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Regular vs. chaotic mantle mixing
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Abstract

Most quantitative models of mantle mixing have been based on simulations of tracer advection by 2-D flows. The present
work shows that the mixing properties of 3-D time-independent flows cannot be understood or extrapolated from previous
2-D models. Steady convective flows appropriate to simulate a uniform fluid with large viscosity are restricted to poloidal
components. They seem to have regular streamlines. However, the existence of plates on the Earth’s surface imposes the
existence of a strong toroidal field. Flows where both poloidal and toroidal components are present can yield chaotic
pathlines which are very efficient in mixing the mantle. Within areas of turbulent mixing where the stretching increases
exponentially with time, regular islands of laminar stretching persist in which unmixed material can survive. Our findings
indicate that the intrinsic three-dimensionality of convection coupled with plates as much as its time dependence must be
included in numerical models to understand the mixing properties of the mantle. As the viscosity is significantly larger in the
lower mantle than in the upper mantle, the toroidal component of the flow is confined to the upper mantle, where a more
thorough mixing should take place. q 1998 Elsevier Science B.V.
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1. Introduction

Mantle geochemical heterogeneities are created at
shallow level by partial melting under ridges and
erosionrsedimentation processes. These hetero-
geneities, frozen in the cooling oceanic lithosphere,
are ultimately destroyed by mantle convection. Sam-
ples from the mantle are extracted at ridges and
hotspots. Their elemental and isotopic composition
suggests the existence of various geochemical reser-
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Ž w x.voirs at depth e.g., 1–4 . One of them, the MORB
reservoir, is well mixed and is the source of ridge
basalts. The isotopic heterogeneity of other reser-
voirs shows that they have been isolated for billion
years. Understanding the rehomogenization and mix-
ing in the mantle is thus fundamental for interpreting
these observations.

As diffusion in solid phases is very slow even at
mantle temperature, material heterogeneities must be
thinned down to meter size before diffusion becomes
efficient. Therefore, the behavior of heterogeneities
can be studied from models where tracers are simply
advected. The pathline of a tracer reads

d xi
su 1Ž .id t
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Ž .where t is the time, x t are the coordinates of thei

tracer and u are the velocity components. Variousi
Ž .papers have studied the implications of Eq. 1 for

geochemistry. What has been done to simulate the
mantle circulation in 2-D models where the flow is
induced by imposing plate-like velocities at the sur-
face, is computed by a 2-D convection code, or both
Ž w x.e.g., 5–9 . Previous work has generally assumed
that the tracers are passive, i.e. have mechanical
properties comparable with those of the surrounding
mantle. In that case, the background velocity is
independent of the distribution of tracers. More re-
cently, this assumption of passive tracers has been
removed in 2-D studies where the entrained bodies

w x w xhave different viscosities 10 or densities 11 . Tack-
ling the problem of the mixing properties of the
mantle using a 3-D flow has been addressed only by

w x w xGable et al. 12 and Schmalzl et al. 13,14 .

2. Considerations on the flow pattern

Assuming that the mantle is incompressible, the
mass conservation equation allows us to express in
the most general way the velocity field into two

Žcomponents. They are known as the poloidal or
.spheroidal and toroidal components and can be de-

duced from two 3-D scalar fields P and T. The
Ž .general form of Eq. 1 on Cartesian coordinates

with z vertical, reads:

d x ET E2P
s q 2aŽ .

d t E y EzEx

d y ET E2P
sy q 2bŽ .

d t Ex EzE y

d z E2P E2P
sy y 2cŽ .2 2d t Ex E y

The poloidal flow has a 3-D structure without
vertical vorticity, the toroidal flow corresponds to
rotations in the horizontal plane. In spherical coordi-
nates the poloidal flow has no radial vorticity, the
toroidal flow is confined on spherical shells. In other
words, the surface expressions of the mantle poloidal
flow are ridges and trenches, the surface expressions
of the toroidal flow are strike–slip faults.

This differential system is somewhat akin to the

Hamiltonian system of classical mechanics. When
Ž .the flow is only two-dimensional, system 2 is

equivalent to a Hamiltonian system with one degree
of freedom in the steady case. This means that a
conserved quantity can be defined, or equivalently,
that the velocities are perpendicular to the equipoten-
tials of a stream-function. For example, when the
flow is confined to the xy plane, T is conserved. In
a steady flow, the pathlines described by the tracers
also correspond to streamlines. Therefore, in 2-D
time-independent flows, the trajectories are closed
loops that tracers follow indefinitely.

In the 3-D case, the larger dimensionality of
Ž .system 2 could lead to a much more complex

dynamics. This system can be shown to be equiva-
Žlent to a two-degrees-of-freedom Hamiltonian e.g.,

w x.15,16 . In this case one can expect that the system
will yield a chaotic behavior even in the case of a
steady flow. For example, the so-called ABC flows
w x w x17 , other space periodic flows 18 or bounded

w xflows 19,20 are steady flows yielding chaotic path-
lines. While these flows are quite idealized and are
not appropriate for the Earth mantle, they give a
glimpse on the intricacy of chaotic and regular re-
gions in 3-D flows.

In the case of Rayleigh–Benard convection, chaos´
w xis present at finite Prandlt number 21 . Contrarily,

w xSchmalzl et al. 13 have found that 3-D steady-state
convection at infinite Prandlt number is associated
with a non-chaotic behavior. In their numerical ex-
periments the tracers are found to be confined at the
surface of tori. The intersections of these tori by
planes define closed loops. The trajectory of a tracer
at the surface of a torus can either be periodic or
may densely fill the surface of the torus. Even in this
case, the strong confinement of the trajectories for-
bids an efficient mixing.

w xSchmalzl et al. 13 used a convection model at
infinite Prandlt number and with constant viscosity.
In this case, it can be shown that the toroidal field T

Ž w x.of Eqs. 2, is zero e.g., 22 . It seems thus that,
although kinematically imposed 3-D flows could in-

w xduce chaotic pathlines 19 even when they are re-
w xduced to poloidal components 20 , 3-D poloidal

flows which are solutions of convection equations at
infinite Prandlt number and with free surface condi-
tions cannot. In the case of thermal convection, the
presence of toroidal motion, either naturally excited
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w xat low Prandlt number 21 or kinematically imposed
w x19 , can be the cause of chaotic motions.

At the surface of the Earth, the poloidal and
toroidal components of motion have been roughly

w xequal for tens of million years 23–25 as the conse-
quence of the existence of rigid and independent
tectonic plates. The problem of mixing in the mantle
has never been studied in a regime where kinetic
energies described by the poloidal and toroidal com-
ponents are comparable.

3. A simple flow pattern

In this paper, we consider a circulation model
driven by surface motions only. We use a 3-D
Cartesian geometry and confine the flow to a box of
square horizontal section whose depth H is two-
thirds of the section width L. To excite both poloidal
and toroidal flows, the surface is divided into two
rigid plates. The two plates are separated by a
‘‘transform fault’’ and two ‘‘ridges’’. The two ridges
have the same length equal to Lr2. Each plate has a
constant and uniform velocity parallel to the trans-
form fault. We impose free slip conditions at the
bottom of the box and reflecting boundary conditions
on the four lateral faces. Therefore, the boundary at
the front simulates a ‘‘subduction’’. This very simple
geometry is described in Fig. 1 in a case where one
plate remains fixed. A schematic view of the flow
imposed at the surface and computed at the front and
the right-hand sides of the box is also depicted.

The numerical solution for the induced 3-D cavity
flow can be easily found through a Fourier transform
in the horizontal directions. The vertical variations of
the flow are obtained by means of a classic propaga-

w xtor method 26 . The velocity flow is computed on a
128=128=129 grid. Within each element, the ve-
locity components are interpolated from the eight
closest neighbors using a trilinear scheme. We define
the poloidal and toroidal amplitudes s and s of aP T

flow by
2 22 2E P E P

2s sH q d x d y 3aŽ .P ž / ž /EzEx EzE y

2 2ET ET
2s sH q d x d y 3bŽ .T ž /ž /E y Ex

Fig. 1. Box of aspect ratio 2r3 in which the computation is
performed. The flow is only driven by a surface motion mimick-
ing a real plate with a segmented ridge, a transform fault and a

Ž .subduction zone top . The resulting flows at the surface, the front
and the right-hand faces are depicted at the bottom.

respectively, where the integrals are computed on the
top surface of the box. We can modify the
toroidalrpoloidal ratio of the flow, s rs , by mod-T P

ifying the length of the transform fault. When no
transform fault is present, the flow field is purely
2-D and poloidal. When the length of the transform
fault is L, the toroidal field attains its maximum
amplitude but a poloidal component still exists. In-
deed, the reflecting boundary conditions impose a
subduction on the front face of the box and a ridge
on the back face. With this geometry, the ratio
between toroidal and poloidal amplitudes reaches
58%.

In the computation of the flow, poloidal and
toroidal velocity components decouple. Therefore,
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for a given choice of surface plate motion, we can
also study the effects of the two components sepa-
rately or by adding them in variable proportions. The
velocity fields that can be obtained by arbitrarily
mixing the two components satisfy the boundary
conditions of zero normal velocity on the faces of
the box and of free slip at the vertical faces and at
the bottom of the box. However, the composite
surface velocity does not correspond to the motion of
rigid plates anymore, unless the two components are
in the same proportion as in the original case.

4. Regular and chaotic behavior

When the computation of the three velocity com-
ponents u is done, the motions of tracers are com-i

Ž .puted from the advection equation 1 . The advection
equation is solved by a fifth-order step-adaptive
Runge–Kutta method. As the pathlines may be very
complex in 3-D, we resort to Poincare mapping, i.e.,´
we simply consider the successive intersections be-
tween a pathline and a fixed plane that we choose as
horizontal and located at mid-depth of the box.

Fig. 2 depicts various experiments made with
different geometries where the length of the trans-

Ž . Ž .form fault is varied from 0 Fig. 2a to L Fig. 2f .
The corresponding toroidalrpoloidal ratios are 0%,
11%, 23%, 32%, 47% and 58%. The plate geome-

Ž .tries and surface motions one fixed, one moving
are indicated with dashed lines. Only a few tracers
are followed in their motions and each tracer is
represented by a different color. The number of
tracers, their initial positions and the total duration of

Fig. 2. Poincare sections obtained by plotting the intersections of the pathlines of ;50 tracers with the horizontal mid-depth plane. Each´
tracer has its own color. The shapes of the surface velocities are indicated by dashed lines. The values of the toroidalrpoloidal ratios are

Ž . Ž . Ž . Ž .given in %. Two sections b and c are blown up for details and are depicted on the left-hand side. The transition from a to d is
associated with an increase in the ergodicity of the pathlines.
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the advection are for the moment, without impor-
tance. They have been chosen only to highlight the
geometry of the Poincare sections. Although the flow´
pattern is merely a simple roll in all the experiments,
the behaviors of the pathlines change drastically with
the length of the transform fault.

ŽWhen the flow is purely poloidal and 2-D Fig.
.2a , the trajectories are closed loops in vertical planes

perpendicular to the ridge. Thus, the Poincare section´
Žfor each tracer consists of only a couple of points in

Fig. 2a, 24 tracers are followed and give rise to 24
.couples of points . When the toroidal component has

Ž .a small amplitude Fig. 2b , the Poincare section´
reveals, at least locally, regular motions mapped
through concentric loops. This indicates that the
tracers orbit on the surface of embedded tori. The
axis of the tori are parallel to the ridges. The tracers
are crossing the mid-depth plane going upward be-
low the fixed plate and downward below the moving
plate. Regular island chains are also observed be-
tween loops. For example, a green tracer draws a
7-island chain in the blow-up of Fig. 2b. These
islands are cross-sections of invariant tubes winding
between the tori.

When the toroidalrpoloidal ratio increases, the
domain of regular motions with loops and island
chains decreases in size. In the case of Fig. 2c, only
a very small region of loops surrounded by a 3-is-

Ž .land chain persists see blow-up of Fig. 2c . A
Žfurther increase in the toroidalrpoloidal ratio Fig.

.2d apparently destroys all regularity in the pathlines.
Ž .When the transform fault is even longer Fig. 2e ,

the pathlines regain some regularity as the poloidal
flow itself becomes less twisted. In the extreme case
where the transform fault cuts the surface into two

Ž .rectangular plates Fig. 2e , the Poincare sections´
reduce to couples of points. The trajectories are
again closed loops although they are bent and do not
lie on vertical planes like those of the case of Fig.
2a.

The numerical experiments depicted in Fig. 2
suggest a relationship between the variations of the
toroidalrpoloidal ratio and the amount of ergodicity
in the pathlines. The evolution of the topology of the

Ž .Poincare sections Fig. 2a–d is indeed comparable´
with the well-known transition to chaos for near-in-

w xtegrable Hamiltonian systems 27–29 . The regions
Žclose to elliptic points i.e., surrounded by closed

.loops are stable under the effect of a perturbation
whereas the tracers start wandering erratically next

Ž .to the hyperbolic points i.e., between two islands .
The invariant structures of low periodicity are the
most stable: as the percentage of toroidalrpoloidal
ratio increases, more and more winding tubes and
more and more tori are destroyed until the flow
appears ergodic.

However, the transition observed from Fig. 2d–f
shows that the presence of a large amount of vertical
vorticity in addition to a poloidal flow does not
forbid the existence of regular pathlines. This indi-
cates that the poloidal field, by itself, must be com-
plex enough to be associated with chaotic pathlines.
One thus wonders whether the changes in the
Poincare sections of Fig. 2a–f may not be related´
rather to an increase in the complexity of the poloidal
field, reaching a maximum in Fig. 2d, than to the
presence of a toroidal component.

In order to test this hypothesis we consider sepa-
rately the poloidal and toroidal components of the
flow field corresponding to the case of Fig. 2d and
add them in variable proportions before computing
the Poincare sections. These numerical experiments´
allow us to verify that the transition from regular to
chaotic pathlines is not simply due to the changes in
the geometry of each velocity component.

In Fig. 3, we have mixed the toroidal and poloidal
components present in the flow corresponding to Fig.
2d. In Fig. 3a, the flow is purely toroidal, in Fig. 3b,
purely poloidal, in Fig. 3c and d, the
toroidalrpoloidal ratio is 10% and 20%, respec-
tively. Adding the two flows with a ratio of 32%
would again lead to the Poincare section depicted in´
Fig. 2d. In the presence of the purely toroidal field
Ž .Fig. 3a , the pathlines are very simple. As seen from

Žinspection of Eqs. 2, the motions are only 2-D the
.vertical velocity is zero and the pathlines are closed

Ž .concentric horizontal loops the isolines of T and
they coincide with the Poincare sections. In Fig. 3b,´
the flow corresponds to the poloidal field alone. In
this case, the Poincare section shows regular struc-´
tures. If the pathlines in a purely poloidal field
correspond to the dynamics of an integrable Hamil-
tonian system, any perturbation may destroy the
stability of the structures of highest periodicity. We
think that the wiggles and islands drawn in the outer
loops of the Poincare section of Fig. 3b reveal the´
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existence of perturbations inherent to the numerical
treatment of the problem.

ŽAddition of some toroidal components Fig. 3c

.and d partly destroys the regularity of the sections.
The transition between regularity and ergodicity al-
ready observed when the length of the transform
fault is increased is again found with the same
gradual destruction of tori and of island chains of
large periodicity. Thus, for our cavity flow, the
presence of a toroidal field seems to be necessary to
obtain a large domain of chaotic pathlines. Its ab-
sence explains why only regular structures are found

w xin the numerical experiments of Schmalzl et al. 13 .

5. Implications for mantle mixing

For a 2-D steady flow, heterogeneities are trapped
by closed pathlines, the mixing is inefficient and
each streamline behaves as an isolated ‘‘geochemical
reservoir’’. In the time-dependent case, the mixing
rate is related to the explicit time dependence of the
flow but the problem is to keep unmixed reservoirs
as requested by geochemical observations.

The characteristics of the 3-D steady mixing are
drastically different and depend upon the poloidal
flow complexity and the toroidalrpoloidal ratio of
the flow. Fig. 4 depicts the general topology of the
invariant surfaces when the toroidal component has a
vanishing amplitude as revealed by the Poincaré
sections of Figs. 2 and 3. The tracers are spiraling on

Ž .the various surfaces, either as tori dark grey or
tubes, like the one light-grey winding five times
around the inner torus. According to the ratio be-
tween the periodicities of a tracer around the small

Ž .and large radii of the tori rational or irrational ,
these surfaces can be densely filled or not. The
mixing occurs slowly and at most on a 2-D surface.
As heterogeneities remain confined on nested sur-
faces, an infinite number of isolated reservoirs are
present.

With a small percentage of toroidal flow, some
invariant tori are preserved but between them, the

Fig. 3. Poincare sections obtained for various 3-D flows obtained´
by arbitrarily mixing the poloidal and toroidal components present

Ž . Ž .in Fig. 2d. In a , the flow is only toroidal, in b poloidal. The
Ž . Ž .toroidalrpolodal ratios are 10% and 20% in c and d , respec-

tively. Whereas the sections obtained for either a pure toroidal or
wŽ . Ž .xa pure poloidal flow a and b are regular, chaotic regions

Ž . Ž .develop in c and d .
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Fig. 4. Topology of the pathlines obtained for a pure poloidal
field. The tracers are spiraling around the tori and tubes. The
intersection of pathlines by a plane gives rise to the loops and
island chains seen in Fig. 2Fig. 3. Adding some toroidal compo-
nents breaks tubes, then tori.

pathlines start wandering. The flow topology consists
of stable tori like the dark-grey surfaces in Fig. 4,
but some light-grey tubes are destroyed, yielding 3-D
impermeable but mixed reservoirs. The presence of
segregated stable tubes coexisting with chaotic ad-
vection has also been observed experimentally in

w xother steady flows with different geometries 18 .
Above some threshold for the toroidal energy, all tori
seem to be destroyed and the whole box corresponds
to a single reservoir.

It seems intuitive that the efficiency of mixing
should be the fastest in regions where the flow is
chaotic. However, this is not necessarily true, as
mixing efficiency is not only related to stretching but
also to reorientation and folding of the streak-lines.
In addition, during the computations of the Poincaré
sections, we never compare the duration of the ad-
vection experiment with the characteristic return time
of mantle convection. In Fig. 3b for example, a

tracer belonging to the outermost loops has per-
formed some 150 overturns. This is probably from 2
to 20 times the number of overturns a mantle hetero-
geneity can experience in the whole history of the
Earth not withstanding the obvious fact that the
mantle flow is certainly not steady. The above advec-
tion experiments are only meant to reveal the behav-
ior of a flow.

Computing the Lyapunov exponents is far more
illustrative than discussing Poincare sections to un-´
derstand the implications of pathline ergodicity on
mantle mixing. The Lyapunov exponents are related

™
to local stretching. If X is the length of a vector X

Ž .located at the position M and X t its length after a
™Ž .time t, the Lyapunov exponent s M, X is defined

by

1 X tŽ .™
s M , X s lim ln 4Ž .Ž . ž /t Xt™`

X™0

In a 3-D incompressible flow, there are three
Lyapunov exponents at each point and their sum is
zero. The existence of at least one strictly positive

Ž .exponent at most two is a mark of chaos. This
means that the stretching undergone by a tracer
increases asymptotically as an exponential function
of time. This phenomenon is also called turbulent
mixing whereas the cases in which the Lyapunov

Žexponents are zero e.g., when the stretching in-
.creases linearly with time correspond to laminar

w xmixing 30 . Computing the three exponents in a 3-D
flow is complex. However, computing the largest
one is much easier when one realizes that any arbi-

™
trary X likely has a non-zero component along the
eigenvector associated with the largest Lyapunov
exponent and therefore will stretch at a rate con-
trolled by this exponent.

Practically, we follow the distance between two
very close tracers and renormalize this distance peri-
odically. The Lyapunov exponent that we obtain is
certainly neither obtained for an infinitely small
starting vector nor for an infinite time as would be

Ž .implied by Eq. 4 . It is preferable to call it a
w xfinite-time Lyapunov exponent 28 . The numerical

computation of a non-zero exponent cannot be taken
as a proof of chaoticity as even linear stretching
would yield a non-zero finite-time Lyapunov expo-
nent. The finite-time Lyapunov exponents have been
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computed for tracers located at mid-depth of the box
and the local stretching has been followed during
100 transit times; a transit time being the box depth
divided by the plate velocity.

Fig. 5 depicts the Lyapunov exponents computed
in four different cases and plotted at the starting
positions of the 2402 tracers. The blue color corre-

sponds to low exponents. The reader must realize
that the color homogeneity in the blue areas is
associated with low stretching rates and therefore
with mantle heterogeneity. In contrast, the areas of
visually heterogeneous green to red colors are asso-
ciated with a well-mixed mantle. On the top part of

Ž .the figure Fig. 5a and b , the flow is purely poloidal.

Ž .Fig. 5. Finite-time Lyapunov exponents for tracers initially located at mid-depth in the box. The flows are either poloidal top or
Ž .correspond to cavity flows induced by rigid plates bottom . In the left-hand column only one plate is moving whereas the two plates are

moving in opposite directions in the right-hand column as shown in the bottom row. The differences between regular and chaotic regions are
obvious. The large area of laminar mixing shrinks when toroidal components are present. Islands of laminar mixing can coexist with ergodic

Ž .regions d .
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Ž .The left-hand panel Fig. 5a corresponds to the
poloidal part of the flow induced by only one plate
moving with velocity V. The flow is thus the same
as what led to the Poincare section of Fig. 3b. In the´

Ž .right-hand panel Fig. 5b , the flow corresponds to
the poloidal part of the velocity obtained when the
two plates are moved in opposite directions at the
same velocity V. For the flows induced by the

Žmotion of rigid plates poloidal and toroidal compo-
.nents together , the Lyapunov exponents are depicted

in the bottom part. In Fig. 5c, only one plate moves.
This corresponds to the case already studied in Fig.
2d. In Fig. 5d the two plates move in opposite
directions. We scale the velocity flows in the poloidal
cases to have the same surface kinetic energy than in
their toroidalrpoloidal counterparts. Plotting the
Lyapunov exponents at the starting positions of the
advected tracers rather than at the ending positions is
arbitrary but easier: in the latter case the data would
not have been regularly spaced on a grid. We veri-
fied however that comparable figures are obtained
when the Lyapunov exponents are plotted at the
ending positions.

The scale is in units of VrH, in other words a
Lyapunov exponent of 0.0175, means that the rela-

tive stretching is of the order e0.0175 s1.018 every
HrV time. Taking Hs670 km and Vs10 cmryr,
a 7 km thick oceanic crust located in a spot where
the Lyapunov exponent is larger than 0.00175 is
reduced to 10 cm in less than 4.2 Gyr. This stretch-
ing rate may seem low but is in fact fast for a
steady-state flow; it is also comparable with what is
inferred from field and geochemical observations by

w xAllegre and Turcotte 31 . However, scaling this toy`
model to the real Earth is rather arbitrary as the
mixing properties have a strong dependency on the

w xdetails of the flow pattern 32 .
The differences between the Lyapunov exponents

Ž .computed for purely poloidal flows Fig. 5a and b
Ž .and plate driven flows Fig. 5c and d are obvious.

The exponents are on average much larger in the
plate driven flows than in the purely poloidal flows;
the presence of the toroidal component enlarges the
ergodic areas. The areas of chaoticity are sheeted.
Even in the pure poloidal cases some seemingly
chaotic zones exist. This observation is puzzling. It

w xseems to contradict the conclusions of Arter 21 or
w xSchmalzl et al. 13 which suggest the inexistence of

pathline chaoticity in Rayleigh–Benard convection´
with infinite Prandlt number, i.e., when the flow is

Fig. 6. Histograms of the finite-time Lyapunov exponents seen in Fig. 5c and d. An histogram of the values obtained in the case of a pure
Ž .2-D poloidal field a simple ridge without transform fault is also depicted. The exponents of the 2-D case and the 3-D poloidal case are

Ž .comparable. The existence of plates leads to larger exponents curve labeled ‘‘3-D plates’’ .
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only poloidal. We are aware however, that the com-
puted 3-D cavity flow does not correspond to the
convection pattern of a fluid with uniform viscosity.
Flows induced by plates, although presenting mostly
chaotic regions can also exhibit regular areas. In Fig.
5d, the blue areas of near-zero Lyapunov exponents
are enclosed by very sharp boundaries.

Fig. 6 depicts an histogram of the Lyapunov
exponents obtained with three different flow patterns
having the same surface kinetic energy. The curve
labeled ‘‘2-D’’ is for the purely 2-D poloidal case of
Fig. 2a. In this case we know that the pathlines are
regular, that the stretching is linear rather than expo-
nential and that the computation of non-zero Lya-
punov is only due to the finite duration of the
experiment. The curves labeled ‘‘3-D plates’’ and
‘‘3-D poloidal’’ are obtained when the flow is in-
duced by symmetrically divergent plates and by the
restriction of this flow to its poloidal component.
The histogram for the 3-D poloidal case has roughly
the same average as the 2-D case. The flow induced
by plates is associated with ;3 times larger expo-
nents.

6. Conclusions

In previous works, steady-state Rayleigh–Benard´
convection flows were apparently unable to generate

w xLagrangian chaos at infinite 13 or large Prandlt
w xnumbers 21 . A large Prandlt number reduces the

flow to a pure poloidal field. In the present work, we
have considered velocity patterns imposed by surface
conditions rather than being the consequences of
thermal convection in a homogeneous fluid. The
presence of chaotic pathlines which are suspected in
Fig. 5b indicates that poloidal flows driven by im-
posed motions do not behave as poloidal flows in-
duced by thermal convection. It is however clear
that, if they exist, the ergodic regions in pure poloidal
flows are small and restricted to cell boundaries. In
contrast, a more general flow such as that existing in
the mantle leads to large areas of chaotic pathlines
and to a turbulent exponential mixing even without
explicit time dependence of the flow. This result
agrees with the conclusions obtained for the first

w xtime by Bajer and Moffatt 19 for a general quadratic
flow confined in a sphere. This explains why faster

stretching rates are observed in models with plates
w xthan without 12 .

An important result of our study that should be
remembered when interpreting geochemical data is
best illustrated by Fig. 5d. In this case of two
diverging plates we obtain apparently three reser-

Ž .voirs. The two unmixed blue reservoirs are in fact
connected and belong to the same torus. The well-

Ž .mixed green to red and the unmixed reservoirs are
separated by impermeable boundaries. This is ob-
tained in a situation where no density stratification
and no viscosity variations are present in the con-
vecting fluid. Transposing this model to the Earth,
we see that all samples dragged above the diverging
and transforming boundaries could have been sam-
pling a shallow well-mixed mantle whereas hotspots
might have sampled an isolated unmixed domain. It
would have been erroneous to conclude that the
underlying fluid was stratified or heterogeneous in
its physical properties.

The mantle convection is certainly not at steady
state. Mixing studies using 2-D time-dependent con-
vection patterns have predicted that the upper mantle
is homogenized by stirring within ;200 Myr. This
is much shorter than the time-scale on which geo-

Žchemical isotope systems evolve e.g., Rb–Sr or
.Sm–Nd . The conclusions about the homogenization

of the lower mantle are far less certain and depend
w xon the amount of viscosity increase with depth 8 .

Contrarily, the only study on 3-D time-dependent
Ž .mantle convection with poloidal flow we are aware

w xof, by Schmalzl et al. 14 , concludes that 3-D
convection is far less efficient than 2-D convection
to mix the mantle. Their arguments agree with those

w xof Davies 33 . In the 2-D case, the boundary layer
instabilities have implicit sheet-like structures. They
split the large-scale flow and generate stagnation
points, yielding turbulent mixing. In the 3-D case,
many instabilities have columnar structures which
penetrate the large-scale flow without major disrup-

Žtion and give way to laminar mixing zero Lyapunov
. w xexponents . If the conclusions of Schmalzl et al. 14

are correct, the mixing of the mantle due to the
explicit time dependence of the convection may not
be more efficient than that due to the very existence
of plates.

Models of mantle dynamics agree on an increase
in viscosity with depth in the mantle, the sluggish
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lower mantle being one or two orders of magnitude
more viscous. In that case, the toroidal energy of the
mantle flow is mostly confined to the upper mantle
and the toroidalrpoloidal ratio decreases from ;1
in the asthenosphere to barely zero in the lower

w xmantle 34,35 . This favors a pathline topology yield-
ing a chaotic upper mantle on top of a quasi-regular
lower mantle where independent more or less well-
mixed reservoirs are present. The time dependence in
the convection within the Earth will reinforce the
differences between the mixing rates of the active
upper mantle and the stiffer lower mantle. These
speculations will have to be tested by studies with
both time-dependent flows and toroidalrpoloidal
quasi equipartition to quantify the relative impor-
tance of these two ingredients for mantle mixing. At
any rate, our findings show that previous studies
restricted to the 2-D case did not capture one funda-
mental aspect of the physics of mantle mixing.
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