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Abstract

We employ a continuous theory of two-phase flow to investigate the influence of grain boundary tension on distribution and
migration of melts through a viscous matrix. The ‘disaggregation melt fraction’, the volume fraction of partial melt at which grain
boundaries are completely wetted, is crucial in determining the total interfacial force per unit volume. In partially molten aggregates
with small dihedral angles and containing lessmelt than the disaggregation fraction, capillary action on grain boundaries tends to retain
melt in tubules along triple grain junctions. As a consequence, pulses of buoyant magma decay during their ascent through the mantle.
Strong interfacial tension onmatrix grain boundaries also influences the thickness of a heavy partially molten layer. In aggregates with
large dihedral angles, strong tension on grain–melt interfaces can give rise to self-separation of the melt from the matrix.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Migration and storage of melts play critical roles in the
thermal and chemical evolution of planetary interiors.
Mass and heat transport at mid-oceanic ridges, plumes
and volcanic arcs depends on the efficiency of melt
extraction from the source region.Melt-rich regions in the
mantle act as reservoirs of incompatible elements. Due to
the lower viscosity [1] relative to the unmelted silicates,
such partially molten boundary layers also play a
significant role in long-term stability of mantle plumes
[2]. Melts flow along interconnected networks of tubules
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and sheets within a viscously deforming matrix [3–6].
Such coupledmotion of themelt and the viscous matrix in
partially molten aggregates is controlled by a balance
between gravity, viscous stresses, pressures, and interfa-
cial tension on the grain–grain and grain–melt interfaces.

Interfacial tension on grain boundaries (grain–grain
interfaces) and grain–melt interfaces in partially molten
rocks influences the dynamics of melt migration in two
ways. First, shape and connectivity of network-forming
tubules and sheets of melts along grain edges and
boundaries are controlled by the dihedral angle which
depends on the ratio between the surface tension on
grain–grain and grain–melt interfaces [7–10]. Second,
total tension on both grain–grain and grain–melt
interfaces balances pressure, viscous drag, and gravita-
tional forces during coupled flow of the matrix and the
melt [11–14]. While geometry of the network compo-
nents is important in establishing a pathway for porous
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flow of the melt [7,8], interfacial tension leads to
phenomena such as self-separation [11–13] and redis-
tribution [14–16].

A number of previous studies have examined each
aspect of interfacial tension on two-phase dynamics
separately. The influence of interfacial tension on the
geometry of pore fluid networks, melt segregation, and
melt redistribution has been investigated in two-phase
aggregates under a hydrostatic condition of stress, both
experimentally [15–18] and theoretically [3,7,11–14].
Experimental work has demonstrated a strong influence
of the grain–grain interfacial tension on melt redistri-
bution [15,16]. However, due to the small length scales
of the experimental samples, buoyancy effects were
negligible compared to interfacial tension effects.
Theoretical work on two-phase flow demonstrated that
interfacial tension gives rise to either self-separation or
redistribution [3,11–14] of melt. In these analyses the
total interfacial tension is treated as a continuous
function of the melt fraction, whose effect vanishes in
the absence of melts. While such a description is
realistic for a mixture of two immiscible liquids, it does
not incorporate tension on grain–grain interfaces and its
influence on the melt geometry.

In this work, we present a new formulation that
directly incorporates the influence of melt geometry on
two-phase flow at large length scales. We employ a
simple geometric model described in Appendix A to
define the total interfacial tension in terms of the
semidihedral angle of grain edge tubules. In our model,
the melt geometry and total interfacial tension depend
on the volume fraction of partial melt. Below a critical
melt fraction the melt resides in tubules along grain
edges and wets a fraction of the grain boundaries
(grain–grain interfaces). We refer to this critical melt
fraction as the ‘disaggregation melt fraction’, since the
matrix disaggregates at melt fractions greater than or
equal to this melt fraction and grain boundaries are
completely wetted.

The results indicate that a remarkable difference
exists between the behaviors of low dihedral angle
aggregates containing partially and completely wetted
grain boundaries.

2. Formulation

We consider a solid–melt aggregate containing a
small fraction of melt, residing primarily in a network of
interconnected tubules along triple grain junctions and
grain edges. We assume no mass exchange (melting or
solidification) takes place between the solid matrix and
the melt [19]. Throughout the rest of the paper, we will
use the subscripts f and m to indicate the fluid (partial
melt) and the viscous solid matrix, respectively.

Interfacial force in a two-phase aggregate is related to
the interfacial area per unit of the control volume. Since
the interfacial area is averaged over a control volume
containing several grains and melt pockets and yet not
large enough to exhibit any significant variation of the
field variables, the location and geometry of the
interfaces within the control volume remain unknown
[11]. When only one interface separates two different
phases (i.e. only the matrix–fluid interface is present),
the interfacial force can be expressed as σα, where σ is
a temperature dependent surface tension and α is the
interfacial area density, dependent only on the volume
fraction of one of the phases, ϕ [11]. One important
property of α is α→0 as ϕ→0, 1; corresponding to
each individual phase constituting the entire aggregate.
However, in a viscous, polycrystalline matrix, the
presence of grain boundaries requires α≠0 when the
melt volume fraction ϕ=0. To address this issue, we
express the total interfacial tension as a sum of the
interfacial forces on the solid–solid interfaces (grain
boundaries) and solid–liquid (grain–melt) interfaces.
This quantity is described as χ=σmmαmm+σmfαmf,
where subscript ‘mm’ indicates matrix–matrix (grain–
grain) and ‘mf’ indicates matrix–fluid (grain–melt)
interfaces. Next, in order to define a functional form of
χ, we use a simple representative geometric model
within a control volume described in Appendix A. We
also demonstrate that such an approach does not violate
the fundamental energy conservation rules in Appendix
B. Essentially, this approach treats the grain–grain
interfaces as a limiting case of two grain–melt
interfaces, placed an infinitesimally small distance
away, separated by an infinitesimally thin melt film.

2.1. General governing equations

Consider a partially molten aggregate containing a
spatially and temporally variable melt fraction ϕ. In this
aggregate, both the solid matrix and the melt flow as
viscous fluids with viscosities μm and μf, while their
respective velocities are given by the quantities vm and
vf. The densities of the matrix and the fluid phases are
given by ρm and ρf, respectively. We treat the pressures
of the matrix and the fluid as independent quantities
given by Pm and Pf.

The mass conservation equations for both phases are
given by:

∂/
∂t

þjdð/vf Þ ¼ 0; ð1Þ
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∂ð1−/Þ
∂t

þjdðð1−/ÞvmÞ ¼ 0: ð2Þ

We also assume that the fluid viscosity is negligible
compared to the matrix viscosity (μf =0), in which case
the interfacial forces are supported entirely by the matrix
[20]. Under this condition, the momentum equation for
each individual phase is given by [11,20]:

0 ¼ −/ðjPf þ qfg ̂yÞ þ cΔv; ð3Þ

0 ¼ −ð1−/ÞðjPm þ qmg ̂yÞ−cDv

þjd ðð1−/Þ
P
tmÞ þ ∂v

∂/
þ DP

� �
j/; ð4Þ

where Δq=qm−qf for any quantity q. The interaction
coefficient c arises from viscous interaction at the fluid–
matrix interface and is inversely proportional to the
permeability ([11], see also Section 2.4).

The constitutive relation for the matrix is given by,

P
tm ¼ lm jvm þ ½jvm�t− 2

3
jd vm P

I

� �
: ð5Þ

The stress drop condition, as derived in Appendix B,
is:

∂v
∂/

þ DP ¼ −
K0lm

/ð1−/Þ
Dm/
Dt

; ð6Þ

where K0 is a dimensionless constant of O(1) and the
material derivative Dm/Dt is given by:

Dm
Dt

¼ ∂
∂t

þ vmdj: ð7Þ

The quantities on the left hand side of Eq. (6) arise
from gradient of interfacial tension and the pressure
drop across matrix–melt interfaces. The quantity on the
right hand side arises from compaction of the matrix
(see details in Appendix B). Eq. (6) indicates that
departure from surface tension equilibrium is driven by
compaction of the aggregate.

To close the system of Eqs. (1)–(6), an additional
phenomenological relation between χ and one of the
unknowns is necessary. Notice that the quantity ∂χ /∂ϕ
in Eqs. (4) and (6) appear as σ(∂α) / (∂ϕ), in the
formulation given in [11], in which only interfacial
tension arising from the solid–liquid interface is
considered. At fluid volume fractions less than the
disaggregation melt fraction, both the grain–grain and
grain–melt interfacial tensions contribute to χ. At the
disaggregation melt fraction, the grain boundaries are
completely wetted, and the only interface present is the
solid–liquid interface. As the simple geometric deriva-
tion in Appendix A indicates, the relationships between
χ and ϕ below and above the disaggregation melt
fraction are given by:

vð/Þ ¼ a0½rmfv1
ffiffiffiffi
/

p þ rmmð1−v2
ffiffiffiffi
/

p Þ� if / < /s;
rmfa0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1−/Þp

if /z /s;

�
ð8Þ

where χ1 and χ2 are parameters dependent on θ, the
semidihedral angle, the angle subtended by the grain–
melt interface to the grain boundary (see Fig. A.1). The
semidihedral angle θ controls the geometry of the melt
network, as indicated in the micromechanical model in
Appendix A. The quantity α0 is the reciprocal of the
average grain size and ϕs is the disaggregation melt
fraction. Although in this work we employ a relatively
simple model of melts along the grain boundaries, very
similar results are obtained from analyses with a
tetrakaidecahedral geometry of the solid grains [8].

The forces governing the conservation of momentum
of two-phase aggregates are proportional to the gradients
of matrix and fluid pressures as evidenced in Eqs. (3) and
(4). While the first derivative of χ with respect to ϕ, χ′,
is proportional to the difference betweenmatrix and fluid
pressures, as evidenced in Eq. (6), the second derivative
χ″ is proportional to the difference between matrix and
fluid pressure gradients and indicates the gradient of total
interfacial tension. When χ″ is positive, the interfacial
force tends to drive melt into low pressure regions by
capillary action. This takes place in a partially molten
aggregate with a low dihedral angle, caused by a stronger
grain–grain interfacial force compared to the grain–melt
interfacial force. Fig. 1 depicts χ and χ″ as a function of
ϕ for two such cases for semidihedral angles of 60° and
0°. Although in an aggregate with a zero dihedral angle,
grain boundaries are completely wetted, we consider
ϕ→0° as a positive, vanishingly small dihedral angle to
demonstrate the maximum influence of grain boundary
tension. In the curve for ϕ→0°, interfacial tension on
grain boundaries is the maximum as allowed by the
scenario described in Appendix A, and χ″ is positive for
melt fractions below the disaggregation melt fraction.
For ϕ=60°, as well as for melt fractions greater than the
disaggregation melt fraction, χ″<0, indicating that the
surface tension attracts melts into the region of high melt
pressure.

2.2. Coalescence

In general, the function χ(ϕ) and its derivatives
display a discontinuity at the disaggregation melt



Fig. 1. Plots of total surface tension χ and χ″ as a function of ϕ. The solid and broken curves correspond to θ→0° and θ=60°, respectively. The
disaggregation melt fraction, ϕs for θ→0° and θ=60° is 0.21 and 0.59, according to Eq. (A.9) in Appendix A.
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fraction, as evidenced in the plots in Fig. 1. The
discontinuity arises due to a change in the surface
curvature and surface tension of the nontouching,
spherical grains to contiguous, faceted grains during
coalescence by a process known as ‘contact flattening’
[21,22]. As the surfaces of two approaching spherical
grains reach a critical separation distance, short range
forces start to dominate [23]. As the grains continue
approaching each other beyond the critical separation,
driven by the short range forces, they deform in a
viscous manner until the separation becomes compara-
ble to intermolecular distance and the area of contact
becomes flat [24]. Thus, the process of contact flattening
by viscous deformation of the grains is essentially
continuous and involves large deformation of the grain–
melt interface over a very small range of melt fraction.
Apart from the shape and surface area of the grains, the
surface tension also changes during coalescence. With
decreasing separation, tension on two isolated grain–
melt interfaces changes continuously into the tension of
one flat grain–grain interface in the region of contact
[23]. As a combination of changes in surface area and
surface tension, small fluctuations in ϕ induce large
changes in χ near the disaggregation melt fraction.
Thus, the discontinuity in χ in our present formulation
stems from phenomena at the very small length scales.

Due to the viscous nature of deformation, complete
description of shape change by contact flattening during
coalescence requires knowledge of the velocity, pressure
drop, and surface tension at the interfaces. A detailed
solution for the shape evolution of coalescing grains is
beyond the scope of this article. However, our present
macroscopic, geometric description given in Appendix
A provides an adequate first order approximation.

We ran a number of tests to assess the influence of
the discontinuity on the end result. First we used a filter
to smooth the discontinuity in χ and its derivatives in
Eq. (8). Next, we used the smoothed function in our
codes to solve for melt fraction and velocity. Finally,
we compared the melt and velocity distribution
obtained by using the smoothed function with those
obtained by using Eq. (8). The melt and velocity
distribution from both runs agreed remarkably well,
indicating that the discontinuity in χ did not influence
the final results.

2.3. One-dimensional equations

In this work we solve the system of Eqs. (1)–(6),
along with the interfacial tension relation (8) in one-
dimension in a domain of length 2l. To arrive at the one-
dimensional equations, we take the general governing
Eqs. (1)–(6), and consider the case where the only
nonzero motion and gradients are along the vertical ( y)
direction. The boundary conditions for the velocities of
both phases are given by,

vm ¼ vf ¼ 0 at y ¼ Fl ð9Þ

and the initial melt distribution is,

/ðy; 0Þ ¼ /0ðyÞ: ð10Þ
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The sum of the mass conservation Eqs. (1) and (2),
combined with boundary conditions for vertical veloc-
ities yields

/vf þ ð1−/Þvm ¼ 0: ð11Þ
The equation for mass conservation of the matrix

yields,

∂/
∂t

¼ ∂
∂y

ðð1−/ÞvmÞ: ð12Þ

We can eliminate the pressures of the individual
phases by combining Eqs. (3) and (4), to obtain the
action-reaction equation given by,

0 ¼ð1−/ÞvW∂/
∂y

þ ∂
∂y

lm
K0

/
þ 4
3

� �
ð1−/Þ∂vm

∂y

� �

−ð1−/ÞDqg− cvm
/2

ð13Þ

By solving Eqs. (12) and (13), all unknowns can be
determined.
2.4. Nondimensionalization

We nondimensionalize velocity, length, and surface
tension according to the relations:

vm ¼ qmgd
2
m

lm
w⁎; y ¼ dmy

⁎; v ¼ rmfa0v
⁎: ð14Þ

The length scale used in the nondimensionalization is
the matrix compaction length dm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4lmÞ=ð3cÞ

p
.

Also, adding the constraint K0=4 /3, Eqs. (12) and
(13) can be nondimensionalized into

∂/
∂t

¼ ∂
∂y

ðð1−/ÞwÞ ð15Þ

0 ¼ nð1−/ÞvW∂/
∂y

þ 4
3
∂
∂y

ð1−/2Þ
/

∂w
∂y

� �
− Rð1−/Þ− 4

3
w

/2 ; ð16Þ

where the asterisks have been dropped off the
nondimensional variables. The nondimensional con-
stants are given by,

n ¼ rmfa0
qmgdm

; R ¼ Dq
qm

: ð17Þ

The compaction length δm depends on the matrix
viscosity μm and the interaction coefficient c. For
negligibly small viscosity of the melt, the interaction
coefficient c=μf ϕ

2 /kp, where kp is the permeability
([11], Section 4.3). Employing a simple model of melt
percolation through tubules along grain edges, one
obtains kp=ϕ

2 /72πα0
2, where 1 /α0 is the grain size

([25], Section 9.3). Thus we obtain c≈1010 Pa s m−2,
for a melt viscosity μf =1 Pa s and a grain size 1 /
α0=100 μm. This corresponds to a matrix compaction
length δm=10 km, for a matrix viscosity μm=10

18 Pa s.
We have also used Δρ=300 kg m−3 and ρm=3×10

3 kg
m−3, leading to R=0.1. The interfacial tension σmf=1 J
m−2 [26]. The selection of the parameters implies that
for ξ=10−4, nondimensional unit matrix velocity and
time are equivalent to dimensional matrix velocity and
time of 3×10−6 m s−1 (≈100 m yr−1) and 3.3×109 s
(≈100 yr), respectively. In this work we examine the
influence of surface tension in the numerical experi-
ments by using different values of ξ between 10−6 and
10−2.

3. Results

We employ Eqs. (15) and (16) to solve for the matrix
velocity w and the melt fraction ϕ. We obtain an
analytical solution for the linearized form of Eq. (13),
while the complete nonlinear equation is solved nu-
merically using the finite volume method with an explicit
time marching scheme. The numerical solutions for self-
separation in the absence of gravity were obtained for a
zero velocity boundary condition (i.e. velocity of both
phases are zero at the top and the bottom). The solutions
in the presence of gravity are obtained for a periodic
boundary condition. Finally, we obtain a similarity so-
lution to the nonlinear equations in the absence of surface
tension as outlined in Appendix C.

3.1. Marginal stability analysis

We linearize Eqs. (15) and (16), by adding small
perturbations ϕ1( y, t) and w1( y, t) to constant back-
ground values ϕ0 and w0. The dependent variable χ can
be expressed by a Taylor series expansion near the
background value. Thus, the variables in the perturbed
state are given by,

/ ¼ /0 þ �/1; w ¼ w0 þ �w1;

v ¼ vð/0Þ þ �v0V/1; v V¼ v0Vþ �v0W/1; ð18Þ

where χ0′=χ′(ϕ0). In order to determine the background
melt fraction and velocity, we replace the perturbed
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variables from Eq. (18) into Eqs. (15) and (16).
Dropping the subscript 1, and dropping terms containing
the second or higher powers of ϵ, we obtain the
linearized equations,

∂w
∂y

¼ 1
1−/0

∂/
∂t

þ w0
∂/
∂y

� �
; ð19Þ

0 ¼ � nð1−/0Þv0W
∂/
∂y

þ 4
3

1þ /0

/0

� �
∂2/
∂t∂y

þ w0
∂2/
∂y2

� ��

þ R/−
4
3

w

/2
0

−2
w0/

/3
0

 !#
− Rð1−/0Þ−

4
3
w0

/2
0

;

ð20Þ

which yield on the zeroth order

w0 ¼ −
3R
4
/2
0ð1−/0Þ: ð21Þ

We take O(ϵ) equations and substitute ϕ of the form

/1 ¼ ϕ̃ expðstÞexp iðky−xtÞ; ð22Þ

yielding a growth rate s, of perturbations,

s ¼ −
3
4
nv0W/

2
0ð1−/0Þ2k2

1þ /0ð1−/2
0Þk2

: ð23Þ

The dispersion relation between the frequency and
the wavenumber is given by,

x ¼ −
3Rk
4

/0ð1−/0Þ
ð2−3/0Þ

1þ /0ð1−/2
0Þk2

−/0

 !
: ð24Þ

The dispersion relation (24) leads to the phase and
group velocities Uph=ω /k and Ug=∂ω /∂k, respectively.

Growth rate of perturbations is strongly influenced
by the presence of grain boundaries. The plots in Fig. 2
(a) illustrate that perturbations of all length scale
(indicated by the wave number k) grow into instabilities
when ϕ0>ϕs and decay into a homogeneous distribu-
tion when ϕ0<ϕs, as indicated by the sign of the growth
rate. For a given perturbation, growth rate also depends
on the semidihedral angle θ. The curves in Fig. 2(b)
indicate that when θ→0°, perturbations can either
decay or grow depending on whether the background
melt fraction is less or more than ϕs. In an aggregate
with θ=60°, the same perturbation always grows into an
instability.

The quantity χ″, which controls the sign of the
growth rate, is proportional to the gradient of surface
tension forces. A positive value of χ″ implies that the
total interfacial force drives melt into low pressure
regions resulting in homogenization, whereas a negative
value indicates that the interfacial force attracts melt
from low pressure into high pressure region leading to
an instability. According to the model in Appendix A,
strong interfacial tension on grain boundaries leads to
small dihedral angles and thus renders the quantity χ″
positive. For weak grain boundary tension and large
dihedral angles, χ″ is always negative, and a self-
separation like behavior is observed.

3.2. Nonlinear analysis

In this section we present solutions to the nonlinear
Eqs. (15) and (16). We discuss the influence of grain
boundary wetting in the evolution of melt perturbations
in the absence of gravity in Section 3.2.1 and
demonstrate the simultaneous influence of grain bound-
ary wetting and gravity on ascending melt perturbations
in Section 3.2.2.

3.2.1. Surface tension under neutrally buoyant
conditions

In the absence of gravitational force and deformation,
the surface tension forces are balanced by the pressure
difference between the solid and the fluid phases and the
viscous drag at the grain–melt interface. Figs. 3–5
demonstrate the evolution of an initial perturbation in
melt distribution with time. In all three of these plots, the
length of the domain is equal to twice the compaction
length of the matrix. While values of parameters R and ξ
are 0 and 1×10−3, semidihedral angle θ→0° for all
three plots, respectively.

The plot of melt distribution at several time steps
depicted in Fig. 3(a) illustrates surface tension driven
self-separation of the melt. In this case the initial melt
distribution is given by a Gaussian perturbation with a
background value larger than the disaggregation melt
fraction. Under such a condition, no grain boundaries
are present and the result is similar to that obtained by
previous works [12,13,20]. The initial perturbation
containing a peak of 40 vol.% melt grows into a wider
perturbation containing 55 vol.% melt at its peak. The
time evolution of the matrix velocity depicted in Fig. 3
(b) demonstrates that the matrix velocity is always
fastest at the flank of the perturbation, corresponding to
the steepest gradient in the melt distribution.

Consequently, melt gets drained through these
regions most quickly, as seen in Fig. 3(a). Also, positive
value of the matrix velocity above the perturbation and
negative matrix velocity below the perturbation



Fig. 2. Results from the linear analysis for ξ=1×10−4 and R=0.1. (a) Growth rate of melt perturbations as a function of nondimensionalized
wavenumber. Each curve corresponds to a different value of melt fraction in the unperturbed state marked in the plots. (b) Growth rate as a function of
the background melt fraction ϕ0, for wavenumber k=3. The broken curve corresponds to θ=60°, while θ→0° for the solid curve.
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indicates that the matrix decompacts accommodating for
the flow of melt into the perturbation. Notice also, with
increasing time, the width of the melt-rich region
increases.

The pattern of melt segregation is remarkably different
when the background melt fraction is below the
disaggregation melt fraction and the peak melt fraction
Fig. 3. Self-separation of the melt driven by grain–melt interfacial tension.
fraction is larger than the disaggregation melt fraction, indicating the presenc
depth. The matrix velocity is positive just above the perturbation and nega
separates. The numbers adjacent to the initial (solid lines) and final (finely d
above the disaggregation melt fraction (Fig. 4(a) and (b)).
In Fig. 4(a) the background region remains almost
undrainedwhile the initial perturbation becomes narrower
as it grows at its own expense. As revealed in the plot of
velocity distribution in Fig. 4(b), thematrix velocity is still
highest at the flanks of the initial perturbation. However,
with time the melt from the flank is drained into the peak
(a) Melt fraction as a function of depth. The initial background melt
e of only the grain–melt interface. (b) Matrix velocity as a function of
tive just below, indicating decompaction near the center as melt self-
ashed lines) profiles indicate corresponding nondimensional times.



Fig. 4. Simultaneous homogenization and self-separation. The background melt fraction is below the disaggregation melt fraction and remains mostly
unchanged. (a) Melt fraction as a function of depth. The initial perturbation grows into a narrower, but larger perturbation with time. (b) Matrix
velocity as a function of depth. Distribution of the matrix velocity indicates that matrix moves away from the center as the perturbation draws more
melt towards the center. The numbers adjacent to the initial (solid lines) and final (finely dashed lines) profiles indicate corresponding nondimensional
times.
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of the perturbation causing the perturbation to shrink in
width. The most important feature in this case is the
extremely slow melt extraction from the background.
Since the background melt fraction is below the critical
limit, a fraction of the grain boundaries in these regions
Fig. 5. Homogenization of the melt perturbation by grain boundary wettin
homogenizes to a uniform distribution. (b) Matrix velocity as a function of
positive just below the perturbation, implying advection of the matrix towa
adjacent to the initial (solid lines) and final (finely dashed lines) profiles ind
are unwetted and their interfacial tension hinders melt
extraction from the background. This behavior contrasts
with the observation from previous formulations where it
was possible to completely drain thematrix in the absence
of grain boundaries [12,13,20].
g. (a) Melt fraction as a function of depth. The initial perturbation
depth. The matrix velocity is negative just above the perturbation and
rds the center as the melt moves away from the center. The numbers
icate nondimensional times corresponding to the profiles.



Fig. 6. Successive plots of melt fraction as a function of depth displaying the influence of grain–grain interfacial tension on melt retention. In panel
(a), tension on grain–grain interfaces is negligible compared to gravity and the solitary melt pulse travels undisturbed. In panel (b), large value of ξ
due to tension on grain–grain interfaces retains melt in the matrix column during the ascent of the melt pulse.
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Perturbations in melt distribution are rapidly homog-
enized by grain boundary wetting when both the peak
and background melt fractions are less than the
disaggregation melt fraction, as illustrated in Fig. 5(a).
Notice that the distribution of matrix velocity in Fig. 5
(b) is opposite to the previous two cases, indicating the
matrix compacts at the perturbation as the melt diffuses
Fig. 7. Successive plots of melt fraction as a function of depth demonstrating
(a) θ=60° and (b) θ→0°. The amplitude of the solitary wave increases duri
out. The homogenization of the perturbation can be
compared to the situation described in the linear
analysis. In the linear analysis, we have demonstrated
that the growth rate of the perturbations becomes
negative for melt fractions below the disaggregation
melt fraction. Such diffusive redistribution of basaltic
melts driven by grain–grain interfacial tension of
ascent of two solitary magma packets. For both plots ξ=0.01, R=0.1.
ng ascent in (a) while it decreases in (b).



Fig. 8. (a) Plot of normalized differential melt fraction (ϕmax−ϕ0) / (ϕmax−ϕ0)t=0 as a function of time. The curves marked ‘a’, ‘b’, and ‘c’ correspond
to the cases presented in Figs. 3, 4, and 5, respectively. The peak melt fraction increases for the first two cases while it decreases with time for the third
case. (b) Regime diagram for self-separation (Fig. 3), melt retention (Fig. 4), and homogenization (Fig. 5) as a function of background melt fraction
(ϕ0) and peak melt perturbation (ϕm). Since the background is defined to be less than or equal to the peak perturbation, no realistic solution exists in
the lower right half of the plot. The disaggregation melt fraction corresponds to the case of θ→0.

Fig. 9. Steady state distribution of a dense melt layer with R=−0.1.
The curves represent analytical solutions to Eq. (25) for three different
values of ξ. The tension on the grain–melt interface is assumed to be
negligibly small compared to the grain boundary tension.
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silicate minerals has also been experimentally observed
in aggregates with small grain size and much smaller
length scale [15,16].

3.2.2. Surface tension and gravity
Gravitational instability leads to compaction of

partially molten columns of rock, generating solitary
magma pulses or ‘magmons’ [27]. Magmons are soliton
solutions to the governing equations for two-phase flow.
In the absence of surface tension, an individual magmon
ascends through a column of rocks with a constant
amplitude [27–31]. Strong surface tension, however,
leads to dissipation and the amplitude of the magmons
changes during their ascent [12]. In this section, we
discuss the influence of interfacial tension on the
amplitude of an ascending magmon, and demonstrate
that strong grain–grain interfacial tension leads to
partial retention of melt near its source region. To
obtain the results in this section we solved Eqs. (15) and
(16) using a periodic boundary condition. We also
employed the analytical solution presented in Appendix
C to calculate the initial magmon shape function.

The surface tension on the grain–grain interfaces
influences the evolution of the amplitude of a magmon.
Fig. 6 represents two individual magmons with initial
background and peak melt fractions of 1 and 15 vol.% s.
In Fig. 6(a), ξ=10−6, indicating surface tension is
negligibly small compared to gravity, whereas in Fig. 6
(b), ξ=0.01, indicating the presence of strong surface
tension. In both of these cases θ→0°. In the absence of
surface tension, the magmon rises through the column
with a constant amplitude. However, in the presence of
strong surface tension forces, the amplitude of the



Fig. A.1. Schematic diagram illustrating the face of the control volume
for (a) melt fraction less than disaggregation melt fraction, and (b) melt
fraction more than disaggregation melt fraction. The angle θ is half of
the dihedral angle subtended by two solid–liquid interfaces at the
junction with a solid–solid interface.

Fig. C.1. Map of solitary wave solution to Eqs. (15) and (16) in the Φ0

−Φm space. The shaded region indicates permissible real solutions.
Solutions do not exist in the lower right half of the plot.
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magmon decays during its ascent while melt from the
peak of the magmon is drained into the matrix. The
magmon is followed by a wake retaining some of the
melt. The contrasting behaviors of the magmons in these
two cases clearly indicate that in the presence of strong
grain–grain interfacial tension, a small amount of melt is
retained behind each ascending pulse of buoyant magma.

Contrary to strong grain–grain interfacial tension,
strong tension on grain–melt interfaces can lead to self-
separation in buoyant magmons. Fig. 7(a) and (b)
compares two such cases corresponding to θ=60° and
θ→0°. When θ=60°, the magmon exhibits a self-
separation like behavior, and melt is drained from the
flank into the magmon. As indicated in Fig. 1(b), the
second derivative of surface tension, which is propor-
tional to the differential pressure gradient, becomes
negative for θ=60°, forcing melt to move from low
pressure to high pressure. Self-separation of an
ascending magmon eventually drains the matrix entire-
ly, and the magmon evolves into a stationary sill, as also
observed in previous works [12]. On the contrary, the
amplitude of the magmon decays during its ascent when
θ→0°. Strong capillary tension of the grain boundaries
forces melt to drain away from high pressure regions.
Thus, simultaneous homogenization and ascent of the
melt give rise to retention of small amounts (∼1 vol.%)
of melt near the source region.

4. Discussions

4.1. Efficiency of melt extraction

Tension on the grain–grain interfaces suppresses
self-separating instabilities and reduces the efficiency of
melt extraction. Fig. 8(a) illustrates the normalized
differential melt fraction (ϕmax−ϕ0) / (ϕmax−ϕ0)t=0 as a
function of time for the three cases ‘a’, ‘b’, and ‘c’
corresponding to Figs. 3, 4, and 5, respectively. In the
absence of grain boundaries, the peak melt fraction in
curve ‘a’ increases rapidly. On the contrary, capillary
action arising from grain–grain interfacial tension drains
melt away from the peak in curve ‘c’. Finally, curve ‘b’
displays a slow growth of the differential melt fraction,
indicating inefficient draining of the matrix. Strong
tension on the grain–grain interfaces results in small
dihedral angles and gives rise to a well-connected melt
network with high permeability. Therefore, it is
tempting to conclude that melt extraction in such
aggregates will be favored. However, comparison
between curves ‘a’ and ‘b’ indicates that in the presence
of grain boundaries, the efficiency of melt extraction
from low-dihedral angle aggregates can be reduced.

Three distinct regimes of melt redistribution can be
identified in Fig. 8 for a semidihedral angle θ→0, where
the x and y axes represent background and peak melt
fractions respectively. When both the peak and the
background melt fraction are less than the disaggregation
melt fraction, perturbations are homogenized. In the
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absence of grain boundaries (i.e. both background and
peakmelt fractions are larger than the disaggregationmelt
fraction), perturbations self-separate and give rise to
instabilities. A combination of both processes gives rise to
melt retention when the peak perturbation is larger than
the disaggregation melt fraction, whereas the background
melt fraction is less than the disaggregation melt fraction.
We also notice that for very large dihedral angles, χ″>0
for all melt fractions and surface tension always gives rise
to self-separation.

4.2. Thickness of dense melt-rich layers

Dense, low viscosity melt-rich layers play a crucial
role in thermal and chemical evolution of the mantle.
Combined seismic evidence and laboratory measure-
ments suggest the presence of two such layers of variable
thickness at the transition zone and the core mantle
boundary [2,32–34]. In the zeroth order, the shape of this
layer is determined by pooling of the melt at the bottom
of the column containing the matrix and the melt.
However, capillary tension on the grain boundaries in
the matrix can curtail the extent of gravitational settling
and give rise to the presence of a boundary layer between
the disaggregated layer and the matrix. The overlying
aggregate with low melt fraction and high concentration
of grain boundaries acts like a sponge and retains melt.
In the steady state, negative buoyancy of a dense melt is
balanced by the interfacial tension, given by

∂
∂y

ðv Vð/ÞÞ ¼ R
n
: ð25Þ

The effect of interfacial tension is modulated by the
parameterξ defined in Eq. (17). Three different normalized
solutions to Eq. (25) for R=−0.1 corresponding to three
different values of ξ are plotted in Fig. 9. The interfacial
tension on the grain–melt interfaces is negligible com-
pared to the tension on grain–grain interfaces. The
thickness of the melt-rich boundary layer is higher for
larger values of ξ, indicating that a larger amount of melt is
retained in tubules in the matrix in the presence of a strong
interfacial tension, corresponding to a large ξ.

Two geologically relevant parameters that control the
value of ξ are grain size and the matrix viscosity (through
the matrix compaction length). Therefore the steady state
thickness of the partially molten boundary layer is also
modulated by these two quantities. In the Earth's mantle,
orders of magnitude variations in grain size and viscosity
can arise from variations in temperature, phase change, or
the presence of volatiles. Consequently, the steady state
thickness of the dense, melt-rich layers will also show
substantial variation corresponding to these variations.
5. Conclusion

In conclusion, our results demonstrate that in
partially molten aggregates with low dihedral angles,
interfacial tension on the grain boundaries controls the
melt distribution. Three distinct processes of melt
redistribution, self-separation, homogenization, and
retention can operate depending on the amount of melt
present. Capillary tension on matrix grain boundaries
retains the melt from an ascending buoyant pulse of
magma, thus reducing the efficiency of melt extraction.
Grain boundary tension also prevents simple gravita-
tional settling of a heavy melt into a thin completely
decompacted layer, and gives rise to a thicker boundary
layer.
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Appendix A. Melt fraction dependence of total
interfacial tension

In this section we present a simple 2D micromecha-
nical model relating the total interfacial tension to the
melt fraction.

For melt fractions below a critical level, ϕs, both
solid–solid and solid–liquid interfaces contribute to the
total interfacial tension. The schematic diagram in
Fig. A.1(a) illustrates the melt distribution on the
surface of a control volume, and the shaded region
depicts the unit cell for melt fraction less than the
disaggregation melt fraction. The total interfacial
tension per unit volume χ can be expressed as

v ¼ rmmamm þ rmfamf ; ðA:1Þ

where σi and αi are the interfacial force and interfacial
area per unit volume of the interface i, respectively. The
quantity αi has the dimension of reciprocal of length, see
also [11] for the definition of α. The semidihedral angle
θ, subtended by the tangent to the solid–liquid interface
to the grain boundary is a material property, related to
the ratio of the solid–solid and solid–liquid interfacial
tensions, given by

h ¼ arccos
j
2
; ðA:2Þ

where κ=σmm/σmf. The melt can reside in the tubules
along grain edges for 0°≤θ≤90° or 2≥κ≥0. For κ>2
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or θ<0°, grain boundaries are energetically unstable and
are readily wetted by the melt. Eq. (A.2) is a modified
form of Young's equation, see [9,10] for a more detailed
derivation. The volume fraction of melt can be expressed
as a function of the radius of curvature r of the solid–
liquid interface and the semidihedral angle θ as

/ ¼ r
a

� �2
cos2h−sinhcosh−

p
4
þ h

� �
; ðA:3Þ

where a is the size of the unit cell, which is one-fourth of
the average grain size. It is also possible to express αi as a
function of r, θ, and a, and using the relation given in Eq.
(A.3), as a function of ϕ. The expressions for αi become,

amf ¼ a0v1
ffiffiffiffi
/

p
; ðA:4Þ

and

amm ¼ a0 1−v2
ffiffiffiffi
/

p� �
; ðA:5Þ

where α0=1 /a is the volume fraction of grain boundary
or solid–solid surface area at ϕ=0, and the constants χ1
and χ2 are given in Eqs. (A.7) and (A.8). The expressions
in Eqs. (A.4) and (A.5) indicate that the solid–liquid
interfacial area increases with an increase in the melt
fraction while the solid–solid interfacial area decreases
with increasing melt fraction. Finally, we combine Eqs.
(A.1), (A.4), and (A.5) to obtain

v ¼ a0 rmfv1
ffiffiffiffi
/

p
þ rmmð1−v2

ffiffiffiffi
/

p
Þ

h i
; for / < /s ðA:6Þ

where

v1 ¼
j p2 −2hjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2h−sinhcosh− p
4 þ h

p ; ðA:7Þ

and

v2 ¼
jcosh−sinhjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2h−sinhcosh− p
4 þ h

p : ðA:8Þ

At the disaggregation melt fraction ϕs, the grain
boundaries are completely wetted, i.e. at ϕ=ϕs, αmm=0
in Eq. (A.5), yielding,

/s ¼
1
v2

� �2

: ðA:9Þ
At melt fractions greater than the disaggregation melt
fraction, evolution of the solid–liquid interfacial area
can be described by the area of cylindrical grains
shrinking uniformly with increasing melt fraction. The
diagram in Fig. A.1(b) indicates that under this situation,

/ ¼ 1−
p
4

r
a

� �2
; ðA:10Þ

while

amf ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1−/Þ

p
: ðA:11Þ

Plugging Eq. (A.11) back into Eq. (A.1), one obtains

v ¼ rmfa0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1−/Þ

p
for / > /s: ðA:12Þ

The schematic diagram in Fig. A.1(a) illustrates a
case where the curvature of the fluid interface is concave
toward the solid grain, indicating θ<π / 4. However, the
relations given in Eqs. (A.4) and (A.5) are also valid for
θ>π / 4, when the solid–liquid interface is convex
towards the solid grain.

Appendix B. Energy conservation

Following [11,20], the total energy balance for a two-
phase aggregate is given by:

qc
DT
Dt

þ D̃ðniaÞ
Dt

¼ Q−∇dqþW−DP
D̃�
Dt

þ ðra−niaÞ∇d ṽ;
ðB:1Þ

where the material derivatives D=Dt and D̃/Dt are
averaged over the matrix and the fluid material
derivatives as defined in [11,20]. The quantity ξi is the
energy per unit of the interfacial area of the control
volume. We define this quantity as

ni ¼ rð/; TÞ−T ∂rð/; TÞ
∂T

; ðB:2Þ

where σ is the average surface tension per unit area of the
control volume. We also define α(ϕ) as the interfacial
area in one unit of the control volume. After some
algebra, Eqs. (B.1) and (B.2) can be reduced to,

qc
DT
Dt

−T
D̃
Dt

α
∂σ
∂T

� �
−αT

∂σ
∂T

∇:ṽ

¼ Q−∇:qþΨ− ΔP þ ∂ðσαÞ
∂�

� �
D̃�
Dt

:

ðB:3Þ
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The terms on the left hand side of Eq. (B.3) are
associated with entropy production.

The mechanical work terms on the right hand side of
Eq. (B.3) can be further divided into reversible and
irreversible work. The reversible components of mechan-
ical work comprise of work done to deform the interface,
to isotropically compact or dilate the matrix, and the work
done by the interfacial pressure. Thus, the equation for
reversible work becomes [20, Eq. (20)]:

∂v
∂/

þ DP ¼ −
K0lm

/ð1−/Þ
Dm/
Dt

; ðB:4Þ

where we have defined χ=σα. In the absence of
compaction (Dmϕ) / (Dt)=0, Eq. (B.4) represents the
Laplace condition. The implication, therefore, is that
compaction or dilation is locally controlled by a departure
from the Laplace condition.
Appendix C. Analytical solution

The velocity c of an individual solitary wave can be
calculated analytically as a function of the background
melt fraction Φ0 and the amplitude Φm using the method
of characteristic variable [3], given by,

c ¼ 3R
4

� �
U1 þ U2

0ð1−U0Þ2U3

U0U3−U2

 !
ðC:1Þ

where the functions Φ1, Φ2, and Φ3 depend on Φ0 and
Φm, and are given by

U1 ¼ Um−U0 þ ln
Um

U0

� �� �
;

U2 ¼ 1
Um

−
1
U0

� �

− 2
1

1−Um
−

1
1−U0

� �
þ 3ln

ð1−U0ÞUm

ð1−UmÞU0

� �� 	

U3 ¼ 1
2

1

U2
m

−
1

U2
0

� �
þ 3

1
Um

−
1
U0

� �

− 2
1

1−Um
−

1
1−U0

� �
þ 5ln

ð1−U0ÞUm

ð1−UmÞU0

� �� 	
:

ðC:2Þ

Stable, real solitary wave solutions are permitted
only over a range of possible combinations of the
background and peak melt fractions. The shaded area in
the map in Fig. C.1 illustrates the domain of real solitary
wave solution to Eqs. (15) and (16). The velocities of the
solitary waves in the two possible branches of solution
domain are opposite in sign. The analytical solutions
were used as initial conditions to the numerical results
presented in Section 3.2.2.
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