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SUMMARY

Various papers have discussed the forward relationships between internal density anoma-

lies of a planet and its external gravity field. The inverse modelling, i.e. finding the internal

density anomalies from the external potential is known to be highly non unique. In this

research note, we explain how a 3D basis can be built to represent the internal density

variations which includes a subset that explicitly spans the kernel of the forward grav-

ity operator. This representation clarifies the origin of the non-uniqueness of the gravity

sources and implies the existence of a natural minimal-norm inverse for the internal den-

sity. We illustrate these ideas by comparing a tomographic model of the mantle to the

minimal norm density.

1 INTRODUCTION

A problem in geodynamics is to relate the internal density of a planet to its external gravity field. Clas-

sically, the internal density ���������	��
� and the external gravity potential � ����������
�� are both expanded

in term of orthogonal functions on the sphere�����������
������ ��� ��� ��� ������� ��� ������
���� (1)

� �������	��
��� � ��� � ���"!�#�%$
� &(' � ��� ���	��
��� (2)
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where � � � ���	��
� are spherical harmonic functions of colatitude � and longitude 
 ,
#

is the planetary

radius, � ���
are the spherical components of the density at radius � and � ���

the gravity potential

coefficients.

We can deduce the coefficients � � �
as a function of the density spectral components using

� � � � �����# ���	 � � ��� � � � � ����� ��
����� (3)

where
� � ����� are Green’s functions. These Green functions are simply

� � ������� ���� ��� � � ������ �
! �# $

� � (4)

if we assume that the planet is spherical (hence the superscript ’S’). This Green function implies

that shallow mass anomalies are the most efficient to generate gravity potential anomalies (usually

represented as geoid undulations).

Of course, a planet is not spherical. To take into account the surface undulation, the density anoma-

lies can be usefully split into internal densities ��� and a surface mass � ���	��
� . This surface mass with

spectral components � ���
, is the product of the topographic height with the density at the Earth’s sur-

face. Then, at first order, the external potential verifies

� ��� � �����# � �	 � �� ����� � � � � ����� � 
 � � � ����� #����� � �
�����

(5)

Internal interfaces can be taken into account in a similar way by introducing equivalent surface mass

anomalies, products of the density jumps at these interfaces by their topographies.

At long wavelength, the planets are close to isostatic equilibrium at least for shallow internal

mass anomalies. On the Earth, this equilibrium is reached after a time constant of a few thousand

years estimated from modelling the pleistocenic glacial unloading (Cathless 1975). A simple view of

isostasy (see Dahlen (1982) for a detailed discussion of the concept of isostasy) indicates that

� ��� ��� � �
� � � � ��� �����!����� (6)

where
# � is a radius below which deviatoric stresses are negligible. By replacing this surface load into

the equation eq. (5), we see that we can formally still use eq. (3) where only ’true’ internal density are

considered (i.e. � in eq. (3) is now intended as ��� ) if we use the new Green function
�#"� ����� where

� "� ����� � � �� ��� �$� � �� � # � # 
� 
 %'&�()(+*-,�.
�

(7)

This indicates that shallow mass anomalies (i.e., in the limit
# � �0/ # � # � ) do not generate geoid

undulations. It also predicts that a dense anomaly at depth should be associated with a geoid low. This

is in total opposition to the findings obtained for a spherical non-compensated planet (i.e. when eq. (6)

is not verified but one imposes � ��� �21 ).
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Isostasy is a very good approximation for shallow masses but, of course, compensation departs

from isostasy for deep seated masses which means that eq. (6) must be replaced by a more general

rule. Various papers (Ricard et al. 1984; Richards and Hager 1984) have shown that a generalization

of the isostatic rule that takes into account sphericity, self-gravitation and the presence of internal

interfaces (i.e., the Moho, the Core Mantle Boundary...) can be obtained for a viscous planet with

radial rheological properties. In this theory, the topographies involved in the expression of the potential

(as in eq. (5)) are computed from the internal density by solving for the mantle flow using a newtonian

viscous law with continuities of the velocity, gravity and stress vector at the interfaces. This enables

to write � � �
in the same way as in eq. (3) with a new Green function

��� � ����� where the superscript

reminds that this dynamic compensation model involves the viscosity profile of the mantle � . Using

this approach, a good fit to the observed Earth’s geoid can been obtained assuming that the internal

density of the Earth is related to the observed 3D seismic velocity structure of the mantle (Forte and

Peltier 1987; Hager and Clayton 1989; Ricard et al. 1993). Moreover, the geoid, at least at the lowest

degrees 2 and 3, is not explained by mass anomalies in the upper mantle since these are compensated

by topography anomalies.

Figure 1 depicts the viscous, spherical and isostatic Green functions for degrees 2 and 10. The

viscous Green function
� � � ����� shares with the isostatic Green function

��"� ����� the fact that density

anomalies infinitely close to the surface do not generate geoid. Viscous Green functions also vanish

at the CMB as mass anomalies near the core are locally compensated by CMB undulations just like

shallow mass anomalies are compensated by surface topography. The viscous Green functions have

much smaller amplitudes than both spherical and isostatic Green functions. For realistic mantle vis-

cosity profiles, the viscous Green function at
� � �

is negative in the lower mantle and positive in the

upper mantle. At
� � � 1 , the viscous Green function looks like the isostatic Green function for shallow

masses, change sign with depth where it becomes somewhat similar to the rigid Green functions.

More general attempts have used 3D viscosity structures (Zhang and Christensen 1993) or even

have tried to remove the necessity of prescribing a rheology (Valette and Chambat 2004). However the

most successful explanations of the Earth’s geoid are using the simplest model where the rheological

properties do not vary laterally.

2 THE INVERSE PROBLEM

It is well known that the inverse gravitational problem, i.e., finding the density structure ��������	��
�
from the gravity coefficients � ���

is an ill-posed problem. This means that there is an infinite number

of density distributions inside a planet that can produce a given external gravity field. In front of an

ill-posed problem two general philosophies can be used. On the one hand, one can make profit of some
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Figure 1. Viscous (thick), spherical (dotted) and isostatic (dashed) Green functions for degrees 2 and 10. The

viscous Green function are computed for a model where the lithosphere, the upper mantle, and lower mantle

viscosities are proportional to 10, 1 and 30.

a priori knowledge of the density to stabilize the inversion. This can be done for example by assuming

that the density remains closely correlated with seismic tomography (this has been used in various

papers, see also Ricard and Wuming (1991)). On the other hand, one can describe precisely what the

null space and what the range of the forward problem are in a Lanczos-type method (Lanczos 1961).

This was done for a purely spherical planet, i.e., inverting eq. (3) assuming eq. (4), (Dufour 1977),

but, to our knowledge has never been discussed when the more appropriate
� � ����� Green function is

used.

This Lanczos-type approach is to built a 3D basis ���
��� �������	��
� to represent the internal structure

of a planet (the density, but also the seismic P and S velocities...) in such a way that a subset of this

basis is also a basis of the null space of the forward gravity operator.

Let us choose ���
� � ����������
������ �

� ������� ��� ���	��
� , the ortho-normalization of this basis means that�
���

� � �������	��
� ����� � � � � ����������
�� � � � ��� #
	��
����
� � �
�
� ���

� � (8)

the integral being performed over all the planetary mantle volume (the
# 	

term of the right hand side

insures that the ���
� �

are dimensionless, the
�

is the Kronecker symbol). The spherical harmonics

being already orthogonal on the surface of a sphere, we only need to find � �
� ����� functions so that� �	 � �

� ������� � �� ����� � 
 � � � #�	��
�� �

�
(9)

Of course, we can easily take advantage of our understanding of the gravity field of the Earth by
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choosing as one of the � �
� ����� function, the Green function of the gravitational inverse problem

� � � ��� � .
Let us define the norm

��� � �
� ��� 
 � �# 	 � �	 � �

� ������� �� ����� � 
 � ��� (10)

and choose

� 	� ��� � � � � � �����
��� � � � ��� � (11)

Then, the other � �
� ����� can be constructed by a standard ortho-normalization procedure starting with

linearly independent functions. An easy way is to use Chebychev polynomials � � ����� and define � �
� �����

as a linear combination of � ���
' ��� � and of the previous � � �

� ����� ( 1����
	���� ),

� �
� ����� �� � ���

' ����� � �	�� ����� � � � � � � �
� ������� (12)

and deduce the constants  and
� ��� from the equations (orthogonality and normalization)� �	 � �

� ������� � �� ����� � 
 � � �21 � if 1���� 	 ��� (13)

��� � �
� ����� ��� � � � (14)

Figure 2 depicts the equatorial cross-sections of a few empirical functions for
� � �

and � � �
. The

geoid viscous Green function is computed following Hager and Clayton (1989) and using a typical

mantle viscosity profile (a lithosphere of thickness 100 km with normalized viscosity 10, an upper

mantle of reference viscosity 1, and a lower mantle of normalized viscosity 30). The first empirical

function � 	 � 
 � 
 is proportional to this geoid Green function. By construction � 	 � 
 � 
 is the only function

that induces a
� � �

and � � �
geoid. The other � �

� ��� �
(Figure 2 depicts some of them with � � �

, 4

and 6) do not induce any gravity signal outside the planet.

By construction, we can replace eq. (1) by���������	��
� � �
�
� � � � � � � � ��� � � �������	��
��� (15)

where � � ��� are the components of the density on the empirical basis. This expansion introduced in eq.

(3) leads to � ��� � ����� # 
 ��� � � � ��� � 	 ��� � (16)

and the solution of minimal norm for the inverse problem is simply� � ��� �������	��
��� ������ # 
 � � � ���� � � � ��� � � �
� 	 ��� ����������
�� � (17)

This minimal norm solution is of course independent of any radial basis and only depends upon the
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Figure 2. Equatorial cross sections of empirical basis functions for ����� and ����� . Only the first one ( �	��
 �
 � ,
top left) induces an external gravity field. This first function is based on a gravity The other empirical basis

functions (e.g., ���
 �
 � , ���
 �
 �����
 ��
 � ) span the kernel of the gravity operator, they do not induce any external

gravity field.

Green functions. We can define the radial resolution kernel �
� ����� � 	 � associated with this estimator by� � � �� � ����� � � �	 �

� ����� � 	 � � ��� ��� 	 � ��� 	 � (18)

By combining the definitions of the minimal density eq. (17) with that of the potential, eq. (5), we

obtain

�
� ����� � 	 � � �# 	 � 	� ������� 	� ��� 	 � � 	 
 � ���� � � � ��� 
 # 	 � � � ����� � � � ��� 	 � � 	 
 � (19)

As expected this resolution does not depend of the radial basis. At a given � , this resolution is propor-

tional to
� � � ��� 	 � � 	 
 already plotted in Figure 1. A very good resolution would imply that � � ���� �

remains

close to the actual density � ���
and therefore that �

� ����� � 	 � is similar to the Dirac function
� ��� � � 	 � .

This is far from being the case as the resolution of the gravity data is indeed very low.

All the solutions of the inverse gravimetric problem can be obtained by adding any component of

the null space which has the form� ��� � � ����������
���� �
���� 	 � ��� ��� � � � ��� � � �������	��
��� (20)
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for any coefficients � �
���

.

3 APPLICATION

Bearing in mind that the seismic global heterogeneities seen by tomography are more or less propor-

tional to the density anomalies, we project these velocity anomalies onto the � 	 ��� subset to emphasize

the heterogeneities that affect Earth’s gravity field. To perform this exercise, we use the composite

model “Smean” of Becker and Boschi (2002) (an average of previous models) that has the advantage

of providing at the same time a very good fit to the geoid ( �
� 1�� of variance reduction) and be rich

in short wavelength anomalies (up to
� ��� � ). Alternatively, from the observed geoid, we can easily

compute the solution of minimal norm for the density. Of course it does not describe the true density

within the Earth but its projection onto the same subset � 	 ��� as the velocity. The results are depicted

in Figure 3.

The first row depicts the velocity anomalies at mid upper mantle ((a), left) and mid lower mantle

((b), right). The second row filters out from the components invisible to the external gravity field. This

filtering emphasizes the anomalies related to slabs in the upper mantle (c). In the lower mantle (d),

only the long wavelength density components affect the external gravity field. These heterogeneities

are very close to those predicted from the observed external gravity field (minimal norm density mod-

els, bottom row). To have roughly similar color ranges for the velocity maps (top and middle rows) and

for the minimal norm density maps (bottom row), the velocity scale varies between � 40 m s �
'

and the

density scale between � 12 kg m � 	 . This suggests throughout the mantle a uniform density/velocity

conversion of order 0.3 kg m
	
/m s �

'
. This conversion factor is typically what is predicted from labo-

ratory estimates and other geoid modelling (e.g. Hager and Clayton (1989)).

4 CONCLUSIONS

The relationships between the gravity field and the internal structure of the Earth that we have illus-

trated in this paper, are not new. The forward relations have been known since the eighties (the deep

mantle origin of the long wavelength geoid or degree 2-3, the signature of slabs at degrees 4-10) and

various papers have performed inverse modelling. More precisely, it is well known that an appropriate

velocity/density conversion of the tomographic models provides a good fit of the geoid. Here we show

here that, at each depth, the projections of the velocity � � and the density � onto the orthogonal of

the gravity null space are proportional. The comparison of the bottom rows of figure 3 shows that the

lateral variations at 1800 km are mainly due to the lowest degrees contribution, which is not the case

at 500 km. It gives a convincing indication of the deep origin of the geoid at low degrees.
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(a) S velocities
(depth 500 km)

(b) S velocities
(depth 1800 km)

(c) Projected S
(depth 500 km)

(d) Projected S
(depth 1800 km)

(e) Minimal Density
(depth 500 km)

(f) Minimal Density
(depth 1800 km)

Figure 3. (a) and (b) Mid upper and mid lower mantle S tomography (Smean model, (Becker and Boschi 2002)).

(c) and (d) S tomographies filtered out from heterogeneities invisible to the gravity field. (e) and (f) Minimal

norm densities predicted from the external gravity field. A same scale is used for the 4 velocity maps (between
�

40 m s �
�
). The two density maps vary between

�
12 kg m �

�
.

Moreover our approach can be a useful pedagogical way to explain the non-uniqueness of gravity

inversion and our radial basis could be used in seismic tomographic inversion in order to explicitly

identify the velocity space constrained by the geoid. The description of the internal density of the

Earth requires the knowledge of the coefficients � � ��� . A lateral resolution �
�

is attained when all

the coefficients up to
� � ��� � �

�
� ��� � � � � #��

�
�

are known. A radial resolution �
	 corresponds to
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�
� ��� � # �

� 	 . From a given model deduced from seismic modelling and complete up to �
� � � and� � ��� , i.e. having �

� � � � � � ��� � � � 
 terms, a subset of dimension �
� ��� could have been deduced directly

from the gravity field (assuming that the relationship between velocities and densities are known, and

that the viscosity is only depth dependent). This shows at the same time the potentiality and the low

resolution power of gravity.
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