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Abstract. The two-phase theory for compaction and damage employs a nonequi-

librium relation between interfacial surface energy, pressure, and viscous defor-

mation, thereby providing a model for damage (void generation and microcrack-

ing) and a continuum description of weakening, failure, and shear localization.

Here we examine the application of this theory to the problem of generating plate-

like behavior from convective-type divergent (poloidal) motion through a source-

sink formulation. We extend the previous damage theory to consider two pos-

sible damage effects: (1) growth and nucleation of voids associated with dila-

tion of the host matrix, and (2) increasing fineness (i.e., reducing coarseness)

of the mixture by, for example, grainsize reduction. Void-generating damage is

found to be poor at plate generation because of the predominance of dilational

motion that is adverse to the development of plate-like flow. Fineness-generating

damage is found to be very efficient at generating plate-like behavior if we as-

sume that the matrix viscosity is a simple function of grain/void size, as is typ-

ical for diffusion creep. The implied grainsize reduction mechanism is differ-

ent than that of dynamic recrystallization, and appears more capable of gener-

ating the requisite shear-localization for forming tectonic plates from mantle flow.
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1. Introduction

Although the theory of plate tectonics is a well-established unifying principle of geology,

the investigation of how the plates themselves arise from mantle convection is still a relatively

young field [see reviews by Bercovici et al., 2000; Tackley, 2000a, c; Bercovici, 2003]. There

are many key issues in the problem of generating plates, including the initiation of subduction

[Mueller and Phillips, 1991; Kemp and Stevenson, 1996; Schubert and Zhang, 1997; Toth and

Gurnis, 1998; King, 2001; Regenauer-Lieb et al., 2001], formation of passive ridges [Ricard and

Froidevaux, 1986; Tackley, 2000b; Huismans and Beaumont, 2003], and the very existence of

strong plates with weak, rapidly deforming boundaries [Weinstein and Olson, 1992; Moresi and

Solomatov, 1998]. One of the most fundamental of the plate generation problems is the cause

for strike-slip boundaries and the enigmatic “toroidal” motion which is not directly driven by

buoyancy and does not transport heat, but is still a significant component of the Earth’s surface

velocity field [Hager and O’Connell, 1978, 1979, 1981; Forte and Peltier, 1987; Ricard and

Vigny, 1989; Gable et al., 1991; O’Connell et al., 1991; Olson and Bercovici, 1991; Cadek and

Ricard, 1992; Ribe, 1992; Lithgow-Bertelloni et al., 1993; Bercovici, 1993; Bercovici and Wes-

sel, 1994; Bercovici, 1995b, a, 1996, 1998; Bercovici et al., 2000; Bercovici, 2003; Dumoulin

et al., 1998; Weinstein, 1998].

The formation of strong plates and weak boundaries, as well as the generation of toroidal

motion is known to require an interaction between convective flow and strongly nonlinear rhe-

ologies, in particular ones that induce weakening with increased deformation [see reviews by

Tackley, 2000a; Bercovici et al., 2000; Bercovici, 2003]. Standard steady-state plastic or pseudo-

plastic (power-law) rheologies explicitly prescribe such weakening behavior, but whether they

are sufficient to the task of plate-generation is questionable; while they might allow for softening
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of the material (lowering of viscosity) with higher deformation, they do not allow for strength

loss (lowering stress) in which case deformation does not localize sufficiently [Bercovici, 1993].

These “plastic” rheologies, however, can be augmented with the help of melting (as at mido-

cean ridges) and yield more plate-like structures Tackley [2000b]. Even so, the localized plate

boundaries that are generated with standard steady-state rheologies exist only as long as they are

being deformed, which is unrealistic since boundaries persist as suture zones even when inac-

tive [Gurnis et al., 2000]. Simple self-weakening rheologies wherein strength loss is permitted

(e.g., pseudo- or viscous-stick slip behavior Bercovici [1993]) allow more profound plate-like

behavior and localization [Bercovici, 1993, 1995b, a; Tackley, 1998]; these are based on self-

weakening feedback mechanisms, such as what arises from viscous heating of material with

thermoviscous behavior [Schubert and Turcotte, 1972; Whitehead and Gans, 1974; Schubert

and Yuen, 1978; Fleitout and Froidevaux, 1980; Bercovici, 1996, 1998] or with simple damage

whereby weakening defects or voids are generated by deformation [Bercovici, 1998; Auth et al.,

2003; Ogawa, 2003]. The simple damage laws allow for more precipitous drops in viscos-

ity than the standard Arrhenius thermoviscous law and hence yield more focussed shear zones

[Bercovici, 1998], although they can also cause runaway damage whereby plates continue to

break down to ever smaller plates [Tackley, 2000b]. While these simple damage treatments are

easily implemented and are reasonably successful at yielding plate-like flows, their derivation

and connection to the physics of void/microcrack generation is ad hoc.

The physics of void-generating damage has been recently developed from first principles

using two-phase continuum mechanics [Bercovici et al., 2001a; Ricard et al., 2001; Bercovici

et al., 2001b; Bercovici and Ricard, 2003; Ricard and Bercovici, 2003]. The theory is reasonably

distinct from other elastodynamics damage theories [Ashby and Sammis, 1990; Hansen and

Schreyer, 1992; Lemaitre, 1992; Krajcinovic, 1996; Lyakhovsky et al., 1997] as it models the
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growth of voids through a two-phase approach (i.e., using a fluid or void-filling phase, and a

host-rock or matrix phase) and treats void growth via storage of surface energy on the interface

between phases, which serves as a proxy for the fracture surface [Griffith, 1921; Bercovici et al.,

2001a]. The two-phase damage theory has been fairly successful at capturing various aspects of

ductile cracking, including localizing of simple shear, involving, in order of increasing forcing,

weak and strong localization, and then distributed damage [Bercovici et al., 2001b; Bercovici

and Ricard, 2003]; and shear-enhanced compaction [Menéndez et al., 1996; Wong et al., 1997;

Zhu and Wong, 1997; Zhu et al., 1997] under uniaxial compression of low-cohesion failure

envelopes [Ricard and Bercovici, 2003].

In all the studies of two-phase damage so far, the model systems were driven by an imposed

shear stress and the damage-induced weakening would facilitate or enhance the mode of de-

formation that is driven directly by the imposed shear. For example, in simple-shear cases,

damage and localization typically act to enhance the shear strain-rate that is parallel to the im-

posed shear stress [Bercovici et al., 2001b; Bercovici and Ricard, 2003]. In the problem of

generating plates from mantle convection, the system is not driven by a simple imposed shear

stress as in simple-shear flow or uniaxial compression. Instead, it is driven by convective buoy-

ancy forces which force divergent and convergent (poloidal) motion in the top, horizontally

moving thermal boundary layer (i.e., the lithosphere). This convective poloidal motion inter-

acts with a nonlinear rheological mechanism to generate plate-like motion, especially strike-slip

toroidal motion. However, the toroidal flow structures (e.g., strike-slip boundaries) are usually

orthogonal to and often separated from the poloidal structures associated with convective forc-

ing (convergent/divergent boundaries such as subduction zones and ridges). Thus, the localized

toroidal structures do not occur by merely enhancing deformation that is directly driven by the

driving stresses. That is, as opposed to cases involving localization and enhancement of an
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imposed shear (for fault formation) or extension (for necking), in the plate-generation case a

unique toroidal flow field that is essentially orthogonal to the driving convective poloidal field

must be generated. In short, it is not a matter of enhancing the imposed poloidal motion but of

generating a new toroidal flow field.

Therefore, in this paper, we examine the extent to which our two-phase damage mechanism

permits generation of plate-like toroidal flow from an imposed convective-type poloidal flow.

We employ a very simple system of source-sink driven flow, which is purely poloidal [Bercovici,

1993]. The damage “rheology” interacts with this poloidal driving flow to generate toroidal

motion; we therefore search for conditions under which plate-like toroidal motion and strength

distribution arise spontaneously.

We also extend the two-phase damage theory to consider two fundamental forms of damage:

damage associated with matrix dilation and void-growth, and non-dilational damage associ-

ated with interface area growth without void generation, as for example in grainsize reduction.

Dilational void-generating damage is well known for micro-cracking brittle and brittle-ductile

behavior in low-pressure, low-cohesion and/or granular materials [Scott, 1996; Menéndez et al.,

1996; Wong et al., 1997; Zhu and Wong, 1997; Zhu et al., 1997; Géminard et al., 1999]. Grain-

size reduction is an important aspect of lithospheric rheology since diffusion creep is fairly

strongly grainsize dependent, and continuous shear-localization is well associated with my-

lonitic (grainsize-reduced) zones [White et al., 1980; Karato, 1983; Jin et al., 1998; Furusho

and Kanagawa, 1999]. The cause for such grainsize reducing shear localization is usually at-

tributed to the process of dynamic recrystallization [Karato et al., 1980; Urai et al., 1986; Derby

and Ashby, 1987] whereby grains are reduced through the propagation of dislocations while the

medium undergoes nonlinear dislocation creep, but the localization of shear occurs only when

the medium drops to the lower-stress and grainsize-controlled diffusion creep. The physics of
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this mechanism is, however, still not fully developed [Bercovici and Karato, 2003] and has had

so far limited success in recovering observed levels of shear localization [Kameyama et al.,

1997; Braun et al., 1999; Bresser et al., 1998, 2001; Montési and Zuber, 2002]. In this study we

will examine the extent to which grainsize reduction driven by direct damage (i.e., in essence

pulverizing the matrix) allows for sufficient shear localization and plate generation.

2. Two-phase damage theory: review and extensions

The original two-phase damage equations have been developed over a series of papers

[Bercovici et al., 2001a, b; Ricard et al., 2001; Bercovici and Ricard, 2003; Ricard and

Bercovici, 2003] and thus we only briefly present the governing equations. We note in advance

that in the following equations, subscripts f and m refer to fluid (i.e., void-filling material) and

matrix (e.g., host rock) phases, respectively. Moreover, the volume-average and phasic differ-

ence of any quantity Q are defined as

Q̄ = φQf + (1 − φ)Qm,∆Q = Qm −Qf , (1)

respectively. All dependent variables are not, in fact, true microscopic quantities but are av-

eraged over the fluid or matrix space within small but not necessarily infinitesimal control

volumes. Moreover, all equations are invariant to a permutation of subscripts f and m and,

implicitly, a switch of φ and 1− φ, where φ is fluid volume fraction, or porosity; this symmetry

property is called “material invariance” (see Bercovici et al. [2001a] for further discussion).

2.1. Mass conservation

The conservation of mass equations are standard in two-phase theories [McKenzie, 1984] and

remain unchanged here. There are two equations involving transport of the fluid and matrix

phases:
∂φ

∂t
+ ∇ · [φvf ] = 0 (2)
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∂(1 − φ)

∂t
+ ∇ · [(1 − φ)vm] = 0, (3)

where vf and and vm are the fluid and matrix velocities.

2.2. Momentum conservation; interfacial surface tension and interface area density

The general momentum equations for each phase are

0 = − φ [∇Pf + ρfgẑ] + ∇ · [φτ f ]

+ c∆v + ω [∆P∇φ+ ∇(σα)] (4)

0 = − (1 − φ) [∇Pm + ρmgẑ] + ∇ · [(1 − φ)τm]

− c∆v + (1 − ω) [∆P∇φ+ ∇(σα)] , (5)

where g is gravity and c is the coefficient for viscous drag between phases (also referred to as

the Darcy drag coefficient, and as such can be related to permeability for small porosity; see

Bercovici et al. [2001a]); Pj and ρj are the pressure and density, respectively, in phase j (where

j = f or m) and the density of each phase is assumed constant. The deviatoric stress for phase

j is given by

τ j = µj

[
∇vj + [∇vj]

t − 2

3
(∇ · vj)I

]
(6)

where µj is viscosity. Surface tension is denoted by σ, and ω is a coefficent for how surface

tension partitions between phases, i.e., to what extent it is more embedded in one phase than

the other [Bercovici and Ricard, 2003]; in the case of µf � µm, which is most geologically

relevant, ω � 1. Lastly, the interfacial area per unit volume α is generally a function of porosity

φ and inversely proportional to average grain and/or void size which is denoted by A−1 (where

A has units of m−1; in keeping with our previous studies [Bercovici et al., 2001a, b; Ricard

et al., 2001; Bercovici and Ricard, 2003; Ricard and Bercovici, 2003] we write

α = Aη(φ) (7)
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where

η(φ) = φa(1 − φ)b (8)

and a and b are constants ≤ 1. As discussed in Bercovici et al. [2001a] ∂α/∂φ is analagous

to the average interface curvature. Whether A represents void or grain size depends on the

sign of the average interface curvature; if ∂α/∂φ > 0 then curvature is positive implying that

the interface is concave to the void-filling fluid phase (e.g., voids are like bubbles encased in

matrix), and if ∂α/∂φ < 0 then curvature is negative and the interface is convex to the fluid (the

matrix is composed of grains bathed in fluid). The change in sign of curvature from positive

to negative with increasing φ occurs at φ = a/(a + b), and thus for φ < a/(a + b) we can

assume that the interface mostly encloses pores and A represents inverse void size; while for

φ > a/(a+ b) the interface encloses matrix grains in which case A represents inverse grainsize.

For slurries and granular-type media, a/(a+ b) � 1, while for foams a/(a+ b) ≈ 1.

2.3. Energy conservation

Following the development of Bercovici et al. [2001a] and Bercovici and Ricard [2003], the

energy equation is separated into two coupled equations representing (1) the evolution of ther-

mal (entropy-related) energy, and (2) the rate of work done on the interface by pressure, surface

tension, and viscous deformational work. The interfacial surface energy and the work done by

surface tension on the mixture is assumed to be partitioned between phases by the same fraction

ω as the surface tension force in the previous section. With these assumptions we arrive at (see

Bercovici et al. [2001a] for a detailed derivation with the case of ω = φ, and Bercovici and
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Ricard [2003] for equations with a general ω)

ρc
DT

Dt
− T

D̃

Dt

(
α
dσ

dT

)
− Tα

dσ

dT
∇ · ṽ

= Q− ∇ · q +B

(
D̃φ

Dt

)2

+ (1 − f)Ψ (9)

σ
D̃α

Dt
= −∆P

D̃φ

Dt
− B

(
D̃φ

Dt

)2

+ fΨ, (10)

where T is the temperature (assumed the same in both phases), −dσ/dT is the interfacial en-

tropy per unit area [Desjonquères and Spanjaard, 1993; Bailyn, 1994; Bercovici et al., 2001a],

ṽ = ωvf + (1 − ω)vm (11)

is the effective velocity of the interface, Q is an intrinsic heat source, q is an energy flux vector

(accounting for heat diffusion and possibly energy dispersion; see Bercovici et al. [2001a]), and

Ψ = c∆v2 + φ∇vf : τ f + (1 − φ)∇vm : τm (12)

(where ∆v2 = ∆v ·∆v) is the viscous deformational work, a fraction f of which is partitioned

into stored work (in this model stored as interface surface energy) while the remaining part goes

toward dissipative heating [Taylor and Quinney, 1934; Chrysochoos and Martin, 1989]; see

Bercovici et al. [2001a] for further discussion of the partitioning fraction f . The quantityB must

be positive, has units of viscosity, and the term associated with it represents irreversible viscous

work done on pores and grains by the pressure difference ∆P during isotropic compaction or

dilation [Bercovici et al., 2001a; Ricard et al., 2001]. Simple micromechanical models suggest

that

B = K
(µm + µf)

φ(1 − φ)
(13)

where K is a dimensionless factor accounting for pore or grain geometry and is typically O(1)

[Bercovici et al., 2001a]; see also Sumita et al. [1996]. In the limit of µf � µm, B is essentially
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equivalent to the matrix bulk viscosity introduced by McKenzie [1984]; see Ricard et al. [2001]

and Bercovici and Ricard [2003] for further discussion. The average heat capacity per volume

of the mixture is ρc = φρfcf + (1 − φ)ρmcm (where cf and cm are the heat capacities of the

fluid and matrix), and the material derivatives in (9) and (10) are defined as

D̃

Dt
=

∂

∂t
+ ṽ · ∇ = ω

Df

Dt
+ (1 − ω)

Dm

Dt
(14)

D

Dt
=

1

ρc

(
φρfcf

Df

Dt
+ (1 − φ)ρmcm

Dm

Dt

)
(15)

in which
Df

Dt
=
∂

∂t
+ vf · ∇,

Dm

Dt
=
∂

∂t
+ vm · ∇. (16)

2.4. The damage equation: void vs fineness generation

Equation (10) governs the rate that deviatoric stresses and the interphasic pressure difference

do work on the interface, effectively storing surface energy on the interface; as this models

the growth of microcracks and defects by growth of interfacial area it is termed the damage

equation.

In previous papers we considered the inverse grain/void size A to be constant and that all

damage occured through void growth and porosity change. However, it is clearly possible to

incur damage without void growth, but instead by increasing the number of voids or grains

without changing porosity, hence reducing the void/grain size, and thus increasing the interfacial

area density. We refer to this effect as increasing the fineness of the mixture, i.e., the smaller the

grain/void size the finer (or less coarse) the texture of the two-phase medium. Therefore, here

we allow for the possibility that A is variable, and that an increase in A increases the fineness of

the medium. In this case, (10) becomes

σAdη

dφ

D̃φ

Dt
+ ση

D̃A
Dt

= −∆P
D̃φ

Dt
−B

(
D̃φ

Dt

)2

+ fΨ, (17)
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We assume that the terms proportional to ∆P and B contribute to void generation since they

are clearly associated with work to change porosity φ. However, in general the term fΨ is

itself partitioned between growth of voids and enhancement of fineness, which each contribute

to interface generation; we assume that a fraction fφ contributes to void generation, while a

fraction fA contributes to fineness generation, and that f = fφ + fA. Thus, (17) is itself divided

into

σAdη

dφ

D̃φ

Dt
= −∆P

D̃φ

Dt
−B

(
D̃φ

Dt

)2

+ fφΨ, (18)

and

ση
D̃A
Dt

= fAΨ (19)

Although both void- and fineness-generating damage can occur simultaneously, we will here

consider the limiting cases where only one or the other occurs; i.e. when fφ 6= 0 then fA = 0,

and vice versa.

2.4.1. Partitioning fractions

As discussed in our previous papers [Bercovici et al., 2001b; Bercovici and Ricard, 2003],

when void-generating damage occurs (fφ 6= 0) singular solutions of (18) in regions of zero

void-growth (i.e., D̃φ/Dt = 0) are precluded by requiring that the partitioning fraction fφ be

dilation-rate dependent, e.g.,

fφ = f ∗
(D̃φ/Dt)2

γ + (D̃φ/Dt)2
(20)

where f ∗ is the maximum permissible fφ, γ controls the variability of fφ, and fφ is assumed to

depend on an even power of D̃φ/Dt since it must be positive definite (and for simplicity we

assume the lowest-order such power).
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However, in the case where damage generates greater fineness (reduces grain/void size) such

that fA 6= 0, there are no explicit singularites in (19). Hence, there is no need to ascribe any

mitigating behavior to fA, and thus for simplicity we generally assume that fA is constant.

2.5. Matrix rheology

As discussed in Ricard et al. [2001], porosity can influence the effective strength of the

medium; e.g., in shear flow the effective viscosity is

µeff = µm(1 − φ); (21)

which essentially arises from the factor of 1 − φ in the term involving τ m in (5). Similarly,

since we are here considering variation in grain/voidsize, we consider ways in which A affects

rheology, in particular of the matrix which represents the host rock. Although reductions in

bubble or grain size in emulsions and suspensions are known to increase viscosity [Batchelor,

1967; Larson, 1999], the break up of the matrix material into grains in the mixture is likely to

facilitate its deformation because of grain-sliding, increased number of available granular slip

planes, and enhanced diffusion creep. We thus assume that the matrix viscosity depends on A

similarly to how viscosity depends on grainsize in diffusion creep, i.e.,

µm = µ0(A0/A)m (22)

where µ0 and A0 are constant reference values for viscosity and fineness , respectively, and m

is a dimensionless positive constant.

However, the fineness-dependence of viscosity, only really affects the system when growth in

A is forced by damage, i.e., when fA > 0. Otherwise, healing is assumed to force A toward a

homogeneous value (see Appendix A); indeed, for cases in which fA = 0 we assume a simple

initial condition of A = A0 which leads to a viscosity that, because A does not change, remains

constant (at µm = µ0).
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Finally, we assume that in the limit µf � µm (see §2.6 below) that the effective bulk viscosity

obeys

B =
Kµ0

φ(1 − φ)
(23)

and that it is therefore independent of A (i.e., B depends on µ0 rather than µm). We make this

simplification because while it is reasonable that shear viscosity is grainsize dependent, it is not

at all clear that an effective bulk viscosity would be grainsize dependent, or at least in the same

sense as µm. For example, compaction probably becomes more difficult with smaller grains

because of closer possible packing, as opposed to deformation under shear stress which should

be facilitated by smaller grainsizes (either by diffusion creep or because of the existence of more

slip planes). For the sake of simplicity, we simply leave B as independent of A (although in the

Discussion section we briefly discuss results of calculations allowing B(A)).

2.6. The evacuated-void limit

We next adopt the geologically applicable “void limit” proposed by Ricard and Bercovici

[2003] whereby pores have zero density, pressure and viscosity (ρf = Pf = µf = 0, and thus

ω = 0 and eD
Dt

= Dm

Dt
). At the interface there is no interaction force between phases (c∆v = 0)

and the interface itself is assumed to move with the matrix. In this limit the governing equations

of mass and momentum, i.e., (3) and (5), are, respectively,

Dmφ

Dt
= (1 − φ)∇ · vm (24)

0 = ∇[σα− (1 − φ)Pm] + ∇ · [(1 − φ)τm] − (1 − φ)ρmgẑ (25)

The general damage equations (following previous sections) becomes

σAdη

dφ
= −Pm −B

Dmφ

Dt
+

f ∗Dmφ/Dt

γ + (Dmφ/Dt)2
(1 − φ)∇vm : τm (26)

ση
DmA
Dt

= fA(1 − φ)∇vm : τm (27)
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3. Source-sink formulation

The primary goal of this paper is to study the classic plate-mantle coupling problem of how

well a convective poloidal flow field can generate toroidal flow through nonlinear rheological

mechanisms [see reviews by Bercovici et al., 2000; Bercovici, 2003]. In this analysis we pre-

scribe a poloidal flow by imposing a source-sink field in a shallow-layer of fluid (nominally the

lithosphere). In effect, the source-sink field represents vertical motion of underlying fluid being

injected into or ejected from the horizontal shallow layer.

The thin layer in which we are modelling flow is assumed to be bounded above and below

by inviscid half-spaces (i.e., the ocean and atmosphere above, the low-viscosity asthensphere

below) and thus has free-slip boundaries. The velocity of material (i.e., matrix material) in the

layer is vm = umx̂ + vmŷ + wmẑ. However, within the layer we assume vertical flow wm is

negligible, and thus the free-slip boundaries leads to the condition that ∂um/∂z = ∂vm/∂z = 0.

We further assume that the layer is so thin that this condition exists across the entire width of

the layer. A velocity field that satisfies these conditions can be expressed with the Helmholtz

representation

vm = ∇θ + ∇ × (ψẑ) + ∇ × ∇ × (zξẑ) (28)

where θ, ψ and ξ are functions of x, y and time t only. The velocity potential θ represents

“compressible” flow associated with dilation or compaction due to void generation or collapse.

The last two terms on the right of (28) represent the incompressible solenoidal flow of the matrix

which is not associated with dilation or compaction [see Spiegelman, 1993]; the solenoidal

potential ψ is the toroidal stream function and ξ is the poloidal potential. The velocity given by
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(28) can be rewritten as

um =
∂(θ + ξ)

∂x
+
∂ψ

∂y

vm =
∂(θ + ξ)

∂y
− ∂ψ

∂y
(29)

wm = −z∇2
hξ.

and we define the entire thin layer to exist near z = 0 such that wm is negligibly small. We

also note that since dilational velocity is assumed independent of z then porosity φ is also

independent of z (i.e., there is no vertical variability in how voids dilate or compact, and thus

void density is assumed not to vary vertically).

3.1. Source-sink, vorticity and dilation-rate fields

As stated above, we are here only concerned with lateral flow in a thin horizontal fluid layer

that is driven by an imposed source-sink field, or injection and ejection of material from below.

Within the thin layer we assume that vertical matrix velocity wm is zero, but that ∂wm/∂z

is nonzero; indeed, the negative of the latter quantity represents the net vertical volume flux

per unit volume (or at a point) of material being injected into the thin layer (i.e., if the layer has

thickness h, then the net vertical volume flux over an infinitesimal area is [wm(z = 0)−wm(z =

h)]dxdy ≈ −(∂wm/∂z)hdxdy). We therefore prescribe the source-sink field (due to vertical

injection/ejection) as S = −∂wm/∂z, which, using (29), can be restated in terms of the poloidal

field as

∇2ξ = S. (30)

Although the desired goal in studies like these is plate-like toroidal motion, the best measure

of such motion is concentrated bands of vertical vorticity that, if they were to represent a true

discontinuous strike-slip fault, would by line singularities. Vertical vorticity is defined as Ω =

ẑ ·∇×vm and is in effect a measure of the angular velocity of a point spinning about a vertical
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axis, and thus represents rate of strike-slip shear. In terms of toroidal flow, it is given by

∇2
hψ = −Ω (31)

Void-generating damage is associated with dilation and compaction represented by θ; the

dilation rate is G = ∇ · vm, which with (28) yields

∇2
hθ = G (32)

and with (24) also leads to
Dmφ

Dt
= (1 − φ)G. (33)

Therefore, we find in the end that our three velocity potentials ξ, ψ and θ are related to the the

imposed source-sink field S, the vertical vorticity (or strike-slip-shear rate) Ω, and the dilation

rate G, respectively, through three simple 2D Poisson’s equations (30), (31) and (32). Although

these three relations provide equations for ξ, ψ and θ, we will need equations for Ω and G, since

S is already given. For these we will use our momentum and damage equations.

The momentum equation (25) is re-written as

0 = −∇Π + ∇ · [(1 − φ)τ m] − (1 − φ)ρmgẑ (34)

where Π = (1 − φ)Pm − σα. We can write a general expression for Π that takes into account

both void-generating and fineness-generating damage, i.e., using (26) and (27) along with the

source-sink formulation, we obtain

Π = − σA
(
η + (1 − φ)

dη

dφ

)
− B(1 − φ)2G

+ f ∗
(1 − φ)3G

γ + (1 − φ)2G2
µ0

(A0

A

)m

Φ (35)

and
DmA
Dt

= fA
1 − φ

ση
µ0

(A0

A

)m

Φ (36)
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where

Φ =∇vm :

(
∇vm + [∇vm]t − 2

3
∇ · vmI

)

=(∆∗ψ)2 + 4

(
∂2ψ

∂x∂y

)2

+ ∇∇(θ + ξ) : ∇∇(θ + ξ)

+ 2S2 − 2

3
G2 + 4

(
∂2ψ

∂x∂y
∆∗(θ + ξ) − ∆∗ψ

∂2(θ + ξ)

∂x∂y

)
(37)

and we define the differential operator

∆∗ =
∂2

∂x2
− ∂2

∂y2
. (38)

In the case of void generation, fA = 0 and thus A remains constant at A = A0, leading

to µm = µ0. In the case of fineness generation, f ∗ = 0 and A is variable and time dependent,

although since the forcing of growth in A is independent of z we assume that A is z-independent

as well.

We can extract equations for Ω and G by combining (35) with (34) and manipulating the

result. However, it is useful to first nondimensionalize the governing equations.

3.2. Dimensionless governing equations

We use the maximum of the source-sink field Smax for a rate scale (inverse of time), the

characteristic separation of the source and sink L as our macroscopic length scale, and the ref-

erence viscosity µ0 to help define a stress scale µ0Smax; we also define A0 as our fineness scale

(thus we keep our macroscopic length scale L distinct from the microscopic one A−1
0 ). We thus

nondimensionalize according to (x, y, z) = L(x′, y′, z′), ∇ = L−1
∇

′, A = A0A′ and

(S,G,Ω,
√

Φ,vm, ξ, θ, ψ,Π) =

Smax(S
′, G′,Ω′,

√
Φ′,Lv′

m, L
2ξ′, L2θ′, L2ψ′, µ0Π

′) (39)

where primed quantities are dimensionless.
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Substituting these into our governing equations, but subsequently dropping the primes, we

first arrive at our three Poisson’s equations (which remain unchanged, but are repeated here for

the sake of completeness)

∇2ξ = S,∇2ψ = −Ω,∇2θ = G (40)

Combining (34) and (35), substituting our nondimensionalization and taking ẑ · ∇× of the

resulting equation, eventually leads to a nonlinear Poisson’s equation for Ω:

µ̄∇2Ω = −2∇µ̄ · ∇Ω − ẑ · ∇µ̄× ∇ (S + 2G)

−∆∗µ̄

(
2
∂2(θ + ξ)

∂x∂y
− ∆∗ψ

)
+ 2

∂2µ̄

∂x∂y

(
∆∗(θ + ξ) + 2

∂2ψ

∂x∂y

)
(41)

Likewise, taking ∇· of the combination of (34) and (35) with nondimensional variables leads

to a nonlinear Poisson’s equation for G:

(4

3
µ̄+

1 − φ

φ

)
∇2G = −σ̂∇2(λA) + f ∗∇2

(
(1 − φ)2G

γ̂ + (1 − φ)2G2
µ̄Φ

)

+2ẑ · ∇µ̄× ∇Ω − 2∇µ̄ · ∇S + 2

(
1

φ2
∇φ− 4

3
∇µ̄

)
· ∇G

−
(

2
∇φ · ∇φ

φ3
− ∇2φ

φ2
− 2

3
∇2µ̄

)
G

−2

(
∆∗µ̄

∂2ψ

∂x∂y
− ∂2µ̄

∂x∂y
∆∗ψ + ∇∇µ̄ : ∇∇(θ + ξ)

)
(42)

In (41) and (42) we have defined

µ̄ =
1 − φ

Am
(43)

as the effective dimensionless viscosity, and

λ = η + (1 − φ)
dη

dφ
(44)

σ̂ =
σA0

µ0Smax
(45)

γ̂ =
γ

S2
max

(46)

We have also used (23) to eliminate B, and we note that the form of Φ does not change from

that given in (37).
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Finally, the dimensionless evolution equations for φ and A follow from (24) and (27), yielding

∂φ

∂t
+ vm · ∇φ = (1 − φ)G (47)

∂A
∂t

+ vm · ∇A =
fA

σ̂η(φ)
µ̄Φ (48)

where, again, for void-generating damage fA = 0 and A = 1 and thus µ̄ = 1 − φ; for fineness-

generating damage f ∗ = 0 and A is variable.

Overall, our final governing equations are (40), (41), (42), (47), and (48), all driven by an

imposed source-sink field S, whose structure is specified in the numerical method section (§3.4).

The velocity vector appears explicity only in (47) and (48) is given by (28) (which remains

unchanged by nondimensionalization).

3.3. Simple analysis of source-sink equations

Fully plate-like behavior involves strongly nonlinear solutions to our governing equations

and thus numerical analysis. However, one can gain insight into the dominant driving terms for

initiating plate-like (or non-plate-like) flows with a simple perturbation analysis. We consider a

uniform and static background state (constant φ and A) driven by a 0th order source sink field

S; the resulting flow fields related to dilation and vorticity, G and Ω, respectively are 1st order

perturbations, as are fluctuations in φ, A, and thus µ̄ as well. With the further simplification that

µ̄ is slowly varying (such that its second-order derivatives are much smaller than its first order

derivatives) and that φ� 1, we arrive at the first-order equations

µ̄∇2Ω ∼ −ẑ · [∇µ̄× ∇S] (49)

∇2G ∼ −2φ∇µ̄ · ∇S (50)

Equation (49) immediately implies the excitation of plate-like vorticity requires gradients in

viscosity to be significantly out of phase with (i.e., orthogonal to) gradients in the source-sink
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field. However, gradients in µ̄ that are in phase with gradients in S can drive dilation which

affects µ̄ (through changes in porosity φ), which potentially increases the magnitude of ∇µ̄,

leading to more dilation, and thus a potential positive feedback even in the absence of damage.

However, the feedback will only tend to generate porosity and weak zones over the source and

sink, but not along bands connecting the ends of the source and sink (which are needed to make a

contiguous weak plate boundary). Excitation of vorticity does not have a similar direct feedback

through the first order effects in (49) because a ∇µ̄ that is out of phase with ∇S can generate

vorticity but the vorticity has no way in turn of affecting µ̄ and ∇µ̄ through first order effects;

the vorticity can only influence µ̄ through second-order damage terms (i.e., deformational work

Φ) which drive changes in φ and/or A. Therefore, while dilation is enhanced readily even

without damage, vorticity and toroidal motion can only grow through a positive feedback if the

appropriate damage mechanisms are present. Moreover, as is shown below, the excitation of

dilation is intrinsically adverse to generation of plate-like toroidal motion. Therefore, not only

must one must attain conditions for exciting toroidal motion, but ideally these same conditions

simultaneously suppress dilational flow.

3.4. Numerical method

The governing equations constitute a set of two-dimensional nonlinear partial differential

equations and they are solved numerically using a basic spectral transform method employing

fast Fourier transforms, as described in Bercovici [1993]. For nonlinear equations, such as (41)

and (42), one writes the equations so that all nonlinear terms constitute a forcing function in

an apparently linear Poisson’s equation. Thus for example, one would replace the left side

of (41) with µ̄max∇2Ω (where µ̄max = max(µ̄)) and add the complementary nonlinear term

(µ̄max − µ̄)∇2Ω to the right side; this leads to a linear Laplacian operation on the left, driven

by a forcing function on the right that is composed of nonlinear terms. This forcing function is
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easily evaluated on a physical grid and Fourier transformed to spectral or wave-number space,

although care must be taken to dealias the nonlinear forcing function after it is transformed [see

Canuto et al., 1988]. The Fourier transform of the Laplacian operator on the left side becomes

an algebraic expression in spectral space (in terms of wave-numbers squared), and thus the

spectral (tranformed) version of Ω is easily solved.

Numerical solutions of the governing equations are accomplished iteratively. For a given

A and/or φ (depending on whether we are solving for void-generating or fineness-generating

damage), the solutions for ψ, θ,Ω and G are found by iterating through (40), (41), and (42) until

convergence (the mean-square misfit between successive iterations for solutions for Ω and G,

normalized by the L2-norm of Ω and G, respectively, reaches 10−6 or less). Obviously, ξ needs

to be solved only once since S is given. Provided these solutions, A and/or φ are then updated

by one time step using (47) and (48), and the next cycle begins again. The time-step is tightly

constrained by the CFL condition (usually to 1% of the CFL advective time step).

The driving source-sink field S is prescribed as it is in Bercovici [1993] and Bercovici [1998].

In essence, it is taken from the horizontal divergence of an arbitrary plate-like velocity field

defined by the translational motion of a square plate that is 2L on its side; i.e.,

v̄ = V x̂′F (x′)F (y′) (51)

where

F (x) =
1

2

[
tanh

(
x+ L

δ

)
− tanh

(
x− L

δ

)]
(52)

δ is the width of the plate margin; x′ and y′ are coordinates in a frame of reference with unit

vectors parallel (x̂′) or perpendicular (ŷ′) to plate motion; if plate motion is at an angle ϑ from

the x axis, then obviously x′ = x cos ϑ + y sin ϑ and y′ = −x sin ϑ + y cosϑ. The source

sink field is defined as S = ∇ · v̄, and since this a scalar invariant it simply becomes S =
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V dF (x′)
dx′ F (y′), where

dF (x)

dx
=

1

2δ

[
sech2

(
x + L

δ

)
− sech2

(
x− L

δ

)]
(53)

In dimensionless form −1 ≤ S ≤ 1, and thus the constant V is determined so that max(S) = 1.

Lastly we can use (51) to measure the extent to which a plate-like vorticity field is generated.

Ideally, our nonlinear solutions will at least reproduce the vorticity intrinsic to the given plate

flow prescribed by (51); this vorticity is simply

Ω̄ = ẑ · ∇ × v̄ = −V F (x′)
dF (y′)

dy′
(54)

which is identical to S but rotated clockwise 90o. Whether the generated vorticity field Ω

reproduces (or is even more plate-like) than Ω̄ can be measured by the correlation function

CΩ =

∑
k
ΩkΩ̄∗

k√
(
∑

k
|Ωk|2)

(∑
k
|Ω̄k|2

) (55)

where Ωk and Ω̄k are the 2D Fourier transforms of Ω and Ω̄, respectively. This function is in

fact written to only measure the correlation in spatial stucture between Ω and Ω̄ and removes

amplitude effects.

4. Numerical Source-Sink Flow Results

We examine below several numerical solutions to our system of equations. We will not do a

complete exploration of parameter space, since a handfull of solutions will suffice to illustrate

the most important results. We note that with our choice of scaling, the dimensionless surface

tension parameter σ̂ is in fact negligible, which is to be expected given that σ ≈ 1J/m2, A0 ≤

106m−1 (given by inverse grainsize), Smax ≥ 1 × 10−14s−1 (using a slow plate velocity and a

100km-thick plate boundary), and µ ≈ 1025Pa s is a typical lithospheric viscosity [Beaumont,

1976; Watts et al., 1982]. Therefore, although terms in the momentum equations proportional to
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σ̂ govern any self-healing (see Appendix A), the effect is very slow and small over the timescales

of the calculations.

4.1. Void-generating damage

All numerical solutions are started with the same weak random initial conditions depicted in

Figure 1a. (In fact the figure shows a solution after one small time step which is why there

is some signature of S in the structure of Ω and G.) Since the intial Ω and G are very small

the velocity field is essentially dipolar as it is dominated by the source-sink field S. Causing

the dipolar velocity field to assume a more solid-body translational velocity field is one of the

primary goals of this study.

Given a small value of σ̂ and finite partitioning of deformational work toward void creation

(f ∗ > 0, fA = 0), we find that the most important controlling free parameter is that which

controls partitioning variability, γ̂ (see equation (46)). For large γ̂, i.e., O(1) or larger, the full

energy partitioning is difficult to obtain (i.e., fφ cannot readily reach the maximum value f ∗).

The system undergoes very little damage or evolution other than advection of porosity by the

dipolar velocity field; both the dilation and vorticity fields G and Ω remain weak, and the low to

moderate (albeit weakly oscillating) vorticity correlation CΩ indicates poor plate-like vorticity

(Figure 2). Overall, the source-sink field S continues to dominate the velocity field, leaving it

dipolar, even after significant time integration (Fig. 1b).

For γ̂ � 1, the full energy partitioning toward damage is allowed and the system evolves

rapidly (see Figs. 1 and 2). However, most of the damage and associated dilation concentrates

on the driving source-sink field. The effect of this dilation on the velocity field is to reinforce

the source flow, and diminish the sink flow. (Note that mass conservation is not violated; i.e.,

no mass-flux is added to or subtracted from the source-sink field since the dilational flow is

driven by expansion of voids which have no mass.) This causes the horizontal velocity field
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to assume an almost monopolar flow. Monopolar flow is highly adverse to the generation of

toroidal motion because of its high degree of axisymmetry; i.e., an axisymmetric flow v(r)r̂,

where r is cylindrical radius from a vertical axis, has zero vertical vorticity ẑ ·∇×(v(r)r̂). This

is well demonstrated both by the low amplitude of the vorticity field Ω relative to dilation G, as

well as by the very poor vorticity correlation CΩ (Fig 2). In all cases involving void generation,

dilational flow is generated by the damage mechanism, but does not reinforce vertical vorticity

and thus the toroidal motion always remains relatively small (Figure 2).

4.2. Fineness-generating damage

We next consider cases in which all deformational work goes to fineness-generating interface

growth, i.e., fφ = 0 and fA > 0. Although σ̂ is assumed small (and terms proportional to

it negligible in the momentum equation), we do not assume that fA/σ̂ is excessively large,

although we do explore its effect over variations of several orders of magnitude. Indeed, in these

cases, the most significant controlling parameters appear to be both the the viscosity exponent

m from (22), and the ratio fA/σ̂ from (48).

In the previous cases of void-generating damage, deformational work directly fed dilational

flow but not toroidal motion; thus the dilation rate would tend to be dominant while toroidal

motion would only be excited secondarily. However, in the fineness-generating cases, damage

does not directly force either dilation or vorticity and instead only influences them through the

viscosity field (i.e., via the A-dependence of viscosity), and in particular by the coupling of the

driving poloidal flow with viscosity gradients. Thus, vorticity Ω is allowed to develop on more

or less equal footing with the dilation rate.

4.2.1. Influence of the fineness-dependence of viscosity
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We first consider varying m, the A-dependence viscosity exponent, while keeping fA/σ̂ = 1

(a very conservative value). For m = 1, plate-like motion is significantly improved over the

void-generating cases (Fig. 3) but is not very well developed. The fineness variable A grows

several-fold with time (Fig. 4) but because of the weak viscosity dependence on A, it does

not register a large effect on the vorticity and dilation rate. Indeed, while both the vorticity

and dilation rate increase in magnitude with time, they remain small relative to the source-sink

(poloidal) flow during the duration of the calculation.

For m considerably greater than unity the fluid motion becomes increasingly plate-like. We

depict two other cases showing the effect of increasing m, i.e., for m = 7 and m = 21 (Figs 3,

4). For sufficiently large m, the vorticity field grows in magnitude and becomes increasingly or-

ganized into strike-slip-type margins bounding a plate; this effect is apparent both qualitatively

(Figs. 3b and c) and quantitatively in terms of the correlation function CΩ (Fig. 4). Moreover,

the dilation rate actually decreases with time for some period (Fig. 4); the extent and duration

to which the dilation rate is suppressed is clearly dependent on the size of m (see §4.2.3). For

the case of m = 21 the plate-like velocity and vorticity fields along with suppression of dilation

is highly pronounced.

4.2.2. Influence of partitioning fA

If our viscosity law for µm is characteristic of diffusion creep then m should be between 2

and 3, while values of 7 or 21 would be unrealistic. It is plausible that dependence on A would

be more severe than stipulated in diffusion creep if the deformation mechanism involved grain

sliding as well. However, solutions for values of m = 2-3 do not differ significantly from

the weakly- or even non-plate-like solutions of m = 1 as long as the ratio fA/σ̂ is small or

moderate. Nevertheless, as stated above, the value of fA/σ̂ = 1 is very conservative since σ̂

is considered extremely small. If we allow fA to be 10 or 100 times larger than σ̂ (which still
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permits fA ≤ 1 if not � 1) we obtain a very profound effect, even for small m, that is perhaps

even more promising in terms of plate-generation than imposing high values of m. Figure 5

depicts cases with m = 3 and fA/σ̂ = 1, 10 and 100; it is quite clear that as the ratio fA/σ̂

increase the vorticity field focuses into very plate-like strike-slip pseudo-faults, the velocity

field is very nearly solid-body translation, and the viscosity field, which will essentially be the

reverse image of the A field, has contiguous weak zones around the plate margins.

The temporal evolution of the solutions with different fA/σ̂ (Fig 6) shows that the magnitude

of A increases more rapidly with larger fA/σ̂, as expected by (48); indeed a simple scaling

shows that the for fixed strain-rates, the magnitude of A goes as
(

fA
σ̂
t
) 1

m+1 . Vorticity likewise

reaches large magnitudes, potentially larger than both the magnitudes of S as well as G (i.e., for

the fA/σ̂ = 10 and 100 cases). The vorticity correlation function CΩ also reaches respectably

high values near unity, although it peaks at these values and then slowly decreases with time.

Finally, the time span over which dilation G is suppressed increases dramatically with larger

fA/σ̂.

4.2.3. Suppression of dilation

As discusses already, suppression of dilation in the poloid-toroidal coupling problem with

two-phase damage is crucial, since otherwise dilation merely augments the poloidal field at the

expense of the toroidal one. However, since dilation G is directly forced by the coupling of

viscosity gradients with gradients in the driving source-sink field S – see (42) or (50) in §3.3

– it will eventually grow, thus its suppression is only temporary. However, the time period of

such suppression is variable, and depends significantly on bothm and fA/σ̂ such that the higher

the value of either, the longer the suppression period. We can measure the dilation-suppression
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time tsupp by defining it as the period of time that ∂Gmax

∂t
< 0, i.e.,

tsupp =

∫ tmax

0

1

2

[
1 − sign

(
∂Gmax

∂t

)]
dt (56)

which can be numerically integrated for any of our solutions. Figure 7 shows tsupp versus m for

fA/σ̂ = 1, and versus fA/σ̂ for m = 3. The suppression of dilation is particularly profound and

long-lasting as fA/σ̂ increases to large values, even for moderate values of m. Of course, as m

also increases the suppression is more significant; but it appears the effect of using large enough

fA/σ̂ is sufficient to suppress dilation almost entirely or at least for long periods of time.

4.2.4. Some reflections on interface curvature

As discussed earlier in this paper (see §2.2), the association of A with voidsize or grainsize

depends on the interface curvature ∂α/∂φ; if the curvature is greater than zero A represents

voidsize, while if less than zero it is grainsize. In the above calculations we considered relatively

simple cases in which a = b = 1/2 (see (7)) for both void and fineness generating damage.

However, with these values of a and b, the curvature changes sign at relatively high porosity

(i.e., at φ = a/(a + b) = 1/2), even though our porosity field never approaches such values.

Thus in these cases A really represents voidsize. It is important therefore to consider cases in

which curvature switches sign at low porosity, as would be expected for silicates and granular

media. We therefore examined cases for which a = 0.05 and b = 1−a, in which case curvature

changes sign at φ = 0.05, which is also equivalent to our initial background porosity field. The

effect of this change in a and b is, however, not extremely significant. In essence, it simply

changes the value of η in (48). For a = b = 1/2, the value of η at the background porosity value

of φ = 0.05 is relatively small (η(0.05) ≈ 0.2), thus leading to a larger damage rate. For a =

0.05, b = 1− a, the value of η at the background porosity is considerably larger (approximately

0.8), thus reducing the damage rate. The extent of plate generation is thus slightly weaker for
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the a = 0.05 cases, although the solutions differ little from those shown already. However,

even this mitigating effect can be offset easily by increasing fA/σ̂ accordingly (i.e., our choices

of fA/σ̂ are conservative, given that that σ̂ � 1, and thus there is nothing implausible about

increasing this ratio by a factor of 4 or so).

5. Discussion and Conclusion

The overall goal of our two-phase damage studies is to develop a first-principles theory for

shear localization as it might be applied to mantle-lithosphere dynamics, in particular to the

generation of plate tectonics from mantle convection. Our previous studies of two-phase dam-

age [Bercovici et al., 2001a, b; Ricard et al., 2001; Bercovici and Ricard, 2003; Ricard and

Bercovici, 2003] demonstrated a variety of important shear-localizing and failure-like phenom-

ena that involve damage through void generation. However, these findings were most applicable

to situations where an imposed shear or other deformation gets further enhanced by dilational

damage. In the plate-generation case, whereby a toroidal flow field must be generated from an

essentially orthogonal convective poloidal field, the presence of dilation associated with void

generation acts adversely to generating plate-like behavior. However, allowing for damage to

affect grain/void size by increasing the overall fineness A not only leads to a very profound

organization of vorticity into plate-like motion, but it also suppresses dilation and its adverse

effects.

There are, however, a few model simplifications and assumptions that warrant further discus-

sion, at least in terms of the conclusions summarized above. First, it is likely that the effective

viscosity of a silicate-type mixture or granular medium would be more sensitive to porosity

than the 1 − φ dependence in (21) implies . For example, the matrix of partial melts will tend

to disaggregate at low porosities, which will involve a sharp drop in effective viscosity. In
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the case of void-generating damage (fφ > 0 and fA = 0), a very low viscosity in damaged

and weakened zones of moderate porosity could conceivably suppress dilation by limiting (or

self-regulating) the amount of deformational work going into void generation; meanwhile, the

resulting large viscosity variations and gradients resulting from precipitous drops in viscosity

over small changes in porosity might enhance vorticity generation. These combined effects

could possibly then allow void-generating damage to better generate plate-like motion. The

effect of using a more strongly porosity-dependent effective viscosity was tested for the pure

void-generating damage case (fA = 0) by replacing the 1 − φ dependence in (21) (or, to be

more precise, in the momentum-equation terms involving τ m) with a function of porosity that

undergoes a sharp drop at an arbitrary value of porosity; i.e., instead of in essence using the

effective viscosity µeff = µm(1 − φ), we employed

µeff = µm
1

2

[
1 − tanh

(
φ− φ∗

δφφ(1 − φ)

)]
(57)

where φ∗ is the transitional porosity (i.e., at which the sharp drop in viscosity occurs) and δφ

controls the sharpness of the viscosity drop; the argument of the hyperbolic tangent goes as

φ−1(1 − φ)−1 to insure that µeff goes to µm as φ → 0, and to 0 as φ → 1. To maximize the

effect we are seeking (i.e., to obtain larger viscosity contrast with which to enhance vorticity

generation, while still allowing for low viscosity and self-regulation of dilation) we chose the

transitional porosity φ∗ to coincide with our chosen background porosity of φ = 0.05. The

results of these calculations (for various δφ) do indeed show some suppression of dilation rate

and enhancement of vorticity. However, the vorticity always remains considerably less than

the dilation rate, leading to a velocity field that is still dominantly monopolar and thus highly

unplate-like.
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Second, we argued in §2.5 that the effective bulk viscosity B is, unlike shear viscosity, in-

dependent of grain/voidsize A−1. For the sake of completeness, it is therefore appropriate to

consider the alternative case when B depends on A in the same way as shear viscosity (i.e.,

B ∼ µm instead of B ∼ µ0). This adjustment was adopted for the fineness-generating damage

case (fA > 0) and explored for a variety of parameters similar to those shown above. The effect

of allowing B to depend on A is that it lowers the bulk viscosity as A grows; since B primiarly

acts to retard dilational motion, the end result is that dilation is not as well suppressed as when

B is independent of A. The resulting fluid motion is more plate-like than the void-generating

cases, but significantly worse than cases with A-independent B. This illustrates the importance

of suppressing dilational motion for generating plates.

Although void-generating, dilational damage is prevalent in low-pressure crustal rocks [e.g.,

Menéndez et al., 1996; Wong et al., 1997; Zhu and Wong, 1997; Zhu et al., 1997] it is proba-

bly much less significant at high confining pressures of mid and lower lithospheric depths (of

order 100km). Thus, the failure of void-generating damage to generate plates is in keeping

with the notion that void generation is probably not the dominant mechanism for deep litho-

spheric deformation. Non-void and non-dilational damage, by, for example, grainsize reduction

is therefore an attractive mechanism. However, grainsize reduction through dynamic recrys-

tallization, where the driving mechanism is kinematic and a linear function of strain [Karato

et al., 1980; Karato, 1989, 1996; Bercovici and Karato, 2003], is both a complicated mecha-

nism (e.g., it resides on the boundary between diffusion and dislocation creep) and the theories

that have been developed for it do not readily permit the sort of shear localization observed in

plate generation and in mylonites [Bresser et al., 2001; Montési and Zuber, 2002], although the

possibilities for this mechanism have by no means been exhausted [see Bercovici and Karato,

2003]. The grainsize reduction mechanism explored in this paper is perhaps more straightfor-
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ward (it basically involves pulverizing the matrix through deformational work), and our simple

calculations demonstrate exceptional potential for plate generation. Plate-like behavior appears

to improve as the dependence of viscosity on A, parametrized by the power m, increases; for

very small damage partition values fA (i.e., for fA/σ̂ ∼ O(1), where we have assumed σ̂ � 1)

one must approach values of m that are beyond those that are realistic for diffusion creep (for

which typically m = 2-3). The higher values of m can be interpretted to represent the effects

of introducing more slip planes and grain sliding rather than diffusion creep; however, these

are a qualitative arguments only and require more rigorous exploration. Nevertheless, with an

increase in fA by an order of magnitude or more (which is still plausible since fA could still

be very small if it is 10 or 100 times larger than σ̂), even values of m typical of diffusion creep

(e.g., m = 3) not only yield extremely plate-like behavior (in the velocity, vorticity and viscos-

ity fields) but also extensive periods of dilation suppression which are also necessary to sustain

plate generation. Indeed, in these model calculations the cases with larger fA, even when m is

relatively small, are the most successful at plate generation.

Appendix A: Fineness and healing

In the case with fineness generating damage, the evolution equation for A does not appear

to have an explicit healing term. Such healing would be manifested as reduction in interfacial

surface area as the system tends toward a minimum surface energy configuration. In rocks

such healing tends to occur through grain growth wherein large grains grow at the expense of

smaller ones; e.g., surface tension causes interior pressures of small grains to be large relative

to large grains, and given any effective grain-grain contact (either physical, or chemical through

surrounding solvents as in Ostewaeld ripening), such pressure differences will cause the small

grain to empty its contents into the larger one Karato [1989]; Axe and Yamada [1986].

D R A F T May 18, 2004, 3:48pm D R A F T



BERCOVICI & RICARD: TWO-PHASE DAMAGE AND PLATE GENERATION X - 33

In simple treatments of grain growth, healing is typically represented as a decay term that

goes as inverse of average grainsize to some power [see Karato, 1996; Bercovici and Karato,

2003], which accounts for grain growth being faster the smaller the grainsize. However, grain

growth requires some initial heterogeneity in grainsizes (i.e., a grainsize distribution of finite

width) to proceed, otherwise all grains would be of the same size and none could grow at the

expense of another [Axe and Yamada, 1986]. If grainsize is parameterized in a mixture scheme

by a quantity such as A−1, then this actually represents average grainsize in a control volume

and thus all information about microscale heterogeneity is lost (i.e., A−1 is only the mean of the

distribution, and has no information about the width, or standard deviation, of the distribution).

Thus the heterogeneity required to initiate grain growth must either be treated by specifying

yet another quantity to represent the grainsize distribution width (i.e., standard deviation), or by

only treating the larger-scale heterogeneity as represented by gradients in A−1.

In this paper we will refrain from introducing even more complexity incurred by developing

equations for the standard deviation in grainsize (or fineness ) distribution. However, we will

show with simple analysis how the the basic evolution equation for A, i.e., (27) implicitly

includes a healing term that depends on grainsize or fineness heterogeneity, which in our case is

represented by ∇A. In particular, we will examine the nature of flow driven only by gradients

in A, and see how that influences the evolution equation for A. For the sake of focussing on

the essential physics, we assume there is no damage (i.e., fA = fφ = 0); other simplifying

assumptions will be stated as needed.

First, to consider the nature and direction of flow driven by gradients in A, we examine the

three-dimensional equations of motion. For simplicity, we assume that porosity φ is both spa-

tially and temporally constant (and thus ∇ · vm = 0 as well, by (24)), and that deviations in A

from the background value of A0 are small enough that viscosity µm remains essentially con-
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stant (i.e., nonlinear products of ∇µm and ∇vm are negligible in the force-balance equation).

With these assumptions, the combination of (25) and (26) leads to

0 = σλ∇A + µ0(1 − φ)∇2vm (A1)

where λ = η + (1 − φ) dη
dφ

. Let us define the unit vectors p̂ and n̂i (i = 1 or 2) which are

parallel and perpendicular to ∇A, respectively (e.g., p̂ = ∇A/|∇A|); let us also assume that

the direction of ∇A is slowly varying such that these unit vectors remain spatially constant and

thus comprise a cartesian system. In this case (A1) can be decomposed into parts parallel and

perpendicular to ∇A:

0 = σλ|∇A| + µ0(1 − φ)∇2vpand0 = µ0(1 − φ)∇2vni
(A2)

where vp = p̂ ·vm and vni
= n̂i ·vm (i.e., in total, vm = vpp̂+vn1

n̂1 +vn2
n̂2). With no driving

boundary conditions for the vni
, (A2) implies they would both be zero. Since our assumption

of constant φ requires ∇ · vm = 0, then we find that ∂vp

∂xp
= 0 where xp = p̂ · x; hence (A2)

reduces to

0 = σλ|∇A| + µ0(1 − φ)∇2
nvp (A3)

where ∇2
n = ∇2− ∂2

∂xp
2 . If vp is maximum where it is being most strongly forced by ∇A then it

will also diminish with distance from the location of peak forcing, in which case the last term on

the right side of (A3) must have the opposite sign from vp (i.e., curvature for a function around

its maximum is necessarily negative). If we assume the length scale over which changes in vp

occur is R, then a scaling analysis allows us to write ∇2
nvp ∼ −vp/R

2 which suggests that

vp ∼ R2σλ

µ0(1 − φ)
|∇A| (A4)

and thus vp > 0, i.e., vm is in the same direction as ∇A. This effect can be understood by

recalling that the surface tension is a line force acting outward on the edges of a segment of
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interface; for a small volume of mixture, this tension acts on the edges of interface that are cut

by the surface of the control volume [Bercovici et al., 2001a]. As fineness increases (i.e., the

larger the value of A) there is more interface edge exposed at the volume surface, leading to

larger net tension on that surface; thus the net force points from the control volume’s surfaces

with small A to ones with large A, or along ∇A.

Without damage, the evolution equation for A, i.e., (27), becomes

∂A
∂t

= −vm · ∇A = −vpp̂ · ∇A = −vp|∇A| (A5)

or using (A4)
∂A
∂t

∼ − R2σλ

µ0(1 − φ)
|∇A|2 (A6)

These relations demonstrate that material motion associated with gradients in A leads to a heal-

ing (grainsize growth, or matrix coarsening and loss of fineness) that is driven by surface tension,

retarded by viscosity, and requires heterogeneity in fineness via gradients in A.

Equation (A6) has other interesting implications; in particuar, since A only decays where

∇A 6= 0, then it will remain constant at extrema in A (assuming no damage). This means that

the healing effect will in fact sharpen peaks in A, hence actually facilitating shear localization

while healing the host matrix. This concept is quantitatively demonstrated by considering a

one-dimensional analysis. We assume that all variables only depend on x and t, and flow is

only in the x direction (i.e., A = A(x, t) and vm = u(x, t)x̂). We assume that gradients in

A are caused by a single perturbation to an infinitely long background of constant value A0,

i.e., A = A0 + A1(x, t), and that A1 → 0 as x → ±∞. Given our 1-D analysis, we can

relax some of our other assumptions and state that while φ is spatially constant it need not be

temporally constant; moreover, we can retain for now the dependence of µm on A (although this

assumption is not as important in a 1-D analysis, as shown below). In this case, the combination
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of (25) and (26) in 1-D leads to

0 = σλ
∂A
∂x

+ (1 − φ)
∂

∂x

[(
µ0

φ
+

4

3
µm

)
∂u

∂x

]
(A7)

where we have used (23) with K = 1 [Bercovici et al., 2001a]. Integration over x leads to

∂u

∂x
=

σλ(A0 −A)

µ0(1 − φ)
[

1
φ

+ 4
3

(
A0

A

)m] (A8)

where we use (22) and have employed the boundary condition that ∂u
∂x

→ 0 as A → A0 (i.e., as

x → ±∞). If we make the plausible assumption that φ� 1 but that A is nowhere � A0, then

we obtain
∂u

∂x
=
σλφ(A0 −A)

µ0
(A9)

We now state that the perturbation in A is bell-shaped in x, but since decay only occurs where

∇A 6= 0 that the amplitude of the perturbation remains constant while its width changes with

time; i.e.,

A = A0 + A∗sech2

(
x

δ(t)

)
(A10)

where A∗ is a constant. Substituting (A10) into (A9) and integrating, we arrive at

u = −σλφA
∗δ(t)

µ0

tanh

(
x

δ(t)

)
(A11)

where we assume u = 0 at x = 0 (i.e., at the peak in A). The evolution equation for A without

damage is, in 1-D, ∂A
∂t

= −u∂A
∂x

, which with (A10)-(A11) becomes

1

δ

dδ

dt
= −σλφA

∗

µ0

tanh(x/δ)

x/δ
(A12)

In the region of interest around the perturbation, i.e., −δ < x < δ we can assume tanh(x/δ)
x/δ

∼

O(1) and thus

δ ≈ δ0e
−

σλφA
∗

µ0
t (A13)

Hence the pertubation in A becomes sharper while the host matrix coarsens and heals. Ob-

viously microscale heterogeneity in grainsize (i.e., a nonuniform grainsize distribution) would
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induce further healing and cause the peak in A (as well as the background value A0) to decay

away as well; however, as stated above, such variations over grain scales cannot be rigorously

accounted for by only considering the average fineness or grainsize in a control volume.
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Figure 1. The source-sink field S, the dilation rate G, porosity φ, vertical vorticity Ω, and

horizontal matrix velocity vh = umx̂+vmŷ for the void-generating damage case (fφ > 0, fA =

0). Frame a shows the initial condition (t ≈ 0). Lower frames show later times (dimensionless

time indicated in the velocity frame) for cases with (b) relatively large γ̂ = 1 (see (20) and (46))

and (c) relatively small γ̂ = 10−2. Porosity is initiated with a random perturbation of amplitude

0.001 on top of a constant background of 0.05. Other parameters are a = b = 0.5, f ∗ = 0.5 and

σ̂ ≈ 0. Minimum and maximum values of each scalar field, and the maximum velocity vector

length are indicated in the figure.

Figure 2. Maximum absolute values of porosity φ, vorticity Ω (solid lines of middle frames)

and vorticity correlation function CΩ (dashed lines in middle frames), and maximum absolute

dilation rate G versus time for the case shown in Fig. 1b and c.
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Figure 3. The source-sink field S, the dilation rate G, porosity φ, vertical vorticity Ω, the hori-

zontal matrix velocity vh, and the inverse grain/void size A for the fineness-generating damage

case (fφ = 0, fA > 0) with m = 1, 7 and 21 (see (22)), shown in frames a,b and c respectively.

The dimensionless time is indicated in the velocity frame. Porosity φ is initiated with a random

perturbation of amplitude 0.001 on top of a constant background of 0.05. Dimensionless inverse

grain/void size A is initiated with a random perturbation of amplitude 0.01 on top of a constant

background of 1. Other parameters are a = b = 0.5, and while σ̂ =≈ 0 in the momentum

equations we prescribe fA/σ̂ = 1 in (48).

Figure 4. Maximum absolute values of porosity φ, fineness (or inverse grain/void size) A,

vorticity Ω (solid lines), vorticity correlation function CΩ (dashed lines) and maximum dilation

rate G versus time for the case shown in in Fig. 3.

Figure 5. Same as Fig. 3 but with m = 3 and and three values of fA/σ̂ = 1, 10, 100 (frames a,

b, and c, respectively).

Figure 6. Same as Fig. 4 but for cases shown in Fig. 5.

Figure 7. Time interval for suppression of dilation G, as given by (56), versus m for fA/σ̂ = 1

(a), and versus fA/σ̂ for m = 3 (b).
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i.c.
S  [min/max= -1/1] G  [min/max= -6.82e-06/1.12e-05]

Ω   [min/max=-9.27e-05/0.000102] vh  [max vec.length=0.0511]

φ  [min/max=0.04922,0.051]

time = 0

a

γ̂ = 1
S  [min/max= -1/1] G  [min/max= -2.93e-05/1.37e-05]

Ω   [min/max=-0.000165/8.43e-05] vh  [max vec.length=0.0511]

φ  [min/max=0.04921,0.05099]

time = 12.2

b

γ̂ = 10−2
S  [min/max= -1/1] G  [min/max= -0.795/7.92]

Ω   [min/max=-0.132/0.669] vh  [max vec.length=0.607]

φ  [min/max=0.03143,0.1962]

time = 0.126

c

Figure 1. The source-sink field S, the dilation rate G, porosity φ, vertical vorticity Ω, and horizontal matrix velocity vh = umx̂ + vmŷ for the
void-generating damage case (fφ > 0, fA = 0). Frame a shows the initial condition (t ≈ 0). Lower frames show later times (dimensionless time indicated in
the velocity frame) for cases with (b) relatively large γ̂ = 1 (see (20) and (46)) and (c) relatively small γ̂ = 10

−2 . Porosity is initiated with a random perturbation
of amplitude 0.001 on top of a constant background of 0.05. Other parameters are a = b = 0.5, f∗

= 0.5 and σ̂ ≈ 0. Minimum and maximum values of each
scalar field, and the maximum velocity vector length are indicated in the figure.
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Figure 2. Maximum absolute values of porosity φ, vorticity Ω (solid lines of middle frames)

and vorticity correlation function CΩ (dashed lines in middle frames), and maximum absolute

dilation rate G versus time for the case shown in Fig. 1b and c.
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m = 1
S  [min/max= -1/1] G  [min/max= -0.0175/0.0726]

Ω   [min/max=-0.279/0.211] vh  [max vec.length=0.0748]

φ  [min/max=0.04507,0.07583]

A   [min/max=0.9859/5.066]

time = 0.693

a

m = 7
S  [min/max= -1/1] G  [min/max= -0.00742/0.0454]

Ω   [min/max=-0.583/0.576] vh  [max vec.length=0.0942]

φ  [min/max=0.04372,0.07374]

A   [min/max=0.9966/1.886]

time = 1.1

b

m = 21
S  [min/max= -1/1] G  [min/max= -0.00985/0.00951]

Ω   [min/max=-1.37/1.8] vh  [max vec.length=0.111]

φ  [min/max=0.03944,0.06221]

A   [min/max=0.9948/1.333]

time = 1.46

c

Figure 3. The source-sink field S, the dilation rate G, porosity φ, vertical vorticity Ω, the horizontal matrix velocity vh, and the inverse grain/void size
A for the fineness-generating damage case (fφ = 0, fA > 0) with m = 1, 7 and 21 (see (22)), shown in frames a,b and c respectively. The dimensionless time
is indicated in the velocity frame. Porosity φ is initiated with a random perturbation of amplitude 0.001 on top of a constant background of 0.05. Dimensionless
inverse grain/void size A is initiated with a random perturbation of amplitude 0.01 on top of a constant background of 1. Other parameters are a = b = 0.5, and
while σ̂ =≈ 0 in the momentum equations we prescribe fA/σ̂ = 1 in (48).
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Figure 4. Maximum absolute values of porosity φ, fineness (or inverse grain/void size) A,

vorticity Ω (solid lines), vorticity correlation function CΩ (dashed lines) and maximum dilation

rate G versus time for the case shown in in Fig. 3.
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fA/σ̂ = 1
S  [min/max= -1/1] G  [min/max= -0.0156/0.0794]

Ω   [min/max=-0.402/0.317] vh  [max vec.length=0.085]

φ  [min/max=0.04404,0.07717]

A   [min/max=0.9957/2.792]

time = 0.798

a

fA/σ̂ = 10
S  [min/max= -1/1] G  [min/max= -0.00619/0.0113]

Ω   [min/max=-0.876/0.913] vh  [max vec.length=0.102]

φ  [min/max=0.04111,0.06097]

A   [min/max=0.9886/5.521]

time = 1.34

b

fA/σ̂ = 100
S  [min/max= -1/1] G  [min/max= -0.00314/0.00254]

Ω   [min/max=-1.3/1.3] vh  [max vec.length=0.103]

φ  [min/max=0.04733,0.05202]

A   [min/max=0.9849/8.696]

time = 0.639

c

Figure 5. Same as Fig. 3 but with m = 3 and and three values of fA/σ̂ = 1, 10, 100 (frames a,

b, and c, respectively).
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Figure 6. Same as Fig. 4 but for cases shown in Fig. 5.
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Figure 7. Time interval for suppression of dilationG, as given by (56), versus m for fA/σ̂ = 1

(a), and versus fA/σ̂ for m = 3 (b).

D R A F T May 18, 2004, 3:48pm D R A F T


