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Abstract. A competent layer with a nonlinear 
rheology can, under extension, exhibit pinch-and- 
swell instabilities. Such instabilities can ex- 

plain small-scale regular deformations of rock. 
Recently they have also been invoked in relation 
to the distribution of basins and ranges 
(Fletcher and Hallet, 1983) and the undulation of 
the Bouguer map (Froidevaux, 1986) in the western 
part of North America. For the case of a simple 
stratified structure, different authors have 
expressed mathematical solutions describing 
these instabilities. In this paper we elucidate 
the general physical meaning of these nonhomoge- 
neous deformations. In the simplest case where 
the competent layer is fully embedded in a softer 
material, a fundamental mode develops with a 
preferred wavelength equal to 4 times the thick- 
ness of a competent layer. The novelty is the 
occurrence of overtones with alternate symmetri- 
cal and antisymmetrical deflections of the inter- 
faces between layers. These modes have a large 
amplitude when the rheology tends to perfect 
plasticity. The presence of a free surface like 
the earth's surface for the upper crust is shown 
to double the preferred wavelength of the funda- 
mental mode and to forbid one overtone out of 

two. This new effect is caused by gravity which 
inhibits the growth of surface topography. 
Another shift is of opposite sign to that caused 
by a free surface. Numerical solutions for multi- 
layer structures can elucidate the nature of 
couplings between various layers. The case of a 
three-layer lithosphere having a soft lower crust 
and overlying a mantle asthenosphere has been 
analyzed in some detail. It shows that, in the 
range of wavelengths larger than 30 km, up to 
five preferred modes may be superimposed. This 
should encourage further analysis of the western 
U.S. topography and gravity pattern which is 
known to contain at least two wavelengths: about 
40 km for the individual basins and ranges and 
about 200 km for the Bouguer troughs in Nevada 
and their associated broad topographies. 

Introduction 

Boudin is the French name for blood sausage, 
called black pudding by the British. The name has 
been used by geologists to describe deformed rock 
layers with pinches and swells. It has quickly 
been realized that these structures had been 

formed as strong layers embedded in a weak matrix 
were elongated. Such small-scale observations 
have suggested that the distance betwen succes- 
sive pinches amounts to a small multiple of the 
layer thickness. The basic physical problem 
consists therefore in unraveling the mechanisms 
of these stretching instabilities, and in pre- 
dicting their growth rate and preferred wave- 
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lengths. Large-scale deformation like the rather 
regular succession of basins and ranges in 
western North America has also been looked at in 

terms of a grand crustal boudinage (Fletcher and 
Hallet, 1983). Here, the wavelength is 40 km. 
Similar regularities in the distribution of rifts 
are found in the recent extensional deformation 

of Tibet and possibly in the Early Tertiary phase 
of tectonics in northeastern China (Armijo et 
al., 1982; Ma et al., 1984; Froidevaux and 
Ricard, 1985). For a still larger depth range, 
boudinage instabilities have been invoked for the 
mantle lithosphere in order to account for a 
striking 200 km wavelength undulation of the 
Bouguer map in the Basin and Range province of 
North America (Froidevaux, 1986). 

The concept of crustal or lithospheric boudin- 
age requires knowledge of the deformation pattern 
at depth. For examples, the Moho and lithosphere- 
asthenosphere boundary configurations ought to be 
compared with surface observables like topography 
and gravity. This information about deep struc- 
tures is not usually available, although recent 
results of reflection seismology by the Consor- 
tium for Continental Reflection Profiling 
(COCORP) have shed some light on the Moho geome- 
try in the Basin and Range. Regional seismic 
tomography (Humphreys et al., 1984; Marillier and 
Mueller, 1982; Montagner, 1986) will certainly be 
needed to constrain the problem. 

In the present paper, the physics of instabil- 
ities induced by extensional or compressional 
tectonics will be presented. Any attempt at pred- 
icting the exact structures of a specific geolog- 
ical case seems to be difficult before the geo- 
physical data set is improved. First, we shall 
define the physical laws and appropriate boundary 
conditions. Our approach is based on the study of 
marginal instabilities for layers of finite 
thickness. It is akin to earlier formulations 

(Johnson, 1977). A particular effort has been 
made to derive simple analytical solutions for 
the induced transverse perturbations caused by 
the main deformation. Specific selection rules 
for the preferred wavelengths of boudinage or 
folding are given, and their physical meaning is 
elucidated. The analysis is then extended to 
investigate the action of gravity which tends to 
hamper the surface topography. Furthermore, the 
geodynamically important influence of a narrow 
intracrustal or sublithospheric soft channel has 
been quantitatively tested. The physical insight 
gained is related to the occurrence of fundamen- 
tal modes and overtones for the instability. It 
helps to understand the final solutions for 
stratified lithospheric structures with various 
thicknesses, densities, and viscosities. 

Physical Model 

Let us consider a stratified structure made up 
of parallel layers of varying thickness and me- 
chanical properties. When such a structure is 
stretched, or compressed, each layer will become 
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thinner, or thicker. However, the deformation can 
be inhomogeneous; it is made up of a large-scale 
basic flow and smaller-scale instabilities. The 

basic problem of the buckling of a compressed, 
competent layer surrounded by a viscous fluid has 
been treated in the thin plate approximation 
(Blot, 1961; Ramberg, 1963). It shows the exis- 
tence of selected wavelengths for the folds. 
More general studies with layers of finite thick- 
nesses and nonlinear rheologies have shown that 
the mathematical treatments are identical for 

stretching and compression (Smith, 1977, 1979). 
In particular, the characteristic wavelengths of 
boudinage and folding are predicted to be equal. 
Comparisons between theory and laboratory experi- 
ments have been satisfactory (Biot et al., 1961; 
Ramberg, 1955; Neurath and Smith, 1982). For 
tectonic structures involving the whole crust or 
lithosphere, the above physical approach is ap- 
plicable (Fletcher and Hallet, 1983; Zuber et 
al., 1986). It requires the choice of realistic 
rheologies, a nontrivial proposal. 

•+•xx h at this interface. The velocities and 
stresses are continuous across a perturbed in- 
terface. From this statement one derives the 

following linearized expressions for the perturb- 
ing components of the stresses (Johnson, 1977): 

•a •b (Pa-Pb)gh cos kx zz-Uzz - 
(3) 

•a •b 4(•a-•b )•xx kh sin kx •XZ- •XZ = 

The indices a and b refer to the media above and 

below the interface. The right-hand side of the 
first relationship expresses the buoyancy of the 
deflected boundary. In the second relationship, 
the right-hand side is proportional to the dif- 
ference in deviatoric stresses related to the 

basic flow on both sides of the deflected bound- 

ary. The deformation of an interface is therefore 
driven by this combination of gravity and rheolo- 
gical effects. These two conditions and the con- 
tinuity of the vertical and horizontal velocities 
represent the required boundary conditions. 

Basic Equation The Growth Rate Factor q 

The model lithosphere consists of horizontal 
layers, each having a uniform density • and vis- 
cosity •. A power law (Johnson, 1977) between 
creep rate • and stress • is assumed. It implies 
an effective viscosity of the form 

1-n 

•=A((•xx_•zz)2+4•xz2) 2 (1) 

Here A is a proportionality factor, n the power 
law coefficient, and x and z the horizontal and 
vertical axes. 

Starting from the constitutive equations one 
can derive the following relationships (Smith, 
1977, 1979; Fletcher, 1974): 

•zz = 2• •zz- p 

•xz=2• •xz 
ß •,• 

Here •, •, and the pressure p define the pertur- 
bations with respect to a time independent basic 
flow •. The viscosity • refers to that seen by 
the basic flow. One notices in (2) that exten- 
sional or compressional perturbations are easier 
along the principal axes of the basic flow x 
and z. 

Equations (2) can be combined with mass and 
momentum conservation relationships. The solving 
procedure consis.ts of trying out sinusoidal de- 
pendences along the horizontal axis x with wave- 
length k (Fletcher and Hallet, 1983; Ricard, 
1986). It yields general solutions for the 
stresses and the vertical and horizontal veloci- 

ties w, u as a linear combination of four terms 
(see Appendix A). The four coefficients of the 
general solutions must be determined on the basis 
of the boundary conditions at each interface. 

Boundary Conditions 

The planar geometry of a given interface is 
assumed to be perturbed by a sinusoidal undula- 
tion of amplitude h(t)cos(kx). The growth of this 
perturbation at the time t is •(t)cos(kx), and 
its magnitude is equal to the vertical velocity 

Our numerical solving algorithm (Ricard, 1986) 
is somewhat simpler than what other authors have 

done. The deformations h i of the m interfaces are 
proportional to a linear combination of the 
growth rates •1 to •m' The problem is solved by 
computing the eigenvalues and the eigenvectors of 
this transformation. These eigenvalues can be 
defined as qi•xx ß The solutions can therefore be 
expressed as linear combinations of the eigenvec- 
tors, each one multiplied by the corresponding 
time dependent factor exp(qi•xxt). The largest 
eigenvalue, which we shall label q, dominates the 
evolution of all interfaces. This marginal sta- 
bility analysis only predicts initial growth 
rates. Final deformations are inaccessible to it. 

As an illustration, with a stretching amplitude 
•xx t of 50%, a growth rate factor of 9 enhances 

(2) the initial perturbation by a factor exp(9/2)=90. 
This shows how to use the computed values of q 
presented in the remaining sections of this pa- 
per. 

Deformation of a Strong Layer Embedded 
in an Infinite Medium 

The basic approach presented in the above 
section will enable us to treat some cases with 

simple geometry in order to gain physical in- 
sight. A simplified formulation of the problem 
will also be given and used to find analytical 
solutions in this section and the next one. 

Wavelength Selection 

The simplest geometry to consider consists of 
a layer of thickness H1 between two identical 
half-spaces. The whole structure is either 
stretched or compressed horizontally. The occur- 
rence of boudinage instabilities is known to 
require power law rheologies with large n values. 
Once this exponent exceeds 100, an asymptotic 
behavior is reached which is identical to perfect 
plasticity (Fletcher and Hallet, 1983). Here one 
takes n1=1000 for the strong layer and n2=3 for 
the half-spaces. The central layer is 100 times 
more viscous than its surroundings. All layers 
have identical density. The value n=3 is close to 
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Fig. 1. Growth rate factor q versus inverse 
wavelength for the instability of a competent 
layer of thickness H 1 imbedded in an infinite 
matrix of low strength. The horizontal wavelength 
k is expressed in a nondimensional form in terms 
of H 1. The competent layer has a highly nonlinear 
rheology (n=1000), and the surrounding matrix 
has a rheology with n=3. All layers have the same 
density so that gravity has no influence on the 
growth of instabilities. These solutions were 
computed numerically. The upper curve corre- 
sponds to instabilities caused by compression 
parallel to the plane of the competent layer, 
whereas the lower curve applies to extension. The 
schematic velocity patterns of the first modes of 
deformation are depicted by small cartoons. The 
letters S and A refer to the symmetry or anti- 
symmetry of this velocity pattern with respect to 
the central plane of the layer of thickness H 1. 

what comes out of laboratory experiments for 
high-temperature creep of minerals. However, the 
presence of faults in the seismic crust or of 
ductile shear zones in the hotter portion of the 
lithosphere is expected, on a macroscopic scale, 
to correspond to a more complicated rheology. The 
choice of a large value for n 1 is an attempt to 
come closer to the actual lithospheric rheology. 

Following the procedure described in the pre- 
vious section, the maximum eigenvalue was com- 
puted both for stretching and compression. The 
corresponding growth rate factor q versus H1/X 
is plotted in Figure 1. The upper curve corre- 
sponds to a compressional basic flow (•xx>0), 
whereas the lower curve applies to extensional 
flow (•xx<0). The growth rate q•xx is always 
positive except for discrete values of the wave- 
length X=4H1/2 j where j is an integer. The 
fundamental mode of the deformation instability 
is found for X•4H1, but overtones at X_•4H1/3, 
4H1/5,... are also present. 

The fundamental mode corresponds to buckling 
in compression and boudinage in extension, as 
shown by the cartoons inserted next to each 
curve. One notices that in compression the funda- 
mental velocity mode is represented by a single 

ceil flowing through the central layer as its 
boundaries deflect. Similarly, two open cells 
characterize the fundamental mode for extension. 

The velocity field of the shorter-wavelength 
modes includes additional cells, as indicated by 
the other cartoons. One notices that for a given 

basic flow, either compressional or extensional, 
the instability is alternatively symmetrical 
(type S in Figure 1)or antisymmetrical (type A). 
In other words, both boudinage and buckling can 
simultaneously be present. 

The vertical velocity maximum is not always 
located at the interfaces. The deformation inside 
the competent layer can be stronger than on its 
boundaries. However, when the growth rate at the 
interfaces becomes zero, the perturbing flow 
vanishes everywhere inside the layer. 

The preferred values of k are the same for 
compressional and extensional instabilities. The 
corresponding selection rules can be written in 
the following way: 2Hi=jR+X/2. In wave propaga- 
tion, an analogous condition applies for con- 
structive interferences between an incident and 
reflected wave at a distance H 1 from a mirror. In 
our problem, a sinusoidal undulation of horizon- 
tal wavelength k at one interface induces verti- 
cal velocities in layer 1 during stretching or 
compression. Vertically, according to (A1) and 
(A2), the velocity has a wavelength 
kl=k/•l=kX/nl/(nl-1). For large n values, both 
horizontal and vertical wavelengths are about 
equal. 

Amplitude of the Overtones 

The J-•crease of the overtone amplitudes for 

large wave numbers is related to the exponential 
decrease with depth of the physical quantities •, 
•, •"•xz, •zz' This depth dependence is expressed 
by equation (A1). It shows that the decay_of the 
perturbing flow depends on exp(-2•H1/k%/nl). The 
larger the power law exponent n, the larger the 
number of overtones with high amplitudes. When 
the viscosity is more linear (n1-•1), the enve- 
lope of the growth rate maxima decreases more 
sharply than in Figure 1. At the same time, the 
amplitude of the fundamental mode vanishes. For a 
discontinuous strength stratification, the use of 
large n values leads to the existence of high- 
amplitude overtones. A continuous viscosity dis- 
tribution would lead to a steeper failoff of the 
higher order peaks in the q versus H1/kdiagram 
(Fletcher and Hallet, 1983). The viscosity varia- 
tion over a depth range comparable with the hori- 
zontal wavelength k decreases with kin the case 
of a continuous strength stratification. There- 
fore the growth rate of the deformation, propor- 
tional to the viscosity variations, diminishes 
sharply with k. However, these overtones still 
exist for a continuous viscosity distribution 
with a large power law exponent (Zuber et al., 
1986). In a following section we shall see that 
for the real earth the effect of surface gravity 
tends to damp the fundamental mode. This effect 
increases by comparison the importance of the 
higher-order modes of deformation. 

Analytical Formula for the Growth Rate 
of an Instability. 

The growth rate factor which was computed 
numerically for Figure 1 can also be obtained 
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analytically if one makes the assumption that the 
tranverse deformation of the strong layer has to 
be either symmetrical (boudinage) or antisymmet- 
rical (folding). We find 

+ • Q2_ 1 + - • 1 q=-2n 1(1- )( - )+ • • sin(•kH• ) ( (Q2+l)sh(•lkH1 
1 

2Qch(•lkH 1 ) ) )- 
(4) 

where 

One verifies that q vanishes when the sin 

function is zero, i.e., when X=2•1H1/j. The plus 
and minus signs respectively correspond to 
buckling and boudinage. An equivalent expression 
has been derived earlier, for the case of 
buckling only (Fletcher, 1974). The agreement 
between (4) and the computed values of Figure 1 
is perfect. 

A simplified analysis will now be presented 
for boudinage. It is somewhat akin to the thin 
plate approximation applicable only to buckling 
(Biot, 1961). Our mechanical reasoning will be 
restricted to long wavelengths and will include 
the effect of gravity. We consider the same 
structure as above, a single layer between two 
half-spaces, but also include a density differ- 
ence •p. The central layer has thus a density p, 
and the lower and upper half-spaces have densi- 
ties p+•pand p-•p. When the deformations are 
symmetrical, the gravity forces at the interface 
are also symmetrical. If•p is taken as positive, 
the gravitational forces will be stabilizing. 
They will be destabilizing for negative •p val- 
ues. We shall assume the deformation is sym- 
metrical under stretching. 

Expressing the stress deviator and averaging 
vertically over the depth range of the central 

layer (-H1/2<z<H1/2) one finds 

<'•' >_<•' >=4• 1••• dz=8•/"] •. (5) ZZ XX n 1 ZZ nl H1 

From the equilibrium equation one can derive 

<•xx >: 
•.b • XZ 

-k< ' =0 (6) 
Here •xz b is the shear stress at the top interface 
within the layer. Similarly, one can define •zz b. 
The shear stress is antisymmetrical with respect 
to the middle of the system. If z is measured 
vertically from the middle of the competent lay- 
er, it amounts to •xz=2•xz b z/H 1 to first order. 
An integration by parts yields <•zz>: 

<• >= dz=•b 1 8•zz 
zz z zz-,j dz= %z + z dz z 

• •b 1 •b 

< o- o- (7) zz 1 xz 

Here the vertical derivative of •z was expressed 
in terms of •z according to the equilibrium 
equation. Substituting (6) and (7) into (5) one 
obtains a relationship between the growth rate h 
and the boundary stresses inside the layer. 

8• • •b 2 •b 1 2 2) (8) n, • = •zz-• •z ( 1- •k H 1 

Equations (3) relate the stresses •b below one 
interface to the stresses •a above it. In Appen- 
dix B we show that •a can be expressed in terms 
of the boundary deflection h and its growth rate 
•. The calculation is carried out to the same 

order of approximation as in (7). It yields 

b 6pgh-2 •k(•-• h) 
(9) 

•b 

• =4(•1-•2)• kh+ •2 l(•_•xxh)(1 1 2 2) xz xx ••, -•k H 1 
By combination with (8) this leads to an 
expression of the growth rate factor q, q= 2/•xx h 
for long-wavelength boudinage, 

-- 1 1,2•2 8pgH• 

q=1-n1(1-•) • n• 1 1 2 2 

In the next section, we shall treat some cases 
showing the agreement of this approximation with 
numerical solutions. The agreement is better than 
that obtained for buckling under compression for 
the well-known thin plate approximation (Biot, 
1961; Fletcher, 1974). Using our symbols the 
latter relationship reads 

8pgH• 1 

+SFtxxk• ( • ) q=nl 1 2 2 • n• 1 

In all expressions (4), (10), and (11) one en- 
counters the characteristic physical parameter 

(V2/V1)•nl/n2" Both approximations (10) and (11) 
are equivalent at large wavelengths and yield 
negative growth rates at short wavelengths. In 
particular, q vanishes for k=O. Notice that for 
boudinage the growth rate has a maximum value 
equal to n 1, whereas q may diverge in the case of 
buckling (Smith, 1979). The driving or retarding 
effect of gravity forces, expressed by the terms 
containing 8p, is quite different for boudinage 
and buckling. In the boudinage the variation of q 
with wavelength is not changed very much by the 
gravity term. However, when 8pgHl=8•xx , one may 
see by inspection of (8) and (9) that to first 
order <•xx>-<•zz>=O. The vanishing stress de- 
viator leads to a vanishing growth rate of the 
instabilities. For 8pgHi>SV•, the growth rate 
becomes negative, i.e., the stabilizing action of 
gravity dominates. In the case of buckling, the 
gravity term contains the wavelength. For large 
wavelengths (k=O), the growth rate will become 
negative or strongly positive depending upon the 
sign of 8p. The gravitational component of the 
induced instabilities is much more important for 
compression. For a stabilizing density contrast, 
a well-known illustration is the fact that whole 

crust pinches and swells are easier to form than 
whole crustal folds. 

Asymmetrical Solutions 

The application of the physical concepts ex- 
plained in the above section to the case of the 
earth's crust or lithosphere requires the consid- 
eration of asymmetrical structures. First, we 
shall analyze the consequences of the existence 
of a free upper boundary. Second, we shall study 
the effect of a narrow asthenospheric channel. 
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Fig. 2. Computed growth rate factor q versus 
2H1/X for a competent layer of thickness H 1 with 
a free surface at the top and underlain by a 
weaker infinite half-space. Other characteristics 
are identical with those corresponding to 
Figure 1. Gravity causes the occurrence of 
alternating forbidden bands. It also doubles the 
values of the preferred wavelengths defined by 
the maxima of q. 

i.e., in the middle of the equivalent layer. 
Alternating forbidden bands now exist for the 
compressional and extensional regimes. In par- 
ticular the fundamental mode in compression now 
has a wavelength 3 times shorter than the funda- 
mental mode in extension. 

These simple arguments showing how the presence 
of a free surface forbids certain modes and 

shifts the preferred wavelength values can be 
compared with numerical solutions. Figure 2 de- 
picts the growth rate factor q for the structure 
made up of a strong layer over a half-space. Its 
upper surface is free and allowed to deform. For 
simplicity the only density contrast is at the 
surface, so that pl=P2 . The top surface is 
slightly deformed, and its concavity is either 
the same as or the opposite of that of the lower 
interface. The forbidden bands are not as broad 

as in the extreme case where the top surface 
deflection is required to vanish completely. At 
long wavelengths, one comes close to this extreme 
situation. For higher harmonics, internal 
stresses allow the development of larger relief, 
and the forbidden bands get narrow. 

Figure 3 depicts a set of q curves for the 
fundamental mode of boudinage. Curve e was ob- 
tained analytically from (11) for an equivalent 
layer of thickness 2H 1. The curves a to d were 

Wavelength Doubling Imposed by a Free Surface 

Let us consider a layer of thickness H1 and 
power law n 1 overlying a half-space with power 
law exponent n 2. The viscosity and density are 
again •, Pl, and •2,P2' Depending upon the cho- 
sen sign of •P=P2-Pl, one can investigate the 
instabilities at the crust-mantle or lithosphere- 
asthenosphere boundary. The induced surface re- 
lief will be the result of two competing factors: 
gravity will tend to damp the topography, whereas 
stretching or compressional instabilities will 
tend to enhance this topography. If the global 
deformation is driven by large deviatoric 
stresses, a given surface deflection will be of 
negligible weight. In that case, the effect of 
gravity can be ignored. The deformation can again 
be either symmetrical or antisymmetrical, and the 
instability flow pattern and preferred wavelength 
conditions should be close to those discussed in 

the previous section. On the other hand, gravita- 
tional forces can dominate the local dynamic 
behavior if the global deviatoric stresses are 
weak. In such a situation, the free surface will 
tend to remain fairly flat, and the deformation 
of the competent crustal layer will be asymmetri- 
cal ß 

A qualitative understanding of this last 
case can be derived from the assumption that the 
vertical velocity vanishes at the free surface. 
In other words, its variation within the layer 
exhibits a nodal point at the surface. The same 
is true for shear stress. Such a pattern of 
deformation was previously found to prevail in 
the middle of a layer undergoing boudinage insta- 
bility (type S in Figure 1). One can thus define 
an equivalent layer thickness 2H1, so that the q 
maxima now correspond to the selection rule 

X=8H1/(2j+1). Half of the modes (type A) seen in 
Figure 1 are now incompatible with the condition 
of a vanishing velocity at the free surface, 

250 
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Fig. 3. Growth rate factor q versus nondimen- 
sional inverse wavelength for the fundamental 
mode of boudinage. Each curve corresponds to a 
given intensity of the gravitational stresses 
compared to the extensional stresses. This last 
parameter is expressed by the value of the ratio 
plgH1/4•-•-xx, which increases and amounts to O, 1, 
2, and 3 for the solutions labeled a, b, c, and 
d. The dashed curve, marked e, corresponds to the 
analytical solution derived from equation (19) 
for an equivalent layer of thickness 2H 1. This 
double layer should be identical to a case where 
the above ratio is infinite, i.e., where the sur- 
face is completely hampered, as explained in the 
text. 
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Fig. 4. Growth rate factor q for the fundamental 
mode of boudinage of a competent layer of thick- 
ness H 1 overlying a soft channel of varying 
thickness H2. Other characteristics are unchanged 
in comparison with previous figures. As the weak 
channel becomes narrower, i.e., as the labeled 
parameter H2/H 1 decreases, the maximum of the 
curve shifts to a smaller wavelength value. This 
preferred wavelength X/H 1 is also indicated next 
to each solution. 

numerically computed for various values of the 
stretching deviatoric stresses. This set of 
curves illustrates the physical validity of the 
approximation derived with an equivalent layer of 
double thickness. These results also illustrate 

how actual boudinage instabilities can have a 
dominant wavelength between 4 and 8 times the 
thickness of the strong layer. 

Wavelength Reduction Related to a Soft Channel 

The rheological behavior of the lithosphere 
can be approached by considering a stratified 
viscosity structure. The deformation of the upper 
crust occurs by brittle failure. This seismic 
layer is considered to be mechanically stronger 
than the warmer ductile lower crust. Below the 

Moho, the mantle lithosphere is relatively strong 
because olivine is less ductile than crustal 

minerals. At greater depths, the temperature 
dependence may eventually be balanced by a pres- 
sure dependence which has not yet been fully 

documented by laboratory experiments. The width 
of the asthenospheric channel is thus essentially 
derived from geodynamical arguments (Fleitout and 
Yuen, 1984). Here, we shall consider a simple 
structure consisting of a strong top layer over- 
lying a soft channel. As before, the layers are 
characterized by a thickness H 1 or H2, a viscosi- 
ty •1 or •2, a power law coefficient n 1 or n 2, 
and a density Pl or P2' The boundary conditions 
at the base of the soft channel are chosen to be 

no slip for the perturbation flow. A set of 
solutions have been computed. They correspond to 
various values of the width H 2 of the asthenos- 
pheric channel. The growth rate factor q of the 
fundamental boudinage mode is plotted in Figure 
4. The line for an infinite channel width is 

taken from Figure 3 (curve b). The other lines 
depict new solutions and are labeled according to 
the value of H2/H 1. For all cases the same stret- 
ching deviatoric stress is applied; other parame- 
ters are specified in the figure caption. As the 
channel becomes narrower, the growth rate de- 
creases and its maximum is shifted to shorter 

wavelength. The value of X/H 1 at the maximum is 
also given for each curve. One sees that the 
dominant wavelength is reduced by a factor of 
about 2 when one compares the solution for an 
infinite asthenosphere to the solution where the 
channel is of equal thickness with the strong 
layer. 

Boudinage of a Three-Layer Lithosphere 

In the last two sections, it was shown that a 
layer with a strongly nonlinear rheology develops 
stretching instabilities. When gravity effects 
are negligible, the fundamental mode is centered 
around a wavelength equal to 4 times the thick- 
ness of the competent layer: X=4H. The over- 
tones, with wavelengths 3, 5, 7,... times shorter 
than the fundamental, represent alternatively 
buckling and boudinage modes. The action of grav- 
ity at the surface tends to hamper the buildup of 
high topographies. This effect forbids certain 
instability modes and tends to double the wave- 
length of the fundamental mode. On the other 
hand, the presence of a low-viscosity channel 
shifts the preferred wavelength to smaller val- 
ues. The mechanical response of stratified struc- 
tures like the earth's lithosphere can in princi- 
ple be analyzed in those terms. Several idealized 
lithospheric models were submitted to stretching, 
and the growth rate and configuration of insta- 
bilities analyzed. 

The model lithosphere now consists of a strong 

upper crust with H 1, •1, nl, Pl, a soft lower 
crust with H2, 72, n2, P2, and a strong mantle 
lithosphere with H 3, •3, n3' P3' This three-layer 
lithosphere is underlain by a half-space astheno- 
sphere with 7--4, n4, P4' Table 1 shows that in all 

Hi, km 
ni 
Pi 

TABLE 1. Parameter Values for a Three-Layer Lithosphere 

Upper Crust Lower Crust Mantle Lithosphere Asthenosphere 

15 15 20 or 60 
103 or 3 3 3 or 103 3 

2.8 2.8 3.2 3.15 
1 10 -2 1 10 -2 
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Fig. 5. Growth rate factor of stretching insta- 
bilities for a three-layer lithosphere consis- 

H3/% 
1/4 1/2 

t00 , , 

,50 a b 

o 
200 100 70 50 40 :55 

WAVELENGTH km 

ting of a rheologically unstable upper crust Fig. 7. Same plot as in Figure 5, but this time 
(n1=1000, thickness H1=15 km), a soft lower crust for a three-layer lithosphere where the rheolo- 
(H2=15 km) and a mantle lithosphere (H3=20 or 60 gically unstable layer (n= 1000) is the mantle 
km). This lithosphere lies upon an infinitely lithosphere of thickness H3= 20 km. Other fea- 
deep asthenosphere. All layers but the upper tures are unchanged. The presence of a first 
crust have a nonlinear rheology with n=3. The overtone (c) is observed at short wavelengths (no 
density contrasts •p amount to 0.4 g/cm3 at the gap). 
Moho and-0.05 g/cm3 at the lithosphere-astheno- 
sphere boundary. The intensity of the gravita- 

to illustrate how the deformation of various 
tional stresses compared with the applied exten- 

layers can be coupled to each other. 
sional stresses expressed by the ratio 
PlgH1/4•l•xx amounts to 3. The dashed curve corre- 
sponds to the structure with a thicker mantle Unstable Upper Crust 
lithosphere (60 km). A gap exists on the short- 
wavelength side of this fundamentaI mode. The Let us first examine solutions where the upper 
letters a and b refer to the submodes depicted in crust alone is unstable (nl =1000). Figure 5 de- 
the next figure. picts the computed growth rate factoras a 

function of the wavelength. The plot is restric- 
ted to wavelengths larger than 30 km as geophysi- 
cal observations and regional tectonic trends are 

cases described in this section the density val- expected to exclude shorter wavelengths. The plot 
ues, the viscosities, the crustal thicknesses exhibits two distinct peaks. The largest peak (b) 
HI=H 2 and the power law coefficients of the soft is centered around 55 km. It corresponds to the 
crust and mantle layers n2=n 4 remain unchanged. formation of pinch-and-swell instabilities within 
The thickness of the mantle lithosphere H 3 and the crust with practically no deformation of the 
the values of the power law coefficients for the mantle lithosphere. This mode is illustrated in 
strong layers n 1 and n 3 will be varied. As Figure 6b. It is very similar to the case of a 
stated above, these three-layer models will be 
understandable on the basis of the physical con- 
cepts found in the last two sections with no 

essential addition. It is interesting, however, 

b 

Fig. 6. Deformation pattern of a three-layer 
lithosphere with a rheologically unstable upper 
crustal layer. The two submodes depicted here 

'-,+.++..+ tit + + t t t t ß t t t ß t 

correspond to the maxima a and b of the q curve Fig. 8. Deformation pattern of the interfaces of 
of Figure 5. The finite deformation is not acces- a three-layer lithosphere corresponding to the 
sible by our physical analysis. Therefore only three peaks a, b and c in the q curve of Figure 
the relative amplitude and phase relationships at 7. The rheologically unstable mantle lithosphere 
each interface are physically meaningful. Notice boudins in the first two sub-modes, and folds in 
that the upper crust boudins at both wavelengths. the shorter-wavelength mode. 
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Fig. 9. Same q factor plot as in Figure 7 for a 
similar three-layer lithosphere. This time, howe- 

ver, the mantle layer is thicker (H3=60 km and 
again n3=1000). More overtones appear: a, b, c 
and d. 

strong layer over a soft channel of equal thick- 
ness illustrated by the bottom curve in Figure 4. 
This comparison is also quite favorable as far as 
the value of the preferred wavelength X is con- 
cerned. Again one finds that this induced short- 
wavelength topography is uncompensated and must 
be supported by internal stresses. In contrast to 
this, the long-wavelength mode pictured in Figure 
6a has developed a crustal root which provides 
partial compensation. This Moho deflection is 
passively followed by the mantle lithospheric 
layer. The smaller peak (a) in the q curve of 
Figure 5 corresponds to this mode. It is centered 
around the wavelength of 220 km. One may inter- 

200 

t50 

100 

50 

a2 

H3/,L 

1 
! 

3/2 2 
i 

0 /0 5'0 ¾0 
WAVELENGTH km 

Fig. 11. Same q factor plot as in Figure 9 for a 
similar three-layer lithosphere (Hi=H2=15 km, 
H3=60 km). This time, however, both the upper 
crust and the mantle lithospheric layer are rheo- 

logically unstable (n1=n3=1000). This solution 
should be compared with Figure 7 and Figure 9 
where only one of the two competent lithospheric 
layers is unstable. 

++++ +t++ +++++t + t + * + •++1 
, ....... . ......... •.... •.. J . _ :•_ .•.•...• .••..••••••.......•'.:..:. .'-: ß '•.,': ..... .:.' ...... :..'.:' ß 'Q.•½."'-:•::.: ':. ::? '-' :::.•..'-'.'..'.-:..v".'.::.." ":..:!:.':';': ::..:. 
--^----^-...-,•.--, -^ ', -^ -^ - ;. ,,' ^ ß 

Fig, 10, Deformation patterns aorresponding to 
the wavelengths of the different maxima a, b, a 
and d of the curve of Figure 9, As prediated, 
boudinage and buakling alternate, 

pret this larger wavelength in terms of an effec- 
tive thickness of the whole lithospheric sand- 
wich. This mode is less active when the mantle 

lithosphere is chosen to be 60 km thick rather 
than 20 km, as shown by the dashed curve in 
Figure 5. Shorter-wavelength overtones are not 
shown in Figure 5. A gap separates them from the 
plotted fundamental mode. 

Unstable Mantle Lithosphere 

We next examine the response of a structure in 
the case where the mantle lithosphere alone is 

highly non-linear (n3=1000). Two different thick- 
nesses of the layer will be considered. Figures 7 
and 8 depict the solutions for the case where 
H3=20 km. As in Figure 1 we notice the existence 
of a fundamental mode in the range of wavelengths 
larger than 40 km, which is twice the width of 
the unstable layer. For shorter wavelengths, the 
plot of the growth rate factor q shows the begin- 
ning of the first overtone (c) where the unstable 
layer buckles rather than boudins as seen in 
Figure 8c. The two cartoons 8a and 8b correspond 
to the deformation pattern of each peak within 
the fundamental mode. Similarly to what we ob- 
served in the previous case, the inactive layer, 
now the upper crust, is either taking part pas- 
sively in the deformation or remains unperturbed. 

When the thickness of the unstable mantle 

lithospheric layer is increased to 60 km, several 
overtones appear in the range of wavelengths 
which is taken into consideration here (X>30 km). 
This is shown in Figure 9. The vanishing q values 
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! A A A A A A A A A A 

d • A • A • A A A • A A • 

Fig. 12. Deformation patterns for a lithosphere 
structure with two rheologically active compe- 
tent layers. Each cartoon a2, b, c and d corre- 
sponds to a maximum in the q versus H3/X curve 
of Figure 11. These solutions should be compared 
with those of Figure 6 (unstable upper crust) and 
Figure 10 (unstable mantle lithosphere). Notice 
that the upper crust boudins at all wavelengths, 
whereas the mantle lithosphere alternates between 
boudinage and buckling. 

between the various modes are found to correspond 
to wavelengths 120, 60, 40, 30,... km. This 
agrees with the prediction for the simple one- 
layer system of Figure 1. The fact that the first 
modes have a relatively small amplitude is to be 
attributed to the effect of gravity. The latter 
damps the long wavelengths more efficiently than 
the short ones. This can already be observed in 
Figure 2. One may also notice that the splitting 
of each mode into separate peaks is not resolved 
in the present case. However, a careful analysis 
of the deformation pattern of the fundamental 
mode reveals a change of concavity of the weak 
Moho deflection. This means that the pattern 
shown in Figure 10a, which corresponds to the 
fundamental mode, is in reality subdivided into 
two submodes. The next cartoons (Figures 10b-10d) 
illustrate the type of deformation corresponding 
to the maximum of the fundamental overtones. One 

notices alternate boudinage and buckling of the 
active layer. For the larger wavelengths the 
upper crust is passively involved in this defor- 
mation. It remains practically undeformed at the 
shorter wavelengths. 

Lithosphere with Two Active Layers 

Finally we illustrate a case where both the 
upper crust and the mantle lithosphere are unsta- 

ble (n1=n3=1000 , H3=60 km). Figures 11 and 12 
depict the variation of the growth rate factor q 
and the deformation pattern corresponding to its 
maxima. The q curve is equivalent to that of 
Figure 9 modulated by that of Figure 5. This 
means that the deformation is a composite of the 
crust-induced and mantle-induced instabilities. 

The comparison of Figures 11 and 9 shows that the 
extrema have kept their respective positions. For 
wavelengths larger than 120 km the two submodes 
(a 1 and a2) which were hard to resolve in the 
previous case are now well separated. The four 
modes represented in Figure 12 show alternate 
buckling or boudinage instabilities of the 60-km- 
thick mantle layer. However, one should notice 
that all patterns fall within the fundamental 
boudinage mode of the active 15-km upper crust. 

Conclusion 

Suggestions that stretching instabilities 
could affect the crust as a whole, or even the 
lithosphere, prompted us to undertake a detailed 
physical study of such instabilities using a 
model structure. In its simplest form the latter 
consis.ts of a competent layer imbedded in a 
weaker infinite matrix. Highly nonlinear rheolo- 
gies like those where the rate of deformation • 
is proportional to the stress at a power n>>l 
make the competent layer very unstable under 
extension or compression. Boudinage or folding 
instabilities can grow very rapidly around some 
preferred wavelength X= 4H, but also at higher 
harmonics or overtones. We have shown that gravi- 
ty tends to hamper or emphasize these instabili- 
ties, depending upon the sign of the density 
differences between layers. For instance we could 
quantify the shift in preferred wavelength, as 
well as the occurrence of forbidden gaps for 
certain ranges of wavelengths, caused by the 
stabilizing effect due to the density contrast at 
the earth's free surface. On the other hand, the 
density contrast at the lithosphere-asthenosphere 
boundary is destabilizing. It enhances the growth 
rate of instabilities when the lower lithosphere 
is actively involved. When possible, we have 
checked the agreement between analytical and 
computed solutions. 

The idealized lithospheric structures investi- 
gated in the last section illustrate that several 
preferred wavelengths can be present simulta- 
neously in a stratified structure undergoing 
stretching. It is therefore of primary interest 
to analyze geophysical data with these models in 
mind. In a situation like the Basin and Range 
province in western North America, the question 
is now to find out if the topography and Bouguer 
anomaly patterns contain dominant wavelengths and 
if so, what are their respective azimuthal orien- 
tations and with what tectonic phase might they 
be connected? In a future study we plan to pres- 
ent some answers to such questions. In regions 
where the data are more sparse (e.g., Tibet or 
northeast China), one may also find it relevant 
to plan deep structural studies by seismic and 
gravity methods to look for possible correlations 
between surface features and Moho and deeper 
configurations. 

Of course the earth's lithosphere may be even 
more nonlinear mechanically than our extreme 
stratified model structures. It may also contain 
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inherited discontinuities, such as deeply pene- calculation, only the terms of order larger than 
trating faults. However, we consider the present kH 1 are kept. 

investigation as a necessary step to clarify the ••• H1__•8• Hl_f k basic mechanisms that yield some of the observed <•>=1 dz= •- •z dz--•- •z dz 
regularities in the length range 20 to 200 km in (B4) 

tectonic provinces such as those mentioned above. • k• f2 • •k <u•u --•jz dz•u - Hi• Appendix A 

A general solution with sinusoidal dependence The combination of (B1) to (B4) yields the ex- 
along the horizontal axis can be found for the pressions of the stresses at the deflected bound- 
perturbing flow: 

w= (al f l (z)+a 2 f2 ( z)+a3f 3 ( z)+ 
a4f4(z))cos kx 

u=( (-•a 1-•a2 )fl ( z )+ (- •a2+•a 1 ) f2 ( z )+ 
(•a3-•a4)f3(z)+(-•a4-•a3)f 4 (z))cos kx 

zz=-2•ek ( (al fl ( z)+a 2f2 ( z)-a 3 f3 ( z)- 
a4 f4 (z) ) cos kx 

xz=-2•k ( (-eal-•a 2 )fl ( z)+ (-•a2+•al)f2( z)- 
(eaB-•a4)fB(Z)-(-•a4-•aB)f4(z))sin kx 

where 

fl (z) = cos•kz expekz 
f2( z)= sin•kz exp•kz 
f3 (z)=cøs•kz exp-ekz 
f4 (z)= sin•kz exp-•kz 

(A la) 

(Alb) 

ary versus h and •. 

• b 6pgh-2 •2 •zz = • k(•-•xxh) 
•b •2 1,,•.._ h 1.2 2 • =4(•1-•2)• kh+••n-•xx )(1-• H 1) XZ XX 

(B5) 
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