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We propose a two-dimensional model of the three-dimensional Rayleigh-Bénard convec-
tion in the limit of very high Prandtl number and Rayleigh number, like in the earth
mantle. The model equation describes the evolution of the first moment of the tempera-
ture anomaly in the thermal boundary layer, which is assumed thin with respect to the
scale of motion. This two-dimensional field is transported by the velocity that it induces
and is amplified by surface divergence. This model explains the emergence of thermal
plumes, which arise as finite time singularities. We determine critical exponents for these
singularities. Using a smoothing method we go beyond the singularity and reach a stage
of developed convection. We describe a process of plume merging, leaving room for the
birth of new instabilities. The heat flow at the surface predicted by our 2D model is
found in good agreement with available data.

1. Introduction

Thermal plumes are ubiquitous in convection at high Rayleigh number, far from the
threshold of instability (e.g. Nataf, 1991; Siggia, 1994). The development of a convective-
plume from a localized source is a well-known process, and self-similar solutions of the
equations of motion are available (Batchelor, 1954; Sparrow, Husar & Goldstein, 1970;
Moses, Zocchi & Libchaber, 1993; Olson & Singer, 1993). However the emergence of a
plume from a uniformly heated surface is not clearly understood. Plumes are strongly
non-linear structures, out of reach of perturbative methods on the instability modes.
Modeling the statistics of plume production and interactions is a challenge, and it is a
central issue for predicting the heat flux average and its variability.

The aim of the present paper is to propose a model for the emergence of convective
plumes and their further interactions. Our main hypothesis is that the fluid interior is
well mixed, and temperature anomalies are restricted to a thermal boundary layer, which
is thin in comparison with horizontal scales. This condition can be always satisfied for an
appropriate initial condition: starting from a fluid at uniform temperature, we suddenly
impose a different surface temperature g (with a perturbation at large scale to initiate
the instability). Then temperature diffuses within a thin boundary layer until convection
is initiated, and thermal plumes emerge as singularities arising after a finite time in our
boundary layer approximation.

Then the approximation breaks down: plumes are fully developed and feed the inte-
rior with temperature anomalies. However, we shall still capture the main features of
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the dynamics with an appropriate phenomenological smoothing of the singularities. The
further plume interactions will be described and the mean heat flux will be obtained by a
numerical model with reduced dimensionality: a two-dimensional model on the horizontal
heated surface represents the three-dimensional convection.

The development of a thermal plume is driven by the non-linearity in the heat trans-
port equation, rather than by hydrodynamic turbulence, so this phenomenon can be
conveniently analyzed in the limit of high Prandtl number, for which inertia is neglected.
We therefore restrict our study to this limit of high Prandtl number, and we furthermore
assume a free surface condition.

This convection regime (Ra >> 1, Re << 1 and Pr >> 1) corresponds to that of
the silicated parts of Earth-like planetary interiors (e.g. Bercovici, Ricard & Richards
1998); as an example, for the Earth’s mantle, i.e, the outer 3000 km of our planet, one
has Ra = 108, Re = 10~!% and Pr = 1023.

In such planetary interiors, the viscosity increases by many orders of magnitude in the
relatively thin upper layers, due to the lower temperature. Describing this rapid variation
of viscosity with depth is a severe difficulty for full three-dimensional convective models.
In our boundary layer model instead, this effect shows up as a viscosity of the ‘surface
skin’. Various rheologies of this surface skin could be implemented as well, accounting
for the formation of rigid plates with complex fracturation properties, which are still out
of reach of current convection models.

The general idea of this paper is to reduce the dimensionality of a convective system by
integration of the dynamic equations across the boundary layers. Such a procedure has
been fruitfully used to investigate the dynamics of bubbles (e.g. Pozrikidis, 1992) or the
situations more akin to thermal convection as the Rayleigh-Taylor instability (Canright
& Morris, 1993) and the Marangoni convection (Thess, Spirn & Jiittner, 1997). It is
also a classical method in the geophysical literature to study the equilibrium of tectonic
plates (Vilotte & Daignieres, 1982; England & McKenzie, 1982; Houseman & England,
1986; Bird, 1988). However, the application to Rayleigh-Bénard convection where both
the mechanical and thermal equations are integrated has never been done before and
allows us to describe mathematically the destabilisation of the thermal boundary layers
qualitatively explained by Howard (1966).

In next section, we present our boundary layer model. We first derive general rela-
tionships valid for any rheology, and then specify the model for a Newtonian fluid. We
find that the effect of buoyancy in the thermal boundary layer results in a horizontal
stress acting on the interior flow. This stress has formal similarities with surface tension
effects in Marangoni convection, as analyzed by Thess et al. (1997). In their model, the
surface temperature field induces a surface velocity field, obtained by solving the Stokes
problem in the interior, with the boundary condition given by the viscous stress at the
surface. Therefore the surface temperature is transported by a velocity which depends
linearly, but non-locally, on the temperature field. The ‘closure relationship’ relating the
surface velocity to temperature has a simple expression in Fourier space (but is non-local
in real space). We find the same closure relationship as in the Marangoni case, but the
active quantity is the first moment of the temperature in the boundary layer, instead
of the surface temperature. This quantity is transported like temperature, but with an
additional production term, which leads to the onset of singularities with infinite val-
ues, representing the thermal plumes. In Marangoni convection instead, the temperature
remains finite, but its spatial derivatives become singular.

In section 3, we study the initial growth of our boundary layer by a linear stability
analysis. In section 4 we discuss in detail the closure relationship giving the velocity field
induced by different temperature fields. The properties of the singularities generated in
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the model is discussed in section 5. Finally in section 6, we propose a simple phenomeno-
logical smoothing of the singularities, allowing to reach a permanent convective regime.
Plumes (smoothed singularities) are observed to merge under the effect of their induced
velocity field, and new plumes are formed between existing ones. We extend the model
to two dimensions, representing 3D convection, with the formation of convective lines.
The averaged heat flux is also calculated, and found in good agreement with numerical
results found in the literature.

2. A 2D model of 3D Rayleigh-Bénard convection
2.1. The 3D model

We study thermal convection driven by buoyancy forces in the Boussinesq approximation.
We assume that the Prandtl number, i.e., the ratio between the kinematic viscosity v
and thermal diffusivity x is very large so that the Reynolds number is very small. In
these conditions, the equations controlling the dynamic read:

v.v=o, (21)
V.-7+pg =0, (22)
O (- V)0 = V-(xV0). (23)

They express respectively the conservation of mass, the balance of forces (neglecting
inertia), and the heat transport. 7 denotes the total stress tensor, which will be related
to the velocity v by an appropriate rheology, and g the acceleration of gravity. Equations
(2.2) and (2.3) are coupled as the density p varies with temperature 6 as p = po(1 — af),
with af < 1.

We consider for simplicity a uniform gravity (although our method readily extends to
a spherical geometry). The surface is supposed infinite in the horizontal directions z and
y. The z axis is directed downward and the convective system extends infinitely in the
direction of positive z. The motion is driven by temperature anomalies near the surface,
while the deep interior is supposed at uniform temperature. We choose this temperature
as the reference temperature, so that 8§ — 0 for 2 = +o00 and 6 reaches g, which is
negative, at the surface. Furthermore, since the motion is damped in the deep interior
(z = +00), the stress tensor reduces asymptotically to a pressure po, 7;; = —pods;, and
equation (2.2) reduces to the hydrostatic relation Vpy = pog, or po = pogz. The origin
of the coordinate z is chosen in order to cancel the constant of integration which should
appear in this expression. In other words, the free surface is at z = 0 in the reference
state with # = 0 everywhere. We express the stress tensor 7 as the sum of the reference
hydrostatic pressure and a stress 7/, which is driven by the temperature heterogeneity 6
and vanishes at large depth,

Tij = Tilj - pogzdij (2.4)
In summary, the conditions in the deep interior are
v—=0, 7; 0, § 50, forz— +o0 (2.5)

For motion with sufficiently large horizontal scales, the stress 7’ reduces to the hy-
drostatic pressure associated with the temperature heterogeneity 6. Its typical value is
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pogadH, where H is the thickness of the thermal boundary layer, much smaller than the
horizontal scale of motion L. The hydrostatic balance provides in all cases a first order
estimate of the stress 7/,

|TI| = o(pogabH) < pogH. (2.6)

Due to the temperature heterogeneity 6, the free surface is slightly deformed, to a
‘depth’ z = —h(z,y), much smaller than H, and the normal n to the surface is nearly
vertical. The free surface condition imposes that the normal components of the total
stress tensor vanish, 7' - n + poghn = 0. With the estimates (2.6) for |7| , it results
that h/H ~ af. We can therefore take the stress tensor 7' at z = 0 for the free surface
condition, within an error of order (af)? (as estimated by linearizing 7' with respect to
z). Furthermore, the slope ng/n, (or ny/n;) is of order h/L = afH/L, and it can be
safely neglected, so we can write the free surface conditions as

Talvz(wayao) = T{/z(xayao) =0, (27)

T;z('r’yao) = _pogh’(may)' (28)

It provides a free slip condition at z = 0 for the tangential stresses, while the normal
component 7., determines the weak topography h(z,y). In addition to these dynamical
conditions, we have the kinematic condition for a material surface, which reduces to

'Uz(mayao) =0 (29)

within our approximations.
In summary, the three components of the equation of motion (2.2) write,

6$T;£E + 6yT;y + 6ZTqI;z = 07 (210)
OaTyy + OyTyy + 027, =0, (2.11)
OuTyy + OyT,, + 0.7, = poagh. (2.12)

They must be solved together with (2.1) and (2.3), using the appropriate rheology, and
with the boundary conditions (2.5),(2.7),(2.8) and (2.9).

2.2. Integration of the stress across the boundary layer

The thermal boundary layer entrains the interior like a ‘skin’ driven by gravity effects,
and this process can be described by integrating the equations of motion across the
boundary layer. We denote X the z-integrated value of a quantity X, from z = 0 to
the depth Z. We first get exact equations, but will then assume that Z is much smaller
than the horizontal scale of motion L, while beyond the boundary layer (where 6 = 0),
H<Z<KL.

Such a vertical integration, applied to the vertical component of the equation of motion
(2.12), yields, using the free surface condition (2.8),

Oy Try + OyThy + 7o, + pogh = pogad, (2.13)

giving the topography —h(z,y) from the dynamical variables. Applying this relation to
the deep interior, z — 400, 7., vanishes. For sufficiently large scales, the horizontal
derivatives become negligible, and (2.13) reduces to h = af, which simply expresses
Archimedes principle, also called isostasy among geophysicists.
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To get a constraint on the dynamical variables, we multiply all terms of (2.12) by z
before the vertical integration, yielding

02Tl + Oy2tl, + Z7., — 71, = pogazb, (2.14)

(where we have used an integration by part for the term in 7.,). The last term of the left
hand side dominates the three first terms. Therefore, relation (2.14) relates the average
vertical stress in the boundary layer to the first moment of the temperature. This behavior
has already been emphasized in the geophysical literature and equation (2.14) has been
sometimes called ’stress moment law’ (Fleitout & Froidevaux 1982,1983; Ricard, Fleitout
& Froidevaux 1984).
We similarly integrate the horizontal components (2.10) and (2.11) of the momentum
equation, using the free surface condition (2.7),
OnThy —Th, + OyThy + T, = —0pTl, (2.15)

zz?

OaThy + OyTh, — T, + 1), = —0,T].. (2.16)

We have written the two equations so that their left-hand side depend only on the
deviatoric part of the stress tensor, which will be related to the velocity once the rheology
is specified (in other words the pressure term has been eliminated on the left-hand side).

The right hand side of (2.15) and (2.16) can be related by (2.14) to the temperature
moment, which we define as

M=-20 (2.17)
= —/ 26 dz, (2.18)
0

the sign minus is introduced to get M positive in the convection problem. Then (2.15)
becomes

Too + Z0uT,, + 0uThy — 7L, + OyTh, + 0,027}, + 0,0y27L, = —pogad. M.  (2.19)

All terms in the left-hand side depend only on the deviatoric part of the stress tensor,

except the second term Z9,7,,. We can rearrange this term by writing 0,7,, = 0, (7], —

Topz) + O Tyy, and, using (2.10), 0,7y, = —0y7,, — 0.7, Introducing this in (2.19), and

repeating the same procedure for the y component, (2.15) and (2.16) transform into
Talvz - ZaszIcz + aw[Talvw — T~ Z(TI - T;z)] + 61}[{3/ ~Z, ] +

zz Tz Ty

+ 020527, + 0,0y27,,, = —pogalds M, (2.20)

Tgllz - ZaZT;;z + 8y[7-g{/y - Tzlz - Z(Tglyy - T;z)] + aw [{y - ZT:::y] +

+ 0yOyzT], + 050y27,, = —pogadyM, (2.21)

which provides exact relations between the deviatoric part of the stress tensor, integrated
over the ordinate range [0, Z], and the first temperature moment M.

The left-hand side of these equations is clearly dominated by the first term, the other
terms bringing corrections with relative magnitude Z/L and (Z/L)? (remembering that
X ~ ZX). Thus (2.20) and (2.21) state at first order that the thermal boundary layer
drives the interior flow with a horizontal surface stress (7;,,7,,) proportional to the
gradient of M on the surface. This is analogous to the free surface condition in Marangoni
convection, for which M should be replaced by the surface temperature. Furthermore, we

shall see in subsection 2.4 that M is advected by the horizontal flow, like a temperature
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(however there is an additional production term for M, proportional to the horizontal
flow divergence, so the analogy with Marangoni convection is not exact).

Before proceeding further, it is useful to consider corrections of order Z/L on the left-
hand side of (2.20) and (2.21). The second term —Z9,7,, can be viewed as a correction to
linearly extrapolate 7, from its value at depth z = Z to z = 0. Therefore the boundary
layer really acts as a surface skin at position z = 0, instead of the arbitrary position
Z. The next two terms are related to horizontal shear effects, describing an horizontal
viscosity of the surface skin. Finally, the last two terms are clearly of order (Z/L)? with
respect to 7, or 7,,, and can be neglected.

Yz’
To get explicit results, we now assume a Newtonian rheology, with a viscosity 7,

7ij = 0(0iv; + djv;) — ;. (2.22)

This viscosity is possibly non-uniform in the boundary layer, beyond which it reaches a
uniform value 79. We introduce the relative excess ‘surface’ viscosity

4
U:/ n(z) = g, (2.23)
0 Mo

which becomes independent of the upper bound Z when it is beyond the boundary
layer (since the integrand tends to 0). Introduction of this rheology in (2.20) and (2.21),

expressing 0,v, = —0,v; — Oyv, from the incompressibility condition, and considering
that v, and vy can not depend on z over the boundary layer at first order, we get
e’
—@%—2mp@@%+ﬁWQL¢Mdm%+@%n:pfemw (2.24)
0
pogex
—0,vy — 20,[0(20yvy + Opvs)] — 0x[0(0pvy + Oyv,)] = n—ayM- (2.25)
0

The first terms of these two equations, 0,v, and 0,v, provide the stresses transmitted to
the interior, i.e. the z-derivatives of the horizontal velocities for the internal flow taken
at z = 0. These stresses are non-zero even though v, and v, in the boundary layer do
not depend on z at first order.

As in usual fluid dynamics, we can decompose the horizontal strain into a traceless
strain tensor T and a horizontal divergence,

Too = —Tyy = 0p0; — Oyvy, (2.26)

Toy = Ty = 0avy + Oy, (2.27)

Then, denoting the horizontal velocity vector by vy and the horizontal nabla operator
by Vg, equations (2.24) and (2.25) can be written as

—az’UH—VH-((TT)—VH(3UVH-’UH)= PogOZVHM. (2.28)

o

It provides boundary conditions at z — 0 for the interior flow. The effect of the boundary
layer on the interior is therefore equivalent to a surface skin providing a stress propor-
tional to the horizontal gradient of M, with a two-dimensional shear viscosity o7y and a
compressional viscosity 3o1q.

2.3. The interior flow

In the interior, the temperature heterogeneity 6 vanishes, and we assume a constant
viscosity 7o, so that the momentum equation (2.2) reduces to the Stokes equation,

noVv — Vp=0. (2.29)
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This equation must be solved, together with the incompressibility equation (2.1), with
the conditions of decaying motion at z — +o00, and the boundary conditions at z = 0
provided by (2.28).

This problem is classically solved (see Chandrasekhar 1981) in terms of the vertical
velocity v, and vertical vorticity 2, = 0,vy — Oyv,. These two quantities determine the
poloidal and toroidal parts of the velocity field respectively, i.e. the Helmholtz decompo-
sition of the horizontal velocity projection vy in each horizontal plane,

ve =VhHp—e. x Vg, (2.30)

where the first term is irrotational and the second term is non-divergent (e, is the vertical
unit vector). The two scalars ¢ and 1) are obtained from v, and (2, by solving the Poisson
equations, obtained by taking the horizontal divergence and the curl of (2.30) respectively,

Vio = —8.v,, (2.31)
Vi = —10,. (2.32)

For a velocity field with a harmonic horizontal dependence, v = ﬁ(z)ei’” with k& =
(kz, ky), these relations yield (with k = |k|),

R i do A
bs = 13 (kag” + hy22), (2.33)
. i dv, A
Oy = 13 ky == = kaf22). (2.34)
Taking the curl of (2.29) eliminates the pressure and yields V22, = 0, or equivalently
(02 + Vi), =0. (2.35)

Taking the divergence of (2.29) yields VZp = 0 (taking into account the flow incom-
pressibility). Then taking the Laplacian of (2.29) yields Vv = 0, whose z component
writes

(0% 4+ V%) v, =0. (2.36)

Solutions with a sine wave horizontal dependence of (2.35) and (2.36), which vanish
for z — +00, are respectively,

U, = uz exp(—kz), (2.37)

2. = wexp(—kz). (2.38)

Then the horizontal velocity components ¢, and 9, are obtained from (2.33) and (2.34).

The boundary condition (2.28) at z = 0 is easily taken into account in the case of
a uniform surface viscosity o. Taking the horizontal divergence and curl of (2.28) then
yield respectively,

n0(8. + 40V%)8.v, = pogaViM, (2.39)

(0, + oV 2, = 0. (2.40)

Therefore the toroidal mode is not excited by convection for o uniform (2, = 0 every-
where). Introducing expression (2.37) into (2.39) yields 2no(1+20k)u = sign(k)pogakM.
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The resulting relationships relating the surface velocity to the Fourier transform M (k)
of the temperature moment can be written

_.k 1 poga -
=TT 50k M(k). (2.41)

In this section we have assumed that below the thermal boundary layer the viscosity is
uniform. However it would have been straightforward to develop a model with a vertically
stratified viscosity at depth. For instance, if the interior is layered, equations (2.35)
and (2.36) remain valid in each layer, but continuity of velocities and stresses must be
imposed at each interface. Whatever the viscosity stratification, we would have obtained
a linear relationship between the Fourier components of the surface velocity and those
of the temperature moment with no excitation of toroidal motions. Thus, with minor
modifications, our approach could be applied to planetary interiors where the viscosity
is likely to increase with depth.

(k)

2.4. The transport of the first temperature moment

Since temperature acts only through its first moment M, it is useful to get an evolution
equation for this quantity by taking the first moment of (2.3),

6M+(v Va)M /+oo 8ad Vu(kVgM) / (k=) dz. (2.42)
— . — 2v,— dz = K — z—(k=) dz. .

ot Aoy 0 “0z ARy o 0z 0z
In this equation we have permuted vy and the vertical integration, assuming that vy
does not depend on z in the boundary layer, which is valid at order (H/L). This as-
sumption also implies, by integration of the mass conservation equation (2.1), that

v, = —2zV g - vg. Thus, using integrations by part, and reminding that both 6 and

00/0z tend to zero for z — +00, and that § = g at z = 0, we transform (2.42) into,
oM 9
W—F(’UH'VH)M—FQMVH"UHZRVHM—K/gs, (243)

(assuming x constant). Therefore we have transformed a 3D problems with 4 unknowns,
6 and the three components of v, (equation (2.1)(2.2)(2.3)) into a 2D problem with 3
unknowns, M and the two components of vg. To close the system we need to relate vy
to M, using (2.41) that will now be referred to as the ‘closure law’.

To elucidate the physical meaning of M, we assume that the temperature is simply
described by 6 = g erfc(z/H(x,y,t)), where erfc is the complementary error function,
and H the thickness of the thermal boundary layer. Introduction of this temperature
dependence in the definition of M (2.18) leads to

1
M($7y7t) = _Z 05H2($7y7t)7 (244)

which shows that (M)? is a measure of the thermal boundary thickness.

The first term of equation (2.43) is equal to 2(M)z (8(M)z /dt) and the second and
third term can be combined together as 2(M)2V g ((M)Zvy) so that equation (2.43)
can be expressed as a transport equation for the quantity (M )%.

By integration of this transport equation over the whole surface, we get

%//(M)% d’r = g//% d%«—g// (Ji;)é d*r. (2.45)

We rlemark that the left hand-side is conserved when k is zero. This is not surprising as
(M)= is proportional to the thickness of the boundary layer (2.44) and thus the previous
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equation expresses the conservation of the boundary layer volume in the absence of
diffusion. The thermal diffusion increases the volume of the boundary layer by cooling
at the surface, especially when the boundary layer is thin (the term -8,/(M)? is large);
and by lateral diffusion acting on the boundary layer undulations.

In the case o = 0, the closure law reduces to vy = i(k/2k)M. This is analogous to
the result of Thess et al. (1997) for Marangoni convection, where M would be replaced
by the surface temperature. However the equation (2.43) differs from a usual transport
equation by the term 2M V g - vgy. When instability develops, this term will be a strong
source of M, leading to a peak with diverging M, corresponding to the emergence of a
thermal plume. Thess et al. (1997) also find the development of singularities in Marangoni
convection, but the transported quantity (temperature) remains bounded.

3. Stability analysis

3.1. Non-dimensionalisation
It is convenient to get a non-dimensional version of our dynamical model, defining a
length scale D by

p3 = " (3.1)

pogals’

(0s is negative). This is the thickness for which the Rayleigh number, based on the
vertical temperature difference 6, is unity. The time is then scaled by the diffusive time-
scale (D?/k) and the temperature moment M by —fsD?. Using parameters applicable
for the Earth D would be of order 10 km, the time scale about 3 Myrs and the moment
scale about 1.5 10 K.km?2. With this change of variables we obtain

oM

T + (vg-Ve)M +2MVy -vg = VM +1, (3.2)
L k. M(k)
h =1 —FF——— .
wit ’UH(k) 12k 1—}—20’k7 (3 3)

where for simplicity of notation we have kept the same symbols for the new quantities
which are now without units. In the case ¢ = 0, the equation becomes universal, i.e.
without any parameter.

We have written a numerical code solving the two previous equations (3.2) and (3.3).
This pseudo-spectral code uses a fast Fourier transform with at most (512)2 points in 1D
or 2D and assumes periodicity. This code has been parallelized on 16 processors. As an
initial condition we assume that M, either one or two dimensional, consists in a small
amplitude white noise with a positive small average value (M is everywhere positive).
The moment M always follows the typical evolution depicted in Figure 1. The average
value of M, < M > increases linearly with time and its perturbations max |M— < M > |
starts to decrease (diffusive regime) then increases slowly (marginal growth) and reaches
a finite-time singularity. The duration of each period depends on the initial conditions
and the values of o.

3.2. Marginal stability
A first insight on the behavior of our boundary layer model of Rayleigh-Bénard convection
will be given by a marginal stability analysis. Let us assume that M (z,t) = My(t) +
m(k,t) cos(kz) with |m| << |My| and My(0) = 0, so that we start with a viscous half-
space at zero temperature on which we suddenly impose a surface negative temperature.
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0.0 2.0 4.0
Time

FIGURE 1. Typical evolution of the averaged moment < M > (dashed line) and the mazimum
of its fluctuation max|M— < M > | (solid line). < M > increases linearly with time at the
beginning (which is not obvious in this linear-logarithmic plot). Three phases are seen for the
fluctuations: a decrease, a slow increase, and a finite-time instability. In this simulation we have
assumed o = 0, but qualitatively the same behavior is observed for non zero o.

For simplicity, we first assume that ¢ = 0. By plugging the expression of M into equations
(3.2) and (3.3), linearized with respect to the small amplitude m, we get

Mo(t) =t, (3.4)

om
5 = k(t — k)m. (3.5)
The growth-rate factor of (3.5) is depicted in Figure 2 at a given time. Equation (3.5)
shows that all wave-numbers between k = 0 and k = t are unstable. The most unstable
is the wavenumber k,, = t/2. The destabilization of the system thus starts at long-
wavelength. This justifies our long-wavelength approximation, at least in the initial stage
of the evolution.

Recording that (in real units) Mo ~ —10sH? (2.44) where H is the thickness of the
thermal boundary layer, equation (3.4) simply says in real units that:

H? = 4kt, (3.6)
which just expresses the diffusive growth of the thermal boundary layer. The selection
of the most unstable wavenumber can be rewritten

_1poagfsH?

kmH = ,
4 ok

(3.7)

stating that the most unstable wavenumber, normalized by the bougldary layer thickness,
is one fourth of the local Rayleigh number (which increases with ¢2).
Equation (3.5) can be easily integrated, for a given k

m(t) = mo exp[kt(% — k)] (3.8)
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FIGURE 2. Growth rate as a function of wavenumber (at a given time t) for a uniform viscosity
fluid (0 =0) or with a viscous lid (c =1).

The amplitude at any wavenumber first decreases by thermal diffusion then increases
when the boundary layer is sufficiently thick to sustain the instability. At a given time, the
wavelength perturbation that has grown most strongly corresponds to k = ¢/4. Assuming
that in the white-noise initial conditions all wavenumbers had equal amplitudes, the
perturbation maximum is roughly controlled by the wave-number that has grown the
most, therefore,

t3
maxm(t) ~ mgexp (E) , (3.9)
or in real units
1 HS

This linear analysis is valid as long as |m(t)| << My(t), i.e. as long as in figure 1 the
continuous line (Jm(t)|) stays below the dashed line (My(t)).

We can verify numerically these analytic solutions. Figure 3 represents the same data
set as Figure 1, max, [M(z,t)] but this time as a function of #>. The numerical solution
shows an excellent fit to the analytical expression.

In the case ¢ # 0, when additional viscous effects are present in the boundary layer,
this marginal stability analysis has to be somewhat modified. The instantaneous growth-
rate is decreased together with the range of unstable wavevectors (see Figure 2). Equation
(3.9) has to be corrected and one gets at first order

B 1
m(t) = mo exp (El +Ut) ; (3.11)

this instability growth is therefore slowed down by the effect of a viscous lid and we
see numerically that the time for the singularity to occur, increases. Although equation
(3.11) is qualitatively in agreement with the numerical experiments, quantitatively the
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FIGURE 3. max|M— < M > | as a function of t3. Starting from a white noise, the slope is
1/16 according to equation (38.9).

agreement is poor as ot is rapidly of order unity and a higher order expansion should be
done.

4. The closure relationship
4.1. Back in real space

From Figures 1 or 3, it seems obvious that the system exhibits finite time singularities. In
order to describe what happens closer to this singularity, we must study in the real space
our closure relationship (3.3). The multiplication of Fourier components corresponds to
a convolution product in real space assuming that the surface of the fluid is unbounded

=/ K(r —r"YM(r")d*r', (4.1)

where K (r) is the Fourier transform of i(k/2k) (1 + 20k)~!. We will consider the two
limiting cases, ¢ = 0, and o > 1.

In the first case, one has 6y = i(k/2k)M, like described by Thess et al. (1997) for
Marangoni convection. In real space the velocity is expressed as

defining the non-local operator V, relating the velocity field to the M field. This integral
(4.2) as well as various other integrals that will be used in the next paragraphs must
be understood in terms of Cauchy principal value determination. The kernel K(r) =
—1/(4x)r/|r|® = 1/(47)V(1/r) is formally identical to the Green function for the Lapla-
cian with forcing at the boundary. The operator V is linear and is invariant by a change
of scale r — fr, reflecting the fact that convection of a half space (infinite layer) has no
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internal length-scale,
VolaM] = aVo[M],
Vo[M (Br)] = Vo[M (r)]. (4.3)

In the opposite case o >> 1, the closure relation writes in Fourier space, 9 (k) =
(ik/40k*)M (k). By multiplying this equation by ik, we deduce that

M
VH'UH:__7 (44)
4o
which has the solution
r—r 2.1
= = V [M(7)]. 4.
on(r) =~ [ TR M) ' = Vel (45)

Like with equation (4.2), the velocity field is related to M by a non-local operator, Voo.
This operator is also linear in M, but it is not anymore scale invariant because the
convection system has now an internal length-scale as ¢ has the dimension of a length,

VoolaM] = aVeo[M]
Voo[M(B7)] = Voo [M (r)]. (4.6)

The reverse transformation that gives the moment as a function of the surface velocity is
easy to derive in the real space whatever o is. The closure law (3.3) can also be written

Nﬂk):—ail+;akhﬁHmL (4.7)
which corresponds to
M(r) = —4Vp[v(r)] — 40Vvg, (4.8)

(note that the operator Vy according to its definition (4.2), either maps a scalar to a
vector or a vector to a scalar, just like the operator V). Equation (4.8) means that the
vertical moment of the temperature across the thermal boundary layer can be estimated
from the surface velocity on top of the convective medium.

4.2. Eramples of moment-velocity closure relationships

In 1D, i.e. assuming that vy and M are only functions of z, the expression (4.2) can be
integrated in y, which leads to

1 [ M) |,
(o) = gHM@) = o [ e (4.9)
where the symbol H stands for the Hilbert transform (Erdélyi 1954). This operator has
the same scaling properties (4.3) as its 2D counterpart.

Hilbert transforms of particular functions are tabulated in mathematical handbooks
(Erdélyi 1954), see also Table 1 of Thess et al. (1997). As a simple example of physical
interest, the velocity induced by the field

M(z) = . (4.10)

va(z) = — (4.11)

20 +422)
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If the vertical temperature moment is restricted to a singular line, i.e. M(z) = §(z),
the induced velocity is simply

va(z) = _2717—33' (4.12)

These two solutions are depicted in Figure 4b.
In the case o > 1, (4.5) integrated in y leads to

vi(z) = %(1 M) d:c'+/$M(m') do'). (4.13)

o0

The velocity induced by the M field (4.10) is
1
ve(z) = % arctan(z), (4.14)

represented in Fig. 4c. As expected, it is smoother than in the case ¢ = 0. The velocity
induced by a singular line M (z) = §(z) is the step function (written with the Heaviside
function H),
=1/ H 4.15
on(z) = (5 — H@)). (4.15)
We see that when the role of the highly viscous lid becomes important, a uniform velocity
is induced on each side of the singular temperature source.
We can also express the closure law in a 2D axisymmetric geometry appropriate to

describe plumes. If the vertical temperature moment is restricted to a singular point,
M(r) = 6(r) the equations (4.2) and (4.5) become

1
UT(T) = —m, (416)
when ¢ = 0, and with a highly viscous lid at the surface, o > 1,
11
= ——-. 4.1
or(r) 8ror (4.17)

As in the Cartesian 1D case, the presence of a highly viscous lid increases the effect of a
perturbation at large distances.

5. Finite time singularities

Having understood the first stages of the development of an instability we must now
study the behavior of the finite time singularities. When a singularity occurs, M goes to
+o0 and the last term of equation (3.2), corresponding to the secular diffusive increase
of the thermal boundary layer can be safely neglected. In this case we can search for
solutions with separate variables of the form

M(Tat) = (ts - t)aF(X)a (51)
where
_ (r—rs)
X = G0 (5.2)

The constants a and b are the critical exponents of the singularity that occurs at position
rs and time t,.

As the scaling properties of the operator that relates the moment to the horizontal
velocity depends on the surface viscosity o, we first present in details the case o = 0 and
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FIGURE 4. Ezamples of 1D closure relationships, for M(z) = 1/(1 + z2) (left column) and
M(x) = d(x) (right column), M is represented in a., the corresponding velocity with a uniform
viscosity (0 =0) in b., and the velocity with a highly viscous lid (o > 1) in c.

then discuss the role of the surface viscosity. When o = 0, the operator relating moment
and velocity is Vy (4.3) and by plugging (5.1) into (3.2) we get

—aF +bx-VgF — (ty —t) 2 V4L F

— (ts =) "ML (W[F] - Vg F + 2FV g - Vo[F]) = 0. (5.3)
Choosing a = —% and b = 1, this previous equation becomes time-independent, and
1 —Is
M(r,t) = F( - "1), (5.4)
(ts - t)E (ts - t)§

is solution of equation (3.2) when F' verifies

F+x-VyF —2V[F]- VyF — AFVy - Vo[F] - 2V4F = 0. (5.5)
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uniform viscosity highly viscous lid

Al (ot —1)"F)  Aln (a(t 1) %)

line singularity

2rx 4do(ts — t)
axis etric singularit B B
xisymmetric singularity - -

2r do(ts — t)

TABLE 1. Asymptotic velocity at large distance of a singularity

The self-similar solution M (r,t) has a maximum diverging as (£, — ¢)~ 2, and a width

decreasing as (ts — t)%. For a line singularity (1D geometry), with boundary conditions
Vg F =0 on the instability and F' vanishing at large distance, we find numerically that
the solution for F' is unique (its shape but also its amplitude). In the 2D axisymmetric
case, another solution is obtained as the differential operators entering equation (5.5)
are different, but again, this axisymmetric solution, with its shape and its amplitude is
univocally obtained by (5.5).

Instead of trying to solve the difficult differential equation (5.5), we have computed
numerically in the 1D case M (z,t) for various initial conditions, measured the position
z, and time ¢ for the first singularity and plotted the quantity (¢t — t,)2 M(z,t) as a
function of (z — x,)/(ts — t)? for times ¢ close to t,. The results depicted in Figure 5
(top) for four different initial conditions show a universal shape, when properly scaled.
Of course, when plotted with a logarithmic scale (bottom), the presence of other weaker
growing singularities far from the main one is clearly shown as secondary peaks. We also
run 2D axisymmetric cases, similar results are obtained, i.e., the same critical exponents
and a unique F' solution.

We can use a similar procedure in the case of a highly viscous lid o > 1, but with the
scaling relationship (4.6). This also leads to self-similar solutions of the form

M(z,t) = —2 G((”"ms ) (5.6)

ts —t t, —1)2

where G is another universal function when the geometry, 1D or 2D, is chosen. The
maximum now increases as (t, — t) !, faster than in the case without lid, and its width
decreases as (t; —t)2.

Figure 6 depicts the same set as in Figure 1 but now, the behavior of log(Max, M (z,t))
is plotted as a function of log(t — t;). We also show the case with a highly viscous lid
(o0 > 1). The theoretical laws with exponents -1/2 and -1 are indeed closely followed.

The behavior of M far from a growing instability can be described analytically. In
equation (5.5), the terms associated with cross-products between velocity and moment
(=2Vo[F] - VF — 4FV - Vy[F]) are smaller than the first two terms if Vo[F] <« x. In
this case the solutions of (5.5) are F(z) ~ A/z in the 1D case and F(r) ~ B/r in
the axisymmetric case. The proportionality constants A and B are not arbitrary but
are univocally determined by the non-linearity of the differential equation close to the
singularity. From the shape of the M singularity at large distance, we can use the closure
laws (4.2) and (4.5) to deduce the velocity far from the singularity. After some algebra
we obtain the asymptotic behaviors summarized in Table 1.

The results of table 1 indicates that singularities interact at very large distance and
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FIGURE 5. Universal shape of the 1D singularity in the case of a constant viscosity. Four different
numerical experiments have been performed and have been rescaled. The bottom curve with a
vertical logarithmic scale and a wider spatial extension, shows the presence of other singularities
in formation.

potentially at an infinite distance (highly viscous lid), due to the transport by their
induced velocity. Although in figure 4 the velocity induced by a temperature moment
decreasing asymptotically as 1/x? remains finite, the natural 1D singularity in a fluid
with a highly viscous lid has a temperature moment only decreasing as 1/x and therefore
induces a velocity diverging as In(z). Numerically, the forced periodicity imposed by the
use of Fast Fourier Transforms, makes the verification of these laws difficult.

6. Developed convection
6.1. Regularization of the singularity

When plumes develop, the temperature heterogeneity 6 leaves the boundary layer, so
we cannot assume anymore that the 8 drops to zero in the range of integration used to
get (2.43). Taking into account the value 8(Z) at the upper bound of integration Z, we
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FIGURE 6. Time behavior of the instability near the singularity in the two cases of constant
viscosity or of highly viscous lid. Because the abscissa is ts —t, the singularity now evolves from
right to left.

generalize (2.43) into

oM

at "
We need to close this equation to determine 6(Z) as a function of the dynamical vari-
ables. At small times, 8(Z) = 0 and we recover (2.43). In the opposite case of a plume
extending beyond the depth Z, the temperature becomes nearly uniform over the depth
Z, so we have Z20(Z) ~ Z%0g ~ —2M , so the source terms disappear in (6.1). We pro-
pose an heuristic fit between these two extremes, by writing (2M + Z20(Z))V g -vg =
M[1—tanh(M — My02)|V i - vE, where M,y,0, = —Z%0s/2. This provides a regularizing
mechanism for the plumes. A corresponding heat injection should be introduced in the
interior, providing an additional source of motion. We expect this motion to be at fairly
large scales, with a weak influence on the plume dynamics, and we have neglected this
modification of the interior in the present study. We also neglect (Z) in the right hand
side of the equation (6.1) as this diffusion term is negligible in plumes in comparison with
the other effects.

(ve - Va)M + (2M + Z%0(Z))V i - vi = kVEM — k(05 — 0(Z)).  (6.1)

6.2. Dewveloped convection in the 1D case

With this regularization mechanism, our model can go beyond the first finite time singu-
larity and a much complex dynamics is obtained. Figure 7 shows the evolution of M (z) at
four different times (1D case, with uniform viscosity, o = 0). In this simulation we have
chosen to cut the singularities around M,,,4, = 30. The progressive destabilization of the
boundary layer starts from the top left panel (¢t = 0) where the arbitrary initial moment
has a Gaussian shape. The reader must however realize that the equivalent boundary
layer thickness ((M)2) is of the same order as the horizontal scale.

The first singularities start near the maximum of M (top right) in agreement with the
stability analysis. The boundary layer is then destabilized everywhere. For small times
(top right and bottom left) the symmetry of the initial conditions is preserved. At larger
times, (bottom right), the symmetry is broken by the birth of new instabilities.

In order to more clearly understand the initiation and interactions of instabilities,
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FIGURE 7. Growth and dynamics of 1D instabilities, M(x,t) as a function of x at four
different times t.

Figure 8 depicts the position of the peaks as a function of time for the same simulation
as in Figure 7. At the beginning, a large number of peaks is produced, this number then
reduces to about 10 peaks. This reduction follows the reduction of the average boundary
layer thickness. This corresponds qualitatively to the fact that the wavelength of the
most unstable perturbation in the marginal stability study increases when the average
thickness decreases.

The various peaks attract each others. When two peaks merge, a new peak appears
in the space left empty. Because of this chaotic behavior, the pattern loses its symmetry
after a time larger than 30 in this simulation. The number of peaks is then rather constant
in average and close to one peak every 27 (i.e. about 10 peaks in this simulation where
the abscissae goes from -107 to 10m) .

The characteristic parabolic shape of the trajectories of two peaks in interaction is easy
to understand at least qualitatively following a method originally applied to Marangoni
convection (Thess et al. 1995, 1997). Each peak induces in its vicinity an attractive ve-
locity vgr(z), transporting its neighborhood, so that the distance X between them varies
as

2~ oup(X). (6.2)

If we assume that the two peaks are close enough to interact but far enough so that each
one induces a velocity as if it were alone (vortex dynamics, Aref 1983), then the attractive
velocity can be computed. At 1D and o = 0, the closure law needs the introduction of
the Hilbert transform of the moment of the instability (4.9). This closure law can be
written in a different form, that has the advantage of using defined integrals rather than
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FIGURE 8. Positions of the line instabilities of Figure 7 as functions of time.

Cauchy improper integrals,

o (X) = % /OOO MX ”');M(X — ) . (6.3)

The numerator varies much more rapidly around 2’ = X than the denominator and far
from this point the numerator is very small. Therefore, we can approximate the 1/x’
under the integral sign, by 1/X and, using the parity of M(z), we get

1 X

! /OOOM(X+."L")—M(X—3:') de' = ——— M(z) dz. (6.4)

v(X) ~ 2 X

When the heads of the instabilities are cut beyond a limited range, this last integral is
roughly a constant I and thus

dx I
aT = T ax (6.5)
or,
R
X2 =x2-22 (6.6)
v

where X is the initial distance between peaks. This last equations explains the parabolic
trajectories occurring when two peaks collapse. When the instabilities are not limited by
a maximum size M, ,;, the distance between two isolated peaks can still be closely fitted
on a limited range of distances by a parabolic law although we know that the integral in
the equation (6.4) slowly diverges as In(X/(¢s; — t)2) in agreement with Table 1.

We closely verified the previous equations (6.4-6.6) in the presence of two isolated
peaks. However, this situation is not stable and soon other peaks appear. Quantitatively,
we can extract from Figure 8, a value [y that gives the best fit to the behavior of the
trajectories when they merge. We found a value of about 4 times smaller than the integral
of each singularity. This discrepancy has not been understood although we think that it
is not produced by the approximation of (6.4) but rather by a collective effect due to the



Thermal plumes in Rayleigh-Bénard convection at infinite Prandtl number 21

other instabilities interacting at large range. It is remarkable that a same parameter I,
seems to characterize all the interactions of two peaks.

6.3. Developed convection in the 2D case

In two dimensions, we also run our program starting from initial conditions

M(z,y,0) = 4 + cos(4ny/L) cos(2mz /L) +
sin(27z /L) sin(2ny/L) 4 cos(4my/L) sin(6wz/L) (6.7)

where the size of the box L is 5. This functional dependence (except for the mean value
equal to 4) was used by Thess et al. (1997) in their study of Marangoni convection. We
verified that our program exactly reproduces their results when the term that contains
V i -vp is suppressed in equation (6.1), and when the thermal diffusivity is small. In the
case of Rayleigh-Bénard convection with only cooling from above, figure 9 depicts various
results as a function of time. We only show the case ¢ = 0 in this simulation. As seen on
the closure relationship (2.41), increasing o tends to smooth the velocity field and eases
the computation. As in 1D geometry, we first observe the increase of the boundary layer
thickness and the growth of instabilities that keep the geometry of the initial conditions
(top row). The cold plumes and sheets start attracting each other according to the
mechanism already discussed (middle row). The initial conditions are still reminded in
the pattern of convection. The merging of some instabilities liberates enough space for a
new instability to occur as a plume structure in the middle of a roughly hexagonal cell
(bottom left). At a later stage, the memory of the initial geometry is totally lost (bottom
right) but the topological characteristics of the convection pattern (i.e. the number of
cells, the length of cold downwellings...) remain the same.

6.4. Nusselt-Rayleigh relationship

In a usual convection experiment, i.e., a liquid tank of height L, where a temperature
difference AT is imposed between the surface and the bottom, the convective activity
can be estimated by two non-dimensional numbers. The first is the Rayleigh number Ra,
the normalized temperature difference, and the second is the Nusselt number Nu, the
heat flux @) normalized by the heat flux that would occur by pure conduction. These two
numbers are

ATL3
Ra = 2P092° 72 (6.8)
Nok
and
LQ
Nu= ——F—— .
" kpoCp AT’ (6:9)

(the thermal conductivity is kpoC) where Cj, is the heat capacity). These two numbers are
related by the dynamics, and we expect a model of convection to yield this relationship.

In our model, the flow is entirely driven by boundary layer effects, with no influence of
the thickness L, which is supposed very large. Then the only possible relationship, which
does not depend on L, is

Q Mok
kpoCp AT “apogAT

=

Nu = a Ra’, with a = (6.10)

In our model, Nu and Ra3 are both infinite, being both proportional to the thickness
L, but the constant a is well defined and can be calculated as follows.
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FIGURE 9. Rayleigh-Bénard convection with uniform viscosity for a fluid cooled from above. top
left is the initial condition, top right is at t=1, middle left, t=4, middle right, t=8, bottom left,
t=13.5 and bottom right, t=30.

The average surface heat flow is given by
1o
S S 0z

where the integration is performed at the surface S of the convective fluid. Our model

Q@ = —kpoCh ds, (6.11)
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deals with the variable M, the first moment of the temperature in the boundary layer,
and we need to make some hypothesis on the vertical temperature profile to calculate the
heat flux (6.11). At short times, temperature satisfies the diffusion equation, and varies
with z like a complementary error function, therefore § = 6 erfc(z/H) where H is the
thickness of the boundary layer and 8.0 = —26,/(x2 H). Using (2.44) that relates M
and H (M = —0;H?/4), we get then

1 [ (=bs)%
= kpoCh— ds. 6.12
Q Po rg /g (7 M) I ( )
This last dimensionalized expression can be written with an adimensionalized M as
1
—onggt95>§ 1 / 1
= —kpoCpls | ——— ) —= | — dS, 6.13
@ =-rmCyps (Z000)" £ [ (6.13)

or by the introduction of a dummy length L, and noting that AT = —26g since we need
to symmetrize the system with 2 boundary layers to fit with the usual Rayleigh-Bénard
configuration,

Nu = (1/ ! dS) Ras, (6.14)
S Jg 25(mM)>
in agreement with the functional form of equation (6.10).

Figure 10 depicts the average over the surface of (2)~% (xM)~2, as a function of time,
in the 1D case (solid line), and 2D case (dashed line), these two simulations have been
performed with M,,,, = 30. In the 1D case, the initial conditions are simply a very
small M, in the 2D case, we use the same boundary conditions as in figure 9. In the 1D
case, at the beginning, the thermal boundary thickness is very small and grows by simple
diffusion following a ¢~ 2 law (thin solid line). This behavior is not as clearly seen for the
2D case, as we already start in a regime where the boundary layer is unstable. When the
convection starts the heat flow increases and then stabilizes around Nu/ Ra® close to .22.

The mean value of Nu/ Ras is slightly dependent of the choice of My,q, (figure 11),
it increases from 0.165 for M4, = 10 to 0.235 for M4, = 40 (1D case), the numerical
experiment may indicate an asymptotic value for very large M,,,,. However there may
be no truly asymptotic value, which would reflect some departure to the Ras law. Indeed
we may expect that the thickness ~ M 2 associated with the maximum possible value of
M scales with the thickness L.

Our Rayleigh-Nusselt relationship can be compared with results found in the literature.
For convection at infinite Prandtl number, and heated from below, simple boundary
layer models (Turcotte & Oxburg, 1967) give Nu ~ 0.294 Ra3.2D and 3D numerical
simulations (McKenzie, Roberts & Weiss, 1974; Travis, Olson & Schubert, 1990; Tackley,
1996; Sotin & Labrosse, 1999) and laboratory experiments at very high Prandtl number
(Giannandrea & Christensen, 1993; Manga & Weeraratne, 1999) provide similar values
(although the exponent seems smaller than 1/3). Laboratory experiments by Goldstein,
Chiang & See (1990) give Nu ~ 0.066 Ras but for no slip boundary conditions and a
moderate Prandtl number.

7. Conclusion

We have shown that the equations of 3D convection in the limit of high Rayleigh and
Prandtl numbers can be reduce to 2D equations written at the surface of the convective
fluid. These equations express how the moment of the temperature through the thermal
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FIGURE 10. Evolution of Nusselt/Rayleigh% as a function of time, in 1D (solid line) and 2D
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boundary layer is transported and modified by the surface 2D velocity field. They are
universal, i.e. they do not contain any physical parameters. This reduction from 3D to 2D
provides an elegant tool to study the initiation of thermal plumes and line instabilities.

Various generalizations of the present theory can be done in a straightforward manner.
The role of a depth-dependent viscosity in the thermal boundary layer is controlled by a
parameter o. However we could have also considered depth-dependent viscosity variations
in the deep interior. As an example the viscosity of silicated planets increases significantly
with depth. This can be very easily taken into account by a modification of the closure
law. Another modification of the closure law could allow us to study the interaction of a
top boundary layer with a bottom boundary layer. In this case two transport equations
would have be coupled through two closure laws relating linearly in the spectral space
the surface velocity of each boundary layer to the two temperature moments.

Apart from its utility to understand the development of instabilities, their interactions,
the similarities and differences between Marangoni convection and thermal convection,
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our approach suggests a method to study a very important geophysical problem, namely
the interactions between plate tectonics and the underlying high Rayleigh number con-
vection. In our planet, the rheology of the surface boundary layer is highly non-linear
and therefore the present theory does not apply. However, we have purposely used as
long as possible, stresses rather than velocities in deriving the equations of this paper in
order to distinguish what is related to the assumption of a Newtonian rheology and what
is perfectly general. The relationships between stresses and temperature moment (2.20,
2.21) and the transport equation (2.43) are independent of the rheology. This means
we are able to reduce the 3D hydrodynamic problem of plate tectonics to 2D surface
equations even in the case of a very complex relationship between stresses and velocities.
Of course, in this case the equivalent of the closure relationship will be only obtained
numerically and a vertical vorticity would potentially be excited.
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