionally divided into three 
contributions of decreasing amplitudes. The first is the 
tensor of a spherical non-rotating Earth. We write it as I S ,  
where 6 ,  is the Kronecker symbol. This term is close to 
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0.33Ma2 where M and a are the mass and the radius of 
Earth. A second term is due to the centrifugal potential that 
deforms the Earth. It can be shown that this potential is 
proportional to wiwi - $ 0 2 S i i  where wi are the components 
of o in the geographical frame (e.g. Lambeck 1980). Any 
change in rotation is therefore equivalent to a new potential 
applied to the Earth's surface. Under such a boundary 
condition, the planet evolves toward a new configuration 
corresponding to an inertia tensor equal to the convolu- 
tion of k T ( t ) ,  the tidal Love number of harmonic degree 2, 
with the time history of the changes in the centrifugal 
potential (Takeuchi, Saito & Kobayashi 1962). It can be 
shown that the contribution related to the rotation is 
kT( t )a5  

3G * [ o i ( t ) o i ( t )  - :o2(t)Sii] where G is the gravity 

constant and * represents the time convolution. From the 
previous equation it is easy to see that a planet rotating at a 
constant velocity a, reaches a steady-state axisymmetrical 
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and their relaxation times zi or inverse relaxation times 
si = -l /zi  (Peltier 1974; James 1991; Spada 1992). As an 
example, a simple homogeneous viscoelastic sphere deforms 
through a single mode MO (Munk & MacDonald 1960). A 
purely viscous mantle surrounding an inviscid core has two 
modes, MO and CO. These two modes correspond to 
symmetrical and antisymmetrical deformations of the 
surface and of the core-mantle boundary, respectively 
(Richards & Hager 1984). A more complex stratified Earth 
leads to a larger set of modes. Some of them have 
characteristic times close to the Maxwell times of each 
visco-elastic layer ( T  transient modes). The lithospheric 
mode LO is related to the presence of an elastic lithosphere. 
The MO, CO and LO modes have characteristic times of 
about one thousand years. In addition to these, some very 
slow modes (Ml, M,, . . .) are associated with the return to 
the equilibrium of non-adiabatic density interfaces within 
the mantle. M1 corresponds to the possible non-adiabatic 
density jump at 670km depth and M2 to another density 
jump within the upper mantle. These modes only relax after 
a few million years. 

The time dependence of Love numbers for a given 
harmonic degree is generally expressed through their 
Laplace transform. Their general form is (Peltier 1974): 

2 kFa5 
3 3G 

shape with a polar inertia C = I +--a2 and two 

1 kTa5 
equatorial inertia A = I - --Q2 where the fluid tidal 

3 3G 
Love number kf’ is the limit of k T ( t )  for very large times. 
The I inertia is therefore equal to (C+2A)/3 and the 
amplitude of the rotational contribution to inertia is 

C - A  =-Liz. Assuming that the Earth is close to a 

perfect hydrostatic equilibrium, this last value can be 
identified as the observed flattening C - A = 1.08 Ma2. 
The third and last term in the inertia tensor J is related to 
the mass redistribution inside the Earth or at its surface. In a 
general way we can write this term [ 6 ( t )  + kL( t ) ]  * Ci,(t) 
where Ci,(t) represents the inertia changes due to a given 
geophysical process, without taking into account any 
dynamic deformation. These changes of inertia act directly 
on the planet through the 6 ( t )  Dirac function. They may 
also have a delayed effect due to induced isostatic 
compensation. These effects are taken into consideration 
through the time convolution with an isostatic Love number 
k L ( t )  of harmonic degree 2, where the upperscript L stands 
for ‘loading’. The amplitude of the Cij(t)  terms can be 
computed for simple excitation sources. As an example, the 
Pleistocenic deglaciation corresponds to a change of inertia 
with an amplitude of about lop5 Ma2. The inertia tensor can 
therefore be written as 

k Ta5 
3G 

kT(t)a5 
3G 

Ji j ( t )  = IS, + ~ * [w,(t)w,(t) - fW2(t)Si,] 

where the three terms of the right-hand side are of order 
0.33, 1.08 and 1 Ma2, respectively. 

This equation has generally been studied under a 
linearized form where only the perturbations of w close to a 
starting vector Q have been taken into account. Such an 
approximation has been used for both short- and long-term 
processes. On a time scale of a few thousand years, eqs (1) 
and (2) have successfully modelled the changes of rotation 
due to the last deglaciation (Sabadini & Peltier 1981; Wu & 
Peltier 1984; Lefftz & Legros 1992). On a time scale of a few 
million years, the same equations have been used to 
estimate the effects of mantle convection on polar wander 
(Sabadini & Yuen 1989; Ricard & Sabadini 1990; Ricard, 
Sabadini & Spada 1992). The general non-linear problem 
governed by eqs (1) and (2) has only been solved for very 
simple models and for constant excitation sources (Munk & 
MacDonald 1960; Lefftz 1991). 

The goal of this paper is to study the effects of a 
time-dependent mantle mass redistribution for the Earth’s 
rotation. We are only interested in slow varying processes 
that could induce a TPW velocity comparable to the 
observed value of around 1” Ma-’ and that could eventually 
move the Earth’s pole by a large amount. Our practical 
problem is to compute realistic Love numbers and to 
efficiently perform the convolutions appearing in eq. (2). 

LONG-TERM BEHAVIOUR OF LOVE 
NUMBER 

A radially stratified visco-elastic planet has a set of 
deformation eigen modes characterized by their patterns 

ki 
k(s) = k,  + c -. 

i = l  s - si ( 3 )  

In this equation, the number of modes M depends on the 
model density stratification and on the presence of a 
lithosphere. The residue k, takes into account the 
instantaneous elastic deformation while the k,  are associated 
with each visco-elastic mode. The convolution of this 
response with a Heaviside excitation leads to  a time domain 
response of the form: 

k .  
k ( t ) = k , - ~ 2 ( 1 - e s i ’ ) .  , 

i-1 si (4) 

The k(s) and k ( t )  functions can be computed for a surface 
tidal forcing or for a loading acting at the surface or inside 
the Earth (Takeuchi et al. 1962; Hinderer, Legros & 
Crossley 1991; Spada 1992). Different k,  and ki correspond 
to these different cases, but the relaxation times remain the 
same. For an internal loading problem, k,  and ki depend on 
the source depth. 

As seen from the previous equations, the numerical 
difficulty of solving the non-linear problem arises from the 
fact that different time scales spanning various decades are 
interacting. These time constants are ranging from zero (the 
elastic impulse) to the relaxation time of several million 
years associated with the M1 mode. The geophysical 
excitations also have a very large time span. This forbids any 
direct approach to  the integro-differential system expressed 
by eqs (I), (2) and (4). The complexity of numerical 
integration is further increased by the fact that w ( t )  is never 
monotonously varying but is revolving at a Chandler period 
of about 435 days around an average solution. 

We must therefore derive an approximate solution of 
these equations. In this paper we are only interested in very 
slow geophysical processes such as plate motions or mantle 
convection. In that case, our excitation function only varies 
with time constants larger than say 1 Ma. Let us first assume 
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that our Earth model has no internal non-adiabatic density 
gradients (no M1 or M2 modes) so that its largest relaxation 
time is much smaller than 1 Ma. In this hypothesis, (sjtl>> 1 
or equivalently Is1 << Jsil and we can easily approximate eqs 
(3) and (4). For the loading case, our approximation leads to 

k )  
k L ( s )  = kf - - 

; = I  s; 

We can therefore identify the time-dependent isostatic Love 
number k L ( t )  with its fluid limit kfL. For the tidal case the 
approximation is somewhat more complex. We must allow 
for the possibility of a time-dependent flattening in order to 
account for the effects of the readjustment of the equatorial 
bulge during polar wander. To do this, we keep an s term in 
the Taylor expansion of k r ( s )  (Munk & MacDonald 1960). 
Therefore, k r ( s )  can be approximated to the first order by 

k'(s) = kT(1 - T,s), (6) 

where the tidal fluid Love number kf' is defined, similarly to 
the loading fluid Love number k; in eq. (5 ) ,  as 

and where the time constant Tl is 

(7) 

Numerically the kT and kT are found positive so that Tl is 
also positive. In the case without internal non-adiabatic 
density jumps, our approximations are very good as the 
relaxation times are at least two orders of magnitude smaller 
than the time characterizing the variations in Cjj ( t )  
considered in this paper. 

What happens if the mantle has internal non-adiabatic 
density jumps? The Taylor expansion of (3) is still valid for 
Is( << (sMII, which means that our approximation holds for 
geophysical processes slower than the relaxation time 
--1/sMl that controls the readjustment of the 670km depth 
chemical discontinuity. The quality of the approximation (6) 
is reinforced by the fact that, for most of the realistic models 
of the Earth's mantle, the amplitude of k L l  is negligible. In 
other words, this vanishing k L l  strength means that a 
change in the Earth's centrifugal potential does not induce 
any appreciable displacement of the 670 km depth interface. 
For the loading problem, the role of the M1 mode can be 
more important. When k L ( s )  is computed for masses located 
inside the mantle, the amplitude k L l  associated with the M1 
mode, can be large. In this case, we separate the slowest 
mode and substitute the following equation for (4), 

k k l  k L ( t )  = k t  + - esM1'. 
sMl  

(9) 

This equation that expresses the convolution of the loading 
Love number with a Heaviside function, assumes that for 
the time scale under consideration, all the modes, except 
possibly the M1 mode, have already relaxed. The 
convolution between the exponential part of kL( t )  and Cij(t) 
is numerically performed without any problem even with a 

large time step as both terms are varying very slowly with 
time. 

In Figs 1 and 2 the Love numbers are respectively 
depicted in the Laplace domain for a tidal boundary 
condition and for an internal loading problem where the 
load is located at 670 km depth. Our Earth model consists of 
a viscoelastic upper mantle (vl  = lo2' Pa s-l, 
p1 = 1.5 lo1' Pa), a viscoelastic lower mantle 10 times more 
viscous (q2 = lo2' Pa sK1, pz = 2.5 10" Pa) and an inviscid 
core. A 100km thick purely elastic lithosphere 
( p L  = 4.0 lo1' Pa, pL = 2900 kg mK3) is present in the 
computations depicted in the right column of each Figure. 
The whole mantle has a density equal to p = 4500 kg mK3 in 
the upper rows. The mantle density increases at 670km 
depth, from p1 = 4300 kg m-3 to p2 = 4800 kg mP3 in the 
bottom rows. The computed Love numbers expressed by eq. 
(3) are depicted with a thick line. The various singularities 
correspond to the modes T1, T2, MO and CO for the model 
with uniform mantle ( la  and 2a). The LO mode shows up in 
cases ( l b  and 2b). Cases in panels (c) and (d) differ from (a) 
and (b) by the presence of the slow M1 mode. 

A dotted line is used to represent our approximations 
deduced from eq. (6) for the tidal Love number (Fig. 1) and 
from eqs (5) (Figs 2a and 2b) or (9) (Figs 2c and 2d) for the 
loading problem. For short times, the dotted lines do not fit 
the discontinuities associated with the various poles. In the 
time range under interest (more than a few Ma), our 
approximations precisely match the exact functions. In the 
case of a chemically stratified Earth submitted to a tidal 
boundary condition (Figs l c  and Id), the M1 mode is active 
in such a narrow. s interval (k; ,=O) that it can be 
neglected. On the contrary, for loading problems (Figs 2c 
and 2d), the M1 mode is strongly excited and is taken into 
account by our approximation. 

In the limit of very long times, the tidal Love numbers 
reach asymptotically their fluid values. These limits are 
independent from the visdosities. They are related to the 
density profiles and somewhat to the presence of an elastic 
lithosphere in which some stress can be frozen even after a 
long time. The fluid values range from kfr= 1.00 for density 
stratified models with lithosphere to k; = 1.05 for models 
with uniform mantle density. They closely match the real 
value deduced from the Earth's flattening kf'= 0.94. For 
very short times, the elastic tidal Love numbers k: 
computed from our models are ranging from 0.28 to 0.30, 
and give a very good fit with the observed value deduced 
from the Earth's body tides k: = 0.29 (e.g. Lambeck 1980). 

The time Tl used in eq. (6) is depicted in Fig. 3 as a 
function of the ratio between lower and upper mantle 
viscosities in the case without (a) or with lithosphere (b). 
Here, a reference upper mantle viscosity has been chosen 
equal to 1d 'Pas .  A multiplication of this reference 
viscosity by a given factor approximately changes Tl by the 
same factor. The time Tl is increasing with the viscosity ratio 
and is always of the order of 1-10 k yr. This slowing down is 
imposed by a simple physical mechanism. The viscosity 
increase inhibits the mantle circulation and confines the flow 
to the upper mantle low-viscosity channel. The time Tl is not 
very sensitive to the nature of the 670 km depth interface 
(Sabadini & Yuen 1989). 

The values of 1 + k; deduced from our models are shown 
in Fig. 4 as a function of the depth of the exciting source. 
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Figure 1. Tidal Love number of degree 2 as a function of the Laplace variable s. The Love numbers are plotted by a full line. The 
discontinuities correspond to the different visco-elastic modes. For all cases the lower mantle viscosity is 10 times larger than the upper mantle 
one. In (a), the Earth model has a uniform density and the modes T1, T2, MO and CO are present. The existence of an elastic lithosphere in (b) 
induces the presence of an additional LO mode. The slow M1 mode induced by a possible non-adiabatic density jump at 670 km depth is seen in 
the bottom row (c and d). Our Love number approximations (dashed lines) are valid for slow time-varying processes. 

For mass anomalies close to the core-mantle boundary 
these functions are zero. In the case of non-adiabatically 
stratified models (bottom row), the mass anomalies are also 
perfectly compensated when they lay close to the 670 km 
depth density jump. For masses at the surface, 1 + kf" is also 
zero in the case without lithosphere (left column). A slight 
undercompensation is supported by elastic stresses when the 
lithosphere is present (right column). For moderate viscosity 
increases in the mantle, a positive mass anomaly gives rise to 
a negative 1 + kf". Larger viscosity variations can impose a 
positive 1 + kf" on top of the same positive mass anomaly. 

The inertia tensor is related to the geoid of degree 2. The 
excitation functions 1 + kf" only differ from the geoid 
kernels (Ricard, Fleitout & Froidevaux 1984; Richards & 
Hager 1984) by a normalization function. We have verified 
that the long term limits of our viscoelastic models without 
purely elastic lithospheres reproduce exactly what has been 
obtained for purely viscous steady-state models. The 
equivalence between long-term viscoelastic models and 
viscous steady-state models needs some clarification. This 
means that when f +  m or s + 0, our viscoelastic model 
assumes the character of a Newtonian viscous fluid (Wu & 
Peltier 1982; Wu 1992) and has the same surface Love 
numbers. For internal loads, the displacements inside the 
viscoelastic mantle tend to infinity when s-0  but the 

associated velocities approach finite values equal to those 
found for steady-state viscous models. The viscous limit of a 
viscoelastic model obtained when s + 0 cannot be directly 
found by assuming s = 0 in the rheological law. This would 
correspond to the rheology of an inviscid fluid. The fact that 
steady-state viscous models can be used even though the 
loads are moving is justified because the boundary 
deformations are generally rapid compared to changes in the 
position of the loads. However, eq. (9) allows us to take 
into account the upper-lower mantle interface that readjusts 

The need for keeping the M1 mode in the convolution of 
the load history with the isostatic Love numbers is 
illustrated in Fig. 5. For four chemically stratified models, 
we computed the time dependent excitation function 1 + kL.  
In the top row of Fig. 5, the mantle viscosity is uniform 
whereas it increases by a factor 50 in the lower row. The 
right column differs from the left one by the presence of a 
lithosphere. The Love numbers deduced from eq. (4) are 
plotted by a dashed line, 0.2 Ma (panel a) or 1 Ma (panels b, 
c and d) after the imposition of a Heaviside load. At that 
time, the Love numbers are far from reaching their 
asymptotic values (full lines). Hence the necessity of using 
eq. (9) instead of eq. (5) when chemically stratified models 
are used. 

slowly. 
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Figure 2. Same as Fig. 1 but for isostatic Love numbers. The loading Love numbers have been computed for a mass anomaly located at the 
upper-lower mantle interface. The importance of the M1 mode is clearly seen on panels (c) and (d). In the bottom row, the loading Love 
numbers asymptotically reach the value -1 when s tends to zero. This corresponds to a perfect local isostatic compensation. 
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Figure 3. Characteristic time T, defined from eq. (8 )  as a function of the viscosity ratio between upper and lower mantle. The upper mantle 
viscosity is kept at q1 = Id' Pas. The full line corresponds to a mantle of uniform density. The dotted line is obtained for a lower mantle 9 per 
cent denser than the upper one. The time T, is not very sensitive to the mantle density stratification. 
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Figure 4. Inertia perturbation in the long-term approximation due to  an inertia source of unit amplitude introduced at time t = 0 in the mantle. 
This perturbation 1 + k j - ,  is plotted as a function of the mass anomaly depth for a viscosity jump at the upper-lower mantle interface by a 
factor 1, 10, 30, 50 or 100. In the first row, the mantle density is uniform, in the second row it increases by 9 per cent at 670km depth. A 
lithosphere is present in the right column. 

LONG-TERM P O L A R  W A N D E R  

We can now use the eqs (6) and (9) to derive a new 
expression of eq. (2). Taking into account the fact that the 
Laplace transform of a convolution is a product and that the 
Laplace image of a time derivative f(t), is sf(s),  eq. (2) 
reads 

kTas 
J . .  [/ = I S - -  [I + f 3G ( W i 0 /  - ; W 2 S j j )  

k Ta5 
3G - T 1 ( h p j  + wihj  - $o,hj,Sij) + E,, (10) 

where the time dependence is implicit and where Eij is 
obtained by convolving Cij(t) with S ( t )  + kL( t ) .  We have 
seen that this last convolution can be simply approximated 
by (1 + kfL)Cii(t) for Earth models without internal density 
jumps. For chemically stratified models, the convolution is 
performed numerically. 

From eqs (1) and (lo), neglecting the terms in li and h2 
for consistency with our approximation (6) ,  we get 

Aij(w)hj + Bjj(o,  E, E)oj = 0, (11) 
where 

w203 - - w 2 0 2  
3GI 

A=f-- k T ~ , a 5  
3G 

Ell =3 - X 2  

-=1 E33 
and 

X, = Ekioi. 
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Figure 5. Inertia perturbation 1 + k L  computed at time t = 0.2 Ma or t = 1 Ma after the introduction of a mass anomaly (dashed line). A full 
line depicts the fluid limit obtained at very long time. The models used in the four panels are stratified in density and the long-term behaviour is 
controlled by the M1 mode. On top, the mantle viscosity is uniform, on bottom it increases by a factor 50. A lithosphere is present in the right 
column. For cases (b), (c) and (d) the asymptotic regime is only reached after millions of years. 

As the diagonal terms of A are smaller than the 
non-diagonal terms, a further approximation could be to 
neglect them (Lefftz 1991). In that case, A is not inversible, 
and the conservation of wz must be imposed. This last 
approximation could have been directly deduced from (1). 
In effect, it corresponds to totally neglecting the J d / d t  in 
front of J . w as the changes in long-term polar motion occur 
on a much longer time scale than the diurnal Earth rotation. 
However, we have seen that the inertia tensor J includes 
terms of very different relative amplitudes, spanning five 
decades, so that the largest term in J d l d t  which is I d l d t ,  is 
only low3 of the smallest term in J .  w which is 
k r  T, a w 

w .  Even including its diagonal terms, the matrix A 
3G 

is not too numerically ill-conditioned. Although somewhat 
extreme, the approximation consisting in neglecting the 
diagonal terms helps to understand the basic physics of polar 
wander on long term scale. This approximation is equivalent 

to replacing (1) by 

where (Y is unknown. The Euler equation degenerates into 
an eigenvalue problem: the angular momentum, J . w 
remains constantly parallel to the angular velocity w .  
Equivalently, eq. (15) indicates that, the non-diagonal terms 
of J, .Izx and Jzy, in a reference frame where z coincides with 
w ,  are zero in the long-term approximation. The reader 
must be aware, of course, that the J inertia matrix includes 
not only the effects of internal masses in a dynamic 
non-rotating Earth, but also the rotational deformations. 
The main inertia of the exciting source C,j is not necessarily 
parallel to the rotation axis. 

To check the validity of our equations, we can compute 
the change in the rotation vector (0, 0, Q) when perturbed at 
time t = 0 by a change in inertia. Taking into account that 
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kTa5W2 f =  C - A ,  we obtain from eqs (11) to (14) 
3G 

where i = is the imaginary unit. The polar motion and 
the change in the length of day are respectively governed by 
eqs (16) and (17). As shown by previous studies, the two 
problems appear to be decoupled for short time scales (e.g. 
Lambeck 1980). Eq. (17) is identical to what is obtained by 
linear theories. Our eq. (16), deduced from a quasi-fluid 
approximation, can be derived by the approximation at large 
times of the results obtained by Sabadini, Yuen & Boschi 
(1984) from the linear theory. The quantity inside square 
brackets in eq. (16) is exactly what they called the rotational 
steady-state residue A,. 

Equation (16) can help us to better understand the 
differences between the inertia tensor of the non-rotating 
dynamic Earth E,j and the rotating dynamic Earth Jij. The 
observed present-day polar wander has a velocity of 1" Ma-' 
and is directed toward the Hudson Bay. It is mainly related 
to post-glacial rebound (Sabadini & Peltier 1981). Although 
the elapsed time since the deglaciation is too short for a 
complete relaxation of the modes entering in the tidal 
relaxation process, we can use eq. (16) to estimate an order 
of magnitude of the excitation presently driving the pole. 
For T, = 20 k yr which corresponds to  a viscosity increase in 
the mantle by around 25 (see Fig. 3), the requested 
excitation E / ( C  ~ A )  amounts to 3.5 lop4, a value which can 
be translated in terms of a geoid anomaly of degree 2 and 
order 1 of about 7 m. The tensor E of the non-rotating Earth 
presents non-diagonal terms E,, and E,, associated with a 
7 m  high geoid anomaly of degree 2 and order I, whereas 
the tensor J of  the rotating Earth is purely axisymmetrical 
and associated with a geoid without terms of degree 2 and 
order 1. The very existence of the tensor E only arises from 
the observation of polar wander. 

From (16) we see that the planet, submitted to a change 
of inertia of order E, will wander with a characteristic time 
of order T,(C - A ) / E .  A lower bound for this time scale can 
be estimated from the ratio of the Earth flattening (=21 km) 
to the geoid height anomalies of degree 2 (-100m). This 
characteristic time is thus larger than 200 TI. In other words, 
under a change of inertia, the Earth can shift its rotation 
pole from a starting position to a new position in a time 
scale larger than a few 100 k yr or a few 1 Ma, depending 
upon its internal stratification. 

The resolution of (11) is numerically performed by a 
simple fourth-order Runge-Kutta algorithm. It generalizes 
for a stratified Earth and a complex load history the solution 
obtained by Milankovitch (1934) in a discussion of possible 
polar wander induced by the distribution of continents on 
top of a homogeneous viscoelastic Earth. 

The validity of our approximations has also been checked 
by comparison with a hybrid treatment of the non-linear 
Liouville equations (Spada 1992). This method, inspired by a 
scheme provided in Sabadini & Peltier (1981), consists of 
keeping separate the slowest relaxation mode also in the 

tidal part, by analogy with what we did for only the loading 
part (see eq. 9). The simple differential system (11) with 
three equations is replaced by a new set of nine equations 
which are solved by a Runge-Kutta method with a time-step 
lower than the characteristic M1 time. This approach gives 
us a better approximation of k7(s )  than our eq. (6). The 
agreement between the two methods is excellent, confirming 
the negligible role of the M I  mode in the tidal response of 
the Earth. 

SOME REMARKS O N  P O L A R  WANDERING 

The title of this paragraph is taken from the title of a famous 
paper on polar wander written by Goldreich & Toomre 
(1969). Their paper is supporting the idea that continental 
drift is able to drive large displacements of the Earth's pole. 
Their simple model consists in a quasi-rigid sphere roamed 
by a colony of N beetles. Such animals had been introduced 
for geophysical purposes by Gold (1955) a few years before. 
Goldreich & Toomre assume that the equatorial bulge 
follows the rotation axis instantaneously and that no free 
wobble is excited. Their main point is that for large N the 
speed of polar motion exceeds by a factor fi the average 
speed of the beetles. 

The Goldreich & Toomre quasi-rigid model has, in fact, 
both k L  and k T  equal to zero. Of course, the Earth differs 
from such a simple model. First, the bulge follows the 
rotation only after a delayed time related to the mantle 
viscosity (Tl # 0). Second, the isostasy tends to cancel the 
inertia anomaly associated with every Gold's beetle. We 
have seen that surface loads, and in a general way all loads 
located close to an interface, are not driving any polar 
motion in our long term approximation, as 1 + kL( t )  tends 
to zero as t increases. For the Earth, the only way to drive 
long-term polar motion is therefore with mantle circulation. 
The efficient mass anomalies are not crawling at the surface 
but sinking inside. 

We first chose to mimic the effect of a slab located at 45" 
from the north pole. The slab has a mass of 2 X l O I 9  kg. This 
corresponds to a slab pull of 5 X 1013 N m-' per unit length 
along a trench (Turcotte & Schubert 1982) having a total 
length of 4 X lo3 km. This mass anomaly is comparable to 
the mass of the ice sheets melted during the last 
deglaciation. The effect of such loads on the speed of polar 
wander is known to be about 1"Ma-' (Sabadini & Peltier 
1981). Of course, since this surface loading has driven and 
will drive polar motion for only a few thousand years, the 
cumulative pole displacement due to Pleistocenic deglacia- 
tion will be less than 0.1". The slab begins to act at time 
t = 10 Ma and its depth location 200, 670 or 1200 km is not 
evolving through time. The upper mantle viscosity is kept 
constant (vl = lo2' Pa s) and five different lower mantle 
viscosities are considered (v2 = 1, 10, 30, 50, 
100 X 10" Pas). The results obtained for our models with 
and without density jump at 670 km depth are respectively 
depicted on Figs 6 and 7. We only considered models 
without lithosphere. 

Since both the time constant and the excitation 
function 1 + k L  are functions of the mantle viscosity, two 
effects are interacting. For a viscosity contrast lower than 
around 30, the polar wander brings the slab and the rotation 
axis closer, wherever the slabs are located within the mantle. 
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For a viscosity contrast larger than 30, upper mantle slabs 
are rejected toward the equator. Below the 670 km depth 
discontinuity, they are rejected toward the pole. This result 
is related to the change already seen in the geoid sign 
associated with a given mass anomaly according to its depth 
location and to the viscosity increase through the mantle. Of 
course, whatever is the polar path excited by a load at 4S0, it 
will reach asymtotically an angular displacement equal to 
*45". 

An increase in the lower mantle viscosity strongly 
decreases the rate of polar wander. For an adiabatically 
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Figure 7. Same as Fig. 6 but for a non-adiabatically stratified 
mantle. 

stratified mantle (Fig. 6), the polar veiocity is larger than for 
the chemically stratified models (Fig. 7). Notice that, for 
upper mantle mass anomaly, we use a different scale in 
panels (a) and (b) of Fig. 7. In Fig. 7(b), for a mass anomaly 
located at the upper-lower mantle interface, the polar shift 
only occurs during the relaxation of the M1 mode. In 
contrast to the Goldreich & Toomre quasi-rigid approxima- 
tion, where the polar displacement instantaneously occurs, 
our viscous quasi-fluid model needs at least a few million 
years to readjust even in the fastest case obtained for a 
uniform mantle viscosity. 

We will now simulate the effect of a downwelling slab or 
more precisely a cold blob as our mass anomaly is not 
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is crossing the upper mantle, the pole moves away from it. 
Then, as the blob goes down in the lower mantle, the 
excitation function changes sign and forces the slab and the 
pole to move closer together. In a physically stratified 
mantle without lithosphere, the pole returns to its starting 
position at a viscosity increase of around 30. A slab velocity 
following a Stokes law would have been reduced in the 
highly viscous lower mantle. This would have given the pole 
a longer time to move farther from the slab and then, also a 
longer time to return closer to its starting position. 

We now want to present an idealized model for mass 
redistribution within the mantle in order to show the 
potential effect of convection on the rotation of the Earth. 
Of course, we could have taken a computation of 3-D 
convection to estimate the order of magnitude of changes in 
the inertial terms Cij(t)  entering in eq. (2). We have chosen 
to use a simple model that catches some of the basic features 
of mantle convection and is inspired by the Goldreich 8~ 
Toomre paper. We assume that slabs randomly distributed 
on the sphere, the analogues of the Gold's beetles, are 
falling inside the mantle. Every two million years a new slab 
is sinking. Their velocity in the upper mantle is equal to 
10cmyrf '  and is reduced accordingly to the increase in 
mantle viscosity in the lower mantle. On average, eight 
blobs are present at the same time in the upper mantle. 

connected to the surface. The blob begins to sink in the 
mantle at time t = 10 Ma with a velocity of 10 cm yr-'. It has 
the same mass 2 1019kg, as in the previous numerical 
experiments. This velocity is supposed to be constant 
throughout the mantle so that the mantle is crossed after 
30 Ma. The computations have been performed both with a 
phase change and a chemical interface at the upper-lower 
mantle interface. Of course, in models with a chemical 
interface, the slab itself cannot physically cross the interface. 
We simply assume that a mass anomaly is induced by 
thermal coupling through the interface. For simplicity, this 
new cold blob is also sinking at a velocity of 10 cm yr-'. The 
results are depicted in Fig. 8. The four panels correspond to 
our four rheological models, in the top row the mantle is 
physically stratified, while in the bottom row we assume a 
non-adiabatic density jump at 670 km depth. The right 
panels differ from the left ones by the presence of a 
lithosphere. 

As the excitation term, proportional to 1 + kL,  is equal to 
zero at the surface, the polar displacement has a zero time 
derivative when the slab begins to sink. For modest viscosity 
increases by a factor 1 or 10, the polar wander is toward the 
slab, except for a chemically stratified homogeneous mantle 
with a lithosphere (panel d). For larger viscosity increases, 
the pole can oscillate, as is seen in panel (a). While the blob 
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Figure 8. Polar motion induced by a downgoing slab beginning to sink in the mantle at time t = 10 Ma. In the top row the mantle is 
adiabatically stratified, a density jump of 9 per cent is present in the bottom row. The lithosphere is present in the right column. The lower 
mantle viscosity is 1, 10, 30,SO or 100 times larger than that of the upper mantle. The polar-wander velocity can change sign during the descent 
of the cold blob. 
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They all have the same mass of 2 1019 kg. From this naive 
mantle convection we computed the inertia tensor of our 
model Earth in a constant geographical frame for a time 
span of 500 Ma. We subtract one third of its trace, from the 
diagonal elements of this tensor, so that the average inertia 
tensor of the Earth is not evolving with time. Otherwise, our 
slabs constantly bringing new dense material to the centre of 
the planet, would increase the rotation of the Earth by 
decreasing its inertia. This phenomenon has indeed occurred 
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during the accretion of the core but its study is beyond the 
scope of the present paper. 

The results of our computations are depicted in Fig. 9 (a 
and b), for two different rheological stratifications. Our 
Earth model is adiabatically stratified in both cases. In 9(a), 
the mantle is uniform, whereas the lower mantle viscosity is 
increased by a factor 30 in 9(b). The bottom part of each 
panel depicts the variations of the three components of the 
rotation vector in a geographical frame. The velocity 
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Figure 9. Velocity of polar wander and normalized components of the angular velocity vector in an Earth-fixed reference frame induced by a 
random distribution of sinking slabs. In panel (a) the mantle is uniform and the Earth rotation axis is highly unstable. A viscosity increase by a 
factor 30 in the lower mantle (b) drastically reduces the amplitude of TPW rate. The 670 km depth interface is supposed to be a phase-change 
discontinuity. 
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components have been normalized by the amplitude of the 
initial rotation vector. The top part of each panel shows the 
rate of TPW in "Ma-'. The average TPW velocity is 
depicted by a dashed line. 

The differences between the rotational behaviour of a 
uniform and a stratified mantle are striking. A viscosity 
increase at 670 km depth inhibits the mantle flow and slows 
down the average TPW velocity below 1"Ma-'. This 
slowing down is due to three concurrent effects. First, the 
viscosity jump decreases the slab velocities and thus, the 
amplitudes of the time derivatives of the inertia tensor. 
Second, it decreases the amplitude of the loading excitation 
term 1 + k; at least for a viscosity increase lower than 100 
(see Fig. 4). Third, it increases the time TI of the rotational 
response by channeling the flow into the upper mantle. 

In the model with a homogeneous mantle, each slab is 
crossing the whole mantle in about 30Ma so that after a 
transient regime of 30 Ma, our model reaches a steady-state 
behaviour where the slabs are uniformly distributed in the 
mantle. As we assume a Stokes law for the slab velocity, the 
steady-state regime of the model with a 30 times more 
viscous lower mantle is not attained in Fig. 9(b). The TPW 
is, in fact, somewhat further decreased in the steady-state 
regime as the slowly varying heterogeneities of the lower 
mantle stabilize the planet. 

In Fig. 10, we compute the average TPW velocities 
induced by a random distribution of sinking slabs for 
different lower mantle viscosity. In the left panel the 670 km 
depth interface is a phase transition, while in the right panel 
we assume a non-adiabatic density jump. As we already 
supposed, the sinking blobs are nevertheless crossing this 

interface. The small dots are obtained using Love numbers 
computed for model Earth with a 100 km thick lithosphere; 
no lithosphere is present in the computations depicted by 
the large dots. The slight increase in average velocity 
obtained by the adiabatic model without lithosphere for 
large lower mantle viscosities is related to the large values 
reached by the excitation function (see Fig. 4). 

As we used a random distribution of slabs, other results 
could have been obtained with other distributions, but the 
main conclusions we can draw from Fig. 10 would not have 
changed. The lower mantle viscosity has at least to be 
increased by a factor 5 with respect to the upper mantle one 
to reduce the TPW velocity below 1"Ma-' which is a 
conservative upper bound for the observed TPW in the last 
200Ma (Besse & Courtillot 1991). For a more acceptable 
average TPW velocity of 0.5" Ma-', the required viscosity 
increase is one order of magnitude. 

THE EXTRA FLATTENING OF THE EARTH 

Due to its rotation, the Earth is deformed with a polar 
flattening of about 21 km. On the one hand, from space 
observations, the gravity potential of degree 2 and therefore 
the inertia tensor of the Earth has been obtained. On the 
other hand, the hydrostatic flattening of our planet can be 
computed from the radially symmetrical models of the 
Earth's density deduced from seismology (Nakiboglu & 
Lambeck 1982). The difference between the observed and 
the hydrostatic inertia of the Earth leads to the 
non-hydrostatic tensor, related to the well known non- 
hydrostatic geoid of degree 2. The fact that the Earth has an 

I 

0 

Figure 10. Rate of polar wander as a function of the lower mantle viscosity for different mantle stratifications. In the left panel, a phase-change 
discontinuity is assumed at 670 km depth, while in the right one a non-adiabatic density jump is present. The small dots depict the solutions 
obtained in the presence of an elastic lithosphere. As the excitation sources are randomly generated, somewhat different results may be 
obtained. According to palaeomagnetic evidence, an upper bound for the TF'W velocity in the last 200 Ma is around 0.5-1" Ma. This is only 
obtained for models having a viscosity increase with depth larger than a factor 10. 
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excess oblateness, in other words a non-hydrostatic polar 
inertia larger than the equatorial inertia, has been thought 
to warrant special explanation. A first explanation suggested 
that this was the result of a frozen or delayed rotational 
bulge, a fossil from the time when the earth turned faster 
(McKenzie 1966). Later, Goldreich & Toomre (1969), 
showed that this hypothesis was not justified as the 
difference between the main and the middle inertia was the 
same as the difference between the middle and the smallest. 
The polar inertia exhibits nothing remarkable except that it 
corresponds to the largest residual inertia. 

The extra flattening is simply the difference between the 
observed and the hydrostatic flattening one. After 
normalization by MaZ, where M is the Earth mass, it reads: 

C - A kFa3R2 
Ma2 3GM 

u,=- 

The observed excess inertia AJzMa2 is much smaller than the 
difference between polar and equatorial inertia C - A. The 
ratio of these two quantities is comparable to the ratio of the 
non-hydrostatic geoid of degree 2 and order 0, to the Earth 
flattening, which is 100 m to 21 km. This is why, in previous 

rough estimates, we identified C - A to be -. In terms of 

tidal Love numbers the difference between these two 
quantities is sometimes taken into account by introducing a 
secular Love number k ,  deduced from observation and 
slightly different from the theoretical k; (Lambeck 1980). 

Even though the long wavelength geoid including the 
excess oblateness is now more or less explained by mantle 
anomalies (e.g. Ricard & Vigny 1989), we should still 
estimate the amount of frozen bulge that may be associated 
with the tidal deceleration of the Earth. Assuming the shape 
of the Earth is entirely controlled by its rotation, eq. (10) 
reads: 

kTa5 
3G 

k Ta5R2 i2 
Jij=ISi,-f--(l 9G -3Si3)(l - 2 q - ) ,  R 

where R is the Earth angular velocity and where d is the 
tidal deceleration which is around -5.5 lO"s-' (e.g. 
Lambeck 1980). Using eqs (18) and (19), and identifying C 
with J33 and A with Jl, or JZ2 we obtain 

kTa3 
3GM 

AJz = -2T1 Lh. 

bulge. We have seen as an example that for Earth models 
where the viscosity is greatly increasing with depth, a mass 
anomaly can induce opposite inertia perturbation in the 
lower mantle than in the upper mantle. When a slab is going 
down, its inertial perturbation changes sign. How does this 
affect the Earth's extra flattening? 

The inertia of the Earth in a geographical frame is 
obtained using (2) .  Its component around the rotation axis is 
simply: 

w . J - w  C = -  
w2 ' 

whereas the average inertia perpendicular to o is 

A =  TXJ) - c 
2 '  

where Z',.(J) is the trace of J. 
Using eq. (18) we can estimate the excess flattening 

involved in the computations with random slabs that we 
already performed (see Fig. 9). The results are depicted in 
Fig. 11. For an adiabatically stratified mantle with uniform 
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With T, = 20 kyr, this excess inertia corresponds to an 
excess flattening of 20cm. The delayed response of the 
Earth to its tidal deceleration is therefore negligible in view 
of the observed excess flattening of about 100m. The 
amount of frozen bulge would have an amplitude 
comparable to the geoid anomaly of degree 2 and order 0 
only for a 500 times more viscous average mantle or for a 
quasi-rigid lower mantle (McKenzie 1966). 

In the framework of a quasi-rigid spherical Earth, 
Goldreick & Toomre have shown that the changes of 
residual inertia always steer the rotational axis so as to 
maximize the resultant polar moment of inertia. For their 
model, the rotation axis of the Earth is always the main 
inertia axis. This is not so obvious in our model as the planet 
viscosity is controlling the speed of reorientation of the 

rlz/rl1=30 
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Figure 11. Flattening of our model Earth as a function of time given 
in Ma. The flattening is normalized by the hydrostatic Earth's 
flattening. It is positive for an oblate planet. This flattening has been 
computed in the rotational axis reference frame (full line) and in an 
Earth-fixed reference frame (dashed). Panel (b) differs from (a) by 
a 30 times more viscous lower mantle. In the rotational axis 
reference frame, the planet exhibits a clear average excess 
flattening. A thick marker indicates the present excess flattening of 
the Earth, 0.94 
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may force the planet to rotate for short periods around an 
axis which is not the main inertia axis. 

viscosity (a) and for an increase in viscosity by a factor 30 at 
670km depth (b), the flattening of our model in a 
coordinate system related to the spin axis and in an 
Earth-fixed coordinate system are shown with a full and a 
dashed line, respectively. In an Earth-fixed frame (dashed 
line), the randomly generated inertia tensor has a random 
flattening with a zero average. On the contrary, in the 
coordinate system orientated by the spin axis, one clearly 
notes the presence of an excess flattening. The values in Fig. 
11 have been normalized by the hydrostatic flattening of the 
Earth. The value of the Earth’s excess inertia in this unit 
.9410-3, is shown by a thick marker. This value is larger 
than what we obtained with our over-simplified model. This 
probably reflects the fact that the mass anomalies in the real 
Earth have a lateral coherency that is not present in our slab 
distribution. Such a coherency imposes larger inertia 
anomalies than in our model. 

In Fig. 11, an excess flattening is almost always observed. 
However, during some periods, this oblateness is very small 
and at the very beginning of the process the non-hydrostatic 
Earth undergoes a short period of prolateness. There are no 
mathematical reasons which prevent the non-hydrostatic 
Earth from spinning around an axis which is not the 
maximum one. One notes also that in the bottom panel, 
during the 200-300Ma period, our Earth model has an 
over-flattening, but is not rotating around its main inertia 
axis as the flattening in a geographical Earth-fixed frame 
(dashed line) is larger. 

CONCLUSIONS 

Our paper reassess the physical basis of TPW induced by 
redistribution of masses inside the Earth that was already 
discussed in the book of Munk & MacDonald (1960) and in 
the fundamental paper of Goldreich & Toomre (1969). The 
main novelty arises from a realistic estimation of Love 
numbers for internal sources and of the time delay TI 
imposed by the mantle viscosity. Our results show that no 
significant amount of TPW can be induced by mass 
anomalies moving close to a non-adiabatic density jump. As 
a consequence plate motions by themselves are not the 
source of TPW. On the contrary, internal density 
heterogeneities such as downgoing slabs may be responsible 
for large pole displacement. Of course other sources of 
internal mass distribution such as those associated with 
non-steady-state convection or large rising plumes can excite 
a pole shift as well. 

The viscosity and density profiles control the readjustment 
of the mantle reference frame with respect to the axis of 
rotation. Our modelling of slab penetration shows that a 
homogeneous mantle of viscosity Id’ Pa s leads to a highly 
unstable rotational axis. The lower mantle requires a 
viscosity of at least 102*pas to lower the computed rate of 
TPW to values observed by palaeomagneticiens. Larger 
lower mantle viscosities do  not further reduce the TPW 
velocities. In model Earth with stiff lower mantle, the upper 
mantle sources are the main contributors to  TPW. 

For realistic models, the amount of polar flattening that 
can be related to the Earth tidal deceleration is only a few 
1Ocm. As the rotation axis constantly tries to follow the 
main inertia axis, a rotating dynamic viscous planet is 
generally oblate. However, the tidal memory of the Earth 

ACKNOWLEDGMENTS 

This work has been partly supported by the SCIENCE 
program of the European Economical Community N. 
SC1*0456 and by the INSU-DBT (Dynamique et Bilan de la 
Terre) program (Global Dynamics, contribution 573). 

REFERENCES 

Besse, J. & Courtillot, V., 1991. Revised and synthetic apparent 
polar wander paths of the African, Eurasian, North American 
and India plates, and true polar wander since 200Ma, I. 
geophys. Rex, %, 4029-4050. 

Gold, T., 1955. Instability of the Earth’s axis of rotation, Nature, 

Goldreich, P. & Toomre, A., 1969. Some remarks on polar 
wandering, J. geophys. Res., 74 2555-2567. 

Hinderer, J., Legros, H. & Crossley, D., 1991. Global Earth 
dynamics and induced gravity changes, J. geophys. Res., 96, 

James, T. S., 1991. Post-glacial deformation, PhD thesis, University 
of Princeton, New Jersey. 

Lambeck, K., 1980. The Earth’s uariable rotation, Cambridge 
University Press, Cambridge. 

Lefftz, M., 1991. Aspects thkoriques de la rotation de la terre et de 
son noyau: influence de la viscositk, PhD thesis, University of 
Strasbourg, France. 

Lefftz, M. & Legros, H., 1992. Some remarks about the rotations of 
a viscous planet and its homogeneous liquid core: linear theory, 
Geophys. J. Int., 108, 705-724. 

McKenzie, D. P., 1966. The viscosity of the lower mantle, I. 
geophys. Rex, 71,3995-4010. 

Milankovitch, M., 1934. Der Mechanismus der Polverlagerungen 
und die daraus sich ergebenden Polbahnkurven, Gerlands Beitr. 
z. Geoph., 42, 70. 

Munk, W. H. & MacDonald, G. J. F., 1960. The rotation of the 
Earth, Cambridge University Press, New York. 

Nakiboglu, S. M. & Lambeck, K., 1982. Hydrostatic theory of the 
Earth and its mechanical significance, Phys. Earth planet. 
Interiors, 28, 302-311. 

Peltier, W. R., 1974. The impulse of a Maxwell Earth, Rev. 
Geophys. Space Phys., 12, 649-669. 

Ricard, Y., Fleitout, L. & Froidevaux, C., 1984. Geoid heights and 
lithospheric stresses for a dynamical Earth, Ann. Geophys., 2, 

Ricard, Y. & Sabadini, R., 1990. Rotational instabilities of the Earth 
induced by mantle density anomalies Geophys. Res. Lett., 17, 

Ricard, Y., Sabadini, R. & Spada, G., 1992. Isostatic deformations 
and Polar Wander induced by redistribution of mass within the 
Earth, I. geophys. Rex, in press. 

Ricard, Y. & Vigny, C., Mantle dynamics with induced plate 
motions, J. geophys. Res., 9 4  17 543-17 559. 

Richards, M. A. & Hager, B. H., 1984. Geoid anomaly in a dynamic 
Earth, J. geophys. Res., 89,5987-6002. 

Sabadini, R. & Peltier, W. R., 1981. Pleistocene deglaciation and the 
Earth’s rotation: implications for mantle viscosity, Geophys. J. 
R. ustr. Soc., 66,553-578. 

Sabadini, R. & Yuen, D. A., 1989. Mantle stratification and 
long-term polar wander, Nature, 339,373-375. 

Sabadini, R., Yuen, D. A. & Boschi, E., 1984. A comparison of the 
complete and truncated versions of the Polar Wander 
equations, J. geophys. Rex, 89, 7609-7620. 

Spada, G., 1992. Rebound post-glaciale e dinamica rotmionale di un 

175,526-529. 

20 257-20 265. 

267-286. 

627-630. 



298 Y,  Ricard, G. Spadu and R. Sabudini 

pianeta viscoelastico stratificato, PhD thesis, University of 
Bologna, Italy. 

Spada, G., Sabadini, R., Yuen, D. A. & Ricard, Y., 1992. Effects on 
post-glacial rebound from the hard rheology in the transition 
zone, Geophys. J. Int., 109,683-700. 

Takeuchi, H., Saito, M. & Kobayashi, N., 1962. Statical 
deformations and free oscillations of a model earth, J. geophys. 
Res., 67, 1141-1154. 

Turcotte, D. L. & Shubert, G., 1982. Geodynamics, John Wiley & 
Sons, New York. 

Wu, P., 1992. Viscoelastic versus viscous deformation and the 
advection of pre-stress, Geophys. J. Int., 108, 136-142. 

Wu, P. & Peltier, W. R., 1982. Viscous gravitational relaxation, 
Geophys. J .  R. astr. Soc., 70,435-485. 

Wu, P. & Peltier, W. R., 1984. Pleistocene glaciation and the earth’s 
rotation: a new analysis, Geophys. J. R. astr. SOC., 76,753-791. 


