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Abstract

Xenoliths entrained in alkaline basalts and kimberlites give strong evidence that mantle carbonatitic and carbonated
high alkaline mafic silicate melts, which are initially produced at very low degrees of partial melting (I1%), percolate
and accumulate to form impregnations with a melt concentration of up to 10%. At present no compaction model has
explained such huge local amplification of melt concentration. Recently, Bercovici et al. [1] have shown that the
commonly used equations of compaction are not sufficiently general to describe all melt percolation processes in the
mantle. In particular, they show that, when the melt concentration in the mantle is very low, the pressure jump vP
between the solid and liquid fractions of the mantle mush is very important and plays a driving role during
compaction. 1-D compaction waves generated with two different systems of equations are computed. Three types of
wave-trains are observed, i.e. (1) sinusoidal waves; (2) periodic waves with flat minima and very acute maxima (‘witch
hat waves’) ; (3) periodic solitary waves with flat maxima and extremely narrow minima (‘bowler hat waves’). When
the initial melt distribution in the mantle is quite homogeneous, the compaction waves have sinusoidal shapes and can
locally amplify the melt concentration by a factor less than two. When there is a drastic obstruction at the top of the
wetted domain, the pressure jump vP between solid and liquid controls the shape of the waves. If the computation
assumes the equality of pressure between the two phases (vP=0), the compaction wave has a ‘bowler hat shape’, and
locally amplifies the melt concentration by a factor less than 5. Alternatively, simulations taking into account the
pressure jump between phases vP predict compaction waves with ‘witch hat shape’. These waves collect a large
quantity of melt promoting the development of magmons with local melt concentration exceeding 100U the
background melt concentration. It is inferred that in a mantle with very low concentrations of carbonatitic or high
alkaline mafic silicate melt the magmons are about 1 km thick and reach, in less than 1 Ma, a melt concentration of
about 10%. The magmons are likely generated below the lithosphere at some distance away from the center of hot
spots. This can explain the development of mantle carbonatitic eruptions in the African rift and the carbonatite and
high alkaline mafic silicate volcanic activity in oceanic islands.
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1. Introduction

Petrological, mineralogical and geochemical
studies of mantle xenoliths entrained in alkaline
basalts and kimberlites give strong evidence that
circulation of carbonatitic and carbonated high
alkaline ma¢c silicate melts is well developed in
the upper mantle [2^10]. These melts are com-
monly produced in the upper mantle at very low
degrees of partial melting P0 (P0Vseveral 0.1%;
[11^13]). Static experimental studies reveal low
dihedral wetting angles of carbonate and high al-
kaline ma¢c silicate melts in contact with olivine
(25^30‡; [14,15]). It implies that ¢lms of £uid with
a very small thickness (possibly as low as a few
hundreds AM ) wet the solid-grain boundaries and
penetrate along the grain edges to form an inter-
connected network of melt tubes with roughly tri-
angular cross sections [16]. Experiments per-
formed to investigate the intercontinuity of
carbonate melt in a dunite suggest that the mantle
is permeable for any local melt concentration P

exceeding about 1035 [17]. The melting rate of
carbonatites (P0V0.1%) exceeds by two orders
of magnitude the 1035 permeability threshold.
Also, because of the microscopic thickness of
the inter-granular ¢lms (a few hundreds AM ), these
¢lms likely still wrap the whole mantle grains
when the local melt concentration P is about
1035. Hence as soon as the melting process starts
and as long as melt concentration P is about 1035,
both the wetting of the solid grain boundaries and
the development of a tube network favor the per-
colation of the interstitial melt. These results illus-
trate the known unique capability of carbonatites
and related melts to percolate within the upper
mantle.
A power law relationship between permeability

k(P) and melt concentration P is usually expected
[18] :

kðP ÞOa2P n ð1Þ

where n is a dimensionless constant and a desig-

nates the characteristic size of the solid grains.
When the melt £ow is mainly con¢ned in tubes
along the grain boundaries, the power law con-
stant n isV2, in case of a £ow mainly con¢ned in
¢lms, nV3 [18]. Laboratory experiments suggest
that mantle rocks with mm-size grains (aV1 mm)
and melt concentration PV0.01 have permeabil-
ities of V10315 m2 [19].
Because of the density di¡erence Nb= bm3bf

between the melt bf and the solid bm, the melt
tends to £ow upward while the solid compacts.
During the mid-eighties, equations for mantle
compaction were proposed [18,20,21]. A major
goal of the modelings is to show that compaction
induces melt impregnations. Barcillon and Richter
[22] showed that an obstruction to the upward
percolation of melt triggers transient compaction
waves. The local melt concentration in these
waves, called magmons, reaches several times
the bulk melt concentration P0. Melt impregna-
tions below ridges or inside mantle hot spots
can be associated with the development of mag-
mons [23^26]. The models explaining the devel-
opment of these magmons assume melts with a
basaltic composition and an initial bulk concen-
tration P0 exceeding several %. The bulk produc-
tion of carbonatitic or alkaline ma¢c melts being
extremely small, P0V0.1%, the magmons must
amplify the local melt concentration P by about
two orders of magnitude to explain the 10% vol-
ume of melt locally found in some impregnations
or the volume of melt erupted at some volcanoes
[9,27]. At present no compaction process has been
shown to provide such huge local ampli¢cation of
melt concentration.
Recently, Bercovici et al. [1] discussed the as-

sumptions necessary to derive the equations of
compaction. Contrary to the interpretation of
McKenzie [18] where the resistance of the matrix
under isotropic stress is due to a bulk plastic vis-
cosity, Bercovici et al. [1] attributes this resistance
to the presence of a pressure jump between the
solid and liquid phase Pm and Pf . This pressure
jump vP=Pm3Pf is itself related to the rate of
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porosity change:

vP ¼ 3
Wm

P ð13P Þ
DP

Dt
ð2aÞ

where Wm designates the mantle plastic viscosity
and DP/Dt is the total derivative of P. In:

DP

Dt
¼ D P

D t
ðP vf þ ð13P ÞvmÞ9

!
P ð2BÞ

vm and vf designate the melt and solid velocities,
and t is the time. Their interpretation implies that
the bulk viscosity introduced by McKenzie should
vary like Wm/P in agreement with the ¢ndings of
other authors (e.g. Scott and Stevenson [23], Su-
mita et al. [28]). At last, Bercovici et al. [1] take
into account the surface tension between phases
that play a driving role in the development of
compaction waves [29].
In the present paper, we reconsider the prob-

lem of modeling compaction waves using this new
formalism. Our aim is to apply this subsequently
to the percolation of carbonatitic and high alka-
line ma¢c melts in the mantle. Because of the
small melting rates P0 and low dihedral angles,
the modeling assumes an in¢nitesimal melt con-
centration P and a negligible surface tension be-
tween phases. In Section 3 we present the charac-
teristics of some class of solitary waves solutions
of the compaction equations. In Section 4 we
show several transient, 1-D, numerical compac-
tion experiments. In Section 5 we discuss condi-
tions permitting the development of carbonatitic
and high alkaline ma¢c melt impregnations in the
mantle.

2. Mathematical formalism

In this section we ¢rst recall the basic equa-
tions, then we show how they are simpli¢ed and
made dimensionless.

2.1. General equations

According to Bercovici et al.’s [1] formalism the

following equations must be used to model two
phase £ows.

2.1.1. Mass conservation of the melt

D P

D t
þ 9
!ðP vfÞ ¼ 0 ð3aÞ

2.1.2. Mass conservation of the solid

D ð13P Þ
D t

þ 9
!ðð13phi; ÞvmÞ ¼ 0 ð3bÞ

In Eqs. 3a and 3b, the density of both the £uid bf

and the solid bm are assumed to be uniform. It is
justi¢ed by the very small compressibility of the
melt and of the solid in the mantle: a few times
10311 Pa31 [30].

2.1.3. The Darcy equation
This equation expresses the balance of stresses

acting on the melt fraction P of the porous media:

0 ¼ P 39
!ðPf þ b fgzÞ þ

W f

kðP ÞPv vþ vP9
!

P

� �
ð3cÞ

Here vv= vm3vf , Wf is the melt viscosity, g is the
gravity acceleration and z is the height. In the
above equation, the ¢rst term designates the pres-
sure gradient, the second the viscous stress due to
melt percolation and the last term the stress due
to the pressure jump between the solid and the
liquid vP.

2.1.4. The plastic £ow equation
This equation controls the balance of stresses

acting on the solid fraction (13P) of the porous
media:

0 ¼ 3ð13P Þ9!ðPm þ bmgzÞ þ 9
!ðð13P ÞdmÞ3

W f P
2

kðP Þv vþ ð13P ÞvP9
!

P ð3dÞ

The stress tensor in the solid fraction of the po-
rous media is dm. From left to right, the di¡erent
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terms of the equation correspond to: the e¡ective
pressure gradient in the solid; the viscous stress
generated by the deformation of the solid; the
stress due to the friction generated by the melt
percolation and the stress due to the pressure
step between the solid and the liquid. The elastic
stresses resulting from the compressibility of both
the melt and the solid phases are neglected
here. Indeed, the elastic stresses are shown to
play a role on compaction if either the £uid or
the solid Deborah numbers exceeds one [31]. The
Deborah number of the melt or of the solid is the
product of its compressibility, here V10311 Pa31,
with the pressure contrast during compaction
between melt and solid, here 6 3 107 Pa (Table
1). It results that, the Deborah numbers are
very small, 6 1033. We therefore do not take
into account the elastic stresses in the equations.

2.1.5. Simpli¢cation of the equations
The equations are simpli¢ed according to the

following statements. Let recall that:

9
!ð13P Þdm ¼

9
!
Uð13P ÞWm9

!
Uvm þ 4Wm

3
9
!ðð13P Þ9!vmÞ

ð4aÞ

The ¢rst term of the right hand side corresponds

to stresses due to the shearing of the solid matrix
and the last one to the stresses due to the com-
paction or the dilation of the solid matrix. In the
following, we assume that the shearing stresses are
negligible and thus we use the following simpli¢ed
equation:

9
!ð13P Þdm ¼ 9

! ð13P Þ4Wm
3

9
!
vm

� �
ð4bÞ

We introduce the center of mass velocity C and a
separation velocity S :

C ¼ P vf þ ð13P Þvm ð5aÞ

S ¼ P ðvf3vmÞ ð5bÞ

We further assume that the center of mass veloc-
ity C is zero.
These assumptions are consistent with both fol-

lowing statements : (1) the convective £ow and the
diapiric £ow driven by the buoyancy of the mush
have characteristic wavelengths much larger than
that of compaction; (2) the reference frame for
the computation moves with the convective and
diapiric £ows. In Section 4 we show that these
hypotheses are reasonable to model carbonatitic

Table 1
Characteristics of the magmons generated in the LVZ

Mantle type N Size Velocity Maturation time
(km) (cm/yr) (My)

Carbonatitic melts Normal 3 1 9 3
2 3 60 1

Hot 3 0.3 9 1
2 1 60 0.3

High alkaline ma¢c silicate melts Normal 3 0.3 0.8 7.5
2 0.5 2 5

Hot 3 0.1 0.8 2.5
2 0.15 2 1.5

This table gives an estimation of the wave-train velocity at the initiation of the compaction process, on the size of the generated
magmon and the time for the generation of a mature magmon. The wave initial velocity is WnSsc/P0, the size of the magmon is
WL, and the maturation time is 100Tsc, respectively (see Eqs. 9a^d and 10a^d and Section 4). These quantities depend on the
power law coe⁄cient n relating permeability to melt concentration (Eq. 1); on the mantle viscosity Wm and permeability k(P)
(WmW1018 Pa s or 1019 Pa s in hot and normal type of mantle, k(P)V10315 m2 when PV0.01), and on the melt viscosity Wf and
melting rate P0 (W0.01 Pa s and 0.1% or 1 Pa and 0.3% for carbonatitic and high alkaline ma¢c silicate melt, respectively): see
Section 1 and Section 5.
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and high alkaline ma¢c melt percolation in the
mantle. These simpli¢cations lead to following
set of equations:
D P

D t
¼ 39

!ðð13P ÞSÞ ð6aÞ

W f

kðP ÞS ¼ 39
!
P0 þ vP9

!
P ð6bÞ

9
! ð13P Þ4Wm

3
9
!
S

� �
3

W f

kðP ÞS ¼

3ð13P ÞðN bgzþ 9
!ðvPÞÞ ð6cÞ

where PP=Pf+bfgz designates the e¡ective melt
pressure. We now consider the case of an in¢ni-
tesimal melt concentration P, i.e. that (13P)W1.
Then using Eqs. 2a,b, 5a,b and 6a, we ¢nd that:

vP ¼ Wm

P

9
!
S ð7aÞ

D P

D t
¼ 39S ð7bÞ

S ¼ kðP Þ
W f

39
!
P0 þ Wm

P

9
!
S9
!

P

� �
ð7cÞ

kðP Þ
W f

9
! Wm

P

9
!
S

� �
3S ¼ kðP Þ

W f
N bgz ð7dÞ

The divergence of the Darcy and plastic equations
(Eqs. 7c and 7d) and Eq. 7a leads to the following
¢nal set of equations:

D P

D t
¼ 3

P vP
Wm

ð8aÞ

W f

kðP ÞS ¼ 39
!
P0 þ v 9

!
P ð8bÞ

9
! kðP Þ

W f
9
!
vP

� �
3

P

Wm
vP ¼ N bg

W f

D kðP Þ
D z

ð8cÞ

9
!ðkðP Þ9!P0Þ ¼ 3W f

PvP
Wm

þ 9
!ðkðP ÞvP9

!
P Þ

ð8dÞ

Note that the 3-D compaction £ow depends only
on two non-linearly coupled scalar variables: the
melt concentration P and the pressure step be-
tween solid and melt vP.

2.2. Dimensionless equations

In the present study we assume that the solid
matrix Wm and melt Wf viscosities are uniform. As
usual the equations are made dimensionless. We
adopt P0 as unit of melt concentration. The unit
of length is the compaction length L :

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WmkðP 0Þ
P 0W f

s
ð9aÞ

The unit of velocity Ssc corresponds to the
‘Darcy’ velocity of the melt :

Ssc ¼ N bgkðP 0Þ
W f

ð9bÞ

The time scale Tsc is :

T sc ¼ LP 0
Ssc

ð9cÞ

and accordingly the pressure scale Psc is :

Psc ¼ N bgkðP 0ÞWm
W fLP 0

ð9dÞ

Then, the dimensionless equations for compaction
in a mantle with an in¢nitesimal melt concentra-
tion are:

D P

D t
¼ 3PvP ð10aÞ
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S
kðP Þ ¼ 39

!
P0 þ vP9

!
P ð10bÞ

9
!ðkðP Þ9!vPÞ3PvP ¼ D kðP Þ

D z
ð10cÞ

9
!ðkðP Þ9!P0Þ ¼ 3PvPþ 9

!ðkðP ÞvP9
!

P Þ ð10dÞ

This set of equations is the same as the one
derived by Scott and Stevenson [23]. It con-
¢rms the claim of these authors that the pressure
step between the solid and the liquid fractions vP
can be taken into account in the modeling of
the compaction process assuming a 1/P dependent
viscosity law for the solid fraction of the mush.
Vasilyev et al. [31] derived compaction equations
in viscoelastic rocks with an in¢nitesimal £uid
concentration. Actually, their equations are the
same as those derived here provided the elastic
deformation terms are set to zero in the equations
and the bulk viscosity of the solid is 1/P depen-
dent.
In the present calculations we assume that the

total stress due to the pressure jump between solid
and melt vP9P is distributed as (13P)vP9P and
PvP9P on the solid and the melt phases of the
mush, respectively; see Eqs. 3c and 3d. Bercovici
and Ricard [32] discussed the possibility that this
stress only acts on the solid fraction of the mush
when WfIWm. We verify that both kinds of as-
sumptions lead to the same set of equations pro-
vided the melt concentration is in¢nitesimal. In
the above set of equations, if we drop the 1/P
terms due to the pressure jump, we ¢nd the com-
paction equations for an in¢nitesimal melt con-
centration derived by McKenzie [18] (see Barcilon
and Richter [22]). To conclude, we see that the
debate concerning the compaction equations
with an in¢nitesimal melt concentration essen-
tially turns on the existence or not of a pressure
jump between solid and £uid in the mush, or
equivalently to the behavior of the bulk viscosity
with porosity. In the following we compare the
solutions of both sets of equations. In order to
distinguish them we designate them as constant

bulk viscosity experiments and 1/P bulk viscosity
experiments, respectively.

3. 1-D solitary waves

Let assumes a 1-D space, then Eqs. 1 and 7a^d
yield:

vP ¼ 1
P

DS
D z

ð11aÞ

D P

D t
¼ 3

DS
D z

ð11bÞ

Also, the integration of Eqs. 9c and 9d yields:

D

D z
1
P

DS
D z

� �
3

S
P
n ¼ 31 ð11cÞ

DP0

D z
¼ 3

S
kðP Þ þ

1
P

D P

D z
DS
D z

ð11dÞ

Let seek for solitary waves and write :

P ¼ Fðz3ctÞ ð11eÞ

In the above expression c designates the solitary
wave velocity and F the solitary wave shape func-
tion. In the following, we will look for periodic
solutions of Eqs. 11a^e. Amongst the possible so-
lutions, we present two speci¢c cases that may be
considered as end-members from their speci¢c
shape. One type of solitary waves, studied in Sec-
tion 3.1, has already been considered by Scott and
Stevenson [23]. It displays a bulk £at minima, but
steep slope, we called it a ‘witch hat’. The second
type, studied in Section 3.2, has never been de-
scribed. As it displays a £at maximum and a
slow growing slope, we call it a ‘bowler hat’.

3.1. Periodic solitary wave with £at minima: ‘witch
hat melt compaction waves’

Let us assume that the wave function F has a
£at minimum f0s 0 (i.e. when F(z) = f0, FP(z) =
FQ(z) = 0) and a maximum equal to fms f0. In
Appendix A1 we derive the equation allowing
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the calculation of F. Also in Appendix A1 we
show that the solitary wave velocity c veri¢es:

c ¼ f n310

Ln
f m
f 0

� �
3
1
n
13

f n0
f nm

� �� �

3
1
n
13

f n0
f nm

� �
þ 1
n31

13
f n310

f n31m

� �� � ð12Þ

For instance, if f0 is small in comparison with fm :

cWnðn31Þf n310 Ln
f m
f 0

� �
ð13Þ

Let us assume that the solitary wave has a small
amplitude and propagates in a constant porosity
medium. Hence, we can write that f0 = 1, and
fm =1+O, where O is a small quantity. Then a sec-
ond order approximation of Eq. 12 yields:

cWn ð14Þ

This is the well-known velocity of solitary waves
whether there is or not a pressure step vP be-
tween melt and solid [22,23]. It indicates that
the pressure step vP has a weak e¡ect on the
velocity of the solitary wave provided the maxi-
mum and minimum of this wave are close. Eq. 12
indicates that the velocity of the solitary wave is a
decreasing function of f0. Moreover, if the max-
imum amplitude of the wave fm remains bounded,
its velocity tends to zero when its minimum f0
tends to zero. It means that the solitary wave
cannot cross a domain of zero porosity.
Fig. 1a shows the melt concentration shape F of

several solitary waves. These pro¢les are ¢nite
di¡erence solutions of the di¡erential Eq. A1.4
of Appendix A1 when fm =1 and n=3. Note
that the length of the wave strongly decreases
with f0. When fm/f0 exceeds 2, the wavelength of
the solitary wave is several times the-compaction
length L. Because of the sharpness of the maxima
of this type of wave we propose to call them
‘witch hat melt compaction waves’.

3.2. Periodic solitary wave with £at maxima:
‘bowler hat melt compaction waves’

Here we assume that the maximum of the wave

fm is £at, i.e. that when F(z) = fm, FP(z) =FQ(z) = 0.
In Appendix A2 we show that the solitary wave
velocity c veri¢es:

cvnf n31m ð15Þ

Fig. 1b shows the wave function F when the ve-
locity of the solitary wave c is 3.2 and 4, and
when n=3 and fm =1. As prescribed by the initial
conditions, the top of the waves is £at. Their min-
ima are equal to zero. These minima are discon-
tinuous points for FP. In fact, the curves turn back
when F=0, i.e. FP= Xr at both sides of these
points. The wavelength of the waves is a few times
10 L and is seen to decrease with an increasing
wave velocity c (Fig. 1b). Comparison of Fig. 1a
and Fig. 1b shows that the wavelength of the
periodic solitary waves is larger when the top of
the wave is £at than when the bottom is £at. For
instance, the wavelength of the periodic wave
with £at maxima and a dispersion velocity c=
3.2 (see Eq. 15) is about 40L instead of a few
times L when the minima are £at. Because of
the £atness of the maxima of this type of wave
we propose to call them ‘bowler hat melt compac-
tion waves’.
The solitary waves described above are only

one example among a large variety of similar
‘bowler hat solitary waves’. For instance, instead
of assuming that the melt shape function F is £at
at its maximum, we can prescribe its curvature
(D2F/Dz2) = fQm at these same points. In Appendix
A3 we show that the dispersion relation of this
type of wave is :

cv
f n31m

ð13f 00mf n32m Þ ð16Þ

This expression proves that if the concavity of the
solitary wave at its top fQm is non-zero, the veloc-
ity c of the solitary wave strongly decreases. In
Fig. 1b we display the shape function F when:
fm =1, fQm =31, c=0.7 and n=3. The pro¢le
shows that the non-£atness of the top of the
waves is associated with a strong reduction of
the solitary wave wavelength. The minimum of
the wave function F is also zero and corresponds
to a discontinuity of FP.
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The bowler hat waves also happen when the
solid and the liquid pressures are assumed to be
equal (vP=0), i.e. when we look for solitary wave
solutions of the constant bulk viscosity compac-
tion equations. In Appendix A4 we show that the
dispersion relation of the wave when fQm9 0 veri-
¢es:

cv
f n31m

ð13f 00mf n31m Þ ð17Þ

Fig. 1c shows the shape functions F correspond-
ing to such type of solitary waves in the case
where n=3. Their wavelengths are very similar
to those taking into account of the pressure
jump vP. Comparison of Eqs. 16 and 17 indicates
that the pressure jump increases the velocity of
the solitary waves. This unexpected result is justi-
¢ed by the ampli¢cation of the pressure gradients
near the minima of the solitary waves due to vP
(see Eq. 7a).

Fig. 1. Melt concentration vs. height of periodic solitary waves. A cubic relationship between permeability and melt concentration
is assumed (n=3 in Eq. 1), and the maximum amplitude of the wave function fm = 1. An 1/P bulk viscosity is used to compute
the pro¢les in (a) and (b), and a constant bulk viscosity is used for those in (c). (a) displays solitary waves with £at minima de-
signed as ‘which hat waves’. The minimum of the wave function f0 is 0.8, 0.5 and 0.3, respectively. (b) and (c) display solitary
waves with £at maxima designed as ‘bowler hat waves’. The plain line and dashed line waves have a curvature at their maxima
fQm =0; the pointed line wave has a curvature fQm =31. The velocity c of the dashed line wave is 3.2, the one of the plain line
wave is 4, and that of the pointed line is 0.7.
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4. 1-D transient evolution of compaction waves

Because of non-linearity of the compaction
equations only some of the solitary waves consid-
ered above can grow. In fact, the nature develops
those which are stable solutions of the transient
non-linear equations (Eqs. 11a^e). Studying the
stability of a solution requires relatively heavy
mathematical developments. Hence, in order to
observe which type of solitary wave is selected
by nature, we ¢nd it easier to develop 1-D explicit
transient numerical simulations of compaction.
To generate transient waves, a necessary and suf-
¢cient condition is to start the experiment with a
concentration pro¢le decreasing upward [24].
Therefore we initiate the experiments with the fol-
lowing melt concentration pro¢le Fin :

F inðzÞ ¼ 1 if z925 ð18aÞ

otherwise :

FðzÞ ¼ ð13crÞ
coshð0:5ðz325ÞÞ þ cr ð18bÞ

In the above expression cr, the asymptotic con-
centration at z=+r is a free parameter. The ini-
tial pro¢les used are drawn in Figs. 2 and 3. The
equations are solved with the second order in time
and fourth order in space ¢nite di¡erence scheme
proposed by Barcilon and Richter [22]. We use
4000 grid points in space and 50 000 time steps.
We check the stability of the resolution by com-
paring solutions with a 10 times ¢ner meshing in
both time and space [26].
Fig. 2 shows the melt distribution at time 50 for

di¡erent transient 1-D experiments of compac-
tion. We assume a cubic relationship between per-
meability and melt concentration; this is equiva-
lent to set n=3 in Eq. 1. In Fig. 2, we compare
solutions with constant bulk viscosity and solu-
tions with 1/P bulk viscosity. The evolution of
the waves is dramatically dependent on the
asymptotic melt concentration of the initial pro¢le
cr. When cr=0.5, Fig. 2a, the evolution and
shape of the generated wave-train are similar
whether constant bulk viscosity or 1/P bulk vis-
cosity are used: the waves are quasi-sinusoidal
and move at a velocity of about 2. Note that a

Fig. 2. Comparison of the transient evolution of the waves when the equations are resolved using a constant bulk viscosity and
an 1/P bulk viscosity, respectively. A cubic relationship between permeability and melt concentration is assumed (n=3 in Eq. 1).
The time t=50 snapshot of the melt concentration for three distinct experiments are displayed. The initial melt concentration
pro¢les are also drawn. The cases presented in (a), (b) and (c) di¡er by the asymptotic melt concentration of the initial pro¢les
cr. It is equal to 0.5, 0.2 and 0.05 in (a), (b) and (c), respectively.
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wave velocity c=3 is expected when cr is close to
1 (see Eqs. 14 and 15). The waves reach a dimen-
sionless amplitude of about 1.5. We observe
subtle di¡erences in shape between solutions ob-
tained with constant bulk viscosity and 1/P bulk
viscosity, respectively. In particular, the maximum
of the wave-train is larger when the bulk viscosity
is 1/P-dependent. The situation when cr=0.2 is
displayed in Fig. 2a. The minimum melt concen-
tration in each individual wavelet is bu¡ered by
the asymptotic minimum cr. The shape of the
two types of wave-trains di¡ers signi¢cantly.
The constant bulk viscosity waves have acute
minima and £at maxima. The 1/P bulk viscosity
wave-train has relatively £at minima and acute
maxima. The maxima have amplitudes greater
than those found with constant bulk viscosity
(3.5 instead of 2). Also, a constant bulk viscosity
type wave-train presents a greater velocity than a
1/P bulk viscosity one (1 instead of 0.7). When
cr=0.05, Fig. 2c, no more doubt is permitted:
the wave-train generated with constant bulk vis-
cosity belongs to the ‘bowler hat’ family and the

one with 1/P bulk viscosity to the ‘witch hat’ fam-
ily. Moreover, the wave-trains have drastic di¡er-
ences in amplitude: 3 compared to 20. Initially,
both wave-trains move at a velocity close to 3, i.e.
the velocity of solitary waves with small ampli-
tudes (see Eqs. 14 and 15). At time 50, the top
of the constant bulk viscosity wave-train has a
velocity of 0.4 and a minimum melt concentration
equals to cr. With a maximum around fm =3 and
a curvature close to fQm =33, the velocity of 0.4 is
close to the dispersion velocity predicted for con-
stant bulk viscosity bowler-hat solitary wave
(c=0.3 according to Eq. 16). The velocity esti-
mate of 1/P bulk viscosity witch-hat solitary waves
depends on both the maximum fm and the mini-
mum f0 of the wave function (Eq. 13). At the end
of the transient experiment, 1/P bulk viscosity
wave-train veri¢es: fmW20 and f0 = cr=0.05.
With these parameter values, a dispersion velocity
c=0.09 is predicted (Eq. 13), very close to the
wave-train velocity of 0.1 measured at the end
of the experiment. The good agreement between
the velocities recorded in the numerical experi-

Fig. 3. Comparison of the transient evolution of the compaction waves when the relationship between permeability is cubic
(n=3) and square (n=2). An 1/P bulk viscosity is used. (a) displays a case with n=3, while n=2 in the cases shown in (b) and
(c), respectively. The cases di¡er also by the asymptotic melt concentration of the initial pro¢les cr : cr=0.01 in the case shown
in (a) and (b), respectively; cr=0.001 in the case of (c). The time t=50 and time t=100 snapshots of the wave-trains as well as
the initial melt concentration pro¢le are drawn.
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ments and those deduced from the dispersion re-
lations is striking. It indicates that the periodic
solitary waves computed in Section 3 are good
approximations of the asymptotic solutions of
the transient problem.
In Fig. 3, we compare the evolutions of the

wave-trains at time t=50 and t=100, when the
relationship between permeability and melt con-
centration is cubic (n=3) and square (n=2). All
the experiments are run with an 1/P bulk viscosity.
In the experiments of Fig. 3a,b, the asymptotic
concentration of the initial pro¢le cr=0.01. Be-
tween time 50 and 100, the wave amplitude in-
creases from 46 up to 100 when n=3 (Fig. 3a)
and from 16 up to 18 when n=2 (Fig. 3b). The
wave velocity c is extremely small when n=3 in
agreement with Eq. 14 that predicts c=0.0055.
When n=2, the wave-train moves much faster:
in Fig. 3b the wave velocity, at t=50, is about
0.14, i.e. close to the prediction of Eq. 13 that is
0.15. In Fig. 3c, we display the t=50 and t=100
snapshots of an experiment run with n=2 and a
very small asymptotic melt concentration
(cr=0.001). In this case, the wave-train reaches
a large amplitude: about 62 at t=100. We con-
clude that when the asymptotic concentration cr
is very small, the drastic growth of the amplitude
of the wave results from the being quasi-motion-
less of the wave-train when it reaches its asymp-
totic minimum. This result is independent of the
permeability vs. melt concentration law used.

5. Summary and application of the modeling
results to mantle metasomatism

We see that the pressure jump vP between the
solid and melt plays a small e¡ect during compac-
tion provided the initial melt distribution is quite
homogeneous. In this case, the compaction waves
display a sinusoidal shape and the melt concen-
tration is locally ampli¢ed by a factor less than 2.
Thus, impregnations with a strong melt concen-
tration cannot be generated. A drastic obstruction
at the top of the wetted domain changes the com-
paction process. Neglecting the pressure jump be-
tween solid and melt vP, the wave-train has a
‘bowler hat shape’. It crosses domains of zero

permeability (Eq. 17) and locally ampli¢es the
melt concentration by a factor less than 5. Alter-
natively, the wave-train has a ‘witch hat shape’
and collects a large quantity of melt promoting
the development of magmons with a local melt
concentration exceeding 100 times the back-
ground melt concentration. We infer that carbo-
natitic and high alkaline ma¢c silicate melt im-
pregnations can only develop when there is:
(1) a drastic obstruction at the top of the mantle
column, and (2) a non-zero pressure jump be-
tween solid and melt vP. In the following we
study the conditions leading to a drastic obstruc-
tion at the top of the compaction zone and eval-
uate the possible dimension of the magmons and
the time needed to generate them.

5.1. Conditions leading to a drastic obstruction

The mantle carbonatitic and high alkaline ma¢c
silicate melts are generated at a depth below the
surface s 80 km [27]. It is suspected, while not
proved, that the domain of low partial melting
below plates coincides with the seismic Low Ve-
locity Zone (LVZ) [33]. Accordingly, the domain
of carbonatitic and high alkaline melting extends
itself between 200 and 100 km depth. Gradients of
temperature inside the convective boundary layer
at the base of the lithosphere can be evoked to
promote crystallization of this melt and thus in-
duced an upward decrease in melt concentration.
This hypothesis is unlikely in case of carbonatitic
melts because they are known to crystallize at
very low temperatures [34]. More likely, a chem-
ical death of carbonatitic and high alkaline ma¢c
silicate melts results from their interaction with
the peridotitic mantle during upwelling [9,10].
Such a process dramatically reduces the relative
volume of melt in places where the melt concen-
tration is already low and has a negligible e¡ect in
places where it is already high. So, the melt inter-
action with the peridotites is expected to dramat-
ically decrease the bulk concentration of melt P0
but has no impact inside the impregnated do-
mains.
The carbonatites and the high alkaline ma¢c

silicate melts are known to be very mobile
[9,17]. The carbonatitic melts have a specially
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low viscosity: Wf = 0.01^0.1 Pa s at temperatures
s 500‡C [35^38]. In the following, we assume that
Wf = 0.01 Pa s. The high alkaline ma¢c silicate
melts have a slightly higher viscosity: WfW1 Pa
s [39]. Nevertheless, as suggested by Hess [16],
when the ¢lms of £uid are few tens of nanometer
thick, the e¡ective viscosity of the melt forming
these ¢lms is high: in fact it is likely six orders of
magnitude greater than normal. We have shown
in Section 1 that a few tens of nanometer thick
interconnected network of carbonatitic ¢lms
wrapping the peridotites grains still persists below
a melt concentration P of a few 1035. Hence,
when the sti¡ening of the intergranular melt ¢lms
occurs, the viscosity jump induces a drastic
obstruction to the upward melt percolation. In
fact, this obstruction is equivalent to a drop of
two and three orders of magnitude in melt
concentration P provided the permeability versus
melt concentration relationship is cubic or square,
respectively [26]. These results indicate that
the drastic obstruction necessary to generate
magmons with a strong melt concentration must
be attributed both to the reduction of melt
concentration P resulting from its interaction
with the peridotites and to the jump of the inter-
stitial ¢lms viscosity below a few tens of nano-
meter thickness.

5.2. Dimension of the magmons

The magmons have a height about equal to the
compaction length L (see Fig. 3). It results that
their size depends on the plastic viscosity of the
mantle Wm, the melt viscosity Wf , and the bulk
melting rate P0 (see Eq. 9a). Rebound data and
modeling of mantle convection suggest that the
mean plastic viscosity of the LVZ Wm is of order
1019 Pa s [40]. Because of lateral variations of
temperature due to mantle convection, lateral var-
iation of viscosity are expected. For instance, an
order of magnitude drop in viscosity is likely in-
side hot plumes: WmW1018 Pa s [41,42]. The melt-
ing rates P0 inside the LVZ are not well known.
The melting rate of carbonatites in the mantle P0
is about 0.1% and the one of alkaline ma¢c sili-
cates melts is just greater: P0V0.3% [11,13].
These estimates of Wm, Wf , and P0 imply that the

size of carbonatitic magmons is about 1 km and
the one of alkaline ma¢c silicate melt magmons is
sub-kilometric (Table 1).

5.3. Time needed to generate magmons

The models of Fig. 3 show that the time needed
to amplify the melt concentration by two orders
of magnitude is about 100 in units of Tsc (Eq. 9c).
According to above parameter value estimates,
the carbonatitic magmons are produced in less
than 1 Ma and the ma¢c magmons in several
Ma (Table 1). The softening of plastic viscosity
Wm in a hot environment favors the development
of smaller structures on a shorter time scale. A
P-square permeability relationship enhances per-
meability and thus favors a faster development
of larger structures (Table 1). In the Earth the
magmons are also transported by mantle convec-
tion. In order to prevent the collision of immature
melt impregnations with the lithosphere, the
transport of the magmon from its birth to the
lithosphere should take more than 1 Ma. Some
plume models show upwelling £ow in the axis of
a hot spot with velocities lower than 10 cm/yr
[41]. According to these models, the transport
from 200 to 100 km depth takes more than
1 Ma. Other models display convective velocities
inside the heart of hot spots exceeding several 10
cm/yr [43]. Also, in the core of a hot spot the
carbonatitic or high alkaline ma¢c silicate melts
can be dissolved in the basaltic melts which are
produced at comparable depth. These last two
settings can likely prevent the two orders of mag-
nitude enhancement of melt concentration during
compaction needed to produce the carbonatitic or
high alkaline ma¢c impregnations. We conclude
that the development of mature impregnations
in the core of a hot spot is not completely impos-
sible, but probably unlikely. The situation is com-
pletely di¡erent at some distance from the center
of any hot spot. There, the upward component of
the convective velocities is much lower than 1 cm/
yr. The time needed for the partially molten man-
tle to rise from 200 up to 100 km depth is much
greater than 10 Ma. These rules of thumb indicate
that the development of carbonatitic or/and high
alkaline ma¢c silicate melt impregnations inside
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LVZ domains located apart from the core of a
hot spot is very likely.
As a conclusion, we see that the development of

carbonatitic and high alkaline ma¢c silicate melt
impregnations is very likely in the LVZ domain
apart from the zones of too fast and too hot up-
wellings. At the top of the LVZ, the thickening of
the di¡usive boundary layer progressively inhibits
the plastic deformation of the solid fraction of the
impregnation and thus stops the compaction pro-
cess. Hence, the impregnations are progressively
sealed in the lithosphere well before the crystalli-
zation of the trapped melts starts. Accordingly, the
impregnations reaching the top of the LVZ have
the best chance to be preserved. The trapped car-
bonatitic and high alkaline ma¢c silicate melts can
be remobilized during a posterior tectonic process.
This can explain the modal metasomatism evi-
denced in some mantle xenolith suites which re-
quires the reaction of mantle peridotites with a
relatively high volume of carbonatitic and high
alkaline ma¢c silicate melt (up to 10%, [9,10]).
We may also propose that the formation of highly
concentrated magmons and their remobilization
can explain the eruption of mantle carbonatites
and high alkaline ma¢c silicate melt in continental
(in Africa, [27]) and oceanic settings (Cape Verde,
Canaries and Kerguelen islands, [44,45]).
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Appendix A1. Wave function when the bottom of
the wave is £at

Eqs. 11a^e yield:

S ¼ cðF þ KÞ ðA1:1Þ

D

D z
F 0

F

� �
3
F þ K
Fn ¼ 3

1
c

ðA1:2Þ

where K is a constant of integration and F= (DF/
Dz). When F(0) = f0, FP(0) =FQ(0) = 0, K veri¢es:

K ¼ 3f 0 13
f n310

c

� �
ðA1:3Þ

If we multiply Eq. A1.2 by FP/F and integrate the
product of equations, we obtain:

1
2

F 0

F

� �
2
¼ 3

1
ðn31ÞFn313

K
nFn3

1
c
LnðFÞ þ A

ðA1:4Þ

where A is a constant of integration. At z=0, the
left hand side of Eq. A1.4 is zero, it implies that:

A ¼ 1
ðn31Þf n310

þ K
nf n0

þ 1
c
Lnðf 0Þ ðA1:5Þ

The right hand side of Eq. A1.4 must be positive
for any values of F greater than f0 and null at the
top of the wave F= fm where FP=0. These con-
ditions are ful¢lled if and only if :

c ¼ f n310

Ln
f m
f 0

� �
3
1
n
13

f n0
f nm

� �� �

3
1
n
13

f n0
f nm

� �
þ 1
n31

13
f n310

f n31m

� �� �
ðA1:6Þ

Eqs. A1.1 and A1.3 imply that:

S ¼ cðF3f 0Þ þ f n0 ðA1:7Þ

The in¢ltration velocity S is always positive and
its maximal velocity is reached at the maximum of
the wave. According to Eq. 11d, the e¡ective pres-
sure PP veri¢es:

DP0

D z
¼ cF

F 0

F

� �
2
3
1
FnðcðF3f 0Þ þ f n0Þ ðA1:8Þ

The ¢rst term in the right hand side of Eq. A1.7 is
always positive and the last one negative. We
have shown above that (FP/F)2 vanishes at the
top and the bottom of the wave. Since, (F3f0)
also vanishes at the minima of the wave, we de-
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duce that the pressure gradient is 31 at the mini-
ma of the wave. At the maxima, the pressure gra-
dient is also negative. These results are consistent
with an upward migration of the solitary wave.

Appendix A2. Wave function when the top of the
wave is £at

The wave function F is solution of the same
di¡erential equation as before provided we change
f0 by fm (see Eqs. A1.1^A1.5). The resolution of
the waveform equation in the [0, fm] interval is
complicated by the singularity of the di¡erential
equations Eqs. A1.1^A1.4 at F=0, i.e. (FP/F)2 is
in¢nite at F=0. To avoid this di⁄culty we intro-
duce the new variable i de¢ned by:

1
i

¼ F
f m

: ðA2:1Þ

Thus Eq. A1.3 becomes:

i
0

i

� �
2
¼ 2

c
c

ðn31Þf n31m
ð13i

n31Þþ
�

1
n
13

c
f n31m

� �
ð13i

nÞ þ Lnði Þ� ðA2:2Þ

The right hand side of Eq. A2.2 is positive if :

cv
f n31m

1
n
ði n31Þ3Lnði Þ

� �
1
n
ði n31Þ3 1

n31
ði n3131Þ

� � ðA2:3Þ

When i is just greater than 1, the last inequality
yields to Eq. 15. The in¢ltration velocity S writes:

S ¼ cf m
1
i

31
� �

þ f nm ðA2:4Þ

It is a continuous function at the minimum of the
wave function F, while SP is discontinuous at
these same points. The in¢ltration velocity S is
positive close to the maximum of the F-function:
((1/i) = 0) and negative at their minima ((1/i) =
31). This means that the melt moves upward at

the maxima of the wave and downward at their
minima where the melt concentration is zero. Eq.
11d shows that the pressure gradient is :

DP0

D z
¼ 3

i
n

f nm
cf m

1
i

31
� �

3f nm

� �
þ cf m

i

i
0

i

� �
2

ðA2:5Þ

According to Eq. A2.2, the pressure gradient DPP/
Dz is negative when i=1 and equal to 3r at
i=+r. This is consistent with an upward inter-
stitial melt velocity of the solitary wave.

Appendix A3. Wave function when the concavity of
the top of the wave is ¢xed

F(0) = fm, FP(0) = 0 and FQ(0) = fQm. Then the dif-
ferential equation controlling evolution of the
melt concentration is:

i
0

i

� �
2
¼ 2

cf n31m

c
ðn31Þð13i

n31Þþ
�

1
n
ðf n31m 3cð13f 00mf n32m ÞÞð13i

nÞ þ f n31m Lnði Þ�

ðA3:1Þ

leading to the dispersion relation

cv
f n31m

1
n
ði n31Þ3Lnði Þ

� �
1
n
ði n31Þð13f 00mf n32m Þ3 1

n31
ði n3131Þ

� �
ðA3:2Þ

Appendix A4. Wave function when the pressure of
liquid and the solid is the same

vP=0. In this case the (1/P)-term in Eq. 11c
must be dropped and the equation becomes:

D

D z
DS
D z

� �
3

S
P
n ¼ 31 ðA4:1Þ

which yields by integration:
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i
0

i
2

� �
2
¼ 2

cf nm
cððn32Þð13i Þ þ ðn33Þlnði ÞÞþ½

1
n31

ðf n31m 3cð13f 00mf n31m ÞÞð13i
n31Þþ

f n31m 13
1
i
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