
Geophys. J. Int. (2008) doi: 10.1111/j.1365-246X.2008.03844.x

G
JI

T
ec

to
ni

cs
an

d
ge

o
dy

na
m

ic
s

Plate generation and two-phase damage theory in a model
of mantle convection

W. Landuyt,1 D. Bercovici1 and Y. Ricard2

1Department of Geology and Geophysics, Yale University, New Haven, CT, USA. E-mail: william.landuyt@yale.edu
2Laboratoire des Sciences de la Terre, CNRS, Ecole Normale Superieure de Lyon, Lyon, France

Accepted 2008 May 6. Received 2008 February 2; in original form 2007 June 1

S U M M A R Y
The formation of narrow, rapidly deforming plate boundaries separating strong plate interiors
are integral components of the generation of plate tectonics from mantle convection. The
development of narrow plate boundaries requires the interaction of a non-linear rheology and
convection. One such non-linear rheology is two-phase damage theory which employs a non-
equilibrium relation between interfacial surface energy, pressure and viscous deformation,
thereby forming a theoretical model for void generation. Two-phase damage theory was
recently extended to allow for deformational work to increase the fineness (reduce the grain
size) of the matrix phase. We present results testing two-phase damage theory in a 2-D
convectively driven system where we allow for (1) pure void-generating damage, (2) pure
fineness-generating damage and (3) combined void- and fineness-generating damage. Pure
void-generating damage is found to be unsuccessful at producing plate-like features. Fineness-
generating damage is successful at inducing plate-like behaviour in certain circumstances,
including increasing viscosity sensitivity to fineness and certain regimes of damage input and
healing rate. Cases with combined void- and fineness-generating damage produce significantly
more localization than the end-members due to the apparent increase of deformational work
input into fineness generation. The interaction of microcracks and grain size reduction in
two-phase damage theory suggests a rheological model for shear localization necessary for
the formation of plate tectonic boundaries.
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1 I N T RO D U C T I O N

Plate tectonics is the unifying theory of geology, yet much remains
to be understood about the development of plate tectonics on Earth
as well as its absence on the other terrestrial planets (Bercovici et al.
2000). Plate tectonics on Earth has been determined to have been
in operation for at least two billion years and may well have been
in operation much earlier (Cawood et al. 2006). These observations
place an important constraint on numerical models in that Earth-
like simulations of plate motion must be non-sporadic and long-
lasting. The collection of studies labelled as plate generation refer
to the attempt to understand how plate tectonics (or the surface
manifestation of mantle convection) arise self-consistently within
planetary convection, as opposed to viewing plate tectonics and
planetary convection as separate entities. One of the most prominent
features of plate tectonics that plate generation studies attempt to
address is the existence of broad, strong plate interiors with weak,
rapidly deforming boundaries (Weinstein & Olson 1992; Moresi &
Solomatov 1998). The rapidly deforming boundaries tend to be very
narrow features and are synonymous with shear localization. Also,
the existence of strike-slip boundaries and toroidal motion remain

some of the most challenging features for plate generation studies to
explain (Bercovici 2003). Initiation of subduction (King 2001) and
the creation of passive ridges (Ricard & Froidevaux 1986; Tackley
2000b) are also vital aspects of plate tectonics to be understood.

The features of plate tectonics discussed above imply that the
plates do not deform according to a simple Newtonian rheology.
Experimental work on upper mantle rocks has shown that a signif-
icant portion of the upper mantle deforms according to dislocation
creep with a power law of approximately three (e.g. Karato & Wu
1993). Incorporation of non-Newtonian rheologies into plate gen-
eration studies has not shown a significant improvement in gener-
ating plate-like behaviours, especially in producing toroidal motion
(Christensen & Harder 1991; Weinstein & Olson 1992; Bercovici
1993, 1995). Implementation of more exotic rheologies (e.g. stick-
slip rheologies) has had more success at generating plate-like be-
haviour (Bercovici 1993; Tackley 1998, 2000b), but the relevance of
such rheologies to the actual lithosphere is questionable (Bercovici
2003). The longevity of plate boundaries (and their ability to be
reactivated) implies that the low viscosity zone that constitutes
the boundary is a time-dependent quantity that only decays after
very long times (Gurnis et al. 2000). Therefore, tracking the time

C© 2008 The Authors 1
Journal compilation C© 2008 RAS



2 W. Landuyt, D. Bercovici and Y. Ricard

evolution of the viscosity (or its controlling parameter) is impera-
tive for plate generation studies. Previous studies have attempted to
incorporate a time-dependent damage parameter (e.g. void or defect
creation) to induce severe weakening in the plate that would address
some of the deficiencies of the previous models (Bercovici 1998;
Tackley 2000b; Auth et al. 2003; Ogawa 2003). These models have
been able to generate narrow shear zones, but the connection be-
tween the assumed damage parameter and the underlying physics of
damage creation is often prescribed rather than derived (Bercovici
2003).

Two-phase dynamics has been richly studied in geophysics,
with many people considering its application to problems in melt-
dynamics (McKenzie 1984; Spiegelman 1993a,b; Katz et al. 2006).
Two-phase damage theory was developed in order to take a first-
principles approach to studying the partitioning of deformational
work into both dissipative heating and the generation of surface
energy (Bercovici et al. 2001a). The generation of surface energy
represents internal damage within the medium, and the manifesta-
tion of surface energy in the medium is through the creation and/or
expansion/dilation of voids. Two-phase theory is, therefore, devel-
oped in order to track both the rock and void phases. Since voids
are suggested to represent damage or weakness in the material,
tracking the voids essentially boils down to tracking the damage in
the system. The theory was generalized to allow for deformational
work to go into generating fineness (grain size reduction) in the rock
phase (or essentially pulverizing the rock) in addition to void gen-
eration, and pulverizing the rock acts to create more surface energy
in the medium (Bercovici & Ricard 2005). This theory avoids the
rather nebulous approach of assuming that damage exists as some
state variable without discerning how the damage is manifested
in the system. An important question to ask though is how these
manifestations of damage are related to the observed microphysics
of damage. Void generation or Mode I cracks are well observed
in brittle behaviour (and possibly brittle–ductile behaviour) at low
pressures (Kohlstedt et al. 1995). At greater depths (∼15–18 km)
the overburden pressure acts to suppress rock dilation (Kohlstedt
et al. 1995), so the relevance of void generating damage to mid to
deep lithospheric depths is of questionable importance (unless these
voids were somehow filled with fluid which seems difficult given
the petrologically inferred lack of water in the lithosphere). The
relevance of grain size (and specifically the reduction in grain size)
to the rheological properties of rocks and shear localization is well
demonstrated (Karato 1983; Jin et al. 1998). The cause of reduction
in grain size is generally associated with dynamic recrystallization
(Karato et al. 1980). The relation between deformational work par-
titioning into grain size reduction in the two-phase damage theory
and the microphysics of dynamic recrystallization is not currently
understood and remains an important and essential consideration
for understanding this type of damage (Bercovici & Ricard 2005).
Two-phase damage theory was recently incorporated by Bercovici
& Ricard (2005) into a simple source-sink flow to determine the
efficacy of both void and fineness generating damage to produce
plate like flow (solid body translation, toroidal motion) in a 2-D
sheet. Their results showed that fineness generating damage was
very successful at generating plate like flow, while void generating
damage merely enhanced the dipolar source-sink flow field and was,
therefore, highly unplate-like (Bercovici & Ricard 2005).

In this study, we will extend the previous work done on two-
phase damage theory (Bercovici et al. 2001b; Ricard et al. 2001;
Ricard & Bercovici 2003; Bercovici & Ricard 2003, 2005) by in-
corporating two-phase damage physics into a coupled plate-mantle
model that is convectively driven. Our model formulation attempts

to add another level of sophistication to previous work, but is still
obviously a simplification of fully variable viscosity convection
and hence convection in Earth. Our goal though is to ascertain the
general plate behaviours (i.e. narrow boundary zones separated by
rigid plate interiors) of two-phase damage theory in a convective
system were we assume that the rheology is controlled by a single
strong layer in the lithosphere. A simple but important addition to
the evolution equation for fineness (inverse grain size) is added to
the theory by the incorporation of a healing term. Healing in the
fineness equation is representative of coarsening or grain growth in
a poly-crystalline rock and is a well studied phenomena in Earth
materials and in general (Karato 1989). One expects that increas-
ing the fraction of deformational work which goes into generating
damage as well as increasing the sensitivity of viscosity to grain
size will allow for greater shear localization. In contrast, we expect
that increasing the healing parameter will result in moderating the
amount of localization within the lithosphere but potentially allow
for a strengthening of the plate interior with respect to the bound-
aries. While we do find that increasing the sensitivity of viscosity
to grain size results in greater shear localization, the effect of in-
creasing the healing parameter and fraction of deformational work
stored as damage exhibits some behaviours different than expected.
We also develop a series of scaling analyses for how the convergent
and divergent boundary widths depend upon the model parameters
and what damage inputs control the boundary behaviour. Scaling
analyses are useful guides for exploring parameter space and un-
derstanding the different localization behaviours demonstrated by
the numerical experiments. In this study, we will inspect the abil-
ity of both void and fineness generating damage in a convectively
driven system to produce Earth-like features and determine what
implications this may have for plate tectonics on Earth.

2 M O D E L F O R M U L AT I O N

The goal of this paper is to determine the effectiveness of different
damage formulations in producing plate-like flow in a 2-D convec-
tively driven system; this will involve determining how convergent
and divergent zones as well as slowly deforming ‘plate-like’ zones
respond to the given damage parameters. To that end we will em-
ploy a lithosphere–mantle coupling model whereby a Newtonian
mantle is overlain by a two-phase damage rheology lithospheric
layer (Fig. 1); this model is similar to the formulation of Weinstein
& Olson (1992). The lithospheric layer is of constant thickness h
and is much smaller than the thickness of the underlying mantle
D, (h � D). Material which flows across the boundary between
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Figure 1. The thin sheet model employed in this study along with the
vertical viscosity profile.
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the lithosphere and mantle undergoes an instantaneous rheologi-
cal transformation to the rheological properties of the region into
which it flows. The boundary between the two regions is a no-slip
surface such that stresses transmitted from the Newtonian layer to
the lithosphere drive the flow in the surface layer. In the context
of the thin sheet approximation that will be described hereafter,
the temperature at the surface of the Newtonian mantle is assumed
to be uniform and the thin layer is isothermal. With the assumed
thermal profile of the lithosphere it follows that the top layer has no
buoyancy variations to drive flow in the model. Contrary to simi-
lar model formulations (Weinstein & Olson 1992; Weinstein 1996)
the lithosphere is recycled back into the mantle by calculating the
vertical velocity at the plate-mantle interface, this avoids the rather
unphysical situation where lithospheric material would build up at
a subduction zone and become depleted at a ridge.

2.1 Mantle convection model

In order to focus on the effect of the various forms of damage on
convection we employ a rather simple model for mantle convection,
that is isoviscous, Boussinesq, infinite Prandtl number, Rayleigh–
Benard convection. The equations for mass, momentum and energy
are

∇ · vm = 0 (1)

0 = −∇ Pm + ∇2vm + Raθ ẑ (2)

∂θ

∂t
+ vm · ∇θ − wm = ∇2θ, (3)

where the subscript m denotes variables in the mantle, and
Pm, vm, wm and θ are the mantle non-hydrostatic pressure, ve-
locity, vertical velocity and temperature perturbation, respectively
(Schubert et al. 2001). The constant Ra is the Rayleigh number
for the system. The convection equations above have also been
non-dimensionalized by x = Dx ′, t = (D2/κ)t ′, vm = (κ/D)v′

m

and P m = (μm κ/D2)P ′
m , and the primes have subsequently been

dropped. The constants D, κ and μm are the depth of the convect-
ing system, thermal diffusivity and mantle viscosity, respectively.
The above equations with the applied boundary conditions (to be
discussed later) determine the behaviour of the Newtonian mantle
in our model.

2.2 Two-phase damage theory: review and current
formulation

The two-phase damage equations originate from a series of papers
(Bercovici et al. 2001a,b; Ricard et al. 2001), with subsequent
papers refining various aspects of the theory (Bercovici & Ricard
2003, 2005; Ricard & Bercovici 2003). The equations presented
below are in the geologically applicable ‘void limit’ as discussed
in Ricard & Bercovici (2003), whereby the void phase has zero
density, pressure and viscosity.

2.2.1 Mass

The equation for mass conservation is

Dφ

Dt
= ∂φ

∂t
+ v · ∇φ = (1 − φ)∇ · v, (4)

where v is the matrix (or rock phase) velocity and φ is the porosity.
In the void limit the velocity of the void (or secondary) phase is

the same as the matrix velocity, hence we do not need to solve
independent mass and momentum equations for the void phase.

2.2.2 Momentum

The momentum equations for the matrix are

0 = −∇[(1 − φ)P − σα] + ∇ · [(1 − φ)τ ] − (1 − φ)ρgẑ, (5)

where P is the matrix pressure,σ is the surface tension, α is the
interfacial area density, τ is the deviatoric matrix stress and ρ is the
density of the matrix phase. The deviatoric stress is given by

τ = μL

[
∇v + [∇v]t − 2

3
(∇ · v)I

]
, (6)

where I is the identity matrix and μL is the top layer viscosity. The
interfacial area density has been suggested to go as

α = Aη(φ) , η(φ) = φa(1 − φ)b, (7)

where A is the inverse void or grain size (depending on the curvature
of the interface), η(φ) is a dimensionless function of porosity and
a, b are constants ≤1. The above equation satisfies the requirement
that interfacial area goes to zero at the different limits of porosity,
and simple micromechanical models have shown how A relates to
inverse grain/void size (Bercovici et al. 2001a). Following the previ-
ous formulations of the matrix rheology we assume the lithospheric
viscosity is given by

μL = μo

(
Aref

A

)m

, (8)

where Aref is a reference value for fineness and μo is reference
viscosity of the lithosphere. The viscosity exponent m is a dimen-
sionless positive constant, and here we consider a reasonable range
m (i.e. 1 ≤ m ≤ 3) assuming a grain size sensitive deformation
mechanism (e.g. diffusion creep) is in operation. Given the above
momentum equations (eq. 5) we find that the effective matrix vis-
cosity is given by

μeff = (1 − φ)μL = μo(1 − φ)

(
Aref

A

)m

, (9)

where the (1 −φ) factor in the viscosity essentially arises from the
deviatoric stress term in (eq. 5).

2.2.3 Energy

The energy equation is separated into two coupled equations which
govern the evolution of thermal energy and the rate of work done on
the interface by pressure, surface tension and deformational work
(Bercovici & Ricard 2005). The evolution of thermal energy is

(1 − φ)ρc
DT

Dt
− T

D

Dt

(
α

dσ

dT

)
− T α

dσ

dT
∇ · v =

Q − ∇ · q + B

(
Dφ

Dt

)2

+ σηkA Ap + (1 − f )�, (10)

where T is the temperature, c is the matrix heat capacity,
−bσ /dT is the interfacial entropy per unit area, q is an energy
flux vector (e.g. heat diffusion) and Q is an intrinsic heat source.
The quantity B is positive, has units of viscosity, and is related to the
bulk viscosity term in the two-phase theory of McKenzie (1984);
the term proportional to B represents irreversible work done during
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isotropic compression or dilation. Following previous formulations
for B we arrive at

B = Kμo

φ(1 − φ)
, (11)

where K is a dimensionless factor accounting for pore or grain ge-
ometry and is typically O(1) (Bercovici et al. 2001a; Bercovici &
Ricard 2005). The (1 − φ) in denominator of (eq. 11) may not be
necessary in the void limit, but the range of porosities in our study
make this term negligible anyways. The quantity k A represents the
rate of grain growth (Karato 1989) and η(φ) is a dimensionless
function of porosity (see eq. 7); the term proportional to k A rep-
resents the contribution of irreversible loss of interfacial area (via
grain growth) to the evolution of thermal energy. The exponent p in
the term proportional to k A is related to surface tension driven grain
growth which will be further elaborated on later in this section. The
viscous deformational work is given by

� = (1 − φ)∇v : τ , (12)

a fraction 1 − f of which is partitioned into dissipative heating. The
evolution of energy associated with work done on the interface and
interface generation is

σ
Dα

Dt
= −P

Dφ

Dt
− B

(
Dφ

Dt

)2

− σηkA Ap + f �. (13)

Since changes in α can be manifested as either changes in porosity
or changes in inverse grain/void size we can decompose (eq. 13)
into one damage evolution equation for porosity and one for grain
size (Bercovici & Ricard 2005). The damage equation for porosity
is

σ A
dη

dφ

(
Dφ

Dt

)
= −P

(
Dφ

Dt

)
− B

(
Dφ

Dt

)2

+ fφ� (14)

and the evolution equation for fineness is

DA

Dt
= f A

ση
� − kA Ap, (15)

where f = f φ + f A must be less than one. The association of the
term proportional to k A with surface tension driven grain growth
(and hence the curvature of grains) implies a direct relationship to
the size of the grains, hence we assume the k A healing term is only
in the equation governing the evolution of grain size (eq. 15) and not
in eq. (14). The term proportional to k A in (eq. 15) acts to decrease
the fineness (or increase grain size), and decreasing fineness leads
to an increase in viscosity and, therefore, heals the damaged zone
(i.e. plate boundary). We will consider cases where both the void-
and fineness-generating damage mechanisms operate by them self
as well as in tandem with each other. The partitioning fraction of
damage in the void-generating case is given by

fφ = f ∗ (Dφ/Dt)2

γ + (Dφ/Dt)2
, (16)

where f ∗ is the maximum permissible f φ , γ controls the vari-
ability of f φ and f φ is assumed to depend on an even power of
Dφ/Dt since it must be positive definite. As previously discussed in
Bercovici et al. (2001b) and Bercovici & Ricard (2003), the above
equation for f φ precludes singular solutions of the porosity damage
equation (eq. 14) in areas of zero void growth (i.e. Dφ/Dt = 0).

The fineness generating damage equation presented in this paper
is different from its previous form (Bercovici & Ricard 2005) in
that it now explicitly contains a healing term. In the case where
fineness represents inverse grain size (the only case considered in

this paper) the healing term would be representative of coarsening
or grain growth (Karato 1989). Whether A represents inverse grain
or void size depends upon the values of a and b in (eq. 7) as
discussed previously. Similar to Bercovici & Ricard (2005) we find
that variations in these parameters do not significantly affect the
outcome of our results, and making the values of a smaller (which
puts the fineness parameter in the inverse grain size regime) are
easily offset by increasing f A. We will, therefore, associate the
fineness parameter with inverse grain size in this paper and attempt
to use constraints from grain size evolution to determine parameters
in our evolution equation.

Previous analyses that have incorporated a damage evolution
equation similar to the fineness evolution equation suggested the
association of this equation to inverse grain size as well (Tackley
2000b; Auth et al. 2003), and in both cases choose p = 1 in eq. (15).
The fineness evolution equation (eq. 15) in the absence of damage
satisfies

DA

Dt
≈ −kA Ap ⇒ 1

Ap−1
≈ (p − 1)kAt. (17)

Since we want to associate A with inverse grain size, A = 1/g, and
the evolution of grain size undergoing grain growth is often found to
vary as (kAt)

1
2 , 1

3 (e.g. Karato 1989; Evans et al. 2001) we therefore,
choose p = 3. Choosing p = 1 leads to a logarithmic integration
where the grain growth rate increases with time, while choosing
p = 3, 4 allows for grain growth to be driven by surface tension
and curvature. This simple analysis will provide the guidance for
our choice of the healing exponent in eq. (15). Therefore, the pre-
factor k A plays the role of the growth rate, which is experimentally
found to be a function of temperature (Karato 1989). As we will
discuss in the next section, temperature variations in our model
lithosphere are not included which implies that the growth rate
k A in our model is constant. The lithosphere is likely strongest at
intermediate depths (30–70 km at 100 Myr) and, therefore, choosing
a grain growth healing rate associated with this depth would be
most appropriate in the thin-sheet formulation. The first term in
eq. (15) allows for the input of deformational work to go into the
reduction of grain size and increase the surface energy in the system.
Grain size reduction in Earth minerals is experimentally found to
occur by dynamic recrystallization (Karato et al. 1980), but there
exists no complete development for the relationship between grain
size and these processes (Hall & Parmentier 2003). Our evolution
equation takes a similar form as previous studies, but we caution
that our grain size reduction term comes about from the partitioning
of deformational work between reversible and irreversible processes
and not from a model that is meant to specifically represent any one
experimentally determined grain size reduction mechanism. Recent
work by Austin & Evans (2007) has also suggested that grain size
reduction is determined by the rate of deformational work, and their
proposed evolution equation for grain size (which is very similar to
eq. 15) reproduces experimental results quite well.

2.3 Lithosphere model formulation

The thin layer that represents the lithosphere is assumed to have a
free-slip, impermeable surface on top and a no-slip interface with the
Newtonian layer. Since our lithosphere thickness is assumed small
we will employ the thin-sheet approximation to solve for the dy-
namics of this layer (England & McKenzie 1982; Wdowinski et al.
1989; Ribe 1992; Weinstein & Olson 1992; Lemery et al. 2000).
In the thin-sheet approximation, vertical gradients in horizontal
velocity are assumed negligible in comparison to the horizontal
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gradients. The thin-sheet formulation, therefore, involves determin-
ing the lithosphere’s vertically averaged horizontal velocity and the
vertical velocity at the interface with the Newtonian layer. We thus
examine the horizontal and vertical components of the momentum
equation in a vertically averaged sense. The x and z components of
the momentum equation in the lithosphere are:

0 = ∂

∂x
[σα + (1 − φ)(τxxL − P)] + ∂

∂z
[(1 − φ)τxzL ] (18)

0 = ∂

∂z
[σα + (1 − φ)(τzzL − P)] + ∂

∂x
[(1 − φ)τxzL ], (19)

where the subscript L designates that the stresses are in the thin
layer and we have neglected the buoyancy force of the top layer.
In the ẑ eq. (19) we will neglect the shear stress term since it goes
as O(h/L) (since ∂τ xz/∂x ∼ huL/L , where uL is the horizontal
velocity in the lithosphere), which implies σzzL is constant. Taking
the vertical average of both equations (and assuming the lithospheric
thickness h is constant) results in

0 = ∂

∂x

[
σ ᾱ + (1 − φ̄)

(
τ̄xxL − P̄

)] − 1

h

[
(1 − φ̄)τxzm |z=D

]
(20)

∂σzzL

∂z
= 0 ⇒ σzzL |D+h

D = 0 ⇒ [
σ ᾱ + (1 − φ̄)

(
τ̄zzL − P̄

)]
= τzzm |z=D

(21)

using the continuity of vertical and shear stress at the boundary
between the lithosphere and Newtonian layer. We define σzzL =
σ ᾱ + (1−φ̄)(τ̄zzL−P̄) to be the total vertical stress in the lithosphere,
and the subscript m refers to stresses in the Newtonian mantle.
Eq. (21) results from our approximation that σzzL is constant in the
lithosphere, hence the vertically averaged σzzL is equal to σzzL at z =
D + h (and also at z = D). To close the system of equations we also
make the approximation that the average of a product is the product
of the averages (e.g. φτL = φ̄τ̄L). The vertically averaged stress is
given by integrating eq. (6), and making use of the assumption that
the vertical velocity is zero at the top boundary; this results in

τ̄xxL = μ̄L

[
4

3

∂ ūL

∂x
+ 2

3

wL

h
|z=D

]
(22)

τ̄zzL = μ̄L

[
−4

3

wL

h

∣∣∣
z=D

− 2

3

∂ ūL

∂x

]
. (23)

The vertically averaged evolution equations for damage are

P̄ = −σ Ā
dη̄

dφ̄
− Kμo

φ̄
∇ · v̄ + F, (24)

where

∇ · v̄ = ∇H · v̄ − wL

h

∣∣∣
z=D

, v̄ = (uL, 0, wL) (25)

and

F = f ∗ (1 − φ̄)2∇ · v̄

γ + (1 − φ̄)2(∇ · v̄)2
�̄ (26)

under the same assumptions that lead to eqs (20) and (21). Sub-
stituting in the expressions for τ̄xxL , τ̄zzL and P̄ eqs (22–24) into
the momentum eqs (20 and 21) we get the following system of
equations for ∂uL

∂x and wL
h |z=D :(

am bm

−bm −am

) (
∂uL
∂x

wL
h |z=D

)
=

(
1
h

∫ x
0 (1 − φ̄)τxzm |z=Ddx ′ + τxzo − σ Āλ

τzzm |z=D − σ Āλ

)
+

(
F

F

)
, (27)

where the constant τxzo is determined using periodic boundary con-
ditions, and

am = (1 − φ̄)

[
4

3
μL + Kμo

φ̄

]

bm = (1 − φ̄)

[
2

3
μL − Kμo

φ̄

]

λ =
[
η̄ + (1 − φ̄)

dη̄

dφ̄

]
. (28)

We next consider the non-dimensionalization of the equations gov-
erning the behaviour of the lithosphere. We will employ the same
dimensional scales as used for the mantle, except that we will in-
clude an additional length scale Aref (m−1) to non-dimensionalize
the fineness (inverse grain size) in order to keep the macroscopic
length scale (D) separate from the microstructural one since they
differ by about nine orders of magnitude. Substituting the aforemen-
tioned scales into our governing equations (with the bar designating
a vertically averaged quantity subsequently dropped) results in the
following non-dimensional equations(

am bm

−bm −am

) (
∂uL
∂x

wL
h |z=1

)
=

(
1
h

∫ x
0 (1 − φ)τxzm |z=Ddx ′ + τxzo − σ̂ Aλ

τzzm |z=1 − σ̂ Aλ

)
+ μR

(
F

F

)
, (29)

where

am = (1 − φ)

[
4

3

μR

Am
+ KμR

φ

]
,

bm = (1 − φ)

[
2

3

μR

Am
− KμR

φ

]
. (30)

We have defined the following non-dimensional quantities in the
above equations as

σ̂ = σ Aref D2

μmκ
, (31)

μR = μo

μm
, (32)

where μo is the reference lithospheric viscosity. The non-
dimensional version of the mass equation is exactly the same as
the dimensional case (eq. 4), while the fineness evolution equa-
tion becomes

DA

Dt
= f AμR

ησ̂
A−m�∗ − k̂A Ap, (33)

where

k̂A = kA Ap−1
ref D2

κ
, (34)

�∗ = (1 − φ)

{
∇v : [∇v + [∇v]t − 2

3
(∇ · v)]

}
. (35)

The general scheme for solving the model system proceeds along
the following steps. (1) Solve for the velocity and stress in the New-
tonian mantle (eqs 1–2) given the current density distribution sub-
ject to free-slip bottom and no-slip top boundary conditions. (2) The
flow calculated in (1) generates a stress at the lithosphere–mantle
interface that is used to calculate the velocity in the lithosphere via
(eq. 29). (3) The lithospheric velocity is then used to drive cavity
flow in the Newtonian mantle, and the velocity and stress in the
Newtonian mantle are the sum of solutions from (1) and (3). (4) We
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6 W. Landuyt, D. Bercovici and Y. Ricard

iterate on (2) and (3) until the L2 norm of the difference between
successive iterations reaches 10−6 or less, at which point the litho-
sphere and mantle are assumed to be in mechanical equilibrium.
(E) Finally we update the temperature field in the mantle (eq. 3)
and the damage variables in the lithosphere (eqs 4 and 33) with the
equilibrium velocities determined at the end of (4). Convection in
the Newtonian mantle is solved numerically via a spectral method
that employs a Propagator Matrix method for solving Stokes flow
(Hager & O’Connell 1981) and finite difference for the temperature
equation. The cavity flow velocity field is calculated using a Prop-
agator Matrix method as well. The sensitivity of lithospheric and
convective dynamics to variations in damage parameters we will
consider in this study include varying f φ and f A, k A and m, which
are the fraction of deformational work partitioned into generating
voids and fineness, grain growth healing rate, and the viscosity
exponent for grain size sensitivity, respectively.

2.4 Scaling analysis for boundary width/strain-rate

In the study of plate generation, an important goal is the formation of
narrow zones of weakness (plate boundaries) which separate strong
plate-like interiors, especially when the analysis is confined to two
dimensions. Before proceeding with a large number of numerical
experiments it is useful to develop a scaling analysis that can guide
our exploration of parameter space as well as provide insight into
the different behaviours our numerical experiments produce. We are
interested in determining how the plate boundary widths depend
upon the free parameters in our model at steady state; to that end,
we look at the fineness evolution eq. (33) in the absence of time-
dependence:

uL
dA

dx
= f AμR

σ̂ η
A−m ε̇2 − k̂A Ap. (36)

We assume functions with the proper symmetries for the velocity
and fineness in the vicinity of the plate boundary, and then substitute
them into eq. (15) to solve for the boundary widths. We thus assume

uL = ±umax tanh(x/δ)

A = Ao exp(−x2/δ2), (37)

where the ± in the velocity equation distinguishes the relations be-
tween convergent (−) and divergent (+) zones, uL is the surface
velocity and Ao is the steady-state maximum amplitude of fineness.
The constant δ is the characteristic width for each boundary (conver-
gent and divergent) and is assumed to be equal for both the fineness
and velocity field (i.e. δ A = δv). Multiplying eq. (36) through by Am

and substituting the above functional forms (eq. 37) into eq. (36)
gives

±2umax

δ2
Am+1

o x tanh(x/δ) exp[−(m + 1)x2/δ2]

= f A

σ̂ η

μRu2
max

δ2
cosh−4(x/δ) − k̂A Am+p

o exp[−(m + p)x2/δ2].
(38)

We next integrate eq. (38) around the plate boundary over a domain
much greater than the boundary width δ. We make the assumption
that the integral of eq. (38) from [−δ/2 −L , + δ/2 + L] is approx-
imately equal to the integral with the limits (−∞, +∞) to facilitate
evaluation of the above integral (i.e. δ � L). We also approximate
tanh (x/δ) by x/δ which doesn’t produce any significant error since
the Gaussian in the relevant term decays much faster than the linear
term grows. The resultant integration of eq. (38) and organization

of terms yields√
π

m + p
k̂A Am+p

o + (∓)

√
π

(m + 1)3/2
Am+1

o

(
umax

δ

)

−4

3
μR

f A

σ̂ η

(
umax

δ

)2

= 0, (39)

with which we can estimate δ (or umax/δ, the boundary strain-rate)
in terms of our governing free parameters. The term proportional
to (umax/δ)0 in eq. (39) is associated with healing, the term propor-
tional to (umax/δ)1 is associated with advection [(−) is for divergent
and (+) is for convergent], and the term proportional to (umax/δ)2

is associated with deformational work. Solving for the boundary
widths for convergence (δc) and divergence (δd ) gives

δd,c =
±1 +

√
1 + 16

3
√

π

(m+1)3

(m+p)1/2 Ap−m−2
o μR

f A
σ̂ η

k̂A

2 (m+1)3/2

(m+p)1/2 Ap−1
o

k̂A
umax

. (40)

It is clear that eq. (40) provides a scaling law for both boundary width
(δ) and boundary strain-rate umax/δ. We focus our analysis on both
boundary widths and strain-rates for each numerical experiment
to characterize the degree and type of localization present. The
scaling analysis for δ above depends upon the steady-state fineness
amplitude (Ao), and Ao is clearly a function of the input damage
parameters.

2.5 Scaling analysis for fineness magnitude

Without including a healing term in the damage eq. (15) it is obvious
that fineness would continue to increase (i.e. grain size continues
to decrease) without bound which is an unphysical scenario. Given
that grain growth acts to increase the average grain size, even in
the presence of deformation (Karato 1983, 1989) it is important to
consider its effects on steady state fineness. We first examine how
the magnitude of fineness depends upon the damage parameters
( f A, k̂A and m), as well as consider the stability of the fineness
evolution eq. (15) to an infinitesimal perturbation. We seek the
maximum value of fineness at the boundaries where dA/dx is zero,
and advection does not affect the fineness magnitude. Expanding
the fineness field around its steady state value (Ao)

A = Ao + ε A′(t), (41)

where A′ is the perturbation fineness and ε � 1, and substituting
this into

dA

dt
= f A Am τ 2

σ̂ ημR
− k̂A Ap (42)

we determine how the stability of steady state fineness is governed
by the damage parameters. To 0th order in ε [assuming that the
stress (τ ) is constant] the steady-state fineness goes as

Ao =
(

τ 2

σ̂ ημR

) 1
p−m

(
f A

k̂A

) 1
p−m

, (43)

and to first order in ε

dA′

dt
= (m − p)k̂A Ap−1

o A′. (44)

Two interesting points can be made. First, the steady-state fineness is
predicted to be a function of the ratio of f A and k̂A, second, stability
of the steady-state to perturbations is determined solely by the sign
of m − p. The scaling above for the magnitude of the steady-state
fineness also provides a diagnostic to determine whether or not
fineness magnitudes are determined by the competition between
deformational work and healing.
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Plate generation and two-phase damage theory in a model of mantle convection 7

2.6 A note on boundary widths and the influence
of temperature

Some important points can be made regarding the results of the
scaling analysis for plate boundary widths. Convergent boundaries
are predicted to be smaller than divergent boundaries for a given
plate velocity, and this difference arises predominately from the dif-
ference in sign of the velocity field (see eq. 37). Consideration of
data from global seismicity would imply the opposite of the above
prediction, specifically that divergent boundaries are narrower than
convergent boundaries (Dumoulin et al. 1998). The difference in
boundary widths between divergent and convergent zones seen on
Earth are likely to not arise solely due to the difference in sign of
the divergence field, but it also points out the importance of temper-
ature variations in the lithosphere. The characteristic temperature
of convergent and divergent boundaries in the lithosphere is very
different, and this necessarily plays an important role for the varia-
tions in boundary widths between convergence and divergence. The
effects of horizontal variations in temperature within the plate and
their subsequent influence on viscosity are not explicitly included
in this model due to the assumed isothermal structure of the plate.
While we include the zeroth order influence of temperature depen-
dent viscosity in that μo > μm the existence of horizontal variations
in viscosity due to horizontal variations in temperature likely influ-
ences the difference between our scaling law predictions and Earth.
Inspection of the scaling law in eq. (40) suggests that allowing for
temperature variations in the lithosphere would most readily affect
the viscosity (μo) and the healing rate (k A); an increase (decrease)
in temperature would decrease (increase) viscosity while increas-
ing (decreasing) healing rate. The divergent boundary width with
temperature variations would, therefore, decrease compared to the
isothermal case and vice versa for convergent boundaries. Given
that the scaling analysis is derived by considering local variations
we could just as easily assume that μo and k A are different for
convergent and divergent boundaries. The scaling law, therefore,
seems capable of predicting boundary width variations seen on
Earth when the appropriate lithospheric temperature variations are
taken into consideration. We will discuss more later about the influ-
ence of variations in viscosity due to temperature and its inclusion
in subsequent models.

3 N U M E R I C A L R E S U LT S

We next explore numerical solutions of our model in a sampling
of parameter space. All of our convection simulations have a sim-
ple Rayleigh–Bernard heating mode, and the Rayleigh number is
106 with an aspect ratio of two for each case. We choose to use
this simple bottom heating mode in order to take advantage of the
symmetries and steady-state behaviour of this convective system.
In all cases we initiated our damage rheology calculations with
a Newtonian convection simulation that has reached steady-state.
For each set of parameters investigated (see Table 1 for list of all
parameters), we attempted to find steady-state solutions to find ro-
bust measurements of the plate characteristics (boundary widths,
concentration of deformation and rigidity of plate interiors) that
we are most interested in understanding. We also choose the litho-
spheric plate viscosity to be four orders of magnitude greater than
the viscosity of the Newtonian mantle (i.e. μR = 104). With typ-
ical values of mantle scales (μm = 1021 Pa s,σ = 1 N m−1, κ =
10−6 m2 s−1, D ∼ 106 m and Aref ∼ 103 m−1 implying a grain size
of 1 mm) the non-dimensional surface tension, σ̂ is approximately
1, and we will assume that it is throughout the calculations. When

Table 1. List of the values for the model parameters: f φ is the fraction
of deformational work that goes into void generating damage, f A is the
fraction of deformational work that goes into fineness generating damage,
m controls the sensitivity of viscosity to fineness, k̂A is the healing rate
related to grain growth and γ modulates the amount of void generating
damage.

f φ f A(×10−4) m k̂A γ

0 0.05 1.2 1 0
0 0.25 1.2 0.75, 1, 2.5 0
0 0.5 1.2 2, 2.5, 5, 10, 25, 50 0
0 0.75 1.2 2.5, 3, 3.75, 5, 7.5, 15 0
0 1 1.2 4 0
0 0.05 1.4 5 0
0 0.25 1.4 5 0
0 0.5 1.4 10, 25, 50, 100 0
0 0.75 1.4 15 0
0 0.05 1.6 5 0
0 0.25 1.6 15, 37.5 0
0 0.5 1.6 25, 37.5, 50, 100 0
0 0.75 1.6 37.5 0
0 0.05 1.8 10 0
0 0.1 1.8 20 0
0 0.25 1.8 50 0
0 0.5 1.8 75, 80, 85, 100, 200 0
0 0.75 1.8 150 0
0 0.05 2 25 0
0 0.1 2 50 0
0 0.25 2 125 0
0 0.5 2 200, 250, 375 0
0 0.75 2 375 0
0 2.5 2 1250 0
0 25 2 12 500 0
0 50–1000 2 250 000 0
0 0.5 2.5 725, 750, 1000 0
0.5 0 0 0 102, 1, 10−2, 10−4

0.4 0.1 1.2, 2 2.5, 250 10−2

0.25 0.25 1.2, 2 2.5, 250 10−2, 1, 103

0.2 0.3 1.2, 2 2.5, 250 10−2

0.1 0.4 1.2, 2 2.5, 250 10−2

the damage rheology is initiated the plate is assumed to have both
constant porosity and fineness profiles, with values of 1 per cent
and 1, respectively. The exponents (a and b) in the interfacial area
density function η(φ) (7) are chosen to be 0.5 throughout the results
section, and test cases with variations in a and b showed little to
no difference in the system behaviour from the cases with a = b =
0.5. We employ 128 gridpoints in the horizontal direction and 50
gridpoints in the vertical direction. The chosen numerical resolution
faithfully reproduced the results of test runs at higher resolutions
but at significantly reduced computational times. Since it is difficult
to glean information from numerical experiments that fail to con-
verge to a stable solution our goal is to find a range of parameters
that will produce numerically resolvable, steady-state behaviours,
while still remaining in parameter regimes that produce Earth-like
convective patterns. We will look at the following plate character-
istics: divergent and convergent boundary width (we will measure
this quantity by the full-width at half-max for the divergence field),
as well as the concentration of deformation and rigidity of plate
interiors as measured by the integrated diagnostic plateness [Pl =
(π −Pl∗)/(π − 2), where Pl∗ = (1/|u|avg)

∫ |ε̇xx |dx] as defined
by Weinstein & Olson (1992). The definition of plateness results
in a sinusoidal velocity field having a plateness of 0, and boxcar
velocity field having a plateness of 1. Looking at the individual
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8 W. Landuyt, D. Bercovici and Y. Ricard

boundary widths will provide insight into how each deformational
zone responds to model parameters, while plateness will quantify
the narrowness of the boundaries as well as the rigidity of the plate
interiors.

3.1 Void-generating damage

The void-generating damage cases are distinguished by the variation
in the parameter γ (and subsequently f φ), which primarily controls
the sensitivity of void-generating damage to the deformational work.
We examine cases for four different values of γ (102, 1, 10−2, 10−4)
with constant f ∗ = 0.5, and show the results for γ = 10−2 in Fig. 2.
Solutions for different γ display similar trends: plateness is very low
(∼1, hence deformation is spatially distributed) and similar to the
case where there is no damage (i.e. f A = f φ = 0), and porosity is
greater over ridges than in subduction zones (Fig. 2a). That voids are
generated over ridges and closed over subduction zones is indicative
of ridges and subduction zones undergoing tensional and compres-
sional environments, respectively. In the current void-generating
damage framework it seems that we are unable to generate narrow
plate boundaries and rigid plate interiors (Fig. 2b). Previous results
employing void-generating damage in simple-shear found that shear
localization occurred upon increasing γ and deformational work in
tandem (Bercovici & Ricard 2003), but in the current study the de-
formational work is approximately constant since we don’t vary the
Rayleigh number. Decreasing the magnitude of γ results in a slight
increase in the rate at which voids are generated around divergent
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Figure 2. Numerical results for case with only void generating damage. In
(a) we plot the porosity profile in the lithosphere, (b) we plot the surface
velocity profile in the lithosphere and (c) we plot the temperature field. The
parameter values are f φ = 0.5 and γ = 10−2, and at t = 0.05 the results for
surface velocity are in steady state. This example of void generating damage
is representative of all such cases where the model results are similar to the
case of a Newtonian rigid lid. The contour interval for the temperature field
is 0.1 (and will be the same contour interval for all plots of the temperature
field). The plateness (Pl) for the velocity field is 0.1.

boundaries, but this variation produces no noticeable improvement
on localization for void-generating damage. This result corroborates
the work of (Bercovici & Ricard 2005) in that pure void-generating
damage is insufficient to allow for plate-like flow. It should be noted
that Bercovici & Ricard (2005) found that void-generating damage
was specifically unable to produce significant toroidal flow which is
not relevant to this study; however both their and our results suggest
that voids in the current two-phase framework do not allow for the
types of plate boundary behaviour seen on Earth. A possible way to
improve the plate-inducing capabilities of void-generating damage
would be to change the sensitivity of viscosity to porosity. This was
done in Bercovici & Ricard (2005) by specifying that the viscos-
ity undergoes a sharp drop when porosity goes above some critical
value, and Katz et al. (2006) employed a viscosity exponentially
dependent on porosity. While these different viscosity formulations
had varying degrees of success for the given model, we will not
explore variations on the porosity sensitivity to viscosity since it is
unclear of the relevance of the previous formulations to our study
and a more appropriate form is unknown at this time.

3.2 Fineness-generating damage

The fineness generating cases are distinguished by the variations
in the parameters m, f A, k̂A (see eq. 17). The healing exponent is
assumed constant at p = 3 throughout to reduce the number of
variables under consideration in this study. In the fineness evolution
eq. (33) the variables f A and μR multiply each other and can be
treated as a single variable. Most of the results we present in the
following sections are for 0 ≤ f AμR ≤ 1, and since μR = 104

this implies 0 ≤ f A ≤ 10−4. As we show in the following sections
the steady state results are not highly dependent upon the absolute
magnitude of f AμR . Therefore, we can map out the general plate
generating behaviours of our model at smaller values of f AμR , but
at reduced computational times compared to calculations at larger
f AμR . Our results also suggest that f A is not required to be large
in order for significant amounts of localization to be generated.

3.2.1 Variations in f A

We consider variations in f A (which represents the partition of
work towards fineness inducing damage) at constant values of k̂A

(healing rate) and m (viscosity exponent for grain size sensitiv-
ity). Increases in f A result in increases in the plate mobility (de-
fined as the ratio of plate velocity to rms velocity of the mantle)
and boundary strain-rate (uL/δd,c), while the boundary widths and
plateness remain fairly constant and insensitive to changes in f A,
which is somewhat unexpected. These results imply that the fraction
of deformational work that goes into fineness-generating damage
is important for providing the reduction in strength (or increase
in strain-rate) necessary for plate boundary lubrication, but con-
tributes little to the localization of deformation. In Fig. 3, we show
the fineness and surface velocity fields for m = 1.2, k̂A = 2.5 and
f A = (0.05–0.75)10−4. At f A = 0.05 × 10−4 the fineness field
shows a small perturbation above the baseline value (of 1) and the
associated boundary width is relatively small (see Figs 4c and e).
As we increase f A the maximum values of fineness increase as
expected (Ao ∼ ( f A/k̂A)1/(p−m)) and there is a slight broadening
of δc (see Fig. 4c). The convergent boundary width δc calculated
at f A = 0.05 × 10−4 is smaller than at larger f A in Fig. 3, and
we can easily see that as f A is reduced the variations in the fine-
ness field get smoothed out until they disappear at f A = 0. The
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Figure 3. Variations in surface velocity and fineness for variations in f A

with k̂A = 2.5 and m = 1.2.
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Figure 4. The range of plate-like behaviours observed (+, with connecting
dashed lines) and predicted (solid lines) from our study for the case of
variations in fineness inducing damage characterized by f A . (a) Plateness
versus f A , (b) Plate velocity versus f A , (c) Convergent boundary width
versus f A , (d) Convergent boundary strain-rate versus f A , (e) Divergent
boundary width versus f A and (f) Divergent zone strain-rate versus f A .

divergent boundary widths in Fig. 4(e) display less systematic be-
haviour as a function of f A than the convergent boundary widths,
and in Fig. 3 appear to not change significantly. The increase in
strain-rate as f A is increased, therefore, comes about due to the
increase in uL at approximately constant δc,d (Figs 4d and f). Since
increasing the fraction of fineness inducing damage does nothing to
increase the rigidity of the plate (and δc,d ≈ constant) the plateness
remains approximately unchanged. Increasing the fraction of defor-
mational work that goes into the generation of fineness damage at
constant k̂A and m, therefore, does not seem to improve the plate
characteristics in any dramatic fashion contrary to previous consid-
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Figure 5. The above plot shows the behaviours in boundary widths for
variations in f A with the healing rate k̂A kept constant for viscosity exponent
m = 2 and two different healing rates. The grey inset is for k̂A = 250 and
the other plot is for k̂A = 2.5 × 105, but the axes are the same for both
plots. For both healing rates we find that at small values of f A (where small
depends upon healing rate) the system is in a stagnant lid regime. Further
increases in f A forces the system to an episodic regime followed by a region
characterized by stable plate behaviour. Increases in f A beyond the steady
state regions results in numerically unresolvable phenomena.

erations (Auth et al. 2003; Bercovici & Ricard 2005). However, in
Bercovici & Ricard (2005) they looked at variations in f A/σ (with
the surface tension σ assumed small) and were possibly able to al-
low for more significant localization, though they primarily looked
at generation of toroidal motion without characterizing boundary
width variations. This study suggests that variations in the amount
of fineness generating damage available in a convecting system at
steady state produces the same amount of localization. Fig. 5 dis-
plays the results for variations in boundary widths for variations in
f A at two different healing rates. For a given healing rate at small
values of f A the system is in a stagnant lid regime, and increases
in f A cause a transition to time dependent behaviour characterized
by episodic plate-like behaviour. Upon further increasing f A the
system enters a stable plate-like regime. For a given healing rate,
there is little variation in localization in the stable plate regime.
With that being said, increasing the fineness inducing damage char-
acterized by f A does allow for a viscosity drop that increases plate
mobility without decreasing boundary widths (and hence increasing
localization).

3.2.2 Variations in healing rate k̂A

We now consider how variations in healing rate k̂A affect the be-
haviours of convergent and divergent boundary widths (Figs 6c and
e). Our results show that increasing the healing rate (at constant
damage fraction f A and viscosity exponent m) significantly re-
duces plate velocity (Fig. 6b), has little effect on plateness (Fig. 6a),
and has varied effects on convergent and divergent boundary width
(Figs 6c and e). Increasing the healing rate leads to an increased
plate viscosity which acts to decrease the plate velocity and bound-
ary strain-rate. Convergent boundary widths show unsystematic
behaviour to variations in healing rate except when k̂A becomes
small and δc generally decreases mildly. The trends of δd for all
m values suggest that the effect of increasing k̂A initially leads to
a reduced boundary width, but when k̂A reaches a critical value
divergent boundary width begins to increase and eventually reach
an asymptote. The initial decrease in δd is consistent with our pre-
vious analysis that a decrease in the healing length scale umax/k̂A

(dominated by the decrease in umax) will lead to a reduction in δd .
Therefore, we see that an increase in healing can actually play a
role in localization of divergent boundaries by causing the reduced
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grain size at a ridge to substantially heal within a short distance
from the ridge. When the healing rate reaches the critical value,
the velocity (and boundary strain-rate) approach their small-
magnitude asymptotes. At this point the lithosphere begins to ap-
proach the properties of a stagnant lid, and hence the boundary
widths increase (divergent) or remain the same (convergent). Our
expectation that increasing healing rate would lead to a modera-
tion of localization while allowing for an increase in plate strength
seems to be partially born out. While increasing healing rate does
strengthen the plate interiors and allows for steady-state convec-
tion, it will eventually choke off surface motion and cause a rigid
lid. The transition in convective behaviours would be similar in na-
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Figure 7. Variations in velocity and fineness for different m, f A and k̂A values, but keeping f A/k̂A = constant.

ture to Fig. 5, except that stagnant lid (stable plate-like) behaviour
would be at large (small) k A instead of small (large) f A. An intrigu-
ing and surprising result is that increasing healing rate (in a specific
range) may allow for localization at divergent plate boundaries via
a reduction in the healing length scale.

3.2.3 Variations in f A and k̂A with their ratio constant

We further consider the physics of advection in plate boundary
development by maintaining fixed relative sizes of damage and
healing. The previous sections showed that increasing f A resulted
in an increase in plate velocity and boundary strain-rate, while in-
creasing the healing rate (k̂A) resulted in a decrease in plate velocity
and boundary strain-rate. Our results for constant f A/k̂A at various
values of m (note that the ratio f A/k̂A is different for each m value,
and is chosen to be the largest ratio that is numerically resolvable
(e.g. f A/k̂A for m = 1.2 is 0.25 × 10−4 while f A/k̂A for m = 2 is
0.002 × 10−4)) are shown in Figs 7 and 8. We see that plate ve-
locity remains fairly unchanged with variations in f A and k̂A while
f A/k̂A is kept constant (Fig. 8b), whereas we say umax grows with an
increasing ratio of f A to k̂A in Figs 4 and 6. Our results show that di-
vergent boundary width undergoes a decline as f A and k̂A increase
before eventually asymptoting to its minimum value (Fig. 8e). This
result again shows the phenomena discussed in the previous section
where a decrease in the healing length scale (umax/k̂A) may allow
for localization of divergent boundaries. Contrary to the previous
section though the plate velocity remains constant as k̂A goes up
and the model does not approach the stagnant lid case; therefore,
increasing f A simultaneously with the healing rate allows for di-
vergent boundaries to undergo further localization than when f A

remains small. The asymptotic value for δd is eventually controlled
by the competition between healing and deformational work when
both fineness inducing damage and healing rate dwarf the advective
component. We have already seen that convergent boundaries re-
spond somewhat negligibly to variations in f A, but here we see that
δc actually grows for increasing healing rate and fineness inducing
damage fraction (Fig. 8c). It seems that the effect of increasing k̂A

acts to distribute deformation by increasing the plate strength at old
lithosphere, while the value of f A does not contribute significantly
to weakening of the plate at subduction zones. These results again
highlight the conclusion that the combination of plate velocity and
healing may allow for narrow divergent boundaries, but increases
in fineness inducing damage characterized by f A still remain insuf-
ficient for generating narrow convergent boundaries. In Fig. 9 we
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fraction for 5 × 10−5 ≤ f A ≤ 0.1. This case is for m = 2 and constant ratio
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boundary width saturate well before f A approaches 0.1.

see the effect of increasing f A to significantly larger values (and
correspondingly k̂A) demonstrates that boundary widths still remain
saturated. Therefore, our analysis of behaviours at smaller f A dis-
plays the variations brought about maintaining constant advection
by fixing the ratio of damage to healing.

3.2.4 Variations in m

We finally consider how variations in viscosity exponent m affect
the plate-like behaviour of our model at constant values of f A and
k̂A. The results shown in Fig. 10 are for various combinations of
f A and k̂A, but all show that an increase in m results in a decrease
in boundary width for both δd and δc (Figs 10c and e), which is
expected from our scaling analysis and previous observations (Auth
et al. 2003; Bercovici & Ricard 2005). Our calculations also show
that the plateness of the flow increases approximately linearly with
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m (Fig. 10a), irrespective of the ratio f A to k̂A. Increases in the
viscosity exponent, therefore, also increase the rigidity of the plate
while also decreasing the boundary widths. As m is increased, the
boundary zone strain-rate increases dramatically (Figs 10d and f),
primarily due to the decrease in boundary width, but strain-rate
is also influenced by the corresponding increase in plate velocity.
Allowing for greater viscosity sensitivity to grain size by increasing
m, therefore, allows for significantly greater plate-like behaviours
by increasing plate velocity and plateness, while narrowing both
divergent and convergent plate boundaries.

In Fig. 11, we show the relevant plate characteristics for a case
where m = 2.5, f A = 0.5 × 10−4, and k̂A = 750 at steady state
along with its time series. The time series values of plateness, Nus-
selt number and maximum fineness show the transition from our
initial state, through the period of transient oscillations to an even-
tual steady state. The velocity field is very plate-like, with narrowly
deforming boundaries and a rigid plate interior. The value of fine-
ness at the subduction zone is approximately five, while the mini-
mum value of fineness in the plate interior is about 0.05 for a range
of fineness of about two orders of magnitude. Given our reference
grain size of 1 mm, this would correspond to a range of grain sizes
of about 200 μ m to 20 mm. While this range of values for grain size
may be possible within the Earth, we would expect the grain size in
a shear zone and plate interior to be somewhat reduced compared
to our calculated values (Evans et al. 2001). In our efforts to find
damage parameters that are able to produce plate like flows though
it is encouraging that successful results don’t require unreasonable
values of material parameters, such as grain size.

3.3 Combined void- and fineness-generating damage

In this final section we consider the combined effects of both
void- and fineness-generating damage mechanisms on plate-like
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behaviour in the model. We have so far found that void generat-
ing is insufficient by itself to produce plate like flow in the cur-
rent two-phase framework, which is in line with previous work
(Bercovici & Ricard 2005). On the other hand, fineness generat-
ing damage has shown to be successful at producing plate like
flow under certain circumstances in this study as well as previously
(Bercovici & Ricard 2005). Fig. 12 shows results for a case with
both void and fineness generating damage, the void- and fineness-
generating end member cases are presented alongside for com-
parison. Previously we found that employing a damage rheology
with only void generating damage and γ = 10−2 produced very
unplate-like flows (see Fig. 12). However, when these same pa-
rameters are employed with moderate fineness generating damage
( fφ = f A = 0.25, k̂A = 2.5 × 106, m = 2) the result is local-
ized plate boundaries and significantly more plate-like flow. The
combined case in fact becomes too localized to numerically resolve

subsequent to frames shown. The reason for the ultra localization
in this case is due to the f A/η(φ) term in eq. (15). The void-
generating damage allows for the porosity field to undergo larger
variations than when f φ = 0, and hence η(φ) is reduced in the
convergent and divergent zones. The reduction in η(φ) results in
an increase in the effective amount of fineness generating dam-
age, f A/η(φ). Physically, the reduction in η(φ) (or interfacial area
density) allows for the continued input of damage to have a more
significant impact than if the system was already heavily damaged,
since inputting deformational work into a material with little dam-
age results in a greater viscosity drop than if the material was already
significantly deformed. While our results for boundary width vari-
ations in f A (with f φ = 0 at constant k̂A and m) (Fig. 4) didn’t
show any significant localization it seems that a larger effective f A

(with f φ > 0) is capable of generating much greater plate-like flow.
When γ is increased to 103 (with the same fineness parameters)
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we eventually force the system to be similar to the case when
f φ = 0.

The results of allowing combined void- and fineness-generating
damage in our convective model is summarized in Fig. 13. For
some cases with combined forms of damage the system became
numerically unresolvable (i.e. solution became too localized before
reaching steady state), hence we choose to measure the maximum
strain-rate when the convergent boundary width was less than three
gridpoints. For each choice of m, k A and γ the plate velocity is
generally the same, so increasing strain-rate [(u/δ)max] is indica-
tive of a reduction in boundary width and hence localization. The
results show that an increase in plate-like behaviour, specifically
localization, is achieved by allowing for both forms of damage
when the fineness generating parameters by themselves are associ-
ated with stable plate-like behaviour (k̂A = 2.5 × 105, f = 0.05
and k̂A = 2.5 × 106, f = 0.5 in Fig. 13). In contrast, the com-
bination of void and fineness generating damage, when the fine-
ness parameters are associated with episodic or stagnant lid be-
haviour (k̂A = 2.5 × 106, f = 0.05 in Fig. 13), does not result
in an increase in plate localization or mobilization. Combining the
two types of damage mechanisms can result in more significant
localization, but this seems to occur only when the fineness pa-
rameters permit stable plate-like solutions. Addition of void gen-
erating damage does not enhance plate like behaviour unless the
fineness parameters allow for it. As previously discussed, increas-
ing the parameter γ acts to force the system back to the case when
f φ = 0 and decreasing γ causes the convective system to local-
ize at a faster rate. These results suggest that an interesting inter-
play between void and fineness generating damage may exist that
could facilitate shear localization within the Earth. From a mineral
physics perspective microcracks distributed in a poly-crystalline
material may act to pin grain boundaries, therefore, inhibiting grain
growth. If grain growth is stunted due to the presence of pores (by
f φ �= 0) then grain size will remain smaller and viscosity will cor-
respondingly remain small. Results from looking at natural samples
has shown that grain size reduction can lead to the formation of
brittle faults and shear localization (Jin et al. 1998). Brittle fail-
ure may lead to significant grain size reduction as well, though
the reduction process may be more related to generation of fault
gouge than grain size reduction via dynamic recrystallization or
similar processes. The interaction of brittle and ductile deformation
mechanisms remains a poorly understood rheological phenomena
from both an experimental and theoretical perspective (Kohlstedt
et al. 1995).

4 D I S C U S S I O N A N D C O N C LU S I O N

4.1 Earth-like parameters and our model

Plate generation necessitates breaking the strongest part of the litho-
sphere; we would therefore, like to know if the range of parameters
in our thin-sheet model is associated with the strongest portion of the
lithosphere [i.e. brittle–ductile transition (Kohlstedt et al. 1995)].
One way of estimating this is through the grain growth rate k A in
eq. (15). From mineral physics we know that the grain growth rate in
olivine and other minerals is highly temperature dependent (Karato
1989). The growth rate has an Arrhenius type functional form that
can be solved for temperature such that

kA = ko exp

(−H

RT

)
⇒ T = H

R ln
(

ko
kA

) , (45)

where ko is the reference grain growth rate, H is the activation
enthalpy, and R is the gas constant. Given the values of k̂A we deter-
mined to be capable of producing plate-like flows we can then get an
estimate of the lithospheric temperature controlling the rheology in
our model. Using values of k o = 10−8 m2 s−1 and H = 2 × 105 J (mol
K)−1 (Karato 1989) and k̂A = 250 –1000(2.3–9.0 × 10−21m2 s−1 in
dimensional form) for m = 2 and f AμR = 0.5 from our calculations
we arrive at a temperature range of T = 800–900 K. This range of
values for temperature will put us in the brittle–ductile regime for
most of the oceanic lithosphere. Our thin-sheet damage rheology
is, therefore, associated with the strongest region of the lithosphere,
which is what is desired in a thin-sheet model. The kinetics of grain
growth at such low temperatures might be significantly different
than eq. (45) predicts, but experimental data on single-phase grain
growth likely predict much faster grain growth than actually occurs
in the mantle due to the inhibition of grain growth by secondary
phases (Evans et al. 2001). Therefore, our temperature estimate
might be a lower limit of the temperature or depth represented by
our vertically averaged rheology.

4.2 Final thoughts

The goal of this study is to test our hypothesis that two-phase dam-
age theory will allow for shear localization leading to the develop-
ment of plate tectonics on Earth. We have employed a 2-D model
of mantle convection in order to test the plate generating capa-
bilities of two-phase damage theory. The primary characteristics
of plate tectonics on Earth that we have attempted to address in
this study include the formation of narrow boundaries at both con-
vergent and divergent zones, rigid plate interiors, and temporally
persistent plate-like velocity profiles. We have attempted to under-
stand how the different factors (i.e. advection, deformational work,
and healing) affect the rheological variables (fineness and porosity)
to produce the aforementioned plate-like features.

We have explored how each form of damage, void and fineness
generating (or grain size reducing), by itself and in tandem, can
facilitate plate-like behaviour in a convectively driven system. Our
results for void and fineness generating damage by themselves have
shown some similar consequences to separate problems as previ-
ous work (Bercovici & Ricard 2005), namely that void generating
damage was unsuccessful while fineness generating damage was
quite successful at inducing plateness in this study and toroidal
motion in Bercovici & Ricard (2005). An important part of this
study has been to understand how the range of different param-
eters that govern grain size (fineness) evolution affect the plate
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characteristics we find. We have found that increasing fineness in-
ducing damage f A (for fixed healing rate k A and viscosity expo-
nent m) does not do much to improve the plate characteristics in
our model, though allowing for void-generating damage in tandem
with fineness-generating damage dramatically changes this result.
Increases in the healing term k A can lead to an important reduction
in divergent boundary width due to the reduction in the healing
length scale. This behaviour may also be important for the forma-
tion of narrow rifts in that plate thinning under tension may allow
for significant healing outside of the failure region thereby forming
a localized rift zone. Increases in the viscosity exponent m lead to
the formation of narrow plate boundaries (both convergent and di-
vergent) as well as increases in the rigidity of the plate interior, and
the values of m explored fall within the range of values expected for
mantle rheologies (Karato & Wu 1993). These results suggest that
the mechanism of localization at convergent and divergent bound-
aries need not originate from the same process. Our model does not
incorporate the generation of melts which will strongly influence
the strength of ridges as well (Tackley 2000a,b), and melt forma-
tion obviously leads to different localization mechanism than what
affects subduction zones. While grain size sensitive creep (coupled
with crack formation) may be needed to form narrow convergent
boundaries, the generation of narrow divergent boundaries may
only need some small damage input coupled with strong healing
near the ridge. Allowing for both forms of damage causes a feed-
back mechanism which allows for the most significant localization
of plate boundaries in our study. The feedback mechanism begins
with void-generation allowing for greater variability in porosity, the
range of η(φ) (or interfacial area density) increases, which leads
to greater damage input into increasing fineness (hence reduction
in boundary viscosity), which focuses the variations in the poros-
ity field, hence completing the cycle that facilitates the formation
of narrow plate boundaries. While many studies have considered
the effect of cracking and grain size reduction on plate generation
or convection separately (Hall & Parmentier 2003; Bercovici &
Ricard 2005), our study suggests that it is the interaction of these
two forms of damage which allows for the formation of plate tec-
tonics on Earth. Further investigation into the coupling between
void- and fineness-generating damage in a depth-dependent prob-
lem, hence allowing us to follow the plate boundary formation
process in a vertical section of the lithosphere, is a necessary next
step.

While our model does include the zeroth order effect of temper-
ature on the viscosity of the lithosphere (i.e. lithospheric viscosity
is much greater than Newtonian mantle viscosity), the effect of a
laterally varying temperature on the lithospheric dynamics is an im-
portant consideration to look into for the future. A laterally variable
temperature in the plate would likely allow for the formation of even
narrower divergent plate boundaries. The area of ridge formation is
significantly warmer than assumed in the model, and including this
effect would lead to a lower viscosity as well as increase the amount
of healing in the grain size evolution equation. The viscosity of
the region of old lithosphere would be similar to the zeroth order
viscosity assumed in our model and, therefore, would likely be little
affected by allowing for lateral temperature variations.

While a thin-sheet formulation for lithospheric dynamics cap-
tures a significant component of lithospheric behaviour, allowing
for depth-dependent rheologies might allow for a wider range of
plate generating scenarios. As we noted previously the likelihood
of void-generating damage manifesting itself at mid to deep litho-
spheric depths is small, but it is entirely possible that localization in
the lithosphere may vary as a function of depth. Allowing for depth-

dependent rheologies would enable us to explore the possibilities of
fault formation and progression in a more complete manner. For ex-
ample, localization may be initiated by grain size reduction at mid to
deep lithospheric depths leading to failure at shallower depths via
void generation completing the formation of a lithospheric fault.
These considerations are an important step for future analyses, but
the current thin-sheet model does allow for a fairly comprehensive
understanding of how two-phase damage theory could facilitate the
formation of tectonic plates on Earth.
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A P P E N D I X : S C A L I N G A NA LY S I S :
P R E D I C T I O N S V E R S U S R E S U LT S

Given the extensive numerical data generated, we test how well the
scaling analyses developed in the previous sections fit the data. In
Fig. A1, we show the results of plotting Ao (the maximum steady
state value of fineness, see eq. 37) at both ridges and subduction
zones versus eq. (43) for each numerical experiment. The fit of the
data to the prediction is quite good, and indicates that our assumption
that stress (deformational work) is constant in a given environment
(i.e. divergent vs. convergent) is reasonably accurate. The slopes of
the predicted fineness magnitudes are actually different for ridges
and subduction zones owing to the fact that the second invariant of
stress between these two different regions is different. These results
suggest that the steady-state amplitude of fineness at subduction
zones and ridges is governed by the competition between deforma-
tional work and healing, and advection plays no role in determining
the amplitude.

The results of comparing our numerical data for δc/umax and
δd/umax with our scaling analysis is presented in Fig. A2(a). In
Fig. A2(b) we plot ratio of the numerical result for δc,d/umax to the
predicted value for each point in parameter space, since we expect

0.0 15.8 31.5 47.3
0.0

16.5

33.1

49.6

+
+

+
+

+

+

+
+

+
+

++

+
++

+
+

+

+

+

+++
+++

+

+
+

+
+

++++

+
+++++++++
++++++++

+
+

+
+

+

+

++
+

+
++

++++
+

+

+

+

+++
+++

+
+

+
+

+++++
+

+++++++++++++++++

Ridge

Subduction ZoneC
al

cu
la

te
d

 F
in

en
es

s

Predicted Fineness

Figure 14. The values of fineness plotted on the ordinate come from the
numerical experiments, while the values of fineness plotted on the abscissa
are from the scaling analyses eq. (43). The results from the numerical exper-
iments and the scaling analyses are for the maximum values of steady-state
fineness (Ao) in both subduction zones and ridges.

0.00 0.08 0.16 0.25
0.00

0.02

0.04

0.06

+ +
++++++++ +

+

+++++++ ++++ + +
+

+++ ++++
+

+
++++++++

++++++ +
+

+
+

+

+++ ++++ +
+

+

+++++ +
+

+

+++ +
+

+

+ ++
+

+++
+

+ +++++++
+

+
++
++ +

+

+

0 18 35 53
0.000

0.333

0.667

1.000

++++++++++++++++++++++++++++++++++++
+++++++++++

++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++

Divergent

Convergent

numerical run #

(a) (b)

Figure 15. (a) Ordinate values are boundary widths over umax (or one
over the strain-rate) that we determined from numerical experiments plotted
against the values on the abscissa which are from the scaling analyses. (b)
Ordinate values are the ratio of inverse strain-rate (δc,d/umax) for the scaling
analysis to the numerical experiments plotted against the run number. This
graph displays the constant scale that differs between the scaling predictions
and numerical experiments.

C© 2008 The Authors, GJI

Journal compilation C© 2008 RAS



16 W. Landuyt, D. Bercovici and Y. Ricard

our scaling analysis to only fit the numerical data up to some multi-
plicative constant (e.g. a geometrical factor of order 1 not included
in a scaling analysis). The fit for convergent boundaries is especially
good, but both boundaries exhibit the general features suggested by
the scaling in eq. (40) as demonstrated by the linear relationship

between the numerical experiments and analytic prediction (where
the analytic prediction has been multiplied by the constant deter-
mined in Fig. A2b). The regression line fits all of the data points to
within approximately 15 per cent which we will assume allows us
to assign some validity to the analytic expression we derived.
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