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Abstract. New equationsfor the dynamicsof a two-phasemixture are derived in a
companionpapetr|Bercovici et al., thisissue(a)]. Theseequationgdo not invoke a bulk
viscosityasmostpreviouspaperfiave done andusetheexistenceof thepressuralifference
betweerthetwo phasesincludingthe possibility of surfaceenegy attheinterfacebetween
the phasesln this paperwe shav how a two-phasemixture reactsto simplestresdields.
As a basicexample,we discussthe deformationof a porousmaterialconfinedby an
impermeablgacket andloadedby a porouspistonandshawv thatthe fluid cannever be
totally extractedfrom the matrix. We demonstratéhat an unconfinedporoussample

is strongerundersheardeformationthan undernormalstress. We considerspherically
symmetriccompactionrandshav that someunphysicalresultsobtainedusinga constant
matrix bulk viscosityare naturally avoidedin our approach.We discussthe problemof
compactiorof atwo-phasdiquid in the presencef surfacetension.In a one-dimensional
simulationthe surfacetensiongenerateporosityinstabilitiesthattendto localizethefluid
into narraw sills anddikesthatcannotreachthe surface.

1. Introduction

The equationsof two-phaseviscousflow have beenini-
tially developedin thegeophysicatommunityby McKenzie
[1984,1985,1987],RichterandMcKenzie[1984],andScott
and Stevenson[1984] (seealso Drew and Passman1999]
for a review of the generaltheory of multicomponentflu-
ids). Sincethen, they have beenwidely used[e.g., Ribe
1985, 1987; Fowler, 1990a, 1990b; Turcotte and Phipps
Morgan, 1992; Spiggelman 1993a,1993b,1993c; Scmel-
ing, 2000]. We have proposeda differentsetof mechanical
equationdor two-phaseviscousflow in the companionpa-
per [Bercovici et al., this issue(a)] (hereinafter referredto
asBRS1). Our equationshave variousdifferenceswith pre-
viousapproacheghe mostsalientof which arethat(1) they
do not requirethe existenceof a matrix bulk viscositywhen
thetwo phasesreincompressible(2) they accountfor sur
faceenepy attheinterfacebetweerthe phasesand(3) they
assumehatthe two phasesetaintheir own pressurdields.
The massand momentumconseration equationgroposed
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in BRSlare
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whereAv = v, — vy andAP = P, — P;. Thefluid and
matrix phasesteferredto by theindicesf andm, have vol-
ume fractions¢ and1 — ¢, respectiely. Although these
indiceswill correspondo the different phasesthe equa-
tions have beenwritten in a perfectly symmetricway and
areinvariantto a permutationof f andm and¢ and1 — ¢;
this symmetrypropertyis referredto asmaterialinvariance
(BRS1). Thevolume-areragedvelocitiesof eachphaseare
v, andv; andtheir pressures’,, and Py (seeBRS1).
Alternatively, insteadof writing theequation®f massand
momentumconsenation of eachphasewe canwrite mix-
ture anddifferenceequations Definingthe averageanddif-
ferenceof ary quantityq asg = ¢gy + (1 — ¢)g,, and
Ag = gm — gy, respectiely, one easily obtainsby linear
combinationof (1)-(4) anew setof equivalentequations:

V.v=0, (5)
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whereD /Dt is definedby 0/t + % - V,
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Theseequationsxpressthe total massconseration, the
porositytransportthe total momentumequilibriumandthe
action-reactiorprinciple.

In (4), (7), and (8) the stresstensorfor the phasem is
definedby

2
T = fim (VVm Vv - 2V -vml> .

and a symmetricexpressionholdsfor the f phasewith f
replacingm. Theviscositiesu,, anduy aretheconstantis-
cositiesof eachindividual phase BRS1have adwocatedhat



the mixture of two incompressibldluids cannotbe materi-
ally invariantandhave a bulk viscosity; thusbulk viscosity
is not used,in contrastto the approachof previous papers
[McKenzig 1984;Spigglman 1993a,1993b,1993c;Scdmel-
ing, 2000]whereanextraterm,(V - v, I, is presenbn the
right side of (9) (seeAppendixA for a moredetailedcom-
parisonof our equationith thoseof McKenzie[1984]).
Theinteractioncoeficient ¢ canbe chosenin suchaway
that it retainsthe symmetryof the momentumequations
while still leadingto theusualDarcy termwhenp s < pim:

o pmpr@? (1 — §)?
k(1 — $)9? + umk(9)(1 — 4)?

(seeBRS1), wherethe permeabilityk(¢) is a function of
porosity¢. Usually, k(¢) is takento vary like kq¢™, where
n is ~2-3. The parameterky, hasthe dimensionsof area
andis physically relatedto the cross-sectionadreaof the
pores(kg ~ 1072 — 10719 m?). In thefollowing, we adopt
the commonandsimplifying assumptiorthatn = 2, which
impliesthatc is a constant

(10)

Hmby
c= ——m——, (11)
ko(pm + puf)

andwhenuy < i, ¢ ~ pr/ko.

Our modeltakesinto accounthe surfacetensions atthe
interfacebetweerthe two phases.The interfacedensitya,
i.e., the areaof interfaceper unit volume, is a function of
porosity and vanishesvhenthe mixture becomesa single-
phasemedium,i.e.,when¢ = 0 or ¢ = 1. We generalizea
suggestiorby Ni and Bedkermann[1991] andassume

a=ags*(1-9¢)°, (12)

wherethe exponentsa andb arebetweer0 and1. This ex-
pressions in agreementvith that obtainedfor a hexagonal
netof matrix grainswhena = b = 1/2 [Sterenson 1986;
Riley etal., 1990, Riley and Kohlstedt 1991]. If 1/(R) is
the averageinterfacecurvature(definedto be positive when
theinterfaceis concare to thefluid phaseandnegative when
corvex to thefluid), thenit canbeshowvn (seeBRS1)that
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One important physical implication of (13) is that the
stressnducedby surfacetensions (da/d¢) will becomepo-
tentially infinite when¢ goesto 0 or 1. Moreover, theinter-
facecurvaturechangessignwhen¢ = ¢. = a/(a + b);
this effectis associateavith achangeof dihedralanglefrom
> 60° to < 6(° [seeMcKenzig 1984;Kohlstedt 1992] (al-
though,in fact,two-phasaheorydoesnotaccountor grain-
graininterfacesrelative to which the dihedralangleis mea-
sured).A very small ¢, thuscorrelateswith thefluid phase
or meltbecomingnterconnecte@t low porosities.

The set(1)-(4) is still not complete. It is easyto realize
thatonemoreequationis neededfor example,an equation



relating P,, and P;. We know thatin the caseof adiabatic
equilibrium with no motion anda constantsurfacetension,
the Laplaceconditionshouldapply:
AP + aj—a =0. (14)

However BRS1 have shawvn that this often usedcondition
[e.g.,Drew, 1983;Ni andBedkerman1991],maynot gener
ally hold. Whenmotion occurs,the surfacetensionshould
no longer equilibratethe pressurediscontinuity but rather
the normalstresgdiscontinuity[ Landauand Lifshitz, 1959].
In the caseof variablesurfacetension,i.e., a temperature-
dependent, adiscontinuityin sheaistresshouldalsooccur
acrossinterfaces.This is often called the Marangonieffect
[LandauandLifshitz, 1959]. Thereis alsonoreasorfor pro-
cesse®ccurringat the interfacebetweerthe two phasegso
beadiabatic.

Accordingly, BRS1have proposeda moregeneralalbeit
morecomple, conditionwhichyields
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where K is a constantelatedto the topologyof the inter-
faceand¥ is thedeformationalvork

T = cAv® + ¢Vvy T+ (1-9)Vvy iz, (16)

As shavn by BRS1, K is of orderl. In (15), f is inter
pretedas a partitioning coeficient (from 0 to 1) that char
acterizeghe percentagef deformationalwork that, rather
thanbeingdissipatedasviscousheating,actsto deformthe
interfaceandis thuseffectively conserative, or reversible,
sinceit is storedasinterfacialsurfaceenegy. The existence
of both storedand dissipatve component®f the deforma-
tional work in mediawith internal microstructure suchas
defectshasbeenrecognizedsinceatleastthe 19309/ Farren
and Taylor, 1925;Taylor and Quinney, 1934].

Whenthe characteristioselocity of an experimentis di-
vided by X, the rate of porosity changeis also decreased
by the samecoeficient, whereaghetermson theright-hand
sideof (15)aredecreasetly X 2. ThereforeheLaplacecon-
dition (14) appearsasit should,from (15) whenthe defor
mationratesgo to zero.However, in all situationswherethe
porosityevolveswith time, thematrixandthefluid pressures
cannotbe assumectqualcontraryto what wasassumedn
someprevious papers(seeAppendixA) [McKenzig 1984,
Spigelman 1993a,1993b,1993c;Sdmeling 2000].

In this paperwe will assumehatthe partitioning coefi-
cient f is zero. In a companionpaperby Bercovici et al.,
[this issue(b)] we will shav thatin casedar from equilib-
rium, i.e., when f # 0, our equationsprovide a damage
theorywhich predictsshearlocalization. Surfacetensione
will alsobetakenasa constant.Theseassumptionsignifi-
cantly simplify thetwo Navier-Stokesequationg3) and(4)



andimply thatthe pressurgump conditionis
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In thefollowing sectionave will examinea serieof prob-
lems, beginning with the simplestidealizedcasef forced
compactioranddeformationwithout surfacetensionto il-
lustratethe mostbasicapplicationsthesewill include one-
dimensionalcompactionand sheay two-dimensionaluni-
axial compression,and three-dimensionasphericalcom-
paction. We will then closeby examining gravitationally
forcedcompactiorwith andwithout interfacial surfaceten-
sionfor simpleapplicationgdo magmagpercolatiorproblems.
We will compareour resultswhen appropriatewith those
obtainedfor the sameexamplesbut with differentequations
by McKenzie[1984] andRichter and McKenzie[1984]. We
will useM84 andBRSto referto the previously usedsetof
equationgseeAppendixA) andto our setof equationsye-
spectvely. M84 replaceghe pressurgump condition (15)
by AP = 0 andintroducesa bulk viscosityin the rheolog-
ical equation(9). In thesecomparisonsve will assumehat
thereis no surfacetensionandthat s < py,.

2. Behavior of a Mixture Under Simple Stress
Fields

In this sectionwe considervarious examplesof simple
compactionand deformation. As a simplification, we as-
sumeno buoyang effects,i.e., eithergravity ¢ = 0 or the
matrix andfluid phasedhave the samedensities(p,, = py).
We alsoassumehereis no surfacetensionon the interface
betweenthe phaseqgo = 0). The fluid hasa very small
viscosity comparedo that of the solid py << p, SOWe
neglectthefluid viscousstresses e

2.1. One-Dimensional Forced Compaction

We first considera layer of thicknesdly, infinite in hori-
zontal extent and containinga mixture of uniform porosity
¢o. Thesystemis assumedo be one-dimensionasuchthat
Vi = Um,(2,8)Z, vy = vy, (2,t)z and¢ = ¢(z,t), and
the bottomboundaryof thelayer, at z = 0, is impermeable
(vy, = v, =0atz =0).

In thisexample the mixtureconserationequation5) can
be integratedtaking into accountthe boundaryconditionat
z = 0yielding

pvg. + (1 = ¢)um, = 0. (18)

This shows that the matrix and fluid velocities must have
oppositesignsandthatthe only way to compactthe matrix
is to allow the fluid to be expelledthrougha porouspiston.
Thisexperimentcorrespond# whathappensn somecoffee
filters or coffee presseswhereathin metallicscreerpushed



througha coffee-watermixture separatethe coffeefrom the
groundg(seeFigurel).

We considerthat the top of the matrix is pusheddown
at constantvelocity —vy andthatthe positionof the piston
attime t is lo — vot. Obviously, the maximumtime of the
experimenthasto be shorterthanr = ly¢g /vo, thetime at
which all the fluid will be extractedandwhereonly matrix
grainswill remainbelow the piston.

The problemcan be solved in termsof v,,,, and¢ only
by combiningthe action-reactiorequation(8) with (17) and
(18). With theassumptiorr = 0, we obtain

a[ 1 8(1_¢)Umz:|

o |a-o %)) o =0, 9

wherex = 3K;/4, andthenthe porosity can be updated
using(2). Equation(19) displaysa basiclengthscale,i.e.,
thecompactioriength

= A
O = ” (20)

(for simplicity, hereandin the following, we assumethat
¢ is a constant). Our definition of the compactionlength
on, is differentfrom thoseof both McKenzie[1984], who
usespo/ (¢ + 4pm /3)/c, and Stevenson1986], who uses
v/ im [ ¢. In the caseof constanporosityg = ¢, it is useful
to defineanotheldengthscaleby

h = 6m+/¢o(1 — do)(k + o). (21)

Whenthe porosity is small, g9 << k ~ 0.75, the com-
pactionis controlledby the differencein pressurefetween
thetwo phasesatherthanby the normalstressn the matrix.

For geophysicahpplicationonmeltextraction,ky ~ 5 x
10719 m?, u,, ~ 10'® Pa s, andthe magmaviscositycan
vary from py ~ 10 Pa s (oceanicspreadingridge basalt)
to uy ~ 10* Pa's (wet siliceousmelt) andto py ~ 10%°
Pas (dry siliceousmelt). Thesethreemagmasorrespondo
compactioriengthsof 8 km, 250m, and30cm, respectiely.

An analyticalsolutionto (19)is easilyderivedin the case
of a spatially constantporosity ¢ = ¢q (i.e., we canonly
derive the exact solutionat ¢ = 0 but not at further times
when porosity hasevolved). The integration constantsare
obtainedfrom the valuesof the matrix velocity on the top
vm. (lo) = —vo andat the bottomuv,,_ (0) = 0. The fluid
pressuras alsosetto zeroatthetop. After somealgebrawe
obtain

(1 — ¢o) sinh(z/h)
¢o  sinh(lo/h)’

vy, (2) = vo (22)

sinh(z/h)

Y sinh(l/h)’ (23)

Um.(2) = —
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T3 24 sinh(lo/h) ’

(24)
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From theseexpressionswe seethat the force per unit
surfaceacrossthe mixture, ¥ = ¢o(—Pf + 7¢,,) + (1 —
¢0)(—Pp + Tm..), is independentf depthandcorresponds
to theforce perareaexertedon thepiston;i.e.,

5 _4,um1)0 h 1
B 3 62,02 tanh(lo/h)

(27)

(by sign corventionfor X, oppositeto that of pressurethe
fluid is expelledwhen¥ is negative). ThefactthatX is a
constantis an obvious requiremenbf the mechanicakqui-
librium of the fluid and could have beendeducedrom the
Navier-Stokesequationof the mixture (7).

Fromtheexperimenterspointof view thesystenbehaes
like adashpotvith afriction coeficient,

_ WE _Apm (B \® lo/h
== (o) ey @

The normalizedcoeficient v/, is depictedin Figure2 as
afunctionof ¢, for 2 valuesof Iy /6,,, (we arbitrarily choose
lo/ém = 0.1, 10). Whentheporositygoesto zero,v goesto
infinity andthemixturebecomes singlephasencompress-
ible matrix. As ¢9 — 1, thefriction coeficientapproaches
0, andthefluid canescapdreely throughthe piston(strictly
speakingneglecting$or ; with respecto (1 — ¢o)t,, be-
comesmpossiblevheng, = 1). Anincreased, atconstant
porosityandcompactioriengthincreaseshefriction coefi-
cient: theenegy costto drive the Darcy flow becomedarge
andthe matrix appearsstiffer. The minimumfriction coef-
ficient is obtainedin the limit Io/h — 0 (negligible Darcy
term)in which case

min(v) ~ 27 (1 go) (1 ¥ f) . (29

The samecoffee-presexamplecanreadily be donewith
the M84 equationghatcontainanintrinsic bulk viscosityin
the rheologicalequationand assumethe equality of pres-
sures(see Appendix A). The analytical solution (28) for
¢ = ¢ becomes

ve = (4//'m3+ 3C) (1 _ ¢0) lO/hC

tanh(lo/h¢)’ (30)



whereh is definedby

ne= Ut 3 a0 g, 31)

1l

In this casewhenthe Darcy termis negligible [y /h << 1,

min(g) = Wt g ()

Sincebulk viscosityhasnever beenmeasuredmostauthors
have assumed, = u,,,. However, the comparisornof (29)
with (32) and Appendix A shav thata ¢ of order p,, /o
would have beenmore appropriate(of course,when the
porosity is not uniform, a comparisonof the two theories
is more difficult). Accordingto our equationsthe fluid is
moredifficult to extractunderone-dimensionaiorcedcom-
pactionthanpreviously estimated A similar conclusionhas
beenobtainedby Sdimeling [2000] using a different ap-
proachbasedon averagingmethodsfor an elasticmedium
containingheterogeneitieg)’'ConnellandBudiansly, 1977;
Sdimeling 1985].

Theanalyticexpressiorfor thechangen porosityattime
t=0,

99 _
ot

vo cosh(z/h)

(1=d0)3, sinh(lo/h)’ 33)
suggestshe formationof a compactedoundarylayer The
porosity decreasesnostly nearthe top, and this tendsto
closethe pathwaysneededdy the fluid to percolatehrough
thematrix. To understandvhathappensn laterstageof the
experiment,i.e., whenthe porosityis no longerconstantn
depth,we mustsolve the equationsnumerically We solve
(19) with afinite differencetridiagonalsolver afterachange
of variableto work on aregulargrid, thenupdatethe poros-
ity explicitly using(2).

Figure 3 depictsthe variationwith depthof the porosity
(Figure 3a) and velocity (Figure 3b) at varioustimes. The
depthis normalizedby . The piston,whichis at z/ly =
1 at the beginning, is moved down to z/l; = 0.95 at the
end. Not all the fluid canbe expelledfrom the mixture. In
particular the experimentendswhenthe porosity nearthe
pistonreache®), thereforesealingthelayer. With thechosen
numericalvaluesthis happensatt¢/r = 0.83, which means
that17%of thefluid remaingrappedn thematrix belov the
compactedoundaryayer.

Thevelocity profilesdepictedn Figure3b shav thatuntil
the surfaceporosityreache®, thevelocity profilesarequite
linear The decreasen the porosity nearthe pistonarises
from an effective compactionthat is inducedby the matrix
material collecting againstthe piston during its downward
motion. In fact,it is easilyverifiedin the coffee-presexper
iment(Figurel) thatasthepistonis pushedlown througha
well stirredmixtureof waterandcoffeegroundsthegrounds
accumulateon top and indeedplug the filter. As a conse-
guence o maintaina significantvelocity, a larger pressure
mustbeapplied.



The force per unit surfacethat hasbe be exertedon top
of the mixture, X(t) variesthroughtime. It is transmitted
throughthe mixture aspressureandviscousstress.Assum-
ing thattheexpelledfluid is removedsothat Py remainszero
nearthe piston,the systemis equivalentto a dashpotvith a
time-dependeririction coeficient

u(t) = & [(1 — ) (4“7”62’;2 - Pm)]z:low. (34)

Vo

Whent = 0, this friction coeficient mustbe equalto that
predictedby (28) (v/pm ~ 24 when(ly/(dm0))? = 0.1
and¢e = 0.05).

Theevolution of v(t) / ., is shavn in Figure4 asafunc-
tion of ¢/7. The force per unit surface that must be ex-
ertedto pushthepistonatconstanvelocityis proportionako
this normalizedfriction coeficient,andv(t = 0) is exactly
that predictedby the analyticalexpression(28) (horizontal
dashedine). Asfluid is expelled,the porositydecreaseand
alargerforcehasto beexerteduntil asingularityoccursnear
t/T = 0.83, whereg(1) reache®.

2.2. Deformation Under Shear

Thefriction coeficientr thathasbeenobtainedrom (28)
is possiblylarger than the matrix viscosity u,,. However,
this effectreflectsthefactthatv includesresistanceéo com-
pressionof matrix grains, which approachesnfinity as ¢
goesto zero. Thusv is not truly analogousto viscosity
Indeed,on a macroscopi@verage the mixture viscosityis
smallerthanthatof a purematrix.

Let usagainconsidera layerinfinite in thex andy direc-
tions but with thicknes2l, (suchthat—Iy, < z < +lp) and
in which porosityis constantand equalto ¢o. A standard
experimentalapproachto measuringmacroscopicriscosity
is to submitthis layerto simpleshearby imposinghorizon-
tal velocitiesv,,, = vy, = fwvg atz = xly. The obvious
solutionof (1)-(4) and(17) (with ¢ andApg = 0) is simply

z
Um, =Vf, = ’UQE, (35)

Vfz = VU = 0. (36)

In order to imposethis deformation,a shearstress(1 —
$0)Tm,. = (1= ¢o)pm(vo/lo) mustbeapplied.Thisshovs
that under shearthe mixture behaeslike a homogeneous
Newtonianbody with viscosity (1 — ¢¢)um. The samere-
sult would alsohave beenobtainedusingM84 asthe defor
mationoccurswithoutdilation of the matrix.

2.3. Two-Dimensional Uniaxial Compression

Anotherway to measurequivalentviscosityis to subject
a sampleto uniaxial compression.We considera sample
with squarecrosssectionin the z-z plane(where|z| < I,
|z| < lp) but infinite in y; the sampleis squeezedn the
z direction by impermeablepistonswith imposedvertical



velocities,—vg onthetop (z = +lp) andvy at the bottom
(z = —lp). We assumehat the matrix andfluid have the
sameverticalvelocities

z

Iy (37)

Um, = Vf, = —Up
we canverify thattheseexpressiongreexactsolutionswhen
the contactdbetweerthe pistonsandthe samplecorrespond
to free slip conditions. The squaresectionis unconstrained
laterally (in the z direction),andthe fluid and matrix have
differenthorizontalvelocitiesvy, andv,,,. As in section
2.2 we searchfor solutionswith ¢ = 0 andApg = 0 and
with a constantinitial porosity ¢q, i.e., solutionsare only
valid neart = 0.

With the above assumptionsthe total massconseration
(5) canbeintegratedin = andyields

T
povy, + (1 = do)vm, = UOE: (38)
while the action-reactiorequation(8) resultsin
h? 0%v,,
— = — (U, — =0, 39
o0 027 (Vm, —vg,) =0 (39)

whereh is the length parametedefinedin (21). Thenthe
fluid pressureP; canbe deducedrom thefluid momentum
equation(3), andthe matrix pressureP,, canbe deduced
from the pressurecondition(17).

We solve theseequationswith the boundaryconditions
thatboththe fluid pressureandthe horizontalnormalcom-
ponentof the matrix total stress— Py, + 2pum (0vm,, /0x —
(1/3)V - vy,), vanishatz = +l,. After somealgebrawe
obtain

x 3h (1 — ¢g) sinh(z/h)

—wZ vt 40
Oh =00 T 050 (k + ¢o) cosh(lo/h)’ 40)

x 3h  ¢o  sinh(z/h)

O = V0 0 g coshla/h) D
_ Hm Vo COSh(m/h)
Py =2(1 - ¢o) Iy (1 B COSh(IO/h)> ’ “
P =2(1— ¢0)WZ)UO
82\ cosh(z/h)
: [1 - (1 — fcfboﬁ) Wlo/h)] ’ “

Y=(1~¢0)Tm.. — ¢oPs — (1 —¢o)Pp,

a1 Bmvo (o ¢ cosh(z/h)
= —4(1—¢o) o (1 (K+¢O)Cosh(l0/h)), (44)

ThequantityX: in (44)is theforceperunit surfacethathas
to be exertedby the experimenteron both pistons. Whena

10



similar experimentis performedwith a homogeneoublew-
tonianviscousfluid, the ratio betweenthe appliedpressure
and the shorteningrate is simply —4 times the viscosity
The equialent viscosity  of the mixture under uniaxial
compressioris therefore—Io(X)/ (4vo), where(X) is thez-
averaged®. Thisleadsto the apparentiiscosity

h — ¢o

n /.Lm(l ¢0) 1 lO (K/+¢O)
which is always smallerthan y,,, andslightly smallerthan
the sheamixture viscosity (1 — @o) .- It is, however, al-
wayslargerthan(1/4)pum k(1 — ¢o)/(k + ¢o), Whichis ob-
tainedwhenly /6, ~ 0.

Figure 5 depictsthe equivalentviscosity of the mixture
accordingto (45) (solid lineslabelledBRS).Wheng¢, = 1,
the equivalentviscositytendsto the fluid viscositywhichis
zeroin our approximation. As soonas ¢y > ly/d,, the
equivalentviscositydecreasesA largesamplealwayslooks
stiffer thana smalleronebecauséargy flow candrav and
expelfluid from essentiallyeverywheren asmallsampleout
canonly draw fluid from proximalregionsin alargesample,
andthusnotall fluid is readilysqueezeffom alargesample.
Whenly /4, is large,theviscositiesneasuredindershearor
normalstressesreequal.

If wewereto useM84 equationsinsteadf (45)wewould
obtain

tanh(lo/ h)] , (45)

h( 3l/'m lO
= (= dun | 1= 36 2 v (2] @0)
whereh¢ hasbeendefinedby (31). Althoughboththeories,
with andwithout bulk viscosities predictthe samebehavior
at¢o = 0 or 1, BRSpredictsthatthe mixtureis significantly
stiffer thanwhenusingM84, unlessa bulk viscositysignifi-
cantlylargerthanu,, is chosen.

Squeezingof the mixture leadsto expulsion of fluid as
seenin Figure 6 wherethe matrix (Figure 6, bottom), and
the fluid (Figure 6, top) velocitiesat z = [, areshavn as
functionsof ¢. Whenthe porositytendsto 0 or 1, boththe
matrix andfluid velocitiesarewy; thatis the minor phaseis
simply adwectedby the major one (thick lines BRS). This
is in contrastto the solutionsobtainedwith the M84 setof
equationswhich leadto

Ve =1 £+1} E(l—(ﬁo) 6,um sinh(m/hg)
00 % G0 (4t 3C) cosh(lo/he)

(47)

S he  6pm sinh(z/h¢)

™o 0 P lo (Apum + 3¢) cosh(lo/h¢)
With ¢ = u.,,, andthe porositytendingto zero,the fluid ve-
locity atz = I, tendsto afinite valueequalto (1+30/v/7)vo
(seeFigure6 dashedineslabeledM84). A very surprising
predictionof (48)is thatthehorizontalextensionof theover-
all mixture cancorrespondo horizontalcompactionof the
matrix phase. This happendor small samples]y << 6,

(48)



suchthatDarcy flow drawsfluid easilyfrom mostof thevol-
umeandfor a bulk viscositysmallerthanu,,. In this case,
the expulsionof fluid with solittle Darcy resistanceppears
to be sofastthatthe matrix hasto collapsein  to compen-
satefor theexcesdossof fluid. However, compactiorof the
matrix underextensive stressesloesnotoccurwith BRSun-
lessKy < ¢0/2, aconditionin contradictionwith the fact
that Ky is of order1.

2.4. Radial Compaction

McKenzie[1984] proposeda methodto measureexperi-
mentallythebulk viscosity(atleastasathoughtexperiment)
which entailssqueezing sphericatwo-phasebody. We re-
examinethis thoughtexperimentusingbothM84 andBRS.
We againassumeno surfacetensionandthustheonly differ-
encebetweerour equationsandthoseof McKenzie[1984]is
the useof a bulk viscosity¢ by M84 andthe pressurgump
condition(17) by BRS.

With zerobuoyangy forces(g or Ap = 0) andzerosurface
tension(oc = 0) andthe assumptiorthatthe fluid stressr ,
is nggligible, the action-reactiorequation(8) leadsto

—¢(1 - @) VAP + ¢V - [(1 — ¢)T,,,] — cAv =0. (49)

The fluid and matrix velocitiesarerelatedthroughthe total

mixture conseration (5). Adoption of sphericalsymmetry
(whereinvy = fvy, (1), Vi = T, (r), andr is theradius
from thecenterof thesphereyesultsin ¢vy, +(1—@)vy,, =

B/r?, whereB is a constantthe solutionis nonsingularat
theorigin only if B = 0 in whichcase

ovg, + (1 — ¢)vp, = 0. (50)

2.4.1. Sintering and hot-isostatic-pressing approxima-
tion. In what McKenzie[1984] refersto asthe “sintering
and hot isostatic pressing” approximation,the interaction
forcecAv is neglected.Althoughwe alsongglectthis term,
for the moment,we mustnotethatasis evidentfrom (49),
this approximatioris only valid aslong as¢ is nonzero.

In our model,evenwith the sinteringapproximationthe
fluid andmatrix pressuresannotbe equal. Therequirement
that the microscopicstressesormalto the complex inter-
faceamatchimposesanaveragepressurgump relatedto the
rate of phaseseparatior(seeBRS1). In the casewherethe
porosityis constantaccordingto (17) with 1y << pp, and
using(50),

_ Kopm 1 orvp,,
¢o T2 Or

This expressioncan be introducedin the momentumequa-
tion (49) for which the only solutionthatis nonsingularat
theoriginis v,,,, = Cr, whereC' is a constant.This veloc-
ity yields a zerostresstensorand particularlya zeroradial
viscousstressr,,,, = 0 regardlesf C' (becaus®f theab-
senceof bulk viscosityin BRS). Thereforeonly pressures
areappliedto thetwo phasesn a pureisotropiccompaction
with constanporosity

AP =

(51)
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The experimentethatsqueezethe sphereof mixtureim-
posesaforceperunit areaon thefluid andmatrix of

Yp=-P; (52)

Ym= T, — P, = _Pm7 (53)

respectiely. Thesetwo forcesareappliedin proportionsgg
and1 — ¢o, respectiely. Whenthe two forcesare equal
(e.g.,in an experimentwherethe surfaceis enclosedn a
rubbermembrane)P,, and P; areequal,andthereforethe
pressurgump condition(51) impliesthatv,,, = 0.

In thecasewherethespherds enclosedy aporousmem-
branethat allows the fluid to escapdreely, ¥y = Py = 0
(in thesinteringapproximationthefluid pressuras uniform
andremainszeroinsidethe matrix). The experimenterap-
plies a force per unit areaat the surface of the sphereof
radiusR, ¥ = (1 — ¢o) X, (R), and(51)implies

(1~ ¢o) vm
Y = 3Kty ———2 —. 4
3Kop %o R (54)
Usingthemassconserationrelation
0
= (1= G0)V v =3(1-4)C,  (55)

we deducehattheporosityevolvesatconstansurfacestress
as
O¢o b
2% = o
Hm Lo

ot (56)
BRS predictsthatat constanappliedstressthe compaction
velocity tendsto zerowhenthe porosity vanisheg54). In
otherwords,the porositydoesnot evolve arymore,andthus
cannotbecomenegative, whenit reachezero(56).

The samethought experimentusing M84 would have
given[seeMcKenzig 1984]

¥ =31- %)C% (57)
O _ X
o (58)

Contraryto (56), (58) obtainedusing M84 with a constant
bulk viscosity can allow negative porositiesas the com-
pactionvelocity doesnotreachzerowhengy = 0.

Figure7 depictsthe normalizedratio of the appliedforce

to the radial strainrate (X R) /(ptmvm,.) accordingto (57)
and(54) (assuming, = u,,, and Ky = 1). We predictthat
it is muchmoredifficult to extractthe fluid thanpreviously
thought.

The previous solutionsare obtainedunderthe sintering
approximationc = 0. In fact, with minor modifications
the solutionsalsohold whenthe fluid phaseis simply void
(of coursereplacingthefluid phaseby void impliesthatthe
equation®f massandmomentuntonserationsfor thefluid
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aremeaningless)However, asalreadymentionedassoon
asthefluid phasds notvoid andhasa nonzeroviscosity the
Dargy termvarieslike cv,,, /¢; thusits importancencreases
at vanishingporosity andthetermis no longernegligible.
We only discusgtheinfluenceof this termusingBRS equa-
tions,but a similar exercisecanbedonewith M84 equations.
2.4.2. Beyond the sintering approximation. When
keepingthe Dargy term, the radial compactionof a spheri-
cal body satisfieg(49) in sphericalpolar coordinateslf the
nonradialcomponentsf v,,, arezero,v,,, satisfies

5 0,1 0r?u,,
o' or
whereh hasbeendefinedin (21). The only solutionto (59)

whichis nonsingulaatthe origin is

) —Um, = 07 (59)

U, = Cﬁ—j(r cosh(r/h) — hsinh(r/h)), (60)

whereC' is anintegrationconstantKnowing v, , theradial
viscousstresss readilydeduced

4 h
Tmer = gﬂmc;

. [(3?—22 + 1) sinh(r/h) — 3% cosh(r/h)| . (61)

Contraryto whathappenawith the sinteringapproximation,
the stresstensoris no longerisotropic, 7,,,. # Tmee =
Tm,,- 1he Dargy force introducesa directionalterm that
alwaysbreaksisotropy.

The fluid pressurds obtainedby integration of the fluid
momentunmequatiorandthe matrix pressurés thendeduced
from the pressurgump (51),

L sinh(r/h)
P, = Py %KOC b
In thecasewherethespherds enclosedy arubbermem-
brane ,masscontinuity (50) implies,asin section2.4.1,that
C = 0 andthat only the internal pressuresP,, and P
are equaland resistthe force applied by the experimenter
3. When the surroundingjacket is permeable the pres-
sure Py is zero at the surface of the mixture and the re-
sistanceto deformationis due to both pressureand nor-
mal stresgwhich unlike in section2.4.1is nonzero).From
Y = (1 — ¢o)(Tm,. — Pn), wherer,, , andP,, aregiven
by (61) and(62), onegetsatr = R,

(62)

1 U
Y= —p,(l— .
3M ( ¢0)R

(12(h/R) + 4 + 3Ko/¢o) tanh(R/h) — 12h/R

h/R — (h/R)? tanh(R/h)
which is in agreementwith (54) when the compaction
length,d,,, goesto infinity. Figure7 depictsthe normalized
overall resistanceof the sphereas a function of ¢y. Here
again.themixtureresistancés muchlargerthanwould have
beenestimatedvith M84 assumingaconstanbulk viscosity
in (57).




3. M€t Migration

3.1. Basic State

We now studythe processy which a mixture segregates
naturallyundertheeffectsof gravity andsurfacetension.We
assumehatthe fluid densityp; is lessthanthe matrix den-
Sity pm (Ap = pm — py > 0). The procesf melt segre-
gationwas previously studied[e.g., Richter and McKenzie
1984; Ribe 1987; Spigelman 1993a,1993b,1993c], but
with equationgncludinga bulk viscosity In this sectionwe
alsoretaintheviscousstressem the Navier-Stokesequation
for the fluid phase andwe take into accountthe effects of
surfacetensionassumingnearequilibrium conditions;that
is, o is constananddifferentfrom zeroin (17).

Wefirstlook for asteadysolutionwhenthemixtureis infi-
nite in all directionsandhasa constaniporosity¢g. Gravity
—gz is assumedtonstantand actsin the negative z direc-
tion; we alsoassumehe basicstatevelocitieshave only z
componentgindareconstant.

From(5) we seethatthe averageverticalvelocity ¢vs, +
(1 — @)v,y,, is constant.lt is thereforeappropriateto work
in theframeof referencavherethis averagevelocityis zero.
Sincethe basicstatepressurelifferenceP,, — Py isonly a
functionof ¢y, it is aconstantand(1)-(4) have the solution

P{ = —pgz + ¢003—Z ) (64)
$o
0 _ s (1— do)0 P
Pm = —pgz (1 ¢0)ad¢ ) (65)
$o
v = o1~ g0 23, (66)
Vi, = 81— 60) s, 67

wherep = ¢ops + (1 — ¢o)pm is the averagedensity of
the mixture. The superscriptzerorefersto the basicstate
with constantporosity We choosetwo materiallyinvariant
expressiondor thepressuredyut acommonintegrationcon-
stantcouldbeenaddedo thetwo pressuregsincethereis no
zeroreferencepressurén aninfinite layer). Fromtheseex-
pressionsve canalsodefinethe basicstatemelt extraction
velocity,

A
Vs = Vi = go(1 — o) 7. (68)

3.2. Marginal Stability

Let usassumehata perturbatiorwith wave vectork, an-
gularfrequeny w, andgrowth rates is addedo the previous
basicstate. The netflow is thereforecharacterizedy the
guantities

q=¢°+ G exp(st)expi(k - u — wt), (69)
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wherethe quantitieswith atilde arefirst-orderperturbations
andwhereg represents ¢, vy, Py, Py, Or ¢. Theseexpres-
sionsarethenintroducedinto (1), (3), (4), (14), and(18).

Fromthe matrix massconseration(2) we get

(wis)b+ (L go)k - ¥+ 31— o)k “225=0, (70)

wherek, is the vertical componenbf k. The sumof mass
consenationequationdi.e., (18)) gives

ok 95 +(1—go)k - ¥+ 01— o)k “2L5=0, (71)
thefluid force equation(3) yields,
—idok Py + Apg(1 — ¢0)2d + c(Vim — V)
~nsboli?9s + k(9] =0, (72)
andthe matrix force equation(4) resultsin
—i(1 — ¢o)kPr, + Apgdoid — c(Vim — V)
(1= G0 + (V)] =0, (73
wherek? = k - k. Surfacetensionequilibriumgives
B; — B,
7%3(?0(;0)2 b + ike(82, + 5?«)
iV — kv R0 - D22, 7

C

= —0Qg

whered; = /4y /3cis thecompactioriengthof the melt,
andaccordingo (12) we have definedG(¢q) by

G(do) = ¢§(1 — o)’
‘el —a)+ (a+b—1)(2a — (a + b)go)po]. (75)

The factoron the right of (75) in braclketsis positive def-
inite within theintervals0 < a,b,¢ < 1 sinceit hasone
extremumab/(a + b) at$y = a/(a + b) andhasthevalues
a(1—a) andb(1—b) whengy = 0 andl, respectiely; there-
fore G(¢o) is positive for ary exponentsa andb betweerD
and1.

We have alreadyseenin theintroduction(seealsoBRS1)
that the value ¢. = a/(a + b) correspondgo a porosity
at which the matrix-fluid (or solid-melt) interfacechanges
from concae (relative to thefluid) to corvex; this porosity
thresholdcorresponds$o a dihedralangleof 60° [Kohlstedt
1992]. However, the value ¢, is not associatedvith any
particularly specialvalue of G(¢); thatis, G(¢) doesnot
changesignat ¢ = ¢. andis not even extremumat this
value. Thusthe macroscopiaynamicsof the mixture does
notchangewhenthe porositycrossesp..
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In orderto solve (70)-(74)we first find the inner product
of the wave vectork with (72) and(73). The maminal sta-
bility problemleadsto thedispersiorrelation

A
w = do(1 - o)k - 2

2(1—2¢0) —¢o(1—o)k* (9307, — (1~ 0)?d%)
1+o(1—do)k?((k+¢0)dZ, +(1+K—¢0)d7) ’

(76)

aQ

C
| G2
1+¢o(1—¢o)k*((k+¢0)0Z,+(1+K—¢0)07)

The solutionsare thereforetraveling waves with an expo-
nentiallygrowing amplitude.Thedispersiorrelationfor the
wave frequengy (76), correspondso thatfound by Spieel-
man[1993a]in thecaseKy =0, 6y = 0, and¢y << 1.

Figure8adepictsphasevelocitiesof porositywavesUph
for variousporosities(usingk - Upn = w with (76)). The
correspondinggroup velocities, Ug, = Viw, which are
the velocitiesof melt paclkets, are also shavn (Figure 8b).
All thesevelocitiesare normalizedby their melt extraction
velocity z-(68) and plotted as a function of the normalized
wave numberkd,,. We have only consideregerturbations
with a vertical wave vector(k = k,z). Porosityperturba-
tionswith ary verticalvariation(i.e., k, # 0) will propagate
vertically. Porosityperturbationghatare constantn z will
not propagatetall.

At low porosityandsmallwave numben(ké,,, ¢o << 1)
theporositywavesandthe melt pacletstravel roughlytwice
asfastasthe backgroundextractionvelocity (68). At large
wave number porositywavesandmelt pacletstravel at sig-
nificantly lower velocitiesthanthe backgroundield andcan
eventravel downward. An increasen porositydecreasethe
wave velocity. When ¢y is largerthan0.5, porosity waves
and melt pacletsalways propagatedownward with respect
to thefluid extractionvelocity. This suggestshattheveloc-
ity of a melt paclet candecreaseavith time sinceits upward
motionwill be accompaniedby a porosityincreaseaccord-
ingto (77).

We canscaletheseresultswith parameterappropriateo
spreadingidges(d,, = 8 km, 6y ~ 0 km, Ap = 500 kg
m=3, p.,, =10 Pas). In this casekd,, = 50 would cor
respondoughly to a wavelengthof 1000m. The extraction
velocities(68) would be 145,1211,and1816mmyr—1! for
porositiesof 0.02,0.20,and0.60,respectiely.

Thefactthatthe porositywavesalwayshave growing am-
plitudesis not relatedto a particularchoice of the power
law coeficientsa andb in (12) sinceG(¢) is positive (or
d*a/d¢?® < 0) for ary choiceof a andb between0 and
1. This indicatesthat surfacetensionalwaystendsto sepa-
ratethe two phases.The physicsis asfollows: Whentwo
pointsin the mixture, A and B, have different porosities,
they have differentaverageinterface curvaturesand there-
fore differentsurfacetensions. Sincethe differencein sur

(77)
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facetensiono[(da/d¢) 4, — (da/d¢) 5] alwayshasthe op-
positesignto thedifferencen porosityg4 — ¢ (giventhat
d*a/d¢® < 0), the differencein fluid pressurgrelative to
the matrix pressure Py — P,)4 — (Py — Pp,)p alsohas
the oppositesignto ¢4 — ¢, which indicatesa fluid flow
towardregionsof higherporosity

Equation(77) is independenbf Ap; surfacetensionin-
ducesa self-separatiomf the two phaseswithout any influ-
enceof gravity. Figure9 shavs the normalizedgrowth time
of thesurfacetensioninstabilities(3cag )/ (4sum). Thesur
face tensioninstability doesnot selecta preferredwave-
length. However, short-wavelengthinstabilities grow the
fastessinceover shortdistancest is not enegetically diffi-
cultto overcomeheDargy resistancendto draw fluid from
the surroundings.

Thesurfacetensionbetweersolidsilicatesandtheir melts
o is typically of order0.1-1.0Jm~2 [CooperandKohlstedt
1982;Lasaya, 1998]. A simplemodelcanhelpusto choose
avaluefor aq. Let usconsidera cubeof mixture of volume
L3 crossedy N tubulesof fluid with thesameradiusd. The
porosityof this mixtureis of order¢ ~ Nwd?/L?, while the
interfacedensityis « = (2N7d)/L? = (2¢)/d. Equation
(12) impliesthata = ap¢® atlow porosity andtherefore
that the radius of the tubules decreasesvith the porosity
d = 2¢(1= /ay. Thisbehaior is in quantitatve agreement
with experimentgvon Bargen and Waff, 1986]. Assuming
a porosity ¢ of a few percent(i.e., 0.01 < ¢ < 0.05) for
tubuleswith radiusd of 1-100um anda = 1/2 impliesthat
g = 2 x 10® to 5x10% m~—!. During magmacompaction,
the surfacetensioneffects measuredyy oo shouldthere-
fore take valuesbetween200J m=2 and 500 kJ m—3 (the
lower valuehasbeenusedby Stesensor{1986]). Theseval-
uescorrespondo pressureneadsoag/pg of 7 mmand17
m. For pu,, = 10'® Pas the normalizationfactor of Fig-
ure 9, (4um)/(3cag), would be 210 Myr and 84 kyr for
oag = 200 IJm2 andoag = 500 kJ m—3, respectiely.
At low porosity growth timesof a few tensof thousand®f
yearsthuscanbeobtained.

Thefactthatshort-wavelengthporositypacletstravel the
slowestwhile their growth rateis the largestsuggestghat
surfacetensioncangeneratgeologicalstructuredik e dikes
orsills. Theability of surfacetensionto generaténstabilities
doesnot dependon the fluid viscosity Thefastesigrowing
instabilitiesof (77) occurwhenkd,, is large,i.e., eitherat
shortwavelengthor whenthe Dargy flow is not the limiting
factor Fora = b = 1/2 thisminimumgrowth timeis

R ROV I )
which indicatesthat only the matrix viscosityis important;
highly viscousmeltsareasunstablewith respecto surface
tensionasarelessviscousmelts (within the approximation
thatp; < ppy). In fact, sincethe melt extractionvelocity
decreasesvith u ¢, surfacetensionwill have moretime to
actwith highly viscousfluids thanwith lessviscousones.
(Thesurfacetensioninstability is alsoanintegral partof the
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shearlocalizationinstability and is explored further in the
third paperof the serieg Bercovici etal., thisissue(b)].)

The previous solutionsof plane unstablewaves are not
theonly solutionsto (70)-(74).1f wetakekx (72) and(73),
wefind anothersolutioncorrespondingo flow somevhatre-
latedto theRayleigh-TylorinstabilityandRayleigh-Benard
corvection. More precisely a solenoidal(i.e., nondivergent
or incompressiblejlow is excitedandsatisfies

Apg ~,. k-2
Vf - c (Z k2 k)
1+ 3(1 — ¢)202,k?

' 79
(1+ 3(1 — 60)02,k2)(1 + 26002k%) — 1 (79)
Apg ;. k-z
Vm :7 ¢ (z ?k)
1+ 39303k
' 10 (80)

(14 3(1 — ¢0)02,k2)(1 + $4063k%) — 1

Thetotal velocitieshave both solenoidalcomponents(79)-
(80), and compressiblgoropagatingcomponents. The in-
ducedsolenoidalvelocitieshave zero vertical vorticity z -
(k x vi) = Z- (k x vy) = 0; they arepurelypoloidal.

Thesolenoidakolutions(79) and(80) arenonzeroonly if
thebuoyangy torqueApg k x z is nonzera(i.e, whenk has
a horizontalcomponent). Thus unlike porosity waves that
aredriven by perturbationsvith vertical wave vectors,this
poloidal/solenoidaimotionis sensitve to horizontalpertur
bationsof density just asin ordinaryRayleigh-Benardcon-
vectionor the Rayleigh-Taylor instability. Horizontal vari-
ationsof porosity andthusof density inducevertical mo-
tions. Regionsof low densityrise, but the two phaseshave
differentupwardvelocities.

The verticalcomponent®f the solenoidalvelocitiesnor-
malizedby the melt extractionvelocity (68) aredepictedin
Figure10. At large wave number only the fluid movesand
thefluid velocitiesarecomparabléo ¢ /¢ timestheextrac-
tion velocity (see(79) whenk — o0). At very smallwave
numberthe Darcy term forcesthe velocitiesof the matrix
andthefluid to becomesqual.

3.3. Nonlinear Solutions of the Compaction Problem

Although the simple maminal stability analysisalready
shaws the complexity of two-phaseflows, it is clearthata
naturalprocesswill be affectedby all the nonlinearitiesof
the equations.Whenall the compleities of the equations
aretaken into account,the porosity paclets ¢ will interact
with the backgroundlow.

We againexaminethecompactiorproblembutin thenon-
linearregime. Werestricttheequationgo onedimensional-
thoughwe areawarethattheir solutionsmay be unstablen
threedimensiond Scottand Stevenson 1986; Barcilon and
Lovera, 1989]. The mixtureis confinedto a layer of thick-
nessg, which containsa matrix with initial volumefraction
1 — ¢¢ anda lighter fluid phasewith volume fraction ¢.
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On thetop andbottomof the layer the matrix andfluid ve-
locities are zero. The equationgo solve arethe masscon-
senationequation(18), the porosityevolution equation(2),
the action-reactiorequation(8) assumingr, = 0, andthe
pressurgump condition(17).

Assumingpurely vertical flow, using (18) (with the im-
permeableboundaryconditions)to write Av, = v, /¢,
andnormalizingz by lop andv,,. by (3pm913)/(41m), we
obtain

0 1 (1 — @),
¢’{“(1 T [qs(l R

+o a- 0%}

G(p) 09  vm. Ap
—Ema—)\ p —¢(1—¢)p—m—0, (81)
where
E= 9% (82)
pm9lo
1
A= E (83)

Porosityevolutionis still controlledby (2) which retainsits
form evenwith the normalizationf z andt.

Equation(81) is solved numericallyby afinite difference
methodwith a tridiagonalsolver. The porosityis thenad-
vancedby a time adaptive explicit method. We consider
casegq(1) with surfacetensionbut no buoyang forces, (2)
withoutsurfacetensionbut with buoyangy, and(3) with both
surfacetensionandbuoyangy. In all caseswe assumefor
simplicity thata = b = 1/2in thesurfacetensionexpression
(12) andthatk = 3/4 (i.e., Ko = 1). Clearly, thebehaior
of the varioussolutionsdependson the relative importance
of the Darcy termuv,,,, /¢ andtheviscousterm proportional
to A.

3.3.1. Surface tension without gravity. This type of
solutionwill be alsodiscussedy Bercovici etal. [This is-
sue(b)] in connectionwith damagetheory However, it is
alsonecessaryo shov herethe essentiakffectsof surface
tension.

Fromthe stability analysiswe know thatthe wavelengths
shorterthan the compactionlength are the most unstable.
WhentheDargy termis notthelimiting factor, é,,, = +oc or
A << 1, only shortwavelengthsareeffectively presentand
all areequallyunstable Figure11 shovstheevolutionof the
solutioninitiatedwith a singlelong-wavelengthperturbation
¢ = 0.05 + 0.001sin(wz/ly). We use201 finite difference
grid pointswhich aresuficient for stablecorvergence.The
ratheruniform initial porosity evolvesinto a single narrav
sill of purefluid.

The previous solution, obtainedby neglectingthe Darcy
term underthe assumptiorthat A << 1, cannothold very
long. As the porosity decreasesn the sidesof the high-
porosity instability, the importanceof the Darcy term in-
creasesandin the end, it dominateghe dynamics. In the
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extremecasewhere\ >> 1, the porosity conseration (2)
and(81) canberecastas

09 0 0¢

ot Eaz [G(¢) az] ' (84)
The porosity obeys a diffusion equationwith a variable
andnegative diffusivity D = —£G(¢) [seealso Stevenson
1986]. With our equationghis procesccursat all porosi-
tiesandindicatesthat surfacetensionactsto unmix or sep-
aratethe two phasesvhatever their respectie proportions.
The situationmay be differentwith silicate meltswherea
contribution to the surfaceenegy comesfrom grain-grain
interfaceqRiley etal., 1990].

A negative diffusivity correspondso avery unstablepro-
cesscausingjust the reverseevolution of normaldiffusion.
In thisregard,theonly thing onelearnsfrom numericalsolu-
tionsto (84)is thatary initial conditionresultsin arandom
distribution of layerswhere¢ equalseitherl or O.

It is thereforemoreinterestingto studyintermediateso-
lutions whereboth viscousand Dar¢y termsarekept. Fig-
ure 12 shaws the evolution of the solutioninitiated by the
samelong-wavelengthperturbatiorasin Figure11 but with
A = 4. Thefluid now drainsinto a numberof smallsills pri-
marily becauséhe Darcy resistancerohibitsthefluid from
beingdravn acrosdarge distances|essenenpy is therefore
usedin generatingmultiple instabilitiesthanin generating
onelargeone(whichwould pull fluid acrosgheentiredepth
of thelayer).

3.3.2. Gravitational settling without surface tension.
As in section3.3.1,we candefinetwo extremeregimesac-
cordingto whetherthe gravity termis balancedby the vis-
coustermor theDarcgy term.

In the casewherethe matrix viscousterm is dominant,
A << 1, thefluid caneasilybe extractedfrom a large dis-
tance. This is confirmedby the simulationdepictedin Fig-
ure 13. In the oppositecasewherethe Darcy termis dom-
inant A >> 1, the matrix velocity is given by —¢?(1 —
¢)(Ap/pm)z analogoudo (67). Porosityconseration be-
comes

0¢ Ap 0¢

5t 2,001 91— 29) 50 =
which is a nonlinear propagationequationfor a porosity
wave of phasevelocity 2(Ap/pm)d(1 — ¢)(1 — 2¢). This
phasevelocity is in agreementvith (76). Porositywaves
propagateupward or downward dependingon whetherg is
greatethanor lessthan1/2 (althoughthefluid alwaysflows
upward). The nonlinearityof the phasevelocity makesthe
extraction of the fluid difficult. In the rear of a porosity
paclet (¢ < 1/2 andd¢/dz > 0) the porosity decreases,
0¢/0t < 0, andthis draining of the matrix hampersthe
propagatiorof the next rising porositypaclet.

In the absenceof a viscousterm the direct relation be-
tweenvelocity andporosityforbidstheimpositionof bound-
ary conditionson v,,,_. Therefore,in Figure 14 we depict
an intermediatecasewhere both viscousand Dargy terms

0, (85)
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arekept. The fluid migratestoward the surface but much
moreslowly thanin Figure13. As thefluid cannotbedrawn
from adistancanuchlargerthanthecompactioriength,the
porosity decreasemoreor lessuniformly below a shallav
layerveryrichin fluid. Porositypacletscalledmagmonsre
alsogeneratedt depthandtravel in the mixture [Scottand
Stevenson 1986; Barcilon and Lovera, 1989; Spigelman
1993b].

3.3.3. General case. Asseenwith (81), surfacetension
forceshalancegravity (assumingp << 1) when

a(l —a) cag

¢t Apg’
i.e.,eitheroveraveryshortdistancgin which casethebuoy-
antstressApgly is small) or whenthe porosityis very low
(in which casethe averageinterfacecurvatureda/d¢, and
thusthe surfacetensionforce, is large). For modelingin a
ridgecontext we cantake (o) /(Apg) betweerdOmmand
100m for cag = 200 Im—2 andoag = 500 kIm—3, re-
spectely. (Ap = 500 kg m—2, p,, = 3000 kg m—3). This
implies that surfacetensiononly actson a scaleof a few
hundredmetersat most.

To shaw that surfacetensioncanbe animportantsource
of instabilities,we performthe computationfor a layer of
thickness50 m anda compactioriengthé,,, = 8000 m. We
startwith a porosity ¢ = ¢o[1 — 0.5 cos(2mz/lg)], where
¢o = 0.01. Assumingthat the mamginal stability analysis
remainsvalid, the porosity waves should slowly drift up-
ward (Up, = 0.71 mm yr—! accordingto (76)), the ma-
trix shouldcompact(v,,, = —0.74 mmyr—! accordingto
(67)) andthe fluid shouldflow upward (vs, = 74 mmyr—!
accordingto (66)). Becausef surfacetensionthewave am-
plitudesshouldincreasewith time, andthe porosity should
reachzeroafter a time of order1/s (see(78)). After this
time the continuity of theflow is interruptedandsills form.
If wetake (cap)/(Apg) betweerdOmmand100m, growth
times shorterthan 24 Myr andlongerthan 24 kyr are ob-
tained(see(78)). In the next simulationswe usecay = 50
kJ m~3, which lies in the rangeof valuesestimatedn sec-
tion 3.2. This shouldleadto a local drainingof the matrix
after~200kyr.

In Figure 15 the time evolvesfrom left to right andthe
porosity (horizontalaxis) is plottedasa function of height.
From Figure 15ato Figure 15b, the porosity wave moves
slowly upward. The nonlinearityof the equationgjenerates
harmonicsthat startpropagatingat differentvelocities. At
t = 220 kyr (betweenFigures15b and15c)the fluid is to-
tally squeezedut from the matrix nearthe bottom,andthe
continuity of theflow is interrupted.Thena ssill developsby
aprogressie drainingof the matrix mostly from the bottom
of thessill (Figures15dto 15k). Thetop of thesill alsomi-
gratesslightly downward. At large time, (Figure 15k) the
completeunmixing of the two phasedeavesa fluid sill of
thicknessl m.

The time neededo squeezeut the fluid variesqualita-
tively aspredictedby (78),i.e., proportionallyto p,, /(cag).

lo = (86)
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With the conserative valuesthat we have chosen,this is
alreadyshort comparedto most plate tectonicsprocesses.
However, o couldbefurtherincreasedy afactor10while
the matrix viscosity could be decreasedby mary ordersof
magnitude(Ahern and Turcotte [1979] and Turcotte and
PhippsMorgan [1992] consideru,, = 10 — 108 Pas).
Thereforedrainingtimesassmallasafew 10yearsarepos-
sible.

As seenin section3.2, surfacetensiontendsto selectthe
smallestwavelengths Porosityevolutionin alayerof thick-
nessly = 4, = 8000 m is depictedin Figure 16. The
finite differencecodein this simulation uses2000 points,
andthe initial porosityis a periodicrandomfunction with
anaveragevalueg, = 0.01 andanamplitudespectrumde-
creasingas 1/k, wherek is the wave number Exceptfor
lo, the other parametersre similar to thoseof Figure 15,
and periodic boundaryconditionsare also applied. From
Figuresl6a-16kwe seethe upward migrationof thevarious
porositypeaks.Thesepeaksdeformasthey containdifferent
harmonicamoving at differentphasevelocitiesandbecause
theiramplitudesncrease Aroundt = 100 kyrs(Figurel16f),
thecontinuityof theflow is interruptedandvarioussills start
to form. Althoughlong-wavelengthcomponentsre present
in the initial porosity profile, they do not imposethe peri-
odicity of the final distribution of sills (Figure 16k). The
selectedvavelengthgesultfrom acompromiseébetweerthe
harmoniccontentof the initial porosity anda growth rate
thatfavorsshortwavelengths.

4. Conclusions

In this paperwe have investigatedundamentaproblems
of compactiorusinga new two-phaseheorythatis materi-
ally invariant,includesinterfacial surfaceenengy (e.g.,Sur
facetension),andaccountdor differencesn the pressures
of thetwo phasesnsteadof employing abulk viscosity Al-
thoughthebulk viscosityapproaci(M84) employedin vari-
ousprior studieds analogouso compressibléluid mechan-
ics formulations,it is meantto modelcompactiomot com-
pressibility; neverthelessit prescibescompactibility of the
matrix throughan extra rheologicalproperty i.e., the bulk
viscosity (. In BRS, no bulk viscosityis employed andthe
rheologicallaws remainsimple, yet fluid and matrix pres-
suresare assumedinequalas soonasthereis somephase
separation.This interpretationis very similar to that given
by Scottand Stevensor{1986]in their AppendixB (although
in the main body of the paperthey usea constantoulk vis-
cosityasis alsoassumedn muchof M84).

Whentheporosityis variable thereis no obvioustransfor
mationin which a bulk viscosityasperM84 canbeinferred
from BRS. However, in simple casesof constantand uni-
form porositythe M84 bulk viscosityapproactandthe BRS
pressurdifferenceeffect canbe relatedassuminghe bulk
viscosity( ~ p., /¢ (Seesection2.4.1andAppendixA).

We believe that our interpretationpossiblyhassomead-
vantagesvith respecto previousformulations:



1. BRS s materiallyinvariant,thatis the equationsare
perfectlysymmetricor invariantto permutation®f the sub-
scriptsm and f (andimplicitly ¢ and1 — ¢) asshouldbe
expected Useof M84'sbulk viscosityapproachwhile main-
taining materialinvariancewould requirethatthe fluid also
have a bulk viscosity in which casethe mixture of incom-
pressiblefluids would leadto a compressibleone (BRS1).
However, M84 is explicitly for a systemthatis not materi-
ally invariant(i.e.,thefluid is alwaysmuchlessviscousthan
the matrix).

2. With our equationsthe macroscopiaheologyof the
mixturebecomeshatof theend-membesinglephasesvhen
¢ = 0 or ¢ = 1. Thisis notthe casewith theoriesusing
bulk viscosity unlessmassconseration equationsare also
invoked; this difficulty promptedvariousauthorsto invoke
an empirical {(¢) relationshipsuchthat{ — +oco when
¢ — 0 (andalsowhen¢ — 1) [e.g., McKenzig 1984;
Sdmeling 2000]. Whena constantbulk viscosityis used
in M84, we have shavn in section2.4 (radial compaction)
thatthe porositycandecreaséelon zero. The porosityre-
mainsstrictly betweerD and1 with BRS.

3. BRSusesthe actualmatrix andfluid shearviscosities
but notthe lessconstrainegparametet. Although( is gen-
erally takento be equalto p.,,, [e.g., Spiggelman 1993c]we
have seenin section2.3 that the choice of ¢ smallerthan
m [€.9., McKenzieand Holness 2000] leadsto the unex-
pectedresultthatthe matrix cancompactunderextensional
stressesln contrastthe parametef, which controlsdefor
mationunderisotropicstressein BRS (asdoes( whenus-
ing M84; seesection?.4.1)canbe computedrom thetopol-
ogy of the interfaces(seeBRS1). That K is expectedto
be closeto unity precludesmatrix compactiorunderexten-
sionalstressein theBRStheory

We have purposelyusedsimple modelsto discussthe
macroscopiequialentpropertiesof a two-phasemixture.
Variousthoughtexperimentshave shovn thatanunconfined
mixture is weaker undernormalstresghanit is undershear
stressandthata partially confinedmixture canbehaelike a
dashpotwith stresshardeningproperties. The resultshave
beenestablishedn clear physical grounds,and in some
caseghey aredifferentfrom thosepreviously obtained. In
particular it is moredifficult to extractthe fluid phasewith
BRSthanwith M84 (with constantbulk viscosity). In sec-
tion 2.3 we have seenthat at vanishingporosity the fluid
phaseis trappedin the matrix with BRS but canstill escape
with M84 (again,with constanbulk viscosity).

The presenceof surfacetensionhasonly beendiscussed
in the framawork of compaction. It only actson relatively
shortdistancesandthereforet hasbeengenerallyneglected
in large-scalenodeling.However, with all thenonlinearities
of the equationghe creationof a small-scalénstability can
impedethefurtherpropagatiorof thefluid phaseby drawing
in thesurroundindluid yielding a preponderancef station-
ary sills ratherthanpropagatingnagmongmagmasolitary
waves). Indeed,the resulting distribution of sills is remi-
niscentof the obsenationsof ubiquitoussills anddikesin
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ophiolitemassifg Nicolasetal., 1994;CannatandLécuyer
1991]. Therearelarge uncertaintiesn the time constanif
thisphenomenobutit is likely to beshortcomparedo geo-
logic time. In its presenform, our modelof surfacetension
cannottake into accountthe surfaceenegy associateavith
solid-solidcontacts.This canmodify the physicsof the sys-
temat very low porosity but assoonasthe solid grainsare
wettedby thefluid, our modelshouldapply.

Directapplicationgo geophysicsfrom oil to meltextrac-
tion andfrom core-mantleo outercore-innercoresegrega-
tion arenumerousalthoughbeyondthe scopeof this paper
Theimportanceof thesephenomenanake anunderstanding
of the basicphysicsof the equationsa prerequisiteto per
forming complec simulations.

Appendix A: A Comparison
Between M84 and BRS

McKenzie[1984] (M84) proposedhefollowing fluid and
matrix force equations:

—¢[VP + prgz]
+cAv + V - [¢17] =0, (A1)

—(1=¢)[VP + ppyz]
—cAv+ V. -[1-9¢)r;]=0. (A2)

Theseequationdgliffer from thoseof BRS (seeequationg3)
and(4)) by the absencef surfacetension(c = 0) andand
the assumptiorof a single pressurdfield, P,, = Py = P,
or AP = (. EquationgAl) and(A2) areaugmentedy the
rheologicalrelations

¢1} =0, (A3)

T = B, (va + [va]t)
HC=2p)V val (AD)

The fluid phaseis assumednviscid relative to the matrix,
andtheviscositiesy;, and( areeffective viscosities.

Wheng is variable M84 andBRSyield two differentsets
of equationsin particular the fluid momentumequation(3)
in BRS (againwith p ¢ negligible) yields

—¢ [V Ps + ppgZ] + cAv

pm D¢

= Ky -9 Di V. (A5)
TheusualmodifiedDargy’s law from M84 ((Al) with (A3))
is thus not recoveredby BRS unlessthe porosity is con-
stantin spaceand/ortime; (A5) expresseshe factthatfluid
pressurgradientamustbalancdorcesassociateavith com-
pactionof a nonuniformmatrix, aswell asresistanceo in-
terstitial (Dargy) fluid flow.
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In the specialcasewhere¢ is constananduniform, there
is a simple correspondencbetweenM84 and BRS. Using
the pressurgump condition (17), equationg(3) and (4) of
BRSbecomgwith 1 negligible)

—¢[VPs + ppgz] + cAv =0, (A6)

—(1=¢)[VPr + pmgz] — cAv

V(1 - @) (T + %umv VD] =0. (A7)

Theseequationsareidenticalto (A1) and(A2) with (A3) and
(Ad) whenP = Py, p*, = pm, and¢ = Koprm, /¢, andwe
use(9) for T,,,. However, evenwhenaformal identification
betweerM84 andBRScanbedone thephysicalapproaches
remainsignificantlydifferent.
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Figure Captions

Figure 1. The one-dimensionatompaction‘coffee-press”
experiment.

Figure 1. Theone-dimensionatompactiorf‘coffee-press’experiment.

Figure 2. Normalizedfriction coeficientv/u,, asafunc-
tion of porosityfor Iy /6, = 0.1, 10. OurpredictiongBRS)
areshown by thick lines (Ko = 1). At low porositythefric-
tion coeficientis significantlylargerthanthat predictedby
previoustheories(dashedineslabeledM84, following (30)
with { = ). Thefriction increaseswith ly. This friction
coeficientis oftenmuchlargerthanl, which correspondo
the shearwviscosityof the matrix.

Figure 2. Normalizedfriction coeficientv/pu,, asafunctionof porosityfor ly/é,,, = 0.1, 10. Our pre-
dictions(BRS)areshawvn by thick lines(Ky = 1). At low porositythefriction coeficientis significantly
largerthanthatpredictedby previoustheories(dashedineslabeledM84, following (30) with ¢ = ).
Thefriction increasesvith ly. Thisfriction coeficientis oftenmuchlargerthanl, which correspondso
the shealwviscosityof the matrix.

Figure 3. (a) Normalizedporosity (¢/¢o) asa function of
normalizecheight(z/lo) for differenttimes(¢/r = 0.1, 0.3,
0.5,0.7and0.83) for (Io/(6me0))? = 0.1, Ky = 1, and
¢o = 0.05. Astime increasesthe heightof the mixture be-
low the pistondecreasedb) Normalizedvelocity (vy,, /vo)
asa function of normalizedheightfor ¢/7 = 0.1 and0.83.
Until closeto theendof the experimentthe velocity profile
remainsroughlylinear

Figure 3. (a) Normalizedporosity (¢/¢o) asa function of normalizedheight(z/l,) for differenttimes

(t/T = 0.1,0.3,0.5,0.7and0.83)for (ly/(dmd0))? = 0.1, Ko = 1, and¢o = 0.05. As time increases,
the heightof the mixture belov the pistondecreases(b) Normalizedvelocity (v, /vg) asa function of

normalizedheightfor ¢/ = 0.1 and0.83. Until closeto the endof the experiment,the velocity profile

remainsroughlylinear

Figure 4. Evolution of friction coeficient v(t)/um, asa
functionof time. This coeficientis proportionalto the pres-
sureneededo expel the fluid at a constantvelocity. When
the porosityreached® neart/r = 0.83, thefriction coefi-
cientgoesto infinity andforbids a further extractionof the
fluid phase. The horizontaldashedine correspondso the
analyticalprediction(27).

Figure4. Evolution of friction coeficientv(t) /un asafunctionof time. This coeficientis proportional
to the pressureneededo expel the fluid at a constantvelocity. Whenthe porosityreache® neart/r =
0.83, the friction coeficient goesto infinity and forbids a further extraction of the fluid phase. The
horizontaldashedine correspondso the analyticalprediction(27).
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Figure 5. Equialentviscosity of the mixture as function
of porosityfor two differentvaluesof ly /d,, (0.1,10). Our
predictions(BRS) with Ky = 1 aredepictedwith a solid
line andcomparedvith thoseobtainedby previoustheories
assuming{ = pu,, (dashedines labeledM84). At small
compactioniength,e.g.,atly/d,,, = 10, BRSandM84 pre-
dictionsareindistinguishable.

Figure 5. Equivalentviscosityof the mixture asfunction of porosityfor two differentvaluesof ly/d,,
(0.1, 10). Our predictions(BRS) with K, = 1 aredepictedwith a solid line and comparedwith those
obtainedby previoustheoriesassuming = u.,, (dashedineslabeledM84). At smallcompactioriength,
e.g.,atly/é,, = 10, BRSandM84 predictionsareindistinguishable.

Figure 6. (top) Horizontal fluid velocities normalizedby
the vertical velocity vy atz = I, for ly/d,,=0.1usingBRS
(Ko = 1) or M84 setof equations. Whenthe porosity is
zero, the first drop of fluid is expelled with a ~12 times
higher velocity accordingto M84, while the fluid is sim-
ply transportecglongwith thematrixaccordingo BRS.The
fluid velocity decreaset vy whengy = 1. (bottom)Matrix
velocitiescanbe negative accordingto M84 when( < i,
(thin line with ¢ = p,,, /10).

Figure 6. (top) Horizontalfluid velocitiesnormalizedby the verticalvelocity vy atz = Iy for ly/§,,=0.1
usingBRS (K = 1) or M84 setof equationsWhentheporosityis zero,thefirst dropof fluid is expelled
with a ~12 timeshighervelocity accordingto M84, while thefluid is simply transportedalongwith the
matrix accordingo BRS. Thefluid velocity decreaset vy whengy = 1. (bottom)Matrix velocitiescan
benegative accordingto M84 when(¢ < p, (thinline with ¢ = p,,,/10).

Figure 7. Normalized resistance to compaction
(RY)/(wmvm,) for a spherical mixture of homoge-
neousporosity as a function of porosity The solid lines
correspondo our solutionsin the sinteringapproximation
(BRS) or with a finite compaction length (BRS with
R/$,, = 10). The dashedine correspondso the solution
givenby McKenzieg[1984] usingthesinteringapproximation
and a theorythatincludesa bulk viscosity (( = u.n,) (see

(57)).

Figure 7. Normalizedresistancéo compaction RY) / (umvm, ) for asphericaimixture of homogeneous
porosity asa function of porosity The solid lines correspondo our solutionsin the sinteringapproxi-
mation(BRS) or with a finite compactionength(BRSwith R/d,, = 10). The dashedine corresponds
to the solutiongiven by McKenzie[1984] usingthe sinteringapproximatioranda theorythatincludesa
bulk viscosity (¢ = p.,,) (see(57)).

Figure 8. (a) Phaseand (b) group velocitiesof vertically
propagatingporositywaves. The velocitiesarenormalized
by the melt extraction velocity (68). Three porositiesare
used0.02,0.20,and0.60. We assum&; = 0 andK, = 1.

Smallwave number(long wavelength)perturbationgravel

thefastest.

Figure 8. (a) Phaseand (b) group velocitiesof vertically propagatingporosity waves. The velocities
arenormalizedby the melt extractionvelocity (68). Threeporositiesareused0.02,0.20,and0.60. We
assumé; = 0 andK, = 1. Smallwave number(long wavelength)perturbationsravel the fastest.



Figure 9. Normalizedgrowth time of surfacetensionin-

stabilities as a function of their normalizedwave number
fora = b = 1/2in G(¢g), Ko = 1, éf = 0, and
¢o = 0.02,0.20 and0.60, asin Figure8. All wave numbers
areunstableput shorterwavelengthinstabilitiesgrow faster
Becausehe surfaceenegy tendsto +oo whenthe porosity
vanishesinstabilitiesgrow thefastesiat small porosity

Figure 9. Normalizedgrowth time of surfacetensioninstabilitiesasa functionof their normalizedwave
numberfor a = b = 1/2in G(¢o), Ko = 1, 67 = 0, and¢y = 0.02,0.20 and0.60, asin Figure8. All

wave numbersareunstable put shorterwavelengthinstabilitiesgrow faster Becausédhe surfaceenegy
tendsto +oo whenthe porosityvanishesinstabilitiesgrow thefastestat smallporosity

Figure 10. Matrix (solid lines)andfluid (dashedines)ver
tical velocitiesof the solenoidaimotions. Thevelocitiesare
normalizedby ¢o(1 — ¢o)pAp/c, i.e., the productof the
melt extraction velocitiesby the amplitudeof the porosity
perturbation.We assumél; = 0 andk -z = 0 and¢ = 1.
At shortwavelength(largewave number)only thefluid isin
motion. At long wavelength(shortwave number) fluid and
matrix velocitiesbecomeequal.

Figure 10. Matrix (solid lines)andfluid (dashedines)vertical velocitiesof the solenoidaimotions.The
velocitiesarenormalizedby ¢o (1 — ¢o)pAp/c, i.e., the productof the melt extractionvelocitiesby the

amplitudeof the porosityperturbation We assumé; = 0 andk -z = 0 and¢ = 1. At shortwavelength
(largewave number)only thefluid isin motion. At longwavelength(shortwave number) fluid andmatrix
velocitiesbecomezqual.

Figure 11. Porosityasafunctionof depthat differenttimes
foré =1, A = 0, andAp/p,, = 0. Theinitial porosity
hasan averagevalueof 0.05andhasa sinusoidalperturba-
tion of wavelengthly andamplitude0.001with its maximum
atly/2. The surfacetensiongenerateshe instability. The
Dargy term hasbeenngglected. A singleinstability is pro-
duced.

Figure1l. Porosityasafunctionof depthatdifferenttimesfor £ = 1, A = 0, andAp/p,,, = 0. Theinitial
porosity hasan averagevalue of 0.05andhasa sinusoidalperturbationof wavelengthl, andamplitude
0.001with its maximumatly /2. The surfacetensiongeneratesheinstability. The Darcy termhasbeen
neglected.A singleinstability is produced.

Figure 12. Porosityasafunctionof depthat differenttimes
for ¢ = 1, A = 4, andAp/p, = 0. The parametersare
similar to thoseof Figure 11, but the Darcy term hasbeen
kept. Becauseof the presenceof a Darcy resistancevhich
prohibitsthe fluid from beingdrawn acrosdarge distances,
thenumberof instabilitiesincreasesvhencomparedo Fig-
urell.

Figure 12. Porosityasa functionof depthat differenttimesfor £ = 1, A = 4, andAp/p,, = 0. The
parametersresimilar to thoseof Figure 11, but the Darcy term hasbeenkept. Becausef the presence
of a Dargy resistancavhich prohibitsthe fluid from beingdrawn acrosdarge distancesthe numberof
instabilitiesincreasesvhencomparedo Figure11.
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Figure 13. Porosityasa functionof depthat differenttimes
for{ =0, A = 0andAp/p, = 1. Themixtureis gravita-
tionally unstableandthereis no surfacetension. Thematrix
viscoustermis dominantin thedynamics.

Figure 13. Porosityasa function of depthat differenttimesfor £ = 0, A = 0 andAp/p,, = 1. The
mixtureis gravitationally unstable andthereis no surfacetension. The matrix viscoustermis dominant
in the dynamics.

Figure 14. Porosityasa functionof depthat differenttimes
for £ =0, A = 10, andAp/p,, = 1. Theinitial porosityis
constantThemixtureis gravitationally unstableandwithout
surfacetension.Becausef the presencef the Dargy term,
porositypaclketsaregenerated.

Figure 14. Porosityasa function of depthat differenttimesfor £ = 0, A = 10, andAp/p,, = 1. The
initial porosityis constant.The mixtureis gravitationally unstableandwithout surfacetension.Because
of the presencef the Darcy term,porositypacketsaregenerated.

Figure 15. Time evolution (from (a) O years,(b) 120 kyr,
(c) 250 kyr, (d) 420 kyr, (e) 620 kyr, (f) 850 kyr, (g) 1.1
Myr, (h) 1.4 Myr, (i) 1.8 Myr, (j) 2.2Myr, to (k) 16 Myr) of
porosityasa functionof depth(Ky = 1, Ap = 500 kg m—3,
lo = 50 m, §,,, = 8000 m, u,, = 10'® Pas, p,, = 3000
kg m=3, cap = 50kIm=3). For clarity,eachprofile asbeen
z hifted by 0.1 porosity unit with respectto the previous
profile. The initial porosityis a sinusoidalfunction with a
maximumat z/l, = 0.5. The porositywave travelsupward
until the surfacetensiondriesthe matrix at onepoint (att =
140 kyr, i.e., betweenFigures15band15c). The evolution
ultimatelygeneratessill of purefluid (Figure15k).

Figure 15. Time evolution (from (a) 0 years,(b) 120kyr, (c) 250kyr, (d) 420kyr, (e) 620kyr, (f) 850
kyr, (g) 1.1 Myr, (h) 1.4 Myr, (i) 1.8 Myr, (j) 2.2 Myr, to (k) 16 Myr) of porosityasa function of depth
(Ko=1,Ap =500kgm=3,1p = 50 M, 6,, = 8000 M, u, = 108 Pas, p,, = 3000 kg m—2, 0y = 50
kJm=3). For clarity,eachprofile asbeenz hifted by 0.1 porosityunit with respecto the previousprofile.
Theinitial porosityis a sinusoidalfunction with a maximumat z/ly = 0.5. The porosity wave travels
upward until the surfacetensiondriesthe matrix at onepoint (at¢ = 140 kyr, i.e., betweenFigures15b
and15c). Theevolution ultimatelygenerates sill of purefluid (Figure15k).

Figure 16. SameasFigurel5 but for amorecompleinitial

porosityover a largerheight(K, = 1, Ap = 500 kg m~3,

lo = 8, = 8000 M, ., = 108 Pas, p,,, = 3000 kg m~—3,

oagy = 50 kI m~3). Although long-wavelengthharmonics
arepresentn thestartingporosity, thesurfacetensiorprefer

entially selectsshortwavelengths.The profilesaredepicted
attimes(a) 0,(b) 15, (c) 29, (d) 47, (e) 70, (f) 100, (g) 140,
(h) 240,(i) 400, (j) 600and(k) 900kyr.

Figure 16. Sameas Figure 15 but for a more comple initial porosity over a larger height(Kq = 1,

Ap = 500 kg m=3, Iy = &, = 8000 m, pu,,, = 10'® Pas, p,, = 3000 kg m~2, ooy = 50 kI m=3).

Althoughlong-wavelengththarmonicsarepresentn thestartingporosity thesurfacetensionpreferentially
selectshortwavelengths Theprofilesaredepictedattimes(a) 0,(b) 15, (c) 29, (d) 47,(e) 70, (f) 100,(qg)

140, (h) 240, (i) 400,(j) 600and(k) 900kyr.



Figures

Figure 1. The one-dimensionatompaction‘coffee-press”
experiment.

Normalized Friction Coefficient v/u
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Figure 2. Normalizedfriction coeficientv/u,, asafunc-
tion of porosityfor Iy /6,,, = 0.1, 10. OurpredictiongBRS)
areshown by thick lines (Ko = 1). At low porositythefric-
tion coeficientis significantlylargerthanthat predictedby
previoustheories(dashedineslabeledM84, following (30)
with { = u,,). Thefriction increaseswith ly. This friction
coeficientis oftenmuchlargerthanl, which correspond$o
the shealwviscosityof the matrix.
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Figure 3. (a) Normalizedporosity (¢/¢o) asa function of
normalizecheight(z/lo) for differenttimes(¢/r = 0.1, 0.3,
0.5,0.7and0.83) for (Io/(6me0))? = 0.1, Ko = 1, and
¢o = 0.05. Astime increasesthe heightof the mixture be-
low the pistondecreasedqb) Normalizedvelocity (v, /vo)
asa function of normalizedheightfor ¢/7 = 0.1 and0.83.
Until closeto the endof the experiment the velocity profile
remainsroughlylinear
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Figure 4. Evolution of friction coeficient v(t)/um, asa
functionof time. This coeficientis proportionalto the pres-
sureneededo expel the fluid at a constantvelocity. When
the porosityreached® neart/r = 0.83, thefriction coefi-
cientgoesto infinity andforbids a further extractionof the
fluid phase. The horizontaldashedine correspondso the
analyticalprediction(27).
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Figure 5. Equivalentviscosity of the mixture asfunction
of porosityfor two differentvaluesof ly /4, (0.1,10). Our
predictions(BRS) with K, = 1 aredepictedwith a solid
line andcomparedvith thoseobtainedby previoustheories
assuming{ = pu.,, (dashedines labeledM84). At small
compactioniength,e.g.,atly/d,, = 10, BRSandM84 pre-
dictionsareindistinguishable.
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Figure 6. (top) Horizontal fluid velocities normalizedby
the vertical velocity vy atz = I, for ly/,,=0.1usingBRS
(Ko = 1) or M84 setof equations. Whenthe porosity is
zero, the first drop of fluid is expelled with a ~12 times
higher velocity accordingto M84, while the fluid is sim-
ply transporteclongwith thematrixaccordingo BRS.The
fluid velocity decreaset vy whengy = 1. (bottom)Matrix
velocitiescanbe negative accordingto M84 when( < .,
(thin line with ¢ = p,,,/10).
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Figure 7. Normalized resistance to compaction

(RY)/(wmvm,) for a spherical mixture of homoge-
neousporosity as a function of porosity The solid lines
correspondo our solutionsin the sinteringapproximation
(BRS) or with a finite compaction length (BRS with
R/§,, = 10). The dashedine correspondso the solution
givenby McKenzig[1984] usingthesinteringapproximation
and a theorythatincludesa bulk viscosity (( = um) (see

(57)).
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Figure 8. (a) Phaseand (b) group velocitiesof vertically
propagatingporositywaves. The velocitiesarenormalized
by the melt extraction velocity (68). Three porositiesare
used0.02,0.20,and0.60. We assuméy = 0 and Ky = 1.

Smallwave number(long wavelength)perturbationgravel

thefastest.
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Figure 9. Normalizedgrowth time of surfacetensionin-

stabilities as a function of their normalizedwave number
fora = b = 1/2in G(¢o), Ko = 1, éy = 0, and
¢o = 0.02,0.20 and0.60, asin Figure8. All wave numbers
areunstableput shorterwavelengthinstabilitiesgrow faster
Becausehe surfaceenegy tendsto +oo whenthe porosity
vanishesinstabilitiesgrow the fastestat smallporosity
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#=0.60

0 50 100
Normalized Wavenumber k&

Figure 10. Matrix (solid lines)andfluid (dashedines)ver-
tical velocitiesof the solengidalmotions. Thevelocitiesare
normalizedby ¢o(1 — ¢o)pAp/c, i.e., the productof the
melt extraction velocitiesby the amplitudeof the porosity
perturbation.We assumél; = 0 andk -z = 0 and¢ = 1.
At shortwavelength(largewave number)only thefluid isin
motion. At long wavelength(shortwave number) fluid and
matrix velocitiesbecomeequal.
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Figure 11. Porosityasa functionof depthat differenttimes
foré =1, A = 0, andAp/p,, = 0. Theinitial porosity
hasan averagevalueof 0.05andhasa sinusoidalperturba-
tion of wavelengthly andamplitude0.001with its maximum
atly/2. The surfacetensiongenerateshe instability. The
Dargy term hasbeenngglected. A singleinstability is pro-

duced.
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Figure 12. Porosityasafunctionof depthat differenttimes
for £ =1, A = 4, andAp/p, = 0. The parametersare
similar to thoseof Figure 11, but the Darcy term hasbeen
kept. Becauseof the presencef a Darcy resistancevhich
prohibitsthe fluid from beingdrawn acrosdarge distances,
thenumberof instabilitiesincreasesvhencomparedo Fig-

urell.
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Figure 13. Porosityasa functionof depthat differenttimes
for§ =0, A =0andAp/p, = 1. Themixtureis gravita-
tionally unstableandthereis no surfacetension. Thematrix
viscoustermis dominantin thedynamics.
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Figure 14. Porosityasa functionof depthat differenttimes
for £ =0, A = 10, andAp/p,, = 1. Theinitial porosityis
constantThemixtureis gravitationally unstableandwithout
surfacetension.Becausef the presencef the Dargy term,
porositypaclketsaregenerated.
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Figure 15. Time evolution (from (a) O years,(b) 120 kyr,
(c) 250 kyr, (d) 420 kyr, (e) 620 kyr, (f) 850 kyr, (g) 1.1
Myr, (h) 1.4 Myr, (i) 1.8 Myr, (j) 2.2Myr, to (k) 16 Myr) of
porosityasa functionof depth(Ko = 1, Ap = 500 kg m=3,
lo = 50 m, §,, = 8000 m, y,,, = 10'® Pas, p,, = 3000
kgm—3, oap = 50kIm~3). For clarity,eachprofile asbeen
z hifted by 0.1 porosity unit with respectto the previous
profile. The initial porosityis a sinusoidalfunction with a
maximumat z/l, = 0.5. The porositywave travelsupward
until the surfacetensiondriesthe matrix atonepoint(att =
140 kyr, i.e., betweenFigures15band15c). The evolution
ultimatelygeneratessill of purefluid (Figure15k).
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Figure 16. SameasFigure 15 but for amorecomplex initial

porosityover a larger height (Ko = 1, Ap = 500 kg m—2,

lo = 6, = 8000 M, u,,, = 108 Pas, p,,, = 3000 kg m=3,

ooy = 50 kI m~3). Although long-wavelengthharmonics
arepresentn thestartingporosity, thesurfacetensiorprefer

entially selectsshortwavelengths.The profilesaredepicted
attimes(a) 0,(b) 15, (c) 29, (d) 47, (e) 70, (f) 100, (g) 140,

(h) 240,(i) 400, (j) 600and(k) 900kyr.
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