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Abstract

A classic scenario of core formation suggests that growing proto-planets are

heated by the impacts of accreting planetesimals at their surface until their

shallow layers reach the melting temperature of their metallic components or

even of the silicates. In this partially molten shell, metal and silicates differ-

entiate and the metallic phase ponds on top of the still undifferentiated inner

planet. Later a gravitational instability brings dense metallic diapirs to the

center of the planet. We test this multi-phase scenario by using a formalism

that self-consistently accounts for the presence of solid silicates, solid and liquid

iron. At each point of the mixture an average velocity and a separation velocity

of the solid and liquid phases are defined. The energy balance accounts from

the changes in potential energy associated with the segregation. We show that

core formation starts before a significant melting of the silicates, as soon as

impact heating is large enough to reach the melting temperature of the metallic

component. Segregation proceeds in a few thousand years by a runaway process

due to the conversion of gravitational energy into heat that occurs necessarily

in all undifferentiated embryos of Moon to Mars sizes. The first metallic diapirs

leave behind them a trailing conduit along which most of the further melting

occurs. The cores of large planets do not form at the end of accretion but must

result from the merging of the already differentiated hot cores of embryos.
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1. Introduction

After condensation of the first solids in a nebula, the rocky grains coagulate

near the central star to form small planetesimals (Kokubo and Ida, 1996). After

a few 100 kyrs, the distribution of planetesimals is dominated by a few tens

of moon-sized oligarchs (Kokubo and Ida, 1998). The terrestrial planets are

then built by the violent merging of these oligarchs (Canup and Asphaug, 2001)

resulting from their gravitational interactions. One of the late collision led to the

formation of the Moon (around 60 Myr (Touboul et al., 2007)). The segregation

of Earth’s core constrained by Hf–W timings has taken place with a mean age

around 30 Myr (Yin et al., 2002) before the end of the accretion (around 100

Myr).

Small planetesimals have undergone early melting events due to the pres-

ence of short period radioactivities (Carlson and Langmuir, 2000). However, a

widely accepted model initiates large scale core-mantle differentiation in plane-

tary embryos from a shallow magma ocean generated by the heat deposited by

the impacts of the accreting planetesimals (Kaula, 1979; Benz and Cameron,

1990; Tonks and Melosh, 1993; Rubie et al., 2003). In this partially molten

shell, metal and silicates differentiate and the metallic phase ponds on top of

the still undifferentiated inner planet. Later a gravitational instability brings

dense metallic diapirs to the center of the planet (Stevenson, 1990). This sce-

nario is supported by moderately siderophile element systematics (Li and Agee,

1996) and by simple physical arguments (Solomatov, 2000). However, up to

now, it lacks a self consistent physical framework that requires simultaneously

handling two components, metal and silicates, and two phases, solid and liq-

uid (in this paper we reserve the word ”phase” for the physical state, solid or

liquid, and the word ”component” for the chemical composition, metal or sil-

icate). Previous attempts to simulate numerically the segregation, have made

large simplifications, given the multi-phase non-Boussinesq mixture (i.e. where
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the density variations are comparable to the density itself) by considering it as

a single Boussinesq fluid (e.g., Höink et al., 2006; Honda et al., 1993), or by con-

sidering that the whole metal component is liquid (e.g., Golabek et al., 2008).

A number of issues remain therefore unclear, in particular, the dynamics of this

segregation, continuous or punctuated, and whether the formation started in

planetary embryos at the beginning of the oligarchic growth period or at the

late stages of accretion. In this paper, we propose an attempt to answer these

problems by using for the first time, a general multi-phase formalism that we

developed in a series of papers (Bercovici et al., 2001; Bercovici and Ricard,

2003; Šrámek et al., 2007).

2. Impact energy and core segregation energy

It has been known for a long time that two energies are relevant to the post-

impact dynamics. One is the energy buried by the impactor inside the planet

(Tonks and Melosh, 1993), the other is the gravitational energy release by the

core segregation (Flasar and Birch, 1973; Solomon, 1979).

When an impactor of mass mi strikes a planet, a fraction f1 of its kinetic

energy is buried into a domain of mass m = f2mi. The rest of the kinetic

energy is rapidly radiated away and may heat up the primitive atmosphere

(Matsui and Abe, 1986a). The two factors f1 and f2 are not well known but

have been estimated from experiments and models to be f1 ∼ 1/3 and f2 ∼ 6,

i.e., one third of the kinetic energy heats up rather homogeneously a volume 6

times larger than that of the impactor (Pierazzo et al., 1997; Monteux et al.,

2007). The volume heated by the impact shock wave is roughly spherical and is

tangent to the surface just below the impact point (Melosh, 1996). The escape

velocity of a growing planet of radius R and surface gravity g,
√

2gR, should be

indicative of the average impact velocity. We consider that the growing planet

is undifferentiated with an average density ρ̄ = φρf + (1 − φ)ρm (ρf and ρm

are the densities of metal and silicates, φ the volume proportion of metal). As

g = 4/3πGρ̄R, where G is the gravitational constant and the average density,
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the energy density transferred to the impacted planet (energy per unit mass of

the heated zone) is therefore

∆e1 =
4πf1
3f2

ρ̄GR2. (1)

This amounts to ∆e1[J kg−1] ∼ 6.4 10−2R2[km2]. For example, assuming the

iron does not melt, this corresponds to a temperature increase of 260 K for a

planet of 2000 km (all numerical values are listed in Table 1.). Alternatively, as

soon as the planet reaches 1260 km, this energy δe1 is enough to provide the

latent heat ρfφL/ρ̄ necessary to melt all the iron content of the impacted zone

(L is the latent heat of iron melting and φρf/ρ̄ the mass proportion of metal).

The segregation of a undifferentiated planet with metal volume proportion φ

and density ρ̄ = φρf +(1−φ)ρm into a core of density ρf and a mantle of density

ρm, is associated with a large change of gravitational energy (the gravitational

energy is the generalization of the potential energy when the gravity field is time-

dependent) and therefore releases the energy density (energy per unit mass of

planet) (Flasar and Birch, 1973; Solomon, 1979)

∆e2 =
4GπR2

5ρ̄

(
ρ̄2 − ρ2

fφ
5/3 − ρ2

m(1− φ5/3)−

5
2

(ρf − ρm)ρmφ(1− φ2/3)
)
,

(2)

which cancels out for the three cases when segregation is not meaningful, φ = 0

(no metal), φ = 1 (no silicates) and ρm = ρf (homogeneity). Typically for

a planet containing 25 % of metal in volume, ∆e2[K]∼ 5.8 10−2R2[km2] (see

parameters in Table 1.). Before iron melts, this increases the temperature by

∆T2 ∼ 240 K for a planetary radius of R = 2000 km.

The R2 dependences and the comparability of the impact and core segre-

gation energy densities have two consequences. Firstly, melting upon impact

is rapidly inescapable as the energy density ∆e1 brought by impacts increases

rapidly with R. Secondly, the differentiation of a given planetary volume initi-

ated by an input of energy ∆e1 is potentially able to release enough gravitational

energy, ∆e2, to melt the metal component of an equivalent undifferentiated
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volume. The first impact that induces metal melting can therefore initiate a

runaway differentiation of a planet.

3. Multiphase equations for a metal-silicate continuum

A classical averaging approach combined with symmetry arguments is used

to derive the mass, momentum, and energy equations of a mixture made of

three different interacting materials: solid silicates, solid metal and liquid metal

(McKenzie, 1984; Bercovici et al., 2001; Ricard et al., 2001; Bercovici and Ricard,

2003; Šrámek et al., 2007)(see Figure 1). The three individual materials are

considered as viscous, but the viscosities of the so called solid materials (the

silicate and metal components in the solid phase) are infinitely larger (and equal

for simplicity) than that of the liquid metal. At each point of the multiphase

continuum the metal component is either totally in the solid state or totally

liquid, but the metal can be solid in some parts of the planet and liquid in

other parts. The simultaneous presence of two very different viscosities is a

major numerical difficulty. We have not considered more complex rheologies

like viscoelasticity or viscoplasticity.

The two components, metal and silicate, in volume proportions φ and 1− φ

have properties denoted by the subscripts f and m. These subscripts are in

agreement with the previous derivation of two phase equations (Bercovici and

Ricard, 2003; Šrámek et al., 2007) although in the present paper, the metallic

phase (subscript f) is not necessarily fluid. The metal density, solid or liq-

uid, is ρf and we call ∆ρ and ∆v the differences of density and of volume

averaged velocities between the silicate and metal components, ρm − ρf and

vm − vf . At each point in space, we define both a silicate velocity vm and a

metal velocity vf that can be equal (when the metal is solid and locked in the

silicates) or different (when the fluid metal can separate from the silicates). We

non-dimensionalize lengths by the planet radius R, velocities by the two-phase

Stokes velocity |∆ρ|gR2/µm, time by τ = µm/(|∆ρ|gR), pressures by |∆ρ|gR

and temperatures by θ = |∆ρ|gR/(ρ̄C̄).

5



The density difference between metal and silicates drives the flow and the

velocity of each component vm or vf can be described macroscopically as the

superposition of an incompressible and an irrotational velocity field (Spiegelman,

1993). The average momentum equation is

−∇Π + ∇.[µ∗τ ] + φeg = 0, (3)

where eg is the vertical unit vector along gravity, τ the viscous stresses, and Π

is the average dynamic pressure. The flow is forced by the variations in metal

content φ. The minor thermal buoyancy is neglected as much smaller than the

compositional iron/silicate buoyancy. The stress tensor is simply related to the

velocity of the solid component by

τ = ∇vm + ∇T vm −
2
3
∇.vmI (4)

The silicates are incompressible but the divergence of the volume average veloc-

ity ∇.vm, is not zero(McKenzie, 1984). The viscous stresses are only supported

by the solid phase which implies that µ∗ = 1 when the metal and silicates are

solid, µ∗ = 1 − φ when the metal is liquid. The mixture viscosity therefore

decreases linearly with the volume proportion of melt. The solid matrix vis-

cosity is a very uncertain parameter. In earlier models, the deepest part of a

growing planet was supposed to be rather cold and highly viscous (e.g. Honda

et al., 1993; Senshu et al., 2002). However, these models neglected the presence

of short period radionuclides like 26Al of 60Fe that heated very significantly

the planet embryo and led to the melting of planetesimals a few million years

after the beginning of condensation (Rubie et al., 2007). Furthermore, as the

deviatoric stresses were large during differentiation, the real viscosity was likely

nonlinear (Samuel and Tackley, 2008). This leads us to use a rather low viscos-

ity for the mixture, from 1019 Pa s in the absence of liquid metal, to potentially

zero if only liquid metal is present.

In the regions where the metal is liquid it can separate from the silicates by

percolation. Percolation of a fluid phase within a solid matrix occurs when the

network of fluid pockets is connected. At low pressure, the metal does not ”wet”
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the silicates and with a too low metal content, the liquid pockets should not

connect (von Bargen and Waff, 1986). However, as soon as the metal content

reaches ∼3%, which is much lower than the average metal content of telluric

planets, connection does occur (Yoshino et al., 2003). Deformation and pressure

also favors the connection of the melt. We therefore assume that the liquid metal

is connected, and for simplicity, even at vanishing porosity.

The fluid metal obeys a Darcy-type velocity

∆v = δ2φ

(
∇[Π +

1− φ
φ

∇.(φ∆v)]− eg

)
, (5)

where δ is a compaction length. This equation assumes a permeability k of the

silicate matrix varying as k0φ
2, where k0 is a constant (see Bercovici et al., 2001).

The dimensionless compaction length δ =
√
k0µm/µf/R is another uncertain

parameter that we estimate as 0.1 in Table 1. A more general exploration of

the parameter space k0, µm, µf will have to be done in the future.

The term in 1/φ represents the resistance to compaction (Bercovici and

Ricard, 2003) equivalent to a bulk viscosity (McKenzie, 1984; Spiegelman, 1993).

In other words, Π + (1 − φ)∇.(φ∆v)/φ represents the fluid pressure acting on

the fluid phase and driving the Darcy flow, sum of the average pressure Π

and of a compaction term in 1/φ. When the temperature is below the iron

melting temperature, δ = 0, and the two phases are locked together. Notice

that the sinking of metallic droplets in low viscosity silicates (Höink et al.,

2006) with a separation velocity ∆v proportional to the density difference ∆ρ

would correspond to a simpler version of (5) (it would suppress the resistance

to compaction provided by the 1/φ term).

These two momentum equations are supplemented by two mass conservation

equations that can be written on the form

∇.vm = ∇.(φ∆v), (6)

and
Dφ

Dt
= ∇.[φ(1− φ)∆v], (7)
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where the Lagrangian derivative is with respect to the volume average mixture

velocity, φvf + (1−φ)vm. When the metal is solid, the two phases do not sepa-

rate, the common velocity of the two solid components becomes incompressible

and they are simply transported by the average flow.

The conversion of potential energy into heat is the fundamental ingredient

accounted for by the energy equation. The energy equation writes

DT

Dt
− 1
Ra
∇2T = µ∗τ : ∇vm +

(∆v)2

δ2
+

1− φ
φ

(∇.vm)2. (8)

The three sources of dissipation on the right side convert the changes of potential

energy into heat: the dissipation by viscous shear, a Darcy friction related to

the velocity difference between the silicates and liquid metal, and a compaction

term coming from the resistance of the silicate matrix to isotropic deformation.

The last two terms vanish when the metal is solid as ∆v (see (5) with δ = 0)

and thus ∇.vm (see (6)) are both zero in this case.

Latent heat is neglected as a simplifying assumption, but is likely to have a

small effect on the results. In particular, a comparison of the total latent heat

stored in the molten metal to the total sensible heat stored in the two-phase

mixture (i.e., ρfφL/ρ̄ versus ρ̄CδT ) indicates an overestimation of temperature

by δT ∼100 K. As the melting temperature of iron containing impurities is

∼60% lower than that of pure iron, this latent heat is probably overestimated

by the same amount. Neglecting latent heat, the metal is locally either totally

melted (T > Tmelt) or totally solid (T < Tmelt) depending on the temperature.

The set of multiphase equations is solved in 2D Cartesian geometry The

velocities in the five 2D mechanical equations (3), (5) and (6) are first replaced

by a representation in terms of stream function and velocity potential, then

solved by a finite volume method on a staggered grid (the numerical details and

approximations are discussed in Sramek (2007)). The two transport equations

(7) and (8) are solved with an implicit, high accuracy, shock preserving scheme

(Harten, 1983; Sramek, 2007).

A 2D Cartesian geometry is not appropriate for a self-coherent computation

of the time dependent gravity field and our mechanical equations (3) and (5)
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have assumed a uniform and constant gravity. This is an important simplifi-

cation that misses the possible formation of the core by a so-called degree 1

instability (Stevenson, 1981; Honda et al., 1993; Gerya and Yuen, 2007), where

while the metal is sinking, the undifferentiated material is simultaneously at-

tracted up and around the dense metal. A complete 3D spherical model, where

gravity will be computed from Poisson’s equation will be needed but is yet far

beyond the reach of our numerical code.

4. A model of core mantle segregation

We consider an impacted planet with an initial uniform gravity and compo-

sition (25% of iron). Its temperature resulting from the heating by short lived

radionuclides at the planetesimal stage (Carlson and Langmuir, 2000) or from

previous impacts, is T0 = 1100 K < Tmelt except in a shallow circular zone

where an impact raises the temperature above Tmelt. The radius of the heated

zone is roughly two times that of the impactor (Tonks and Melosh, 1993). The

evolution of the planet is then entirely controlled by the resolution of seven

coupled differential equations, two vectorial, (3) and (5), and three scalar, (6),

(7) and (8). The various parameters of the simulations are given in Table 1.

This evolution is so rapid that we neglect the thermal diffusion at the surface

which should, at any rate, be blanketed, at least partially, by a hot atmosphere

(Matsui and Abe, 1986b).

Figure 2 depicts several stages of segregation mechanisms from the impact

(t = 0) to the end of core formation (t ∼ 110 kyr) (see also a complete movie

of this simulation in the supplementary material). Initially, the circular zone

containing the molten metallic phase, segregates by a roughly 1-D porous com-

paction (t . 2 kyr). The metal concentration increases in a dense blob that sinks

eventually as a diapir (2-10 kyr). The gravitational energy released by the differ-

entiation is converted into heat. The light residual silicate and the dense metal

spread along the top and bottom surfaces, respectively (∼ 26 kyr). A cusp-

like channel connects the differentiated silicates to the core. This formation of
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trailing conduits has been documented experimentally(Olson and Weeraratne,

2008). New pockets of metal are formed and descend to the proto-core. At the

interface between the differentiated silicates and the remaining undifferentiated

mantle, new metallic ponds are formed (∼ 26 kyr) that trigger secondary (30-

50 kyr) and later tertiary (60-80 kyr) instabilities. After ∼60 kyr, when only

the deep mantle remains undifferentiated, the rate of release of potential energy

decreases and the erosion of the last cold undifferentiated regions occurs by ther-

mal diffusion. During the whole process, various compaction waves are visible

in both the silicates and the core (Scott and Stevenson, 1984; Hier-Majumder

et al., 2006).

The temperature evolution during segregation is depicted in Figure 3. The

dissipative heating occurs mostly along the channels trailing behind the diapirs.

The maximum temperature reached in the simulation amounts to ∼2000 K and

occurs at 40 kyr. This increase of ∼1000 K can be compared to two sim-

ple estimates. Each volume V of sinking metal releases the potential energy

∆ρV gR. An upper bound for the heating, ∆T1, can be obtained by assuming

that this energy is entirely transferred to the diapir on the form of the ther-

mal energy ρfV C∆T1. This leads to ∆T1 = (∆ρgR)/(ρfC) = 2520 K. Our

simulation suggests therefore that about 40% of the potential energy release is

dissipated within the metallic diapirs and 60% in the surrounding material. A

lower bound, ∆T2 is obtained by releasing the potential energy, on average into

the whole planet (this is equivalent, but for the Cartesian case, of the segrega-

tion energy given by (2)). On gets ∆T2 = (∆ρgR)/(2ρ̄C)φ(1 − φ) = 398 K.

During segregation the local temperature increase can therefore reach about 2.5

times of the final average temperature increase.

With the low pressures involved in this planetary embryo, the maximum tem-

peratures are enough to partially melt the silicates (the latent heat of silicate

fusion would buffer this temperature). The extent of silicate melting remains

however limited and most of the segregation occurs while the silicates are solid.

Ultimately, similar high temperatures are reached in the core and in the shal-

low mantle. As we have neglected thermal expansion, no thermal convective
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instability occurs. This is reasonable for the silicates and the undifferentiated

planet as the thermal density anomalies are very small and the segregation very

fast. Thermal convection should occur in the liquid core and homogenize its

temperature.

The fundamental ingredient of the runaway core formation predicted by our

model is the comparable magnitude and R2 dependence of the energies e1 (1),

brought by meteoritic impacts and e2, (2), by release of gravitational energy.

Although the extrapolation of 2-D modeling to 3-D spherical planets is difficult,

we observe that even small impacts suffice to trigger the core-forming instability.

We summarize different experiments in Figure 4 as a function of the normalized

radius of the impacted zone and the radius of the planetary embryo. The initial

temperature T0 in this experiment is 200 K below the iron melting temperature

which is reached by impact heating when the planet has a radius of 1762 km

(blue). For a large enough impacted zone (red), runaway core formation occurs.

If impactors are too small, the iron melted by the impact re-solidifies (pink). As

both the embryo and the impactor radii increase with time during the period

of oligarchic growth, the system evolves always in the direction of the runaway

melting instability.

This behavior can be understood by a simple physical interpretation. The

initial diapir has a radius RD and an excess temperature ∆T . By thermal

diffusion only, its maximum temperature decreases with time like T (t) = T0 +

∆T erf(RD/(2
√
κt) where κ is the thermal diffusivity. The diapir remains liquid

until the time tdiff where T (tdiff ) = TM . This defines tdiff of order

tdiff ∼
R2

D

4κ
∆T 2

(TM − T0)2
, (9)

(the error function is quasi linear for ∆T > TM − T0). Like the usual reasoning

to get the Rayleigh criterion in simple Benard convection, the instability occurs

if this diffusion time tdiff is long compared to the advection time scale tadv =

RD/v, where v is the diapir sinking velocity (i.e., if the diapir has enough time to

travel and to release gravitational energy before being thermally equilibrated).
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Using a Stokes law to estimate v,

tadv ∼
µm

∆ρgRD
. (10)

The condition tadv << tdiff corresponds to

∆ρgR3
D

4µmκ

∆T 2

(TM − T0)2
= Rc >> 1, (11)

which expresses that a dimensionless quantity akin to a Rayleigh number has

to overcome some critical value Rc. As the initial temperature increase ∆T is

proportional to the square of the planetary radius R (see (1)) and the gravity

g, to R, the condition (11) implies that the melting proceeds when

R > A

(
RD

R

)−3/8

, (12)

where A is an appropriate dimensional constant, A8 = (27Rcf
2
2C

2µmκ(TM −

T0)2)/(16∆ρπ3G3ρ̄3f2
1 ). Of course R has also to be large enough (here 1762

km) that the temperature in the impact zone is larger than Tmelt. This relation

is in satisfactory agreement with the Figure 4 (an exponent of -0.3 is observed

rather than -3/8=-0.37).

The radius at which this instability occurs is related to the initial tempera-

ture of the impacted body. However, as the temperature in the impacted zone

varies with R2, the dependence on the initial temperature is weak and it is

difficult to avoid melting before a Mars-size embryo. In all cases, we predict

a proto-core formation in an early stage of planetary evolution and at rather

low pressure (10-20 GPa) when the proto-core mass is less than 10% of that

of the present-day Earth. Most of the core mass of large differentiated planets

is added subsequent to the situation described in this paper by a still ongoing

accretion of planetesimals and of differentiated embryos.

The previous simulation assumes that the growing planetary embryo is ho-

mogeneous. There are however various indications that some planetesimals can

start melting and differentiating in the first million years of accretion due to

the presence of short period radionuclides (e.g. Rubie et al., 2007). These small

planetesimals loose their heat sources and can cool rapidly if they are not too
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large (the half-life of 26Al is only 0.75 myrs). The planetary embryos are there-

fore probably build from a mixture of solid planetesimals that have undergone

various stages of differentiation. The evolution of a growing planet embryos

made up of differentiated materials is controlled by the characteristic sizes of

the compositional metal/silicate heterogeneities. If large volumes of differenti-

ated metal were accreted (typically with radii larger than ∼ 10 km), their Stokes

velocities were large enough that they started sinking before the embryo radius

reached 2000 km. In this case the choice of an initial homogeneous composi-

tion may not be realistic. On the other hand, if the building bricks of embryos

were small planetesimals or small fragments of large planetesimals broken into

small pieces during their impacts, then no significant differentiation could have

occured without melting within the duration of a few 10 myrs expected for core

formation.

To check that the segregation scenario described in Figure 2 would remain

the same in a non-homogeneous planet embryo and with a different aspect ratio,

we performed another simulation shown in Figure 5. We choose a volume of

aspect ratio 3 and an initial composition where the metal content varies locally

between 1% and 90%, with a random distribution with exponential deviate and

an average value of 25% metal like in Figure 2. Because the initial density is not

uniform, the initial velocity is non zero, but very small, before an impact. As

soon as the impact occurs, the destabilization of the planet follows in a way very

similar to what is obtained with a uniform planet embryo (compare Figure 2 and

Figure 5). The only difference is that the initial random distribution of metal

leads to a somewhat more complex and less symmetric pattern of differentiation

controlled by the initial granularity of metal distribution.

The core formation predicted by our formalism and numerical model is sig-

nificantly different from previous scenarios (Rubie et al., 2003): it is a catas-

trophic and early event that occurs without the mid-mantle temporary storage

of metal ponds. The segregation occurs during the phase of oligarchic growth in

Moon to Mars-sized planetary embryos as soon as the iron melting temperature

is reached and while the silicates are still solid. The first diapir that crosses
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the mantle leaves a trailing conduit that connects the proto-core to the near

surface silicates across the undifferentiated material. The highest temperatures

are reached in the conduit itself that might have provided during the rest of

the accretion, an easy path for metal transport from the near-surface regions to

the core. The sinking of metal is very fast (∼10 kyr) as the flow is intermedi-

ate between a diapir and a porosity wave with silicates and metal travelling in

opposite directions (see Figure 1). The release of gravitational energy increases

the temperature both in the proto-core and in the shallow silicate mantle, and

leaves a rather cold deep undifferentiated mantle. The overheated core carries

about a half of the accretionary heat and cannot dispose of it by thermal con-

vection in the short time scale of core formation; partial melting of silicates

might have thus occurred in the deep mantle (Labrosse et al., 2007). The cores

of large planets are not the result of segregation in the large planets themselves,

but have been formed by merging the cores of already differentiated embryos.
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sion partielle, compaction et différenciation,. Ph.D. thesis, Ecole Normale

Supérieure de Lyon.

Stevenson, D. J., 1981. Models of the earth’s core. Science 214, 611–619.

Stevenson, D. J., 1990. Fluid dynamics of core formation. In: Newsom, H. E.,

Jones, J. H. (Eds.), Origin of the Earth. Oxford University Press, pp. 231–249.

Tonks, W. B., Melosh, H. J., March 1993. Magma ocean formation due to giant

impacts. J. Geophys. Res. 98 (E3), 5319–5333.

17



Touboul, M., Kleine, T., Bourdon, B., Palme, H., Wieler, R., 2007. Late forma-

tion and prolonged differentiation of the Moon inferred from W isotopes in

lunar metals. Nature 450, 1206–1209.

von Bargen, N., Waff, H. S., 1986. Permeabilities, interfacial areas and cur-

vatures of partially molten systems: Results of numerical computation of

equilibrium microstructures. J. Geophys. Res. 91 (B9), 9261–9276.
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Figure 1: Principle of the multi-phase formalism: At microscopic scale (shown in the insert),

the undifferentiated planet is either cold and made of solid silicates and solid metal (right

side), or above the metal melting temperature, Tmelt, and made of solid silicates (blue) and

liquid metal (red). This microscopic physics when averaged over continuous variables leads

to a macroscopic flow, superposition of a usual Stokes flow (white arrows) and a relative flow

that segregates the dense metal (red) from the light residual silicates (blue), within the molten

area.
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Table 1: Typical parameter values for numerical models of two phase segregation

planet radius R 2000 km

silicate density ρm 3200 kg m−3

iron density ρf 7000 kg m−3

heat capacity C 1 kJ K−1 kg−1

heat conductivity kT 3 W m−1 K−1

initial temperature T0 1100 K

iron melting temp. Tmelt 1300 K

initial metal content φ0 0.25

silicate viscosity µm 1019 Pa s

solid iron viscosity µm 1019 Pa s

liquid iron viscosity µf 1 Pa s

permeability coeff. k0 (k = k0φ
2) 4 10−9 m2

average density ρ̄ φρf + (1− φm)ρm 4150 kg m−3

gravity g = 4πGρ̄R/3 2.32 m s−2

temperature excess ∆T 258 K

temperature scale θ = ∆ρgR/ρC 4247 K

Stokes velocity scale ∆ρgR2/µm 111 km/yr

time scale µm/∆ρgR 18 yr

Darcy velocity k0∆ρgφ2
0(1− φ0)/µf 58 m/yr

Compaction length
√
k0µm/µf 210 km

Norm. comp. length δ 0.1

Rayleigh number Ra ρ̄∆ρgCpR
3/ηmkT 1010
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Figure 2: Volume fraction of metal during core-mantle segregation: The undifferentiated

planet is black, the differentiated silicates are blue, the metallic core, yellow. The initial planet

is undifferentiated (black) and its temperature T0 is below the iron melting temperature Tmelt

until the shock wave due to a meteoritic impact increases the temperature above Tmelt in a

shallow circular area. The metal segregates from silicates by a combined process of porous flow

and diapiric instabilities. When the process is initiated, the release of gravitational energy

provides enough heat to melt the whole metal component in ∼110 kyr and to produce a solid

silicated mantle (blue) and a liquid core (yellow).
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Figure 3: Temperature during core-mantle segregation: The initial temperature T0 is close to

1100 K and raised to 1400 K in the shallow impacted zone. The solid mixture (light blue) is

below the metal melting temperature Tm of 1300 K. The further release of energy along the

instability channels increases the temperature up to 2000 K (at ∼40 kyr). At the end of the

segregation, the shallow hot mantle should cool by convection while a hot proto-core remains

thermally insulated by a cold lower mantle.
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Figure 4: Regime map of the runaway instability: Various numerical experiments have been

performed by varying the radius of the impacted zone (normalized by the planet radius,

horizontal axis) and the planet radius (left axis, and consequently the temperature increase

after the impact, right axis, see (1)). For a too small planet the iron melting temperature is

never reached (blue). For a too small impacted zone (peach) the instability dies out. For large

enough planets and impactors the runaway core formation occurs until the whole proto-planet

is differentiated (red). The green and red symbol report numerical simulations that constrain

the threshold of instability (dashed line).
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Figure 5: A runaway differentiation very similar to Figure 2 is also predicted in simulations

of large aspect ratio and non uniform composition.
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