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SECTION 1
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geoid and deep density structures.

Annales Geophysicae, 1984, 2, 3, 267-286.

Geoid heights and lithospheric stresses
for a dynamic Earth

Yanick RICARD, Luce FLEITOUT and Claude FROIDEVAUX

Laboratoire de Géophysique et Géodynamique interne,
Université de ParisfSud, Bat. 510, 91405 Orsay, France

ABSTRACT. Mass heterogeneities in the Earth’s crust and mantle are known to exist at all depths and for a large
range of wavelengths characteristic of their lateral extent. They are the sources of measurable quantities like topo-
graphy, tectonic stresses and the geoid. Quantitative relationships between these surface observables and deep sources
are established for vatious Farth viscosity siructures with spherical symmetry. For an homogeneous mantle, the
surface stresses and the geoid height increase with the depth of the perturbing heterogeneity but decrease markedly
beyond a critical depth proportional to the wavelength. In the presence of physical or chemical stratification of the
mantle, this last decoupling phenomenot is shown to be more complex. The geoid over topography ratio, called the

admittance Z, may then change sign. The same is true for the geoid over lithospheric stresses ratio called the Runcorn
number Ru. Lower mantie sources are the only candidate cap
with an acceptable magnitude of Z and Ru. This conclusion
structure is broken as it is for the Earth’s lithosphere for
this second framework it is shown that upper mantle return flow is also capable of generating the geoid without
producing too large a topography and too strong tectomic stresses. The two types of contribution are expected to

able of explaining the large wavelength geoid undulation
does not hold if the spherical symmetry of the viscosity
which the plates are separated by zones of weakness. In

oceur in the Earth, Further progress will require careful data analysis and correlation between topography, stresses,

Key words : geoid, lithospheric stresses, admittance, mantle heterogeneities.

INTRODUCTION

The surface topography, the prevailing tectonic siress
field and the geoid belong to the data set which reflects
the internal dynamics of the Earth. Indeed these three
observables are known to be linked in some complex
way to mass heterogeneities within the deformable
Earth. Their value is determined both by the spatial
distribution of densities, and by the radial and lateral
changes of the mechanical properties at depth. Just
by itself, each of the measurable quantities is insufficient
to reveal the internal density and viscosity structure.
Making use of all of them at the same time ought to be
more efficient. The purpose of this paper is therefore to
investigate the physical relationships between topo-
graphy, lithospheric stresses and the geoid. The long
term goal is to establish good constraints on the deep
dynamical structures.

When the density heterogeneities are of large lateral
extent in comparison with their depth, the physical
picture is fairly simple. The tectonic style for the litho-
sphere, ie. the tendency to thickening or thinning, is
determined by a general relationship- between the
averaged horizontal and vertical stresses, T, and T

and the moment of the vertical mass distribution within
the lithosphere of thickness L (Artyushkov, 1973)
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L
Ty — Tgg = — % [ p(z) zdz | (1

0

where g is the gravitational acceleration. In this simple |
form, equation (1) does not include the effects of boun-
dary forces acting either at the edges or underneath
the lithospheric plate. The integral representing the
moment of the mass distribution in the above equation
is also found in the expression of the geoid deviation N
caused by the same density distribution (Ockendon and
Turcotte, 1977} =

L
N=—-2—3-G-j p(2) 2 dz @)

0

where G is the gravitation constant. A good illustration
is given by the oceanic plates. Their thermal structure
not only explains the ‘topography and the heat flow
but also the linear irend of the geoid height (Haxby and

-Turcotte, 1978 ; Sandwell and Schubert, 1982), and the

age variation of tectonic stresses (Fleitout and Froi-
devaux, 1983). Equations (1} and (2) show that for shal-
low.sources the ratio of the geoid to average deviatoric
stress is independent of the mass distribution. The
anomaly defined by equation (2} may be called the
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isostatic geoid, in the sense that it assumes perfect
compensation within the lithosphere. The knowledge
of its amplitude could yield a residual geoid reflecting
deeper processes (Hager, 1983a). Unfortunately the
concept of isostasy lacks a unigue definition. Depending
upon the choice, the resulting isostatic geoid may
differ by up to a factor two (Dahlen, 1982). For gxample,
isostasy defined by cylindrical or conical columns of
equal weights is not equivalent to the requirement
that the stresses are minimum. This difficulty prompted
our attempt to compute the dynamical response to
existing mass heterogeneities and thus derive the
stresses and geoid height without calling upon the
static idea of isostasy.

One should notice however that the geoid undulation
caused by lithospheric mass distributions have ampli-
tudes of order 20 m, which have to be compared with
overall variations approaching 200 m. Nevertheless a
weak global correlation was found to exist between
the geoid and the major « tectonic provinces » of the
Earth (Souriau and Souriay, 1982). Our approach is
not limited to mass heterogeneities within the litho-
sphere and can well deal with deeper sources in the
mantle. It is thus akin to various theoretical attempts
to connect models of mantle convection to the observed
gravity field (Parsons and Daly, 1983; Lago and
Rabinowicz, 1983 Richards and Hager, 1983). For deep
sources, the simple equations (1) and (2) do not hoid,
but interestingly their ratio remains practically unchang-
© ed (Runcors, 1964) as long as the viscosity is uniform.
Huge lithospheric stresses due to deep seated mass
heterogeneities should therefore be associated with
geoid anomalies. But lithospheric siresses seem mainly
linked with variations of the structure of the lithosphere
(Fleitout and Froidevaux, 1983). This prompted us to
search for non-uniform viscosity layering where the
geoid anomalies could be associated with moderate
lithospheric stresses. Topography seems also mainly
related to lateral variations within the lithosphere.
This observable helps establishing further constraints
upon the mechanical structure of the Earth and upon
the origin of mass anomalies which induce the geoid
undulations. Dynamically supported topographic varia-
tions related to plate motion are equally considered.
Their effect on the geoid at large wavelength has to be
compared with possible contributions from deep mantie
sources,

This paper is divided into four parts. First the appro-
priate mathematical formulation is derived. In parti-
cular it is shown that self-gravitation and compressi-
bility effects have to be included in order to account for
long wavelength mechanical responses. Second, the
problem is solved analytically for simple spherical
Earth structures. This gives a good insight mto the
geophysical validity of simple expressions like equa-
tions (1) and (2) above and also about the relevance
oi_‘ the various concepts of isostasy. Third, the mecha-
1.ncal response to a given density distribution defined
in terms of spherical harmonics is computed numerically.
This allows to treat a more realistic viscosity and density
-model of the Earth. The various solutions for surface

opography and gravity are tested with respect
the depth and wavelengths of the assumed

density anomaly. This yields a general answer to the
question of the validity of simple approximations
derived for a flat earth structure, when dealing with
the complexity of a spherical self-gravitating stratified
planet. In the fourth part, the concepts of admittance
and Runcorn number are introduced in order to quan-
tify the relationships between induced geoid and topo-
graphy, on the one hand, and between geoid and tectonic
stresses on the other hand. Furthermore an attempt
is made to overcome the limitations caused by the
assurned spherical symmetry of the viscosity structures.
For this purpose, the dynamic responses of a model
Earth with imposed surface velocities are considered.

1. MATHEMATICAL FORMULATION

We consider a model Earth made of 2 Newtonian fluid
with infinite Prandtl number and where both the
average density p and the viscosity # exhibit a given
depth variation. Mass heterogeneities of vanishing
thickness are introduced. The induced topography
is equally pictured as a surface density. The calculations
are carried out in spherical coordinates r, 6, @.

Two cases will be treated. In part 11 the fluid underneath
the lithosphere, which for simplicity, will be called the
asthenosphere, is assumed to be inviscid (7 = 0) but
compressible. The lithosphere will be described as a
compressible fluid in the Boussinesq approximation
(Jarvis and McKenzie, 1979). The latter is justified by
the fact that the characteristic scale for density varia-
tions due to compressibility is of order K/pg which
amounts to some 5000 km, and thus exceeds strongly
the lithospheric thickness. Here K is the butk modulus.

The continuity and Navier-Stokes equations read :

dive=20 (3)

nAu_-:gradp—pgradUJrBKgp (4)

where v is the velocity vector, U the pcrturbation gravi-
tational potential and p the excess pressure. The right-
hand terms in equation (4) represent the forces due to
pressure, self-gravitation and compressibility. To these
equations one must add the constitutive law of a
Newtonian fluid (Landau and Lifshitz, 1959) which
defines the prevailing stresses :

[e] = 2 nfe] — p1 (5)

where [1] represents the stress tensor, [£] the strain rate
tensor and [ the identity matrix, Finally, Poisson’s
equation relates the perturbation gravitational poten-
tial to the density :

AU=#47IGEKE. (6)

Unlike in part 1§, compressibility will be neglected in
parts [1I and 1V where equations (3) and (5) remain
unchanged whereas the right-hand term of equations (4)
and (6) is neglected.
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‘The value of g will be kept constant for the whole
mantle which is approximatively true for the real
Earth. This will not be necessarily consistent with our
model density distributions. Qnly the self-gravitational
effect is slightly modified when more realistic density
distributions are introduced in numerical models.

vr = ul(r) YT‘(B, d))
ayy
Yy = “z(r) —Eé[—(e! ¢)
T = Ma(l’) _'1_0 YT(G’ ¢)

where p, and 7q
v = In(r/R) where Ris the Earth’s radius.
a system of linear first order differential equations :

In this matrix, there are four parameters L = I+ 1),
¢ being unity or Zero depending on whether the system
is self-gravitational or not B = paR/K reflecting the
ratio of the Earth radius over the characteristic length
of density variations induced by compressibility, and
finally « = 2 nGpR/g. As can be deduced by inspection
of equation (2) the parameter « Is 2 quantity which
will appear in the expression of the geoid height as a
normalizing factor. For the Earth the last two parame-
{ors take the values g =123 and a = 0.9. More
generally, for a planet with uniform density, one may
write g = 4 nGpR/3 and & = 1.5

- Within a shell where the various
constant, the solution of equation

V(v) = exp(4 * v) V(0).

parameters in A4 are
(8) reads simply :

&)

© The exponential in this formula is called the propagator
matrix, a quantity which can be expressed analytically
(Gantmacher, 1960). '

Before solving equation (8) for any specific Earth model,
_let us go back to the Navier-Stokes formulation given
by equation (4). What are-the relative magnitudes of the
self-gravitation and compressibility terms compared to
-standard buoyancy ?

are reference values. Let us call V the vector functions (1,
By substituting the definitions

In a given spherical shell of density p and viscosity #,
equations (3) to (6) can be solved in the usual manner
(Takeuchi and Hasegawa, 1965; Kaula, 1975; Hager
and O’Connell, 1978) by introducing spherical har-
monics Y70, ¢) and the following definitions : ‘

oyr
o = 1) 2 (6 9)
U = uy() E%QF Y7, ) 0
i

g, U, Ug, Uss Ug) BDG define a new variable
(7) into equations (3) to {6), one can deduce

%1=,4-V ®)
where v
2 L 0 0 0 0
-1 1 0 L 0 0
Ho

(12—4;3)—'—7—(~6+2B)L—"- 1-8 L 0 — &

A= o flo
_ 6L 202 L~ D) 1 -2 - 0

Ho o
0 0 0 0 i 1
8 off =~ _4ap L 204 0 L 0

Ho Ho

let us consider a surficial
r., from the Earth center.
it defines a potential

To deal with self-gravitation,
mass m Y™(0, ¢) at a distance
For an incompressible mediom,
U(r, 8, ¢) given by :

4 nG m Y
Uir, 6, ¢) = ST+ r,, &m Y7 (6, @) (a) (10)
with n=—({+1 upward and n = ! downward,

The quantity p grad U is a body force, the integral of
which has to be compared with standard buoyancy,
sm gY? (0, ¢). Averaged radially, the two quantities
become pU(r,) and dm gYr(®, ¢). Their ratio takes a
very simple form @

(pgradU)__
{omgy

Self-gravitation becomes therefore a sizable contribu-
tion at large wavelengths. For ] = 2 the above ratio
amounts to 45%. At 1=9 which corresponds to a
wavelength of 4500 km, it still represents a 10 %, cor-
rection. :

4

T (11)

A similar estimation can be carried out for the compari-
son between the compressibility term in (4) and stan-
dard buoyancy. For an inviscid fluid, the excess pres-
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sure with angular dependence p is related to the per-
turbed potential U by the simple equation p = pU.
Thus the relevant body forces related to compressibility
become p? gU/K. To the first order, the potential U
is always expressed by expression (10). Again an inte-
gration is carried out radially io express the average.
As U is proportional to ' the computed averaged body
force amounts to p? gU(r,){{ + 1) K. The desired
ratio is readily found :

CpaplK ) _ af
(omgy  (I+HU+1)

(12)

Keeping in mind the values of « and f, which are close
to unity, one notices that the last ratio decreases more
sharply than the previous one. Indeed it predicts a
cotrection related to compressibility of more than 10 %
only for the first two harmonics.

[I. ANALYTIC SOLUTIONS FOR TWO-LAYER
EARTH STRUCTURES

Having established the appropriate mathematical for-
mulation for the mechanical behaviour of a viscous
Earth we can now undertake to rephrase the relationship
between existing mass anomalies and predicted litho-
spheric stresses and geoid height. For a simple flat
Earth model, these last geodynamical quantities are
expected to be proportional to the vertical moment
of the density heterogeneities, as predicted by equa-
tions (1) and {2). What are the corresponding solutions
in the framework of a dynamical, self-gravitational,
compressible and spherical Earth ? Do these mecha-
nical solutions vary with wavelength as may be suggested
by the ldependence of the various forces given by
equations (11) and (12) ?

Long-wavelength approximation with a viscous litho-
sphere

The simplest Earth structure to test first is made of a
viscous lithosphere of thickness L with mass hetero-
geneities at its base, and an inviscid asthenosphere
extending to its center. At long-wavelengths, (L <€ R),
the mathematical formulation of the problem can be
linearised. Thus, at the base of the lithosphere, the
variable v = In{r/R) becomes v = — L/R and equa-
tion (9) yields :

L L
VIR-L)y—-V(R)y=—- 4 R F(R) + O(E)' (13)

This system of 6 linear algebric equations determines
the physical quantities defined in (7). The computation
of the solutions requires the definition of boundary
conditions at the surface (r = R) and at the depth L.
The reader who wants to avoid the corresponding
algebra is advised to jump directly to the solutions
given by equation (20).

_vglqcl'ty one has a vanishing vertical compo-
e surface which implies -

In the cases treated here, steady-state distribution of
density heterogeneities is assumed. In some circumstan-
ces, the drift of mass anomalies can induce a time
dependent variation of the vertical stress and of the
surface velocity. However this surface velocity remains
small compared to the velocities inside the mantle.
In the self-gravitational, inviscid asthenosphere the
radial stress amounts to — pU and its value is discon-
tinuous across the surficial mass heterogeneity
dm Y7(6, ¢). This yields :

(R — L) = MTQ(R _ L) — sufR — 1), (15)

One may recall that ¢ is unity in a self-gravitational
system and vanishes otherwise. Shear stresses vanish
at the top and bottom of the lithosphere. This requires :

u,(R) =0 (16)
u (R — L) =0, (17)

The last two boundary conditions refer to the potential
which at a given depth can be split in two terms deriving
from mass distributions above and below

U(r) = Us(r) + UPr).

Each term has a different radial variation given by
equation (10), so that the first derivative reads :

Ly =Ly -2 v.

At the Barth's surface, the topography is a consequence
of the computed surface stress 7,,(R) and is depicted
by a surficial mass Smy,, Wwith 7,(R) = dmy,g.
Following (10} one may thus write :

4 1G R 7,{R)

UAR) = = 57 R

The last three relations lead to the following boundary
condition : g

ug(R) = — (I + D us(R) — 2 auz(R) . (18)

This expression is the same as for an incompressible
Earth (Cathles, 1975) because it only involves the mass
of the topography.

The situation is not so simple for the last condition at
the lithosphere-asthenosphere boundary. Again the
potential is split in two parts, and one has :

CLEDyug - 1.

oU I
- (R-L)=_UR-1L)-

Therefore the potential US(R — L) must be formulated.
This brings into play both the interface heterogeneity
and the asthenospheric density variations caused by
compressibility. In the asthenosphere the total poten-
tial satisfies equation (6) which takes the form -

2z
AU:—4nG’OKU.
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This shows that the asthenospheric density variations factor smaller than 2. Assuming this ratio to be constant,
amount to p? U/K. Through the Earth mantle the this last differential equation has the following solu-
seismological data indicates that p?/K varies by a tions :

Yo, ¢)

J _(\/Ea—ﬁ—f—)
U UR - ) ,'——R_r_L +4 R - L
Jt+l:\f2aﬁ)

where J is a Bessel function. The induced density variations contribute to the potential which becomes :

4 nG R_Lp2 ¥ iz
UBR — L) = — =22 (R — L) U —U(r)( ) dr — 5m}
2141 0 K R-—L

the second term being the contribution of this interface density heterogeneity. The integration yields :

R-L l
R 21I+1

UPR — L) = (= f(I) UR — L} + 4 nG &m)

where the function

N /7af 2
10 5 L (/2 af)

I+3

is plotted on figure 1. The sixth boundary condition thus reads :

(R ~ L) = (1 + f))us(R — L) — 2« 5”;% (R = L)z. (19)

We now have six linearized algebraic equations represented by (13) as well as six boundary conditions given by (14) to
(19). Exact solutions have been calculated for the six unknown quantities. Three of them have a definite geophysical
significance. First, the vertical velocity at the base of the lithosphere which characterizes the lithospheric deformation,
Indeed, as the vertical velocity vanishes at the surface, v,(R — L) determines the averaged radial velocity gradient in
the lithosphere, in other words the vertical deformation : thickening or thinning. This quantity v,(R — L) is of course
proportional to the stress Ty, - T,,. Second, the surface vertical stress 7,,(R) which expresses the induced topography.
Third, the geoid height N which derives directly from the surface value of the potential U(R). The calculated quan-
tities are expressed as follows :

?

g {W+1)
R — - — -
o L) 37 5mL2f(f T

7,{R) = dmyg 3 20
2I+I+2f(!)—m+——l)—_l—

21+ 1+ f(h — 2ae

NR) ~ — 2 ZGcSm L

The first expression shows that for a spherical Earth model the lithospheric deformation is still proportionai to the
dipole moment ém L. In comparison with equation (1), one notices however a weak variation of the proportionality
factor with / This last feature is a consequence of sphericity alone, but not of compressibility or self-gravitation. The
second expression exhibits a first term which would correspond to a simple dipole mass distribution, te. to a weight
of the topography exactly opposite to that of the deep scated mass heterogeneity. However, a complex second term
proportional to L and due to dynamical effects which are of course sensitive to self-gravitation and compressibility
should be added. The third expression in {20) is equivalent to equation (2} in the limit of large ! values. This is depicted
in figure 2. Notice that N and §m have opposite signs. An enhancement of the geoid height by 50 7 is predicted at
large-wavelengths for a self-gravitational Earth model. This departure from equation (2) is roughly in [ ~ !, whereas the
weaker correction due to compressibility goes with /=2 In addition to this, the figure shows that sphericity alone
produces an effect found about proportional to /=3, These detailed results are in agreement with the estimates of the
effects of self-gravitation and compressibility given in the first part of this paper.
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Figure 1

Function f(I} entering into the expression of the geoid height (eq. (20))
Jor a self-gravitational and compressible model Egrth, Tkhis Earth
has a simple structure consisting of a viscous lithosphere with density
heterogeneities at its base and an inviscid asthenosphere. The hetero-
geneities are represented by a spherical harmonic of order I. The para-
meter p*/K used to calculate this Junction can be derived from seis-
molagy (Haddon and Bullen, 1969). Here it has been given two different
constant values : 6.5,107° 8.1 for the black squares and 7.5.10-% 5.1,
for the open squares.

Homogeneous Earth with a thin lithospheric lid

T T T :
-]
1.5—O a
e _
& 3 :
N3
g ]
5 8
2 8.,
L] l?..-. -
RAeegg,,
L]
Fa
1 - | 1 | l
2 5 10 15 20
ORDER /
Figure 2

Geoid height normalised to the value predicted by the simple moment
law of equation (2) and generated by a shallow-density heterogeneity
represented by a spherical harmonic of order I. The model Egrth strue-
ture is the same as in figure 1, The triangles show the effect of sphericity
alone, the circles also include the effects of self-gravitation and finally
the squares are obtained by adding compressibility, For this simple
two-layer structure which could be treated analytically one sees the
marked enhancement of the geoid amplitude at large-wavelengths.

The above model has three limitations in the sense that the asthenosphere is inviscid, the mass heterogeneity is located
at the base of the lithosphere, and, that the physical problem has been linearised. These limitations can be avoided and
analytical solutions can still be derived if one ignores self-gravitation and compressibility. This approximation has
just been found to be valid at moderate-wavelengths (/ > 10).

The new model Earth structure consists of a spherical homogeneous medium of constant viscosity, containing a har-
monic mass heterogeneity at a depth z, and surrounded by a spherical elastic lid of thickness L. The flow induced by
the perturbing mass generates stresses at the base of this lithospheric lid. At large enough wavelength (! < 40), flexural
effects are negligible and the topography amounts to — 1,./pg. On the other hand, the balance of horizontal forces'
requires that the lateral variations of the averaged tectonic stresses within the lid be determined by the shear forces
7/, acting at its base. If one expresses the horizontal lithospheric strass Tgg DY Tog(r) Y7(6, &), this mechanical condition
leads to a vertically averaged value :

- R
Togp = — ‘Ef,{b- (21)

In the absence of self-gravitation (¢ = 0) and of compressibility (§ = 0), the propagator matrix 4 in equation (8)
becomes much simpler. The dynamical relationship between velocity and stresses is nio longer coupled with the gravi-
tational potential. The vector function V(7) retains only its first four components and 4 becomes simplya4 x 4 matrix.
The eigenvalues of the matrix being! + 1,/ — 1, -1 — | — 2, the solutions in each layer are :

ul —_ arl-l-l + b?"lhl + cr—l + dr—l~2

gt t3 e by 142 4,
uz-_a-m—_i_l-)-r +lr cl(l+1)r l+1r .
2 _ g 2 _ 22)
uy =2a" zl 34 4 b — 1yt gl *;f_’l L gdy— 22
_ l+ 2 I+1 l—‘ 1 i—1 - 1 ] l+ 2 —1-2
: u4-2al+lr +2b_.¢'_r 7 +2dl+1r .

ography, the tectonic stresses
:both the mass heterogeneity

The coefficients g, b, c, d have to be determined from the boundary conditions, ‘The top layer goes from the lid (* = R)
to the_:l mass heterogeneity (r = t'w) the second layer extending to the Barth’s center, The vertical and horizontal velo-
‘ anc.u, must vanish at the contact with the lid, The solutions must remain finite at » = 0, so that c and d
ideep layer. At the interface between the two layers, the two velocity components and the shear stress
ng: and theradial stress Jjumps by ém g. Thus the solutions are readily established, and in particular the
e ela ic lid 7,7 and t% are now determined. One can therefore express the desired geophysical
and the geoid. For this one makes use of equation (21)
and the induced topography according to equation (10).
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One fundamental question addressed here is the follow-
ing : within what depth range can the geoid height and
the lithospheric stresses be expressed by the moment law
defined by equations (1) and (2) ? The above solutions
were essentially computed to answer this question. The
answer is best iltustrated by plotting these three quan-
tities as a function of the depth z of the mass hetero-
geneity and for various values. This is depicted in figure 3.
Heterogeneity located at shallow depths induces topo-
graphy having nearly the same amplitude mass but of
opposite sign, as well as tectonic stresses and geoid
amplitudes increasing linearly with z. For Tpe L, the
initial slope is the same a8 would have been predicted
by the simple moment law of equation (1). For the geoid T r T . . . .
height however, the curves have an initial slope which
4 varies with L By inspection of equation (25) one sees
: indeed that this slope i enhanced by a factor (/ + 2)/
(I + 1/2), with regard to the simple moment law defined
by equation (2). Similar result has been obtained from
simple equilibrium consideration involving conical
columns (Turcotte and McAdoo, 1979; Hager, 19834).
For deep seated heterogeneities the various Curves
depart from these initial linear trends so that the induced
topography collapses, and the two other quantities
pass over a maximum. This behaviour is characterised
by a critical depth z,,,. The smaller the order [ the larger
this depth. More precisely Top reaches a maximum value
when the source 6 is located at a depth Z . whereby
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For the geoid height the depth of the maximum is
somewhat larger, by a factor (I + 2 + 1) and the
initial departure from the linear trend is more marke
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Figure 3 —_

Topography. tectonic siress and geoid height @ a function of depth
and order of the source density helerogeneily. These solutions were
calculated analytically {eq. (23) (24) and (25)) for a non-self-gravi-
tational and non-compressible Earth simply represented by an homo-
geneous sphere of constant viscosity surrounded by an elastic iid of
thickness L. The topography is expressed in terms of émfp, where o
is the amplitude of the deep mass heterogeneity given per unit surface, "
and p is the topography densily. The tectonic 5tress i3 the product .
of the lithospheric gveraged deviatoric SIress and the lid thickness.
It is expressed in units of 5m gR. Similarly, the geoid Is depicted in 20
units of o dmjp with & = 2 nGpRig = 0.9. One sees that the deeper

the source heterogeneity and the shorter 1S wavelength, the weaker . S X

its contribution to surface geophysical observables. The straight lines - 200 2000

in the lower graphs correspond o the simple momen! 1aws derived for )
shallow heterogeneities in g flat Earth as given by equations (1) and(2). DEPTH OF HE_TEROGENE'TY z n““]
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First synthetic remarks

To summarize this chapter, one should emphasize the
fact that for simple dynamical Earth models, analytical
solutions were obtained in order to predict the geoid
height, the topography and the lithospheric deformation
caused by density heterogeneities. This is achieved
without using the concept of isostasy. In the past,
yarious authors have attempted to express the height of
the geoid related toa given mass distribution by starting
from the idea of isostasy. The latter has however several
pon equivalent definitions : cylindrical of conical
columns of equal weight (Turcotte and McAdoo, 1979,
hydrostatic conditions beyond a certain depth (McNutt,
1980) or minimum averaged deviatoric stresses for the
Earth (Dahlen, 1982), All of them imply the existence ofa
compensation depth L above which any column has an
equal weight within possible fluctuations of order'L/R.
The various definitions of isostasy yield non-identical
solutions for the geoid and lithospheric stresses, (WO
quantities related to the moment of the mass distribu-
tion. In other words, the formulation of isostasy would
have to coincide up to first order in L/R to lead to the
same cxpressions for geoid and stress, these quantities
being defined by a first term of order L/ R. Hereit is worth
noticing that the solution derived from an assumed
state of minimum deviatoric stress for 2 self-gravita-
tional Earth (Dahlen, 1982) is the one which is closest
to our result shown in figure 2.

Turning to the analytical solutions capable of dealing
with deep seated mass heterogeneities one should make
some quantitative statements on the magnitude of the
quantities shown in figure 3. The geoid height N is given

in units of « om Thus taking a negative density hetero-

geneity 6p = — p/100, which could be produced by 2
temperature excess of some 300 °C, over 2 thickness of
100 km, one finds that N = 0.1 which corresponds to a
positive geoid height of 90 m. The samé source generates
tectonic stresses of magnitude 4 kbar over a 50 km thick
lithosphere, and a topography of some 500 m. The
general geophysical consequence which can be drawn
from these models is that for moderate-wavelengths,
say A < 4000 km or ] > 10, the surface observables
corresponding to figures 3, 4, and 5, are predominently
influenced by mass heterogeneitics located within the
upper mantle.

It has not been possible to derive simple analytical
solutions for a self-gravitational Earth when the mass
heterogeneities are deep and of 1argc-wavelengths at the
same time. A sizable enhancement of the geoid for low
order harmonics has been predicted. For the first model
it was caused by self-gravitation. For the second model,
which has no self-gravitation, an effect of comparable
magnitude occurs. because of sphericity alone. The
depiarture from the moment law given by equation )
erefore be expected to be sensitive to the chosen

f.the Earth’s density. This particular
physical characteristics

ated with the help

I1I. THE KEY ROLE OF THE EARTH'S STRATI-
FICATION

A more realistic model Earth than the simple two-layer
structures studied above should include the existence
of a core and of transition Zones within the mantle. The
boundary between two spherical layers can be consi-
dered either as purely physical, or as chemical. In the
first case the material can flow through the boundary
and changes its properties like density and viscosity
instantaneously. No undulation of such an interface is
considered so- that 1o lateral mass heterogeneity is
generated. In the second case, which is well illustrated
by the core-mantle boundary, no flow of material is
allowed through the interface. The geometry of the
latter may however be perturbed, this being equivalent
to the creation of lateral mass variations.

The model Earth is made of a succession of spherical
shells of thickness [, density p;, and yiscosity #, Com-
pressibility effects, which have just been found to be
small, are neglected. In each shell the propagator which
appears in equation (9) can be computed in order to
determine the solution vector V(r) (Gantmatcher, 1960).
The crossing of a mass heterogeneity dom Y™, ¢)
located at a radial distance 7 from the Earth’s center,
demands a jump in the valtues of two of the six compo-
nents of the vector function :

y = (0,0,5mg/n (¢/R), 0,0, — « smg/n (r/RY). 27)

These two discontinuities were already found in the
formulation of the boundary conditions (15) and (19).
Free slip conditions are assumed at the Earth’s surface
and at the core-mantle boundary. The deviatoric stress
within the lithosphere is simply proportional to the
computed vertical strain rate. At the surface equation
(18) still holds. Finally at the core-mantle boundary one
induces a surficial mass heterogeneity oM, Y™0, ¢)
which enters relationships identical to (15) and (19). By
eliminating m,, one finds a single boundary condition

R
g = ﬁi((l + e —%‘—) u, + oma) (28)

where the subscripts ¢ and m refer to the core and
mantle, R, is thus the core radius. At a physical interface
the vector function V(r) is continuous. One ends up with
a system of 6 ajgebraic linear equations where the right-
hand side represents the propagation of the disconti- -
nuity AV of the vector function. One solves numerically
for the 6 unknowns, 3 being at the Barth’s surface andthe
other 3 at the core-mantle boundary. First, no other
chemical interface will be introduced into the model
Earth.

Self-gravitation effect : a numerical test

A three-layer model, called structure (a) made of the
lithosphere (}, = 150 km, p1/po = #y/fe = 1), aD
asthenosphere (I, =270 ki, pa/po =14 12 [ 11,=0.001),
and a core (I = 3500 km, palpe =33 13 = 0) is first

investigated for comparison with the analytical modél
which ignores the existence of the core and of self-
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gravitation. Figure 4 depicts the relevant computed
quantities. All solutions are strikingly sensitive to the
presence of the core-mantle boundary. When the
perturbing mass reaches this interface, it generates a
compensating mass of equal magnitude but of reverse
sign and the induced velocity and gravity field vanish.
Physically this corresponds to the fact that the hetero-
geneity is floating on the undulating boundary.

Two sets of solutions are shown in the figures in order to
appreciate the effects of self-gravitation. The latter is
included, (¢ = 1) for the full curves, and excluded
(¢ = 0) for the corresponding dashed curves. As
expected, self-gravitation strongly amplifies the geoid at
low order I Here the amplification turns out to be as
large as 80 %, for I = 2. Indeed, the increase of density
with depth in the present Earth model favours this
effect. Correspondingly the topography is also affected,
whereas the deviatoric stresses remain unchanged. Again
the straight line drawn on figures can help comparing
the solutions with the simple moment laws. For the
geoid, the initial slopes are larger in the presence of
gelf-gravitation. '

Physical interface at 650 km

A second numerical model, called structure (), considers
the following spherical Earth structure. The viscous
lithosphere (I, = 150 km, py/py = 1, /1o = 1) sur-
rounds an asthenosphericlayer(, = 500km, p,/po =1,
#o/ 1o = 0.001). Below 650 km the lower mantle
(I, = 2250 km, ps/po = 14, N3/ o = 0.03) exhibits a
marked viscosity increase. The core ({, = 3500 km,
palpo =33 1. =10) is assumed to be inviscid and
homogeneous.

The computed geophysical quantities are depicted in
figure 5. In comparison with the analytical homogeneous
Earth model, this stratified structure yields solutions for
the topography with the following characteristics. For
mass heterogeneities of long-wavelength, comparable or
greater than the Earth’s radius R, the new curves differ
only slightly from the old ones. For moderate-wave-
lengths, the sharper drop of the curves shows that mass
heterogeneities located within the lower mantle gene-
rate very little topography. This means that the more
viscous lower mantle sustains this mass more efficiently.
The stresses transmitted to the lithosphere become
therefore much smaller. Thus figure 5 shows a sharp drop
of the rate of lithospheric deformation controlled by
Tye L as soon as the mass heterogeneity is put close to or
into the lower mantle. Finally the solutions for the geoid
height exhibit more complexity. ¥or large-wavelengths
one noticés.a reduction of the amplitude but no change
of sign. For moderate-wavelengths however, the geoid
height changes its sign when the mass heterogeneity is
located close to the 650 km boundary. This means that
the geoid anomaly is predominently determined by the
decp source, rather than by the weak induced topogra-
phy. As the source is put deeper into the lower mantle,
" its gravitational attraction at the Earth’s surface wea-
kens, whereas the induced topography remains fairly
constant, Thus the geoid height changes sign again. This
behaviour is only found for / values between 8 and 40,
Tt agrees with the conclusion of other authors having
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Figure 4

Plot of the same three geophysical observables as in figure (3). This
time the model Earth corresponds to structure (a) : a lithosphere of
thickness 150 km and of unit density and viscosity, surrounds an asthe-
nosphere of density 1.4 and viscosity 0.001 extending to an inviscid
core of density 3.3. Two sels of solutions are given for these uncompres-
sible Earth models : the full curves are with self-gravitation, the dashed
curves are without. For tectonic stresses the two curves are yndistin-
guishable. Again one notices that the effect of self-gravitation is sizable
for low order [-values.

studied somewhat simpler Earth structures containing
distributed body heterogeneities (Lago and Rabino-
wicz, 1983; Parsons and Daly, 1983; Hager, 19835,
Richards and Hager, 1984).
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Figure 5
Same plots as in figure 4 but for Earth structure (b), with an added
feature, the 650 km upper-lower mantle boundary. The upper mantle
has now a unit density and the same viscosity as in structure (a}, whereas
the lower mantle of density 1.4 has a viscosity 0.03, implying a viscosity
contrast of 30 at 650 km. This Earth model is again self-gravitational
as are all the following ones. Notice the change of scales with respect
to:the previous figure for the two lower quantities, For density sources
ed-near or below the new boundary, the computed surface res-
e; now a smaller magnitude as the stiffer lower mantle is
istaining larger stresses.
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Seame plots as in figure 5, for the same model Earth density and viscosity
but with the additional requirement that the upper-lower mantle boun-
dary be chemical {Structure (a)). This implies a two-stage flow pattern
respansible for the change of sign of the induced topography and tec-
tonic stresses. Netice alse that all quantities vanish at a chemical
boundary like here at 650 km and at the core-mantle. For pictural
simplicity some curves have not been drafted.

of the structure just described remain unchanged. This
new Earth model, called structure (), requires a vanish-
ing flow of material through that boundary. In the
computation procedure the vertical velocity v, is made
zero by superposing two solutions for V(r). The first
one is identical to that already obtained for a purely
physical interface. It yields a finite vertical velocity at
the 650 km boundary. The second one must induce a
compensating flow at this depth and derives from an
appropriate density heterogeneity located precisely at
this interface. The corresponding geophysical solutions
are shown 'in figures 6.

This new chemical boundary also requires that the three
plotted quantities vanish when the mass heterogeneity

A L S e s

et



reaches this interface. To understand the fact that the
topography and lithospheric stresses change sign when
the perturbing mass is located in the lower mantle, one
should realize that the chemical boundary imposes a
two-stage flow pattern. A downwelling current in the
lower mantle drives an upwelling flow above 650 km
because of the mechanical coupling at the interface.
Hence the changes of sign. A positive mass in the upper
mantle creates a depression at the Earth’s surface which
determines the negative sign of the geoid deflection. The
same mass located in the lower mantle produces a weak
positive surface topography. The strongest contribution
to the geoid is however coming from the induced mass
deficiency at the 650 km boundary and remains there-
fore negative. Similar results were obtained by Hager
(1983b) for a stratified Earth without lithosphere,

Narrow asthenospheric chamnmel

The last two model Earths, (5) and (c), can still be im-
proved by introducing more structure into the upper
mantle, This idea is prompted by the analysis of post
glacial rebound and Chandler wobble (Wu and Peltier,
1982; Yuen et al.,, 1982), combined with considerations
about large-scale and small-scale processes governing
the dynamics of the lithosphere (Richter and McKenzie,
1978 ; Fleitout and Yuen, 1983). It has fed us to introduce
a weaker sub-lithospheric channe] and at the same time
to reduce the viscosity contrast at 650 km. For this
purpose the former asthenosphere is divided into two
parts a 150 km thick sublithospheric channel
(n/n, = 0.0001) overlying a deeper layer of the upper
mantle of thickness 350 km and of larger viscosity
(n/ 1, = 0.01).

The computed solutions are drawn in figures 7 and 8.
The first figure corresponds to the structure called (d)
which has a physical interface at 650 km. The second,
labelled structure (e), has a chemical interface at the
same depth. These new solutions do not differ too
strongly from those shown in the last two paragraphs.
For large-wavelengths the weak sublithospheric channel
is not felt by the geoid, although it reduces the tectonic
stresses as seen by comparison with structure 5. For
intermediate-wavelengths -the shielding effect of the
soft channel is seen to operate efficiently. Thus the
geoid may now become clearly negative even in the
presence of the 650 km boundary.

IV. GENERAL SYNTHESIS AND DISCUSSION

Six spherical Earth structures of increasing complexity
have been studied in the last two chapters. No descrip-
tion has been given of the velocity and stress patterns
at depth corresponding to the computed solutions. The
dynamical response of each Earth model has simply
been presented by plotting the induced surface topo-
graphy H, the averaged deviatoric lithospheric stress
(Tgp — 7,,) and the geoid height N. For the real Earth
the first and the third of these observables are fairly
‘well measured, especially for spherical harmonics of
order / up to 20. Let us notice however, that the Earth’s
topography is mostly due to crustal thickness varia-
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tions but not to deeper mass anomalies. It is found
useful to describe these quantities by the ratio of their
spectral values called the admittance Z({) = N(I)/H(/).
This procedure is similar to the common practice
defining an admittance between gravimetry and topo-
graphy (Lewis and Dorman, 1970). It has the advan-
tage to facilitate the comparison between the available
set of data and a given class of model, and has been
used successfully to characterize elastic parameters or
compensation depth of oceanic plates for simple Airy
models (McKenzie and Bowin, 1976, Watts, 1978;
Diament, 1983).

Here another meaningful ratio will be introduced : it
compares the geoid and lithospheric stresses induced
by the dynamics of a given mass heterogeneity. The
lack of accurate data on the average tectonic stresses
means that the above ratio is poorly known for the
Earth. Often, only the sign and azimuth of these stresses
is given by in situ measurements (McGarr and Gay,
1978 ; Zoback and Zoback, 1980 ; Paquin ez 4l, 1982),
seismic focal mechanisms (Sykes and Sbar, 1973;
McKenzie, 1978), and geological deformations (Philip,
1980 ; Mercier, 1981).

This general discussion will also raise the question of the
limitation of the dynamical models presented so far,
which, unlike the real Earth, do not depart from a
purely radial viscosity distribution. To broaden the
scope of our investigation, two models with imposed
surface velocities, rather than prescribed mass hetero-
geneities, will briefly be discussed.

Admittance

A shallow mass heterogeneity dm at a depth z, (z < R/))
compensates a topography H = — dm/pg. The corres-
ponding geoid height expressed by the moment
law and already used in equation (20) reads
N, = — dmz2nGlg. Thus, in this approximation,
the admittance becomes :

N
H

This simple expression predicts a positivg”4dmittance
which means that geoid and topographit highs or
lows are correlated. It amounts to a value of 1/100 for
a compensation depth z located near the moho. Of
course, such a compensation structure cannot be
invoked for the large-wavelength geoid. Undulations of
100 m would imply topography differences as large
as 10 km ! The above argument is restricted to the case
of a single source heterogeneity. In the presence of
sources of opposite signs at various depths, the resulting
admittance can well be negative. A rough analysis of
the data for the Earth yields admittance values which
are predominantly negative for low orders (Kaula,
1980). It takes the topography without correcting for
lateral changes in crustal densities and one might
wonder how meaningful this type of analysis is. The
data is highly scattered, but values around — 1/10
are somewhat typical. Another analysis, which is
probably more relevant and deals exclusively with

—m a%. 29)
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Same plots-as in the previous figures but for Earth structure (d) which
resembles structure (b) but hias an additional sublithospheric channel
of very low Yiscosity. The density structure has not changed, but the
viscosity in the upper mantle is now 0.0001 for the 130 km thick channel
and 001 for the remaining layer. By comparison with the solutions for
st}:ucmre {b), one notices the screening effect of the sublithospheric
channel. '

I geoid and topography along the axis of oceanic ridges
yields, Z = — 0975 for I=2" and Z = 0.332 for
] = 3 (Menard and Dorman, 1977). Here'a qualitative
argiment is worth emphasizing. On the one hand, it is
sstablished that the World's ocean floors satisfy
‘topography v.s. age relationship (Parson and

On the other hand, the large geoid undu-
nic dgmain do not show any striking
This opposition between the two
finie- a: lower. bound for the
king a geoid ampli-
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Same plots asin the previous figures for an Eqrth structure (&) identical
1o structure (d) but where the 650 km boundary is now chemical.

This feature is seen 10 produice similar changes as before between
figures and 6.

tude of 100 m, and a possible departure to the topo-
graphy v.s. age relationship no larger than 500 m, one
sees that the absolute value of the admittance can be
expected to be at Jeast 0.2. Eustatic sea level changes
over the past 200 Ma do not seem to differ by more than
a few hundred meters from one continent to the other.
This also proves that as the continents are drified over
geoid highs and lows, their altitude remains almost
constant, This advocates for a high value of the admit-
tance.

Figure 9 depicts the predicted admittance Z() for six
different Barth structures. In each case 5 depth values
of the mass heterogeneity were chosen : the first just
below the lithosphere (200 km), the second (400 km)

S
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different source depths are represented as indicated by different

and third (600 km) above the interface with the lower
mantle, the fourth (700 km) just below this boundary
and the fifth at greater depth (1400 km). The curves at
the top left correspond to the analytical model Earth
with an homogeneous mantle surrounded by a thin
lid. Following equations (25) and (23)one has : 30)
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Figure 9

Computed admitiances for the analytical model of figure 3 and for the numerical solutions of the model Earth structure (a) to (e). For each case, ﬁve'
symbols labelled in the top left
overlaps. Notice the existence of negative admittances in particular in presence of a chemical boundary at 650

1 = 10 not all peints are plotted to avoid

graph. Beyond
km (Structures (c) and (e))

For Iz < R this is equivalent to equation (29) derived
from the moment law and a full compensation by the
topography. At large / values each curve tends to vanish
showing that the departure from simple l-independent
relationships is even more drastic for the geoid than
for topography. When the mantle is assumed to be
homogeneous, one notices that the admittance is
always positive. This was found to remain true with
a mantle viscosity decreasing with depth and with
the inclusion of a core. An illustration is given at the
top right of the figure corresponding to the self-gravi-
tational Earth model of figure 4.
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A marked viscosity increase at depth leads to a reversal
of sign of the admittance. As shown in the middle and
lower rows of the figure 9, a chemical interface between
upper and lower mantle (right-hand side curves) favors
this trend. The presence of a narrow asthenospheric
channel (bottom row) is not well perceived by the
admittance. These results demonstrate that, if the real
Earth, like the present modeis had a viscosity structure
with spherical symmetry, the observed long-wavelength
geoid and topography could not be derived from upper
mantle sources. Indeed, shallow sources yield admit-
tance values smaller than 0.1. Lower mantle heteroge-
neities turn out to be the better candidate, the most
favourable case apparently being that of structure ¢
which implies a chemical interface at the lower-upper
mantle boundary. This opinion is strengthened by
Jooking at the predicted stresses.

Runcorn number

In order to compare the geoid height N to the averaged
force deforming the lithosphere (Tg — T,,) L, one may
first consider the simple relationships (1) and (2) derived
for shallow sources in a flat Earth. Both quantities
being proportional to the moment of the mass distri-
bution, their ratio is a constant :

N _2=m6G
(?ﬂﬂ - ?rr) L g2 '

It amounts to 4.4.1077 bar™'. This ratio is positive,
indicating that geoid highs are correlated with regions
of more extensional tectonics. The ridge push and the
geoid maximum associated with ridges provide a quan-
titative illustration of this relationship. For a litho-
spheric thickness L = 50 km, it implies 550 bar stresses
for 12 m of geoid (Fleitout and Froidevaux, 1983).

Longer wavelength geoid undulations have amplitudes
one order of magnitude larger than that. Are they
associated with proportional stress variations which
follow from equation (31) 7 If so, these would dominate
the global lithospheric stress pattern. Observations
preclude such a conclusion. Indeed, stresses often
change sign over short distances between neighbouring
tectonic provinces showing that short-wavelength shal-
low sources often dominate
one may say that the stress variations associated with
the large-wavelength geoid of amplitude 100 m are
unlikely to exceed 1 kbar.

These last remarks suggest that equation (31) does not
apply for all wavelengths and all depths of the sources.
This can readily be demonstrated on the basis of ana-
fytical solutions. The first study relating geoid height
and surface stresses for an homogencous Earth was
performed by Runcorn (1964). Out solutions are slightly
ifferent as we assumed no variations of g with depth.
We:shall call Runcorn humber the normalised ratio :

(31

the stress field. Numerically-
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This weak dependence is illustrated in the top left
corner of figure 10, which depicts the Runcorn number
for our 6 different Earth structures. Tt shows that for
the same geoid amplitude, the deepest long-wavelength
heterogeneity generates lithospheric stresses which
are two times weaker than those generated by long-
wavelength shallow sources.

Ru = (32)

m+n0_

In the presence of a viscosity increase for the lower
mantle the computed Runcorn number displays a more
striking pattern (middle and bottom rows). At first
glance the sets of curves are very similar to those des-
cribing the admittance. The change of sign indicates
that a geoid high can now correlate with maximum
compression. Like the admittance, these last results
point to the fact that a chemical transition and a vis-
cosity contrast within the mantle favour the generation
of a sizable geoid anomaly with moderate-surface
stresses by deep seated density sources. The absolute
value of Ru is found to be at most 6 as shown for struc-
ture ¢ and d Going back to the numerical estimate
made above, one expected Ru to exceed the value of 4.

The analysis carried out so far, points to deep hetero-
geneities to explain the 1arge-wavelength geoid. Never-

theless correlations exist between the large-wavelength

shape of the gedid and the distribution of subduction

zones, indicating the possibility of upper mantle sources.

The same is true with the hot spots (Crough and Jurdy,

1980). This problematic conclusion has prompied us

to examine models of a different type.

Models with imposed surface velocity

Assuming that seismology were capable of describing
the exact distribution of mass heterogeneities within
the Earth, can one expect the dynamical models treated
above to predict the observed plate tectonic velocities ?
The answer is negative for the simple reason that the
spherical symmetry of the viscosity structure denies
the very existence of plates. Put in another way this
argument means that for a purely radial distribution of
viscosities, mass heterogeneities can only induce a
spheroidal flow. The plate velocity pattern for the
Earth shows that the toroidal component is as impor-
tant as the spheroidal one (Hager and O’Connell,
1978). Hence the hint that the models presented so far
are only capable of accounting for part of the real
geoid.

Another approach becomes imperative, already sug-
gested by Hager and O’Connell (1978, 1979). It consists
in splitting the Earth into a central part which keeps
the spherical symmetry and an outer shell, the litho-
sphere, with a viscosity structure which varies laterally.
Zones of mechanical weakness, the plate boundaries,
allow moderate driving forces to maintain sizable plate
velocities without contributing too much to the geoid.
For instance the already. mentioned ridge push is
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Computed Runcorn numbers of the
meaning. One notices that structure

sets of points.

known to produce only some 10 to 20 m of geoid deflec-
tion. The problem is therefore to investigate the effect
- of the plate velocities on the central sphere. The neces-
sary return flow is driven by a pressure gradient which
also generates topography (Schubert et al, 1978;
Hager and O’Counell, 1979) and of course geoid,

Let this sublithospheric Earth consist of an astheno-
spheric channel of thickness d surrounding a rigid
lower mantle. This makes a simple analytical caicula-
tion possible. It starts from equations(22). The boundary
conditions are defined by having zero vertical and
horizontal velocity at the base of the channel of thickness

same & model Earth structures for which th
{d) characterized by the presence of a sub-
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Figure 10

¢ admittance was given in the previous figure. All symbols retain the same
lithospheric low viscosity channel leads to the largest Ru values, i.e, mini-
wizes the induced tectonic stresses for a given induced geoid amplitude. In the top two graphs the results for intermediate depths fall between the two

d and viscosity #. At the top, the vertical velocity also
vanishes, whereas the horizontal component v, is
prescribed. In this situation one should realize that the
maxima and minima of the surface velocity field are
out of phase with those of the topography, geoid and
averaged tectonic stress. Therefore the plate surface
velocities must in principle be decomposed in terms

é
of -33 :
the coefficients v, amount approximately to the plate
velocity divided by . This remark is useful if numerical
estimates are carried out.

Y?(0, $). These functions are not normalized and
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Figure 11

Computed admitiances and Runcorn number corresponding to the
topography, tectonic stress and geoid induced by an imposed surface
velocity expressed in terms af YT (00, These results are based on
equations (35) and (36) giving approximations of the analytical solutions
obtained for a narrow return flow channel with thickness 200 km,
The two parameters can take up a large positive value.

After a somewhat cumbersome algebra one finds
involved expressions for the stresses 1, and 7}, acting
at the base of the lithosphere. As before, these quantities
directly express the topography and the induced ave-
raged lithospheric stress. For d < R/I they becomie :

6 nuy R
H =
v (33)
4 R
T L = ”;" .

The absence of an explicit /-dependence must be
corrected by the implicit -dependence attached to the
definition of vy Thus, H and 7, L are about inversely
proportional to / for a given velocity amplitude.

Another approximation can be derived as d approaches
R, ie. for an homogeneous Earth :

Yo
N=3(+1)— (34
0+ D2 (34

Te L =21+ 1) nv,.

indicate that both quantities are propor-
¢ velocity and to the asthenospheric
more:a narrower channel requires
y being inversely propor-
siress. to 4 Indeed the

‘imposed surface velocity requires a channel return
.flow which is driven by a horizontal pressure gradient

giving rise to the induced topography. The latter is the
only mass heterogeneity present in the system. Thus,
gravity is simply determined by this monopole. In
this situation the admittance takes the simple form :

o

Z = .
RS

(35)

Similarly, the Runcorn number does not contain the
velocity. On the other hand for small d values it exhibits
a proportionality to 41, as seen in combining equa-
tions (33) and (35) :

3

Ru=357111

(36)

Y

As d approaches R the combination of (34) and (35)
yields :

[+1

=i

(37

rI) W

These results are plotted in figure 11. Obviously, large
Ru values are easily obtained for thin return flow
channels. At the same time the dynamically supported
uncompensated topography yiclds large Z values at
large-wavelengths.

The present exercise aimed at taking the hard facts of
plate tectonics in consideration. It hints at two funda-
mental conclusions. One is that upper mantie processes
are capable of generating sizable geoid anomalies
without creating too large a topography and too strong
tectonic stresses. The other is that latera] variations of
the viscosity and of the thickness of the asthenospheric
channel would lead to corresponding strong changes
in the values of the geophysical observables.

From (33), (35) and (36), one may derive numerical
estimates. Taking a surface plate velocity of 5 cm/year,
a channel viscosity of 10?° poise over a depth range
of 200 km, a plate thickness of 50 km, one can compute
all the relevant geophysical quantities for order / = 4.
Equations (33) to (37) yield the following values :

H=50m 7,L=405bar N =103m
Z =02 Ru=105.

These quantities are all fairly large. Of course, this
simple structure, where all the return flow is confined
to a narrow channel, constitutes an exireme case.

More complex deep structures were investigated nume-
rically. The results again show the effect of a viscosity
contrast at 650 km, of a chemical boundary at the same
depth and of a low viscosity channel below the litho-
sphere. The numerical procedure starts with the same
propagator equation as before but, of course, no
imposed mass heterogeneity is present and the free
slip boundary condition at the surface is replaced by
the imposed surface velocity. In the case of a chemical
boundary at 650 km, the vertical velocity at this depth
has to be made zero. As before, this is achieved by
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Admittances and Runcorn numbers computed for 9 dj

out, The next four structures derive from (d)
In structures (h) and (i),

nature of the upper lower-mantle interface.

superposing two solutions. The first is driven by surface
velocity, whereas the second is identical to that aiready
used in chapter III and is driven by a mass heteroge-
neity at the 650 km interface.

Figure 12 depicts the admittances (top) and the Runcorn
numbers (bottom) for 9 different structures. The first 5
are identical to structures (), (b), (c), () and (e) defined
in chapter III but for the fact that the outer layer, the
lithosphere is now absent. The last two of these struc-
tures have a narrow asthenospheric channel of 150 km.

Its thickness is now chosen equal to 200 km. The further
four structures retain the asthenospheric channel. The
latter is however overlain by a lithospheric layer which
has been introduced in order to increase the mass flow.
Thus structures (f) and (g) are obtained by adding a
" 100 km thick lithosphere to structures (d) and {e). This
lithosphere is only 10 times more viscous than the
material below to mak@; its deformation possible.
Finally, for structures (%) and (f), the viscosity of the
two layers beneath the asthenospheric channel is
ethanced by a factor 2.
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Figure 12

this return flow is somewhat more confined to the asthenospheri

erent Earth structures corresponding to the topography, tectonic Stresses, and geoid induced by
imposed surface velocity. Structures {(a) to (e) are identical to those introduced in chapter II1, except for the fact that the rather stiff lithosphere is left
or (e), but a weak 100 km thick lithosphere has been introduced in order to reinforce the mass return flow.

o channel as the viscosity underneath it has been multiplied

by afactor 2. Notice that the solutions on the vight-hand side correspond to Structures where the 650 km boundary is chemical. The corresponding struc-
tures with a physical boundary at 650 km are found on the lefi-hand side. Thus (b) and (c),

(d) and (¢), (f} and (g), () and (i) differ only by the

The numerical solutions confirm the prediction of the-
simple analytical model, that the Runcorn numbers
are inversely proportional to the channel width d as
seen by comparing (b) with (d), or (¢) with (). This
breaks down at large-wavelengths because the return
flow can no longer be restricted to the channel. Another
striking feature is the divergence of the pairs of curves
with and without chemical interface at low order L
The curves, for structures with a chemical boundary
within the mantle (right-hand side of figure 12), always
lie below the corresponding curves where this boundary
is only physical (left-hand side). This is caused by two
effects. First the geoid is reduced by the presence of a
mass induced at 650 km. Second, the confinement of
the return flow in the upper mantle somewhat enhances
the stresses. When the 650 km boundary is physical,
the admittances are very close to equation (35), the
small difference coming from the mass induced at the
core-mantle interface. In the case of a chemical boundary
at 650 km, the admittances are reduced and take a
value very close to that of a simple dipole. They do not
strongly depend upon the viscosity structure.
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Table 1 contains numerical values of the computed
geophysical observables for /=4, and an imposed
velocity parameter v, = 5 cm/yr. The 9 structures are
listed in the first column. Each structure derives from
the previous one in the list and the new added feature
is given as a reminder.

One sees that surface velocities imposed by the plates
are likely to induce a sizabie contribution to the observed
geoid, However somewhat larger viscosities would
be necessary to obtain 100m of geoid undulation.
Various models of surface deflection due to the present
plate motion have been calculated previously (Hager
and O’Connell, 1979). The correlation with the observed
gravity field is not perfect but these simple models
cannot take account of lateral variations of the viscosity
and thickness of the asthenospheric channel, like
may be the case in the Earth between cratons and oceans.
These rheological heterogeneities modulate the return
flow pattern and therefore, also the geoid.

CONCLUSIONS

This paper is concerned with the physical relationships
between topography, lithospheric stresses and geoid
undulations in a dynamical Earth. It undertook to
clucidate two questions. The first is connected with
the effect of sphericity, compressibility of the Earth
and self-gravitation, To answer it, we investigated the
response of a viscous Earth to the presence ofan internal
load. The latter being characterized by a spherical
harmonic of order /, we showed that the above geo-
metrical and physical ingredients play no significant
role for ! values larger than 10, ie. for wavelengths
smaller than 4000 km. At larger wavelengths, seli-
gravitation has the strongest influence. It can slightly
reinforce the topography and strongly emhance the
geoid by as much as 80 %, without changing tectonic
stresses. For mass heterogeneities located within the
lithosphere at a depth z, the induced geoid is propor-
tional to z This proportionality constant is weakly
J-dependent, but departures from the simple moment
law (2) remain moderate for realistic viscosity struc-
tures. The same is true for tectonic stresses induced
by shallow sources, which are well described by the
simple moment law (1). Thus, one can explain several
features of the observed geoid like the linear trend
away from the oceanic ridges as well as the associated
tectonic stresses and topography. Small-wavelength
maxima over the Altiplano in the Andes or over the
Alps also stem from shallow sources. In all cases, they
give rise to geoid deflections amounting to 10 to 20 m.

The second question addressed in this paper is twofold
and could be phrased as follows : how deep are the
sources responsible for the observed geoid at large-
and moderate-wavelengths ? How can one satisfy
the constraints of plate tectonics in a model Earth
with a purely radial distribution of viscosity ? The
analysis of a stratified Earth structure has shown the
importance of expressing the spectral ratio between
geoid and topography on the one hand, and between
geoid and deviatoric lithospheric averaged stresses
on the other hand. These two ratios are called admittance
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Table 1

Computed tapography, tectonic stresses, geoid, admitiance, and Run-
corn number produced by an imposed surface velocity patiern cha-
racterized by a spherical harmonic of order 1 =4, with a velocity

parameter v, = 5 cmfyr. The 9 structures listed in column | all derive

from the previous one and the new feature is specified.

H N Z Ru
m bar m
{a) Homogeneous mantle = 10*' p 20 302 4 019 05
{#) Same but with 30 times larger lower
mantle viscosity . 223 671 44 019 27
(¢} Same structure with a chemical
interface at 650 km 661 1359 48 007 15

{d) 200 km channel with 10?° p rest of
the upper mantle 1022 p lower mantle
P

3.10 50 141 18 019 52

(¢) Same structure with a chemical
interface at 650 km 306 275 22 007 33

(f) Same structure as (d) with added :
100 kmn weak lithosphere 10*! p 158 268 31 019 438

{g) Same structure with a chemical
interface at 650 km 490 630 41 0.08 2.7

(%) Same structure as (f) but both layers
below channel with doubled viscosity 264 362 53 019 6.0

(i) Same structure with a chemical inter-
face at 650 km : 599 739 50 0.08 23

and Runcorn number. Their values for the Earth are
very roughly known for small / values. It is believed
that for some cases, these quantities can be negative.

Here, two possible origins for the large-scale gravity

perturbations are examined.

For the long-wavelength geoid undulations of ampli-
tude approaching 100 m, it turns out that no sources
located within the upper mantle can be fully satisfac-
tory as they lead to admittances and Runcorn numbers
of too small magnitude. In other words, the induced
topography and stresses are much too large. More
satisfactory results are derived from sources below the
650 km discontinuity if it is marked by a viscosity
increase by 1 order of magnitude or more. This is
especially true when no material can flow through this
discontinuity. In particular, only such sources are
found to yield negative values for the two ratios for
low I-values. Somewhat different results might be
obtained for highest viscosity in the lower mantle
or in case where no lithosphere is included (Hager,
1983h; Lago and Rabinowicz, 1983). Within the fra-
mework of radial viscosity distributions, and for
widely accepted structures like (d) and (e), it turns out
that one has great difficulties in finding a mass dis-
tribution which could satisfy the global data at large
wavelengths.

Features of intermediate wavelengths, say for
20 < I < 30, could well be linked with upper mantle
sources. Indeed their modest amplitudes would imply
correspondingly reduced forces on the lithosphere.
Negative admittance values found for zones of sub-
duction could thus possibly be understood by the
effect of a marked mantle viscosity increase, either
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between lower and upper mantle (Rabinowicz ef al,
1983; Hager, 19835), or between an asthenospheric
channel and the rest of the mantle. A high viscosity
lower mantle is not absolutely necessary for explaining
geophysical observations correlated with subduction
zones. This is suggested by cases (b); (d), and (e) in
chapter 1.

For practical purposes the following question deserves
full attention. Can one use the moderate-wavelength
geoid to make predictions about the prevailing tectonic
stress field ? This type of approach has been promoted
for the continents (Liu, 1978, 1980; Rong-shan Fu
and Pei-hua Huang, 1983). It must be regarded with
caution knowing that the geoid maxima over the
Altiplano and the Alps correlate with extension in the
first case, similarly to what is observed for oceanic
ridges, and on the contrary with compression in the

second case. Truly a satisfactory correlation is only

to be expected if the Runcorn number is relatively
insensitive to the depth and wavelength of the source
density. This is the case for an homogeneous mantle
structure, Figure 10 demonstrates that more realistic
Earth models are incompatible with such an assump-
tion. Hence, the elusive task of establishing the correct
link between geoid and intraplate tectonics remains.

One major drawback of the Earth models with spherical
symmetry is their intrinsic impossibility to generate
appropriate surface velocities. Their lithosphere being
continuous and homogeneous, the induced surface
velocities are vanishingly small. The latter can account
for intraplate deformation not for plate motion. To
circumvent this limitation, a sublithospheric Earth
-model has been analytically treated with imposed
surface velocities of adequate amplitudes. The conse-
quences are rather striking. The predicted geoid ampli-
tude is reasonable. The admittance and the Runcorn
number are positive, and their magnitudes are of the
right size. Thus the long-wavelength characteristics of
the geoid associated with diverging zones, the ridges,
correspond to a broad minimum. For the Earth such
a feature is claimed to be superposed on the shorter
wavelength maximum caused by the mass distribution
in the cooling plate (Jacoby and Seidler, 1981). On the
contrary, a broad maximum should correlate with
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subduction, ie. zones of convergence, This is obviously
trug for the Earth. One has to realize that these simple
models have shown that the viscosity and depth of the
channel return flow are very sensitive parameters,
They vary considerably between an oreanic and a
continental plate or even on a regional basis, A realistic
Earth model will imperatively have to integrate these
lateral viscosity variations before the true contributions
to the geoid to be ascribed to plate motion can be
computed, '

Our concluding remarks should emphasize the idea
that both type of models investigated in this paper are
necessary-to account for the geoid. Plate motion
requires a return flow generating a topography which
can only be partly compensated and is hardly obser-
vable because of its small amplitude and long wave-
length. Its non-dipolar nature leads to a marked con-
tribution to the geoid, with admittances which must
always be positive and cannot thereby explain all
features of the measured data. Mass heterogencities
at various depths, on the other hand, can in principle
provide the additional contributions to geoid, tectonic
stresses and topography. The improved mapping of
mantle heterogeneities by the seismologists will soon
warrant detailed correlation studies with the geoid.
These investigations will not only improve our
knowledge of the mantle density structure, but also
help to put more constraints on the lateral variations
of the viscosity structure because of the necessity to
take into comsideration the terms describing the plate
motion.
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