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S U M M A R Y
The differentiation of solid planets with segregation of metal from silicates happens during
the Hadean time while the planet is still growing by accretion. The separation of metal occurs
when at least the metallic phase is liquid and proceeds by a combination of transport by diapiric
instabilities and by more diffuse percolation flow. In this paper we develop a formalism derived
from Bercovici et al. that can handle simultaneously two components, silicates and metal, and
where the metal can be present both in solid and liquid states. The mechanical equations
are non-Boussinesq as the lateral density variations are of the same order as the density
itself. When the metal is solid, the metal and the silicates are locked together and we treat
their mixture as a single-phase fluid where density is function of composition (iron–silicate
proportions). When metal is liquid, it can separate from the silicates and the two phases
interact through shear stress (e.g. Darcy flow) and normal stress. The evolution of the volume
proportion of liquid iron is controlled by the difference of pressure between the solid and
liquid phases. The energy conservation equation takes into account the different mechanisms
by which the gravitational energy is dissipated as heat. The 2-D Cartesian numerical code that
we implemented to solve these equations makes use of numerical techniques that have not
been previously used in geophysical two-phase modelling; we discuss the numerical aspects
and benchmark the solutions. We present simulations of core–mantle differentiation showing
that the first impact that melts the iron phase near the surface is potentially able to trigger the
whole core–mantle segregation in a runaway phenomenon. The threshold of this instability in
terms of the impactor and planetary size and the initial planetary temperature is investigated.
The segregation of the metal occurs by a mechanism that was not suggested before and which
is intermediate between the usual diapir instability and a porosity wave. Although we cannot
explore the whole parameter space of our numerical model, we show various simulations that
clarify the role of the most important parameters, such as the solid and metal viscosities or the
depth dependence of gravity.
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1 I N T RO D U C T I O N

The Hadean time of the Earth during which the planet was simulta-
neously growing by accretion and ongoing core–mantle segregation
is poorly understood. During a few millions years after condensa-
tion of the first solids in the solar nebula, the growing planetesimals
were heated by the radioactive decays of isotopes that are now ex-
tinct such as 26Al and 60Fe (with half-lives of 0.73 and 1.5 Myr,
respectively). Silicate–metal differentiation seems to have occurred
within planetesimals at a time where these now extinct radioactiv-
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ities were delivering their heat (Carlson & Langmuir 2000; Walter
& Tronnes 2004). The chronology of core formation has been con-
strained by the 182Hf–182W parent–daughter system with a half-life
of 9 Myr. Both are highly refractory but the hafnium is lithophile
and the tungsten siderophile, so that core–mantle separation before
9 Myr generates an excess of radiogenic tungsten in the mantle.
The Earth’s mantle, with a slightly higher 182W/183W ratio than
chondrites indicates a rapid core formation but probably delayed
30 Myr after the beginning of accretion (Kleine et al. 2002; Yin
et al. 2002; Kleine et al. 2004). However, the complexities of the
final accretion by large impacts make this estimate more uncertain
than previously thought (Nimmo & Agnor 2006).

After the decay of the initial radioactivity, it is only when the
proto-planets reach a radius of a thousand kilometres that their own
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gravity becomes large enough to provide a new source of thermal
energy (Senshu et al. 2002). When the impact velocities become
larger than elastic velocities, the kinetic energy of impactors can be
released at large depth in the impacted body by the induced shock
wave (Tonks & Melosh 1993). Therefore, when an undifferentiated
planet reaches a Mars size, the impacts can induce melting and one
or more magma oceans can be formed, as was probably the case
for the Earth (Benz & Cameron 1990; Greenwood et al. 2005).
The blanketing presence of a thick atmosphere also favours the
existence of magma oceans (Matsui & Abe 1986a).

If planets grow to their final sizes in a very short time, compa-
rable to the half lives of 26Al or 60Fe, they can remain hot during
all the accretion process, with impact heating overlapping with ra-
dioactive heating. However, as small size planetesimals cool rapidly
(the cooling time of a 10-km-size planetesimal is only 1 Myr), the
terrestrial planets possibly had a cooling period where they were
growing with a moderate temperature by accretion of undifferenti-
ated or differentiated planetesimals that had already lost their heat
sources (Kaula 1979). Planets might therefore have undergone a
two-stage heating history with a first period of radioactive heating
and a few million years later a second period of surface heating.
This period of surface heating culminated by large and stochastic
impacts in the last stages of accretion (Canup & Asphaug 2001).

The scenario of magma oceans is supported by the abundances
of moderately siderophile elements in Earth’s mantle (Li & Agee
1996). In a magma ocean, the metal–silicate differentiation occurs
rapidly (Rubie et al. 2003) and a layer of liquid metal (continuous
or in the form of various metallic ponds) is formed at the inter-
face between the deep undifferentiated and rather cold inner planet
and the shallow hot silicate residue. Due to the rather large differ-
ence in melting temperature between silicates and metal (especially
when the metal contains minor components that can decrease sig-
nificantly its melting temperature; Boehler 1996), there is probably
a significant time window during which shock heating is intense
enough to melt the metallic phase but leaves the silicates in the
solid phase. The resulting dense liquid metal layer is unstable and
by a Rayleigh Taylor mechanism, can form one or numerous metal-
lic diapirs that could sink through the undifferentiated core. The
penetration of these mantle diapirs through a colder undifferenti-
ated deeper planet is poorly understood. In the form of large diapirs,
the Stokes sinking velocities appears much too slow (Honda et al.
1993). The penetration could be facilitated by the stress-dependent
viscosity that should be associated with the large deviatoric stresses
of these diapirs, by the release of potential energy increasing locally
the temperature or by hydraulic fracture (Rushmer et al. 2000).

This qualitative scenario explains how an undifferentiated planet
may evolve to an unstable stratified planet, where the temperature
decreases with depth, with a shallow layer of silicates, overlying a
liquid metallic shell, and a colder undifferentiated core. However,
it is still very uncertain how after the sinking of the first metallic
diapirs, the rest of the undifferentiated mantle is processed. Gerya &
Yuen (2007) suggest that this may happen by a rapid translation of
the undifferentiated mantle around the proto-core formed by the first
diapir. The metal of the undifferentiated deep layers could separate
by percolation. The topology of the metal phase sinking through the
mantle (droplets, connected network or large diapirs) controls
the chemical equilibrium or disequilibrium between the mantle and
the core (Karato & Murthy 1997). The surface tension between
metal and silicates does not favour the connectivity of the metallic
phase at low metallic proportion, at least at low pressure (von Bargen
& Waff 1986). However the proportion of metal was probably large
enough that the metallic pores connected anyway, mostly at great

depth where the effects of surface tension diminishes (Urakawa
et al. 1987).

It is a formidable task to test all these complex fluid dynam-
ics phenomena with realistic parameters. The Rayleigh numbers
involved in these situations, range from very large to extremely
high. If silicates are still in their solid phase, the Rayleigh number
may not be much larger than in the present-day mantle. If silicates
are melted, the Rayleigh might reach 1029 (Solomatov 2000). The
lateral viscosity variations are huge, various phases are simultane-
ously present—potentially four phases, with iron and silicates both
in their solid and liquid states, the convection is non-Boussinesq
(as the density difference between metal and silicate is comparable
to that of silicates) and self-gravitation should be accounted for (as
gravity changes drastically during core segregation; see e.g. Gerya
& Yuen 2007). All these characteristics explain why the numerical
simulations have been up to now rather simple and have involved
different aspects of diapir penetration (Honda et al. 1993; Gerya &
Yuen 2007; Samuel & Tackley 2008; Monteux et al. 2009), droplet
motions (Rubie et al. 2003) or advection of dense metallic tracers
(Höink et al. 2006).

Following our recent results (Ricard et al. 2009), we propose
a general modelling approach that uses a multiphase formalism
that can handle the simultaneous presence of solid silicate, solid
and liquid metal. We follow the results developed in Bercovici
et al. (2001) and Bercovici & Ricard (2003). The equations are
close to those proposed by McKenzie (1984) and used in various
papers (e.g. Spiegelman & McKenzie 1987; Kelemen et al. 1997;
Schmeling 2000; Šrámek et al. 2007; Katz 2008). It is however
the first time they are applied with minimal approximation in a
large-scale simulation of the core segregation.

Our model and some of the results were briefly described in
an earlier paper (Ricard et al. 2009). Here we largely extend the
presentation. We present the theoretical model in detail. The com-
putational method is thoroughly discussed and particular detail is
taken when describing the advection method for the porosity that
has not been previously used in geodynamical two-phase modelling.
Some benchmark calculations are included. Finally, we present var-
ious additional cases that were not incorporated into Ricard et al.
(2009), and discuss the effect of model parameters on the segrega-
tion dynamics.

2 A M U LT I P H A S E F O R M A L I S M

2.1 Two-phase equations: liquid metal and solid silicates

We first present the equations assuming that the metal phase is en-
tirely fluid and the silicate phase entirely solid. Later in Section 2.3,
we show that the more complex case where the metallic compo-
nent can be present in both solid and liquid states can be handled
with minor modifications. The two phases, metal and silicate, in
volume proportions φ and 1 − φ, have properties denoted by the
subscripts f and m (fluid and matrix). Each phase is incompressible,
therefore the densities ρ f and ρm are constant. The mixture is itself
incompressible and the continuity equation is

∇ · [φv f + (1 − φ)vm] = 0, (1)

where vf and vm are the volume averaged metal and silicate veloc-
ities. The porosity change is related to the difference in velocities
between the two phases, �v = vm − vf and satisfies

Dφ

Dt
= ∇ · [φ(1 − φ)�v]. (2)
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The Lagrangian derivative includes the advection by the volume
average mixture velocity v = φv f + (1 − φ)vm ,

D

Dt
= ∂

∂t
+ [φv f + (1 − φ)vm] · ∇; (3)

we use a notation where volume average quantities are denoted with
an overscript, for example, v = φv f + (1 − φ)vm , and difference
quantities by a �, for example, �v = vm − vf .

The total momentum equation for the metal–silicate mixture in
the infinite Prandtl number approximation (no inertial forces) is

−∇P + ∇ · [μ∗τm] + [φρ f + (1 − φ)ρm]g = 0, (4)

where g is gravitational acceleration and μ∗ = 1 − φ, assuming
that the molten metal cannot hold deviatoric stresses because its
viscosity is negligible with respect to that of solid silicates. We
have neglected the surface tension term in eq. (4). The matrix stress
tensor is related to the flow by

τm = μm

[
∇vm + (∇vm)T − 2

3
∇ · vmI

]
, (5)

where μm is the viscosity of the silicates, assumed constant, and I,
the identity tensor. The liquid metal is partly entrained by the matrix
but also moves through the matrix according to a Darcy equation

c�v = φ(∇Pf − ρ f g), (6)

where c is related to the permeability k(φ) and the fluid viscosity
μf by c = φ2μf /k(φ). By using the Darcy relation, it seems that
we necessarily imply that the metal percolates through a connected
network. This is not necessarily so as the eq. (6) is general enough
to even capture relative motion of isolated metal bubbles in the
silicates (see, e.g. Batchelor 1967). The relative motion between the
two phases can therefore be in agreement, through an appropriate
choice of the parameter c, with the model of interacting droplets
used by Höink et al. (2006).

The silicate and metal pressures Pm and Pf are different (and
different from the average pressure of the silicate–metal mixture
P). A micromechanical model (see, e.g. Bercovici et al. 2001)
suggests that they are related by

φ�P = −Kμm∇ · vm, (7)

where K of order 1 is related to the topology of the melt–matrix
interface and we take K = 1 in the following.

Assuming that the gravity is vertical and time-independent, the
mechanical equations can be somewhat simplified by defining a
total non-hydrostatic pressure �,

∇� = ∇P − ρmg = ∇[φPf + (1 − φ)Pm] − ρmg. (8)

A similar reduction of pressure was used by Katz et al. (2007)
(their ∇P∗ corresponds to ∇Pm − ρm g in our notation). Using this
definition of �, the total momentum equilibrium (4) becomes

−∇� + ∇ · [μ∗τm] − φ�ρg = 0, (9)

showing that the matrix motion is controlled by the variation of
silicate–metal proportion. The difference between the densities
�ρ = ρm − ρ f is negative and its magnitude is comparable to
each separate density [i.e. |�ρ| ∼ (ρm + ρ f )/2] which precludes
using the usual Boussinesq approximation valid when the density
variations are negligible compared to the average density.

Using the mass conservation eq. (1), the definition of �, (8), and
the expression of the pressure jump, (7), the Darcy eq. (6) can be
recast as

φ�v = φ2

c

{
∇

[
� + 1 − φ

φ
μm∇ · (φ�v)

]
+ �ρg

}
. (10)

The mechanical equations are supplemented by the energy bal-
ance. We assume ρ f C f = ρmCm = ρC for the heat capacities Cf

and Cm, and the energy equation is

ρC
DT

Dt
= Q + kT ∇2T + μm

1 − φ

φ
(∇ · vm)2 + c(�v)2

+ μ∗τm : ∇vm, (11)

where Q are the radioactive heat sources and kT the average coeffi-
cient of thermal conductivity. The various sources of heat related to
the flow dissipation are neglected in the usual Boussinesq approxi-
mation (Hewitt et al. 1975; Ricard 2007). However, in our case the
separation of the two phases induces a change in potential energy
dissipated as heat that must not be neglected.

2.2 Non-dimensionalization

We non-dimensionalize lengths by a length R (later identified
with a planet radius), velocities by the two-phase Stokes ve-
locity |�ρ|g0 R2/μm, where g0 is a reference gravity, time by
τ = μm/(|�ρ|g0 R), pressures by |�ρ|g0 R and temperatures by
θ = |�ρ|g0 R/(ρC). This temperature scale is related to the gravita-
tional energy that can be release by segregation (a better estimate of
the change in gravitational energy during segregation is (1/2)φ(1 −
φ)θ which cancels as expected, for single phase planets, and is only
∼10 per cent of θ , but this would made the normalization unneces-
sarily complex).

Using this scaling, we get

−∇� + ∇ · [μ∗τm] + φĝ = 0, (12)

φ�v = δ2φ2

{
∇

[
� + 1 − φ

φ
∇ · (φ�v)

]
− ĝ

}
, (13)

DT

Dt
= ∇2T

Ra
+ 1 − φ

φ
(∇ · vm)2 + (�v)2

δ2
+ μ∗τm : ∇vm, (14)

while the continuity and porosity evolution equations, (1) and (2),
remain unchanged. In (12) and (13), ĝ = g/g0 is the normalized
gravity. The other dimensionless parameters are the Rayleigh num-
ber,

Ra = ρC�ρg0 R3

kT μm
, (15)

the non-dimensionalized compaction length δ defined by

δ2 = μm

cR2
, (16)

and the viscosity of the mixture,

μ∗ = 1 − φ. (17)

2.3 From two to three phases: melting
of the metallic phase

The previous equations were presented assuming that the metallic
phase was liquid (i.e. molten) and that the viscous shear stress was
only supported by the silicate solid matrix. It is also possible to
treat the case where the metal is either liquid or solid by using a
temperature dependent interaction coefficient c such that c−1 = 0
below the iron melting temperature. Below the melting temperature,
�v (see eq. 10 when c−1 = 0), ∇ · vm (see eq. 1 when �v = 0) and
∇ · vf are identically equal to zero and the two phases are locked
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Table 1. Typical parameter values for numerical models of two phase segregation.

Planet radius R 2000 km
Silicate density ρm 3200 kg m−3

Metal density ρf 7000 kg m−3

Heat capacity C 1000 J K−1 kg−1

Heat conductivity kT 3 W m−1 K−1

Initial temperature T 0 1100 K
Iron melting temperature T melt 1300 K
Initial metal content φ0 0.25
Silicate viscosity μm 1019 Pa s
Solid iron viscosity μm 1019 Pa s
Liquid iron viscosity μf 1 Pa s
Permeability k0(k = k0φ

2) 4 × 10−9 m2

Average density ρ = φρ f + (1 − φm )ρm 4150 kg m−3

Gravity g0 = 4/3πGρ̄R 2.32 m s−2

Temperature excess �T 258 K
Temperature scale θ = �ρg0 R/(ρC) 4247 K
Stokes velocity scale �ρg0 R2/μm 111 km yr−1

Timescale μm/�ρg0 R 18 yr
Darcy separation velocity k0�ρg0φ

2
0(1 − φ0)/μf 58 m yr−1

Compaction length
√

k0μm/μ f 210 km
Normalized comp. length δ 0.1
Rayleigh number Ra 1010

together. In this case the parameter μ∗ in front of τm should become
the average normalized viscosity of the undifferentiated mixture
instead of 1 − φ, and eq. (12) becomes the usual Navier–Stokes
equation for a single-phase continuum with compositional forcing.
With �v = 0 and ∇ · vm = 0, the energy equation becomes the
usual single phase equation.

Assuming that the viscosities of the pure silicate matrix and of
the undifferentiated iron–silicate mixture in solid state are equal,
we can therefore account for the presence of molten iron by adding
to the eqs (12)–(14) the following conditions:

(1) In regions below the iron melting temperature

(i) c−1 = 0, or in non-dimensional equations δ2 = 0
(ii) μ∗ = 1

(2) In regions above the iron melting temperature

(i) c finite, in non-dimensional equations δ2 > 0
(ii) μ∗ = 1 − φ

The melting or freezing of the metallic phase are treated in a very
simplified way. At each point the metal phase is assumed to be either
completely liquid or completely solid, depending on local tempera-
ture; there is no partially molten iron. In either case φ denotes the
volume fraction of metal and it is identical to porosity when the
metal is molten; in the following we loosely use the terms porosity
and metallic volume fraction interchangeably. A unique, pressure-
independent iron melting temperature T melt = 1300 K is used
(Table 1). The densities of the solid and liquid iron are assumed
equal. This assumption is equivalent to maintaining the average ve-
locity v divergence free (eq. 1) irrespective of the physical state
of the metallic phase. Including a density difference between solid
and molten metal �ρ f would result in an additional term in (1)
proportional to �ρ f � (� being the melting rate), and hence a non-
solenoidal mixture velocity. This would greatly complicate the nu-
merical resolution of the equations. We therefore adopt the assump-
tion of no volume change upon phase change. This is reasonable as
�ρ f is at least an order of magnitude smaller than �ρ.

The melting or freezing of the iron phase should consume or
release latent heat. This energy term is neglected in the energy

eq. (14) (see Šrámek et al. 2007, for details). Neglecting the latent
heat is a crude approximation. The total sensible heat variation
is ρC�T , and the latent heat of the metal phase ρ f φL . Using
the parameters in Table 1 and taking L = 240 kJ kg−1, the latent
heat term represents an equivalent temperature difference of about
100 K. This value of latent heat of fusion L is for pure iron and
should be significantly lower for iron alloys that melt at much lower
temperature; the equivalent temperature difference may therefore
be smaller. Certainly latent heat should be included in the future,
and another variable, the volume fraction of molten iron, will have
to be included and monitored.

2.4 Numerical resolution

The set of eqs (1), (2), (12)–(14) is solved in 2-D with Cartesian
geometry. We decompose the matrix velocity vm into incompressible
and irrotational parts v1 and v2 and introduce two scalar functions
�1 and �2 such that

vm = v1 + v2 =
(

−∂�1

∂z
+ ∂�2

∂x
,

∂�1

∂x
+ ∂�2

∂z

)
; (18)

�1 is therefore the stream function of the incompressible flow and
�2 the potential of the compressible irrotational flow. The convec-
tive flow v1 is tangent to the isolines of �1, the compaction flow
v2 is perpendicular to the level lines of �2. The matrix velocity
divergence is only related to �2 through a Poisson’s equation

∇ · vm = ∇ · (φ�v) = ∇ · v2 = ∇2�2. (19)

Taking the curl of (12) and assuming uniform vertical gravity,
one gets

μ∗∇4�1 + F (�1) = −∂φ

∂x
+ G(�2), (20)

where the two operators F and G are

F (�1) = 2∇μ∗ · ∇ [∇2�1

] + ∇̃2μ∗∇̃2�1 + 4
∂2μ∗

∂x∂z

∂2�1

∂x∂z
, (21)
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and

G(�2) = 2

(
∂μ∗

∂z

∂

∂x
∇2�2 − ∂μ∗

∂x

∂

∂z
∇2�2

− ∂2μ∗

∂x∂z
∇̃2�2 + ∇̃2μ∗ ∂2�2

∂x∂z

)
, (22)

where

∇̃2 = ∂2

∂z2
− ∂2

∂x2
. (23)

The operators F and G cancel out when the viscosity μ∗ is uniform.
From �1 and �2, we compute the pressure gradient needed in

the Darcy eq. (13) that we rewrite as{
1 − δ2φ2

[
4

3
μ∗ ∂2

∂x2
+ ∂

∂x

(
1 − φ

φ

∂

∂x

)]}
φ�vx = δ2φ2Sx ,{

1 − δ2φ2

[
4

3
μ∗ ∂2

∂z2
+ ∂

∂z

(
1 − φ

φ

∂

∂z

)]}
φ�vz

= −δ2φ2(1 − φ) + δ2φ2Sz,
(24)

where the two source terms are

Sx = −μ∗ ∂∇2�1

∂z
+ 4

3
μ∗ ∂2

∂x∂z
φ�vz + ∂

∂x

(
1 − φ

φ

∂

∂z
φ�vz

)
− 2

∂μ∗

∂x

(
∂2�1

∂x∂z
− 2

3

∂2�2

∂x2
+ 1

3

∂2�2

∂z2

)
+ ∂μ∗

∂z

(
∂2�1

∂x2
− ∂2�1

∂z2
+ 2

∂2�2

∂x∂z

)
,

Sz = + μ∗ ∂∇2�1

∂x
+ 4

3
μ∗ ∂2

∂x∂z
φ�vx + ∂

∂z

(
1 − φ

φ

∂

∂x
φ�vx

)
+ ∂μ∗

∂x

(
∂2�1

∂x2
− ∂2�1

∂z2
+ 2

∂2�2

∂x∂z

)
+ 2

∂μ∗

∂z

(
∂2�1

∂x∂z
− 1

3

∂2�2

∂x2
+ 2

3

∂2�2

∂z2

)
. (25)

In (24), the driving forces of the right-hand side are related to
the density difference between the two phases (Hernlund & Tackley
2007) but also to the pressure gradients (implicitly in Sx and Sz)
that are essential to focus the liquid phase towards the regions of
matrix divergence (Spiegelman & McKenzie 1987).

In our finite difference numerical code the variables are dis-
cretized on a staggered grid where �1 is at the corners, and �2, φ

and T at the centre of the grid cells. The vertical velocities vmz, vfz

and φ�vz are evaluated in the middle of the horizontal sides, the
horizontal velocities vmx, vfx and φ�vx in the middle of the vertical
sides. This grid insures that all the spatial derivatives are second
order accurate (Patankar 1980). We start the computation with a
first guess of �2. We solve for �1 using (20) by putting all the finite
difference expressions of the operator ∇4 + F into a single large
matrix that is exactly inverted. The Darcy eq. (13) is then solved
iteratively using an alternating direction implicit method on the cou-
pled eqs (24) (iterations for the Darcy equation); as a convergence
criterion, we require that the rms value of the Darcy velocity (φ�v)
difference between two iteration steps falls below a prescribed limit
(equal to 10−9 in our calculations). The divergence of the total matrix
velocity is then computed and a new estimate of �2 is obtained by
solving Poisson’s eq. (19). This process is repeated until the conver-
gence of the mechanical equations (iterations for the Navier–Stokes
equation). Porosity and temperature are then updated from (2) and
(14) using a scheme specifically discussed in Appendix A as the ab-

sence of diffusion in the porosity equation makes the discretization
of this equation potentially unstable.

The choice of boundary conditions is somewhat problematic.
Ideally one would like to ascribe conditions directly on the average
velocity and total stresses. This would couple the boundary condi-
tions of (19), (20) and (24). For simplicity we implement separately
the boundary conditions for the incompressible and irrotational
components of vm. We use impermeable free slip conditions for
both v1 and v2, therefore for vm. In addition, the boundary is also
impermeable for the fluid phase.

The time of execution of the program can be decreased by orders
of magnitude if one assumes μ∗ = 1 (uniform viscosity approxima-
tion). In this case the term G(�2) is zero. This decouples the eq. (20)
for �1 and avoids the Navier–Stokes iterations. Moreover, the term
F (�1) in the same equation is also zero which allows to compute
and store the matrix corresponding to the inverse of Navier–Stokes
operator ∇4 just once. A more accurate approximation is to keep
a non-zero F (�1) (i.e. to account for lateral viscosity variations
in the incompressible flow) but neglect G(�1) (i.e. the coupling
between the incompressible and compressible flows). This approx-
imation also avoids the Navier–Stokes iterations but the operator,
∇4 + F , has to be computed at each time step. This approxima-
tion is very similar to that done by Schmeling (2000) and we use
his terminology of ‘compaction Boussinesq approximation’. The
approximations are summarized as follows:

Full solution

(i) Both F (�1) and G(�2) are kept.
(ii) μ∗ = 1 − φ

(iii) The solutions of �1 and �2 are coupled, and the matrix of
the operator ∇4 +F has to be calculated several times in each time
step until the combined solution for �1 and �2 converges.

Compaction Boussinesq approximation

(i) G(�2) is put equal to zero, but F (�1) is kept.
(ii) This corresponds to writing μ∗τm = μ∗

1τ 1 + μ∗
2τ 2, where

τ 1 = τ 1(v1) and τ 2 = τ 2(v2), in the momentum eq. (12) and the
energy eq. (14), with μ∗

1 = 1 − φ and μ∗
2 = 1. In other words,

the lateral viscosity variations are accounted for in the incompress-
ible flow, but the compressible flow is computed with a uniform
viscosity.

(iii) The solutions of �1 and �2 are decoupled, but the matrix
of the operator ∇4 +F has to be calculated once for each time step
because F , which depends on ∂μ∗

1, evolves.

Uniform viscosity approximation

(i) Both F (�1) and G(�2) are put equal to zero.
(ii) This corresponds to having μ∗ = 1.
(iii) The solutions of �1 and �2 are decoupled, and the matrix

of the operator ∇4 + F is only calculated once.

2.5 Benchmark of the code

Most crudely viewed, the numerical resolution consists of repeating
two principal steps. The first step is solving the momentum equa-
tions for the velocity fields with a given porosity and temperature.
The discretization of the dynamical equations is second order in
space. Accordingly, we verified that the accuracy of the solution
increases linearly with the square of the mesh size. The second step
is the advancement of porosity and temperature in time, which we
discuss in Appendix A.

We also check the global energy budget of our simulations.
With the impermeable, free-slip condition on the boundary of the
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calculation domain (v f · n̂ = 0, vm · n̂ = 0, vm · τm · n̂ = 0, where
n̂ is a vector normal to the boundary) the energy can be transferred
across the boundary only by heat conduction.

Let us consider a reference (e.g. initial) porosity and tempera-
ture distribution which give reference values for the total potential
and thermal energies. The change in total potential energy in the
calculation domain is

δ Ẽ p = −
∫

Ṽ
|�ρ|δφg0̃z dṼ , or δE p = −

∫
V

zδφ dV ; (26)

likewise the change in thermal energy is

δ ẼT =
∫

Ṽ
ρCδT̃ dṼ , or δET =

∫
V

δT dV, (27)

where δφ and δT are porosity and temperature deviations from the
reference profiles. Quantities with a tilde are dimensional, without
a tilde non-dimensionalized, δEp and δET are non-dimensionalized
with |�ρ|g0 R4 (for a 3-D domain). The integration is carried over
the entire volume.

The conservation of the total energy is then expressed as

d

dt

∫
V

(T − zφ)dV = Ra Q, (28)

where

Q =
∮

δV
n̂ · ∇T dA (29)

is the non-dimensional integrated heat flux across the outer bound-
ary δV of the calculation domain. For a thermally isolated domain
(i.e. with a boundary condition on temperature n̂ ·∇T = 0) the total
energy in the domain remains constant. For all our simulations the
global energy budget (28) is very accurately satisfied within a few
per cent (see Section 4.5).

3 C O R E F O R M AT I O N T R I G G E R E D
B Y I M PA C T M E LT I N G

We study the situation where a growing planet embryo made of
metal and silicates in the solid state, is struck by an impact that
locally brings the temperature above the metal melting temperature.
It is well known that the segregation of metal liberates a gravitational
energy per unit mass comparable to that brought by an impact. As
suggested by Ricard et al. (2009), this is potentially able to generate
a runaway instability resulting in large-scale differentiation.

When an impactor of mass mi hits a planet, it buries a fraction
f 1 of its kinetic energy into a domain of mass m = f 2mi. The rest
of the kinetic energy is rapidly radiated away and may heat up the
primitive atmosphere (Matsui & Abe 1986a). The two factors f 1 and
f 2 are not well known but have been estimated from experiments
and models to be f 1 ∼ 1/3 and f 2 ∼ 6, that is, one third of the
kinetic energy heats up rather homogeneously a volume six times
larger than that of the impactor (Pierazzo et al. 1997; O’Keefe &
Ahrens 1999; Monteux et al. 2007). The volume heated by the
shock wave that follows the impact, often called the isobaric core,
is roughly spherical and tangent to the surface at the impact point
(Melosh 1996). The escape velocity of a growing planet of radius
R and surface gravity g,

√
2gR, should be indicative of the average

impact velocity (e.g. Tonks & Melosh 1992). As g = 4/3πGρR,
where G is the gravitation constant and ρ the average density, the
energy deposited as heat in the target planet, per unit mass of the
impact core, is therefore (Ricard et al. 2009)

�E1 = 4π f1

3 f2
ρG R2. (30)

This amounts to �E1[J kg−1] ∼ 6.4 × 10−2 × (R[km])2 for a planet
of average density ρ = 4150 kg m−3 (see Table 1). For example, as-
suming the iron does not melt, this corresponds to a temperature
increase of 260 K for a planet of 2000 km, where we took the heat
capacity C = 1000 J K−1 kg−3. Alternatively, as soon as the planet
reaches 1300 km, this energy is enough to provide the latent heat
necessary to melt all the iron content of the impacted zone (25 per
cent volume iron with latent heat L = 240 kJ kg−1). The melting
temperature of pure iron is around 1800 K at atmospheric pres-
sure. This temperature is reduced in the presence of impurities to
1200–1300 K and increases under pressure (Fei et al. 1997; Agee
et al. 1995). At this temperature, the mantle peridotite is still below
its solidus (Hirschmann 2000).

The amount of thermal energy delivered by an impact can be
compared to the energy dissipated by forming the core. The grav-
itational energy Eg of a planet of density ρ(r ) and radius R is
(Solomon 1979)

Eg = −16π 2G

∫ R

0

∫ r

0
ρ(r )ρ(u)ru2 du dr. (31)

This corresponds to the energy needed for successively bringing
from infinity the infinitesimal shells constituting the planet. The
segregation of an undifferentiated planet, by changing the density
profile, decreases the gravitational energy. The difference of gravi-
tational energy between the undifferentiated and the differentiated
situations being related to processes occurring inside the planet, is
released in the form of thermal energy (Flasar & Birch 1973; Davies
1980).

From (31), the segregation of an undifferentiated planet of density
ρ = φρ f + (1 − φ)ρm into a core of density ρ f and a mantle of
density ρm releases, per unit mass of the planet, the energy (Ricard
et al. 2009)

�E2 = 4Gπ R2

5ρ

[
ρ2 − ρ2

f φ
5/3 − ρ2

m(1 − φ5/3)

− 5

2
(ρ f − ρm)ρmφ(1 − φ2/3)

]
. (32)

This energy release cancels out when φ = 0 (no metal), φ = 1 (no
silicates) or ρm = ρ f (no differentiation) which are three cases where
segregation is not meaningful. Typically for a planet containing
25 per cent of metal in volume (φ = 0.25), ρ f = 7000 kg m−3

and ρm = 3200 kg m−3, �E2[J kg−1] ∼ 5.8 × 10−2 × (R[km])2.
Therefore the specific thermal energy deposition during an impact
on a planet is comparable to the thermal energy release associated
with the metal segregation.

This simple numerical application shows that as both �E1 and
�E2 increase with R2, it is impossible for a growing planet to reach
a large size without undergoing the melting of its metallic content
in its shallow layers. It also shows that when segregation starts,
the heating associated with the energy dissipation is sufficient to
melt the metal content in a comparable amount of undifferentiated
material, which lead to the runaway instability described in Ricard
et al. (2009).

4 P O S T I M PA C T E V O LU T I O N

4.1 Parameter values

To simulate the post-impact evolution we consider a rather small
proto-planet (radius R = 2000 km) with a uniform temperature of
1100 K. This gives a surface gravity g0 = 2.3 m s−2, and a temper-
ature scale of θ = |�ρ|g0h/(ρC) = 4247 K. The energy buried in
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the isobaric core after the impact is �E = 260 kJ kg−1 (see eq. 30).
This corresponds to a temperature increase of �T = 260 K assum-
ing all this energy is used to heat up the impact zone. If we accounted
properly for the energy consumed upon melting, some 40 per cent
of �E would be required to melt all the metal in the isobaric core,
the rest being available for a temperature increase of 150 K. In our
code which neglects the latent heat of fusion the initial tempera-
ture of the planet T 0 (assumed uniform) must be at least T melt −
�T = 1040 K, so that the metallic phase melts after the impact and
can separate from the silicates. In the following simulations we use
an initial planet temperature of 1100 K. All parameter values are
summarized in Table 1.

For simplicity, the initial state is undifferentiated with an initial
volumetric metal content of 25 per cent, which is somewhat larger
than Earth’s content (∼18 per cent) but much smaller than Mercury’s
content. It is also possible that the impacting meteorites have already
undergone some partial differentiation due to heating by short-lived
radionuclides (Yoshino et al. 2003). Our assumption is that after the
impact the fragmentation leads to rather even distribution of metal
content, at least with respect to the numerical grid-size we use. We
show some simulations with random initial metal distribution in
Section 4.8.

We assume that the silicates remain solid but with a rather low
viscosity of 1019 Pa s. This is clearly a parameter on which very
little is known. We choose a rather small value because the silicates
are already rather hot and because the deviatoric stresses due to the
huge compositional density variation in the evolving planet should
bring the rheology to non-linear regimes and reduce the equivalent
viscosity by a large amount (Samuel & Tackley 2008). The viscosity
of the metal–silicate mixture should also be reduced by the fact that
the metal component is close to its melting temperature. When liq-
uid metal is present, the mixture viscosity is further reduced by the
factor μ∗ = 1 − φ. A stronger porosity dependence of the viscosity
could be used (e.g. Golabek et al. 2008) but we choose to keep the
model as simple as possible. At very high molten metal fractions
the solid grains may become disconnected (i.e. a suspension of solid
particles in liquid metal). This transition in rheology is accompa-
nied by a drastic decrease in viscosity (by many orders of magni-
tude given the difference between viscosities of solid silicates and
molten metal). Accounting for this rheological transition presents
further numerical difficulties for a code that already involves seven
non-linear coupled differential equations. In any case, the rate of
segregation will be controlled by the much slower separation in
the regime of low-to-moderate liquid metal content where the solid
remains interconnected. We assume that both phases are viscous
fluids, albeit of very different viscosities; we have not considered
more complex rheologies, such as viscoelasticity or fracture.

The chosen viscosity corresponds to a Rayleigh number of 1010,
although in most calculations we use Ra = 106. The timescale
based on the Stokes velocity is very short (18 yr; the normalization
uses the planetary radius to compute the Stokes velocity). The non-
dimensionalized compaction length

√
μm/(cR2) is a rather small

number. The parameter c is μf φ
2/k where k is a permeability

(Bercovici et al. 2001). We use a permeability–porosity relation-
ship in the form k = k0φ

2 (Bear 1988), where the permeability
coefficient k0 scales with the square of characteristic spacing of
molten metal channels. Taking the silicate viscosity μf = 1 Pa s and
the permeability coefficient k0 = 4 × 10−9 m2 (channel spacing
of ∼1 mm), we get a compaction length δ = 0.1. The compaction
length is the most uncertain parameter, given the uncertainties in
μm, μf and k0. Rather than explore the entire parameter space,
in this study we chose a plausible set of parameters and discuss

in detail the evolution of the new multi-phase segregation model
for this specific case. We also investigate the effect of the impactor
size, the target planet’s size and its background temperature on the
post-impact segregation.

4.2 Segregation of a proto-core

We first present a calculation of core segregation in a domain of as-
pect ratio 1 from an initial state where the metal–silicate component
ratio is uniform. At t = 0 we increase the temperature in a circular
zone close to the surface so that the temperature becomes higher
than the melting temperature of iron. This initial condition crudely
approximates the situation during the period where the surface of a
planet embryo was heated by a giant impact (Wetherill 1985).

The radius of the initially heated zone is arbitrary 1/6 of the
planetary radius (i.e. 333 km), which would be caused by an im-
pactor of radius smaller by factor f 1/3

2 = 61/3 (183 km). The com-
plete separation of the metal from the silicates would generate an
amount of pure metal corresponding to a sphere of radius φ

−1/3
0

times smaller than the heated zone (r = 210 km). Two typical ve-
locities involved in the segregation process are the Stokes velocity
vS = 2|�ρ|g0r 2/(9μm) of the metallic sphere and the Darcy sepa-
ration velocity vD = |�ρ|g0φ

2
0(1 − φ0)/c of the two-phase porous

flow. They amount to 82 and 58 m yr−1, respectively. These veloci-
ties are small enough so that the approximation of an infinite Prandtl
number (no inertia) is justified. It is however ∼1000 times faster that
typical plate tectonics processes which suggests that the timescale
of metal sinking is of the order of 10 kyr.

We assume a no heat flux boundary condition on top of our
model. Another boundary condition would be very easy to imple-
ment but this insulation may be appropriate for a planet heated
from the surface and where the atmosphere is very hot (Matsui &
Abe 1986b). We also use the compaction Boussinesq approxima-
tion in most of our simulations. Surprisingly, the full solution and
the two approximations discussed in Section 2.4 are quite similar
as illustrated in Section 4.7. Neglecting the viscosity variations in
the compaction flow only (compaction Boussinesq approximation)
seems to be a good compromise that remains very close to the full
solution but decreases the computation time by one order of mag-
nitude by avoiding the coupling between the incompressible and
irrotational components of the flow.

We have presented some results from this simulation, including
some snapshots from Figs 1 and 2, in our previous work (Ricard
et al. 2009). Here we present a full account and further analysis
of the results. This simulation will be a reference case to which
the simulations made with alternative choices of parameters will
be compared to. Figs 1 and 2 show the evolution of metal con-
tent and temperature following an impact. Several stages of dif-
ferent prevailing segregation mechanisms can be identified in the
simulation run. Initially the circular zone, containing the molten
metallic phase, segregates by a roughly 1-D porous flow (Richter &
McKenzie 1984). This 1-D compaction lasts for non-dimensional
times t = 0–100 (0–1.8 kyr). The molten metal concentration in-
creases to a value close to 1. The dense metallic blob is formed
and eventually descends in a diapir-like fall (t ∼ 100–500 or
1.8–9.0 kyr). The light residual silicate mantle rises and starts
spreading as a gravity current along the surface. Similar spreading
is exhibited by the metal when it reaches the bottom of the com-
putation domain, thus forming a proto-core. A cusp-like channel
connects the differentiated silicates to the core. A similar behaviour
leading to the formation of trailing conduits has been documented
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Figure 1. Evolution of the metal volume fraction after an impact in a square box calculation with a uniform initial composition. A circular zone of radius 1/6
is initially heated above the melting temperature of iron. We choose the colour scale so that the pure metallic phase is yellow, the pure silicate phase is cyan
and the undifferentiated mantle is black. The normalized times are indicated. The dimensional values are obtained by multiplying with 18 yr. The compaction
Boussinesq approximation is used on a regular grid with 300 × 300 grid cells.

experimentally (Olson & Weeraratne 2008). The gravitational en-
ergy released by the formation of the differentiated structure is
converted into heat and increases the temperature. New pockets of
metal are formed along the conduit and descend to the proto-core
(t ∼ 1000). The local temperature rise can induce further melting

of the metallic phase and thus facilitates further segregation. At the
interface between the differentiated silicate and the remaining undif-
ferentiated mantle new metallic ponds are formed (t ∼ 1100–1300)
that trigger new instabilities (t ∼ 1400–1500). These secondary in-
stabilities follow the same kind of dynamics as the initial one with
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Figure 2. Evolution of temperature. Parameters of the calculation are given in the caption of Fig. 1.

cusp-like trailing conduits (t ∼ 2000–3000) connecting them to the
surface. The same process, that is, the creation of metallic ponds
and descent of diapirs, occurs again (t ∼ 3000–4500). Large undif-
ferentiated islands survive for some time (t ∼ 4500–5500) and are
slowly eroded until the whole planet is differentiated (t ∼ 6000 or
108 kyr). During the whole process various compaction waves are
visible in both the silicates and the core (e.g. Scott & Stevenson
1984; Hier-Majumder et al. 2006).

The process just described can be followed both on the metal
content, Fig. 1, and on the temperature, Fig. 2. The transfer of po-
tential energy into thermal energy will be discussed in detail in
Section 4.5; we particularly show in Fig. 5 that the global energy
conservation is very closely satisfied throughout the whole simu-
lation. This conversion occurs mostly along the channels trailing
behind the diapirs. The heat seems to be transferred more or less
equally between the core and the shallow mantle. After t ∼ 3000
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when only the deep mantle remains undifferentiated the rate of re-
lease of potential energy gradually decreases in amplitude, and after
t ∼ 4000 the erosion of the last cold undifferentiated regions occurs
by thermal diffusion.

4.3 Vertical profiles and energy partitioning

Fig. 3 shows the metal fraction φ (top panel) and temperature T
(bottom panel) as functions of depth at several times during the
core segregation. The solid curves correspond to laterally averaged
profiles, and the only dashed line in the top panel corresponds to

a vertical profile in the middle of the computation domain. The
black dashed curve in the top panel shows metal fraction during
the first diapir’s descent with the propagating front of the diapir,
which is basically of pure metal. The conduit left behind the diapir
is depleted in metal and a smaller compositional waveforms that
will further decrease the metal content in the trailing conduit. The
horizontally averaged metal fraction gradually evolves into a step-
like function near the completion of segregation (blue curve). The
inset in the top panel shows the average metal fraction in the core
volume (bottom 25 per cent of the calculation domain) as a function
of time. The three kinks in the curve marked by orange arrows at
times 320, 2440 and 3800 correspond to the arrival of the large

Figure 3. Volumetric metal fraction φ (top panel) and temperature T (bottom panel) as functions of depth. Horizontally averaged metal fraction and temperature
are shown as solid lines. The dashed line in the top panel shows the metal fraction along the vertical in the centre of the calculation domain. Color marks
different instants in time (normalized time 300 in black, 1000 in red, 3000 in green, 6000 in blue). The inset in the top panel shows the average metal fraction
in the core volume (bottom 25 per cent of the calculation domain) with respect to time.
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diapirs (primary, secondary and tertiary instabilities). The depth
dependence of temperature in the bottom panel of Fig. 3 shows that
the region at intermediate depths (corresponding to deep mantle)
experiences on average less heating than the shallow mantle or the
core. The final temperature, corresponding to the diffusion of the
initial temperature anomaly and the release of gravitational energy
is slightly above 1500 K, or 400 K above the initial temperature.

The maximum temperature reached in the simulation occurs in
the trailing conduit for t = 2420. It amounts to 0.481 (2040 K).
The maximum temperatures remain above 0.45 (1900 K) during
time interval t ∼ 2010–3420. With the low pressures involved in
this small planet this should be enough to also melt a minor pro-
portion of silicates. Although the latent heat of metal and silicate
melting would moderate the temperature, the solidus of silicates
should be reached in the shallowest 10–20 per cent of the planet
(Hirschmann 2000). As we have totally neglected the thermal ex-
pansion no thermal convective instabilities can be present. This is
probably reasonable for the silicates and the undifferentiated part of
the planet as the thermal density anomalies are always very small
(compared to compositional density anomalies) and as the duration
of the segregation is very short. Thermal convection should occur
in the core and would homogenize the core temperature. We have
however not tried to account for these further complexities.

The partitioning of the released gravitational energy between the
conduit itself and the adjacent regions and, consequently, between
the mantle and the core has implications for the subsequent thermal
evolution of the planet. The outcome of the numerical simulation
can be compared to a result of a simple analysis. A blob of pure
metal of volume V that descends from near surface to the bottom (a
fall along distance R in a uniform gravity field) releases gravitational
energy �ρV gR. Assuming all this energy remains in the iron blob
and heats it up, we obtain an upper bound on temperature increase
within the descending diapir. As temperature increase consumes the
energy ρ f V C�T , we get

�T diapir
max = �ρgR

ρ f C
, (33)

or 2520 K (see Table 1 for numerical values). A characteristic lower
bound on temperature increase (or average temperature increase)
corresponds to a redistribution of the released gravitational energy
uniformly across the planet. The Cartesian version of eq. (32) rele-
vant to the simulation leads to

�Tave = �ρgR

2ρC
φ(1 − φ), (34)

which amounts to 398 K.
As noted above, the maximum temperature reached in the simula-

tion is 2040 K for an initial temperature of 1360 K in the impact zone
and of 1100 K elsewhere. The maximum local temperature increase
during the simulation �T simul

max is therefore between 680 and 940 K.
This is about twice the average temperature increase. Comparison
of �T simul

max and �T diapir
max suggests that 27–37 per cent of the potential

energy release is dissipated within the metallic diapirs, while the
remaining 73–63 per cent heats up the whole planet. The thermal
energy brought to the core by the sinking diapirs should be quickly
redistributed within the core by vigorous thermal convection.

We can compare this analysis to the simulation result. For exam-
ple, at t = 6400 (when the differentiation is complete) the integra-
tion of the temperature indicates a similar average temperature in
the mantle and in the core. This would suggest a simple core–mantle
energy partitioning according to their respective volumes.

4.4 A new mechanism of metal diapir propagation

In the present simulation, the initial sinking of metallic blobs resem-
bles the usual diapir instability in a simple single-phase medium.
The physics, however, is rather different because a Darcy two-phase
flow is superimposed on the Stokes flow. In order to elucidate the
primary mechanisms of metal diapir propagation, we show in Fig. 4
the instantaneous full (μ∗ = 1 − φ) solutions to the mechanical
equations for four different cases of simple metal content and tem-
perature distributions (i.e. we solve the Navier–Stokes equation, 12,
and the Darcy equation, 13). In the first two rows, we show the pre-
scribed temperature and metal content. Temperature is blue below
iron melting temperature and red above. Metal content is 25 per cent
(black) or 75 per cent (red). The third row shows the compaction
rate [∇ · vm = ∇ · (φ�v)]. In the last row is the vertical velocity of
the silicate matrix.

In case I (first column in Fig. 4), the situation corresponds to a
simple single phase compositional diapir. The temperature is uni-
form and below the melting temperature of the iron phase. The
metal content, and hence the density, is larger in the central circle.
As the iron is solid, no segregation occurs. The compaction rate is
zero. The velocity field is purely incompressible, only v1 is excited
(vm = v1, v2 = 0; see eq. 18). The vertical component of silicate
velocity (red when in the direction of gravity) shows the sinking of
the dense diapir and the upwelling return flow of the lighter mixture.
Although the matrix is lighter than the metal, in the diapir circle it
is entrained downwards by the enhanced metallic content.

In case II (second column in Fig. 4), the porosity is increased in
the circular region, but the temperature is now uniformly above the
melting temperature of metal. The metallic phase can now separate
from the silicates by compaction (middle row). This separation is
the most efficient in the high porosity region but occurs also outside
of this region. In particular, the deepest layers become enriched in
metal, the shallowest ones depleted. The light silicates are globally
rising (blue vertical velocity) but within and near the high metallic
content region the downward average velocity of the mixture due to
metal enrichment exceeds the separation velocity �v. As a result the
silicates are dragged downwards by the sinking metal in the metal
enriched blob or at least their upward motion is impeded in the adja-
cent region. The general behaviour of this diapir is that of a solitary
compaction wave (Spiegelman 1993; Wiggins & Spiegelman 1995;
Rabinowicz et al. 2001).

In case III (third column in Fig. 4) the metal content is uniform
but the temperature is above the iron melting temperature in the
central region. Now the phase separation only occurs in the diapir,
as outside the two phases are locked together. Within the diapir the
silicates rise slowly. The matrix velocity is now purely irrotational
(only v2 is excited, see eq. 18).

The last case IV (last column in Fig. 4) differs from case III by
a large metallic content only in the central region. Like in case III,
the two phases separate only in the circle, where the metal is liquid.
However the presence of a density anomaly results in a velocity
similar to case I (compositional single phase diapir). The matrix
sinking velocity is decreased within the diapir as the silicates move
upwards with respect to the average velocity. The sinking velocity
of the undifferentiated matrix is enhanced in the front and in the
wake of the diapir, which is in accord with the abrupt change in the
compaction rate.

The case I corresponds to the simple sinking of a high density
heterogeneity without phase segregation. If evolved in time, this
metallic blob would sink and spread along the bottom, but it’s metal
content would remain unchanged. In order to separate the iron from
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Figure 4. Temperature (first row), metal content (second row), compaction rate ∇ · vm = ∇ · (φ�v) (third row) and vertical matrix velocity vmz (last row).
The temperature is either below the iron melting temperature (blue) or above (red). The metal fraction is 25 per cent (black) or 75 per cent (orange). Two phase
compaction only occurs where the metal is liquid. The same linear colour scale is used for the four panels (blue when compacting, red when dilating). The
velocity field velocity field is purely incompressible in case I, purely irrotational in case III, and a superposition of both in cases II and IV. The same linear
colour scale is used for the four panels (blue for upwellings, red for downwellings). The full solution with μ∗ = 1 − φ is calculated.

the silicates the temperature has to reach the melting temperature
of iron (cases II–III–IV). This can happen locally in a small region
(basically only within the diapir itself, cases III and IV). If the
potential energy release of the sinking diapir is sufficient to heat up
the surrounding areas, the segregation can occur everywhere as in
the case II.

The sinking diapir in Figs 1 and 2 belongs to dynamics which are
closest to case IV. Its sinking velocity is a combination of the Stokes
velocity of the dense iron diapir and a porosity wave phenomenon

(akin to the magmon behaviour described, e.g. by Scott & Stevenson
1984), where the silicates traverse the metallic phase by a Darcy
mechanism.

4.5 Energy transfer

As shown in eq. (14), the potential energy is converted into heat by
three different mechanisms.
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Figure 5. Energy conservation of the simulation presented in Section 4.2.
The total energy (green curve) accumulates a relative error of at most 5
per cent of the potential energy change (black curve). Up to t = 2000
basically no error occurs. For t > 2000 the time stepping of the numerical
code reaches an arbitrary minimum threshold (an accurate modelling of the
extraction of the last bits of metal from silicates, where φ ∼ 0, or the last bits
of silicates from metal, where φ ∼ 1, would require an extremely small time
stepping) and we crudely impose a maximum porosity 0.995 and a minimum
porosity 0.005. This is necessary to guarantee a reasonable execution time
but decreases the accuracy of the results.

The usual viscous dissipation,

μ∗τm : ∇vm, (35)

the Darcy friction,

�v2

δ2
, (36)

and the compaction,

1 − φ

φ
(∇ · vm)2. (37)

The sum of these three sources must balance exactly the decrease
in gravitational energy (28). In the simulation shown previously
(Figs 1 and 2), this global balance is satisfied as seen in Fig. 5.
As the boundary of the computation domain is thermally insulated,
the decrease in potential energy (black curve) corresponds to the
increase of thermal energy (red curve). Their sum (green curve)
remains equal to zero within machine accuracy up to t ∼ 2000.
As the differentiation proceeds and the metal content approaches
locally 0, the removal of the last drops of metal (or reciprocally
when the metal content reaches 1, the removal of the last silicates)
becomes difficult. An accurate computation forces the time stepping
to become very small and to reach the minimum time step that
we impose for computational convenience. This results in a minor
violation of the energy conservation that reaches at most 5 per cent
of the total potential energy release.

Fig. 6 depicts the evolution of the three dissipation terms for
the numerical simulation shown in Figs 1 and 2. Spatially aver-
aged values are shown. The average heat sources are dominated
either by the usual viscous dissipation (black curve) or by the Darcy
dissipation term (green curve). The heat sources related to the com-
paction term are often negligible (red curve). However, occasion-
ally, the three sources can have similar amplitudes locally. At times
t < 100 the dissipation is dominated by the Darcy term which re-
flect the initial 1-D percolation within the impact zone. The peak
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Figure 6. The three sources of dissipation occurring during the simulation
shown in Fig. 1—viscous (eq. 35), Darcy (eq. 36) and compaction (eq. 37)—
are spatially averaged and plotted as a function of time. Although locally
and at a given time the three sources can have similar amplitudes, on average
the dissipation is generally controlled by the Darcy term except during the
travel through the undifferentiated mantle of large diapirs.

of viscous dissipation around t = 330 corresponds to the sinking
of the large diapir. Of course as the segregation proceeds the rate
at which the potential energy is converted to heat decreases and
consequently the heat sources weaken. This is clearly visible at t >

4000 in Fig. 6 where all sources decline simultaneously, and where
the global thermal and potential energies reach asymptotic values
(±0.094 for a fully segregated final state according to (26); Fig. 5).

4.6 Threshold of instability

Of course, the runaway destabilization of a proto-planet by an impact
only occurs for a limited range of parameters. An impact on a planet
that is too small or too cold may not provide enough energy to
reach the metal melting temperature. A too small impactor may
also increase the temperature in such a small domain that thermal
diffusion will be faster than gravitational destabilization. Rather
than trying to account for all the possible parameter variations, we
focus on finding the conditions in which the runaway segregation
instability develops, when the impactor size, the target planet’s size
and its background temperature are varied.

We ran a series of numerical experiments with the same setup as
the simulation presented in Section 4.2. In a first set of experiments,
the radius of the target planet is 2000 km (the impact heating �T is
258 K), and we investigate the post-impact evolution for different
combinations of the initial temperature of the planet and the radius
of the impact zone (which is proportional to the impactor radius,
exceeding it by a factor of f 1/3

2 = 61/3 ∼ 1.8). We monitor the
melted/solid ratio of metal that we found either going to 0 or to
100 per cent in a few 100 kyr. The top panel of Fig. 7 (already
presented in Ricard et al. 2009) shows several domains. If the initial
temperature of the planet is below 1042 K, the melting temperature
of metal T melt is not reached and no segregation occurs (blue region).
Obviously if the planet’s initial temperature is above T melt (1300 K),
segregation occurs globally even without impact (yellow domain).
For intermediate temperatures (1048–1300 K) the segregation is
always initiated but the longer term evolution depends on the initial
temperature and impact zone size. For large impactors (radius of
impact zone normalized by planetary radius �1/6) only few K
excess over the melting temperature in the impact zone is enough for
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Figure 7. Regime diagram of the runaway instability. Numerical experi-
ments were performed, where the normalized radius of the impact zone
(therefore the impactor size), initial planetary temperature and planetary
radius (and consequently the temperature increase in the impact zone) were
varied. The top panel shows the threshold of instability in a cross section
of the three-parameter space for fixed radius of the planet of 2000 km. The
bottom panel shows a cross section for a fixed initial temperature of 1100 K.
The numerical runs that constrain the threshold curves are shown by red
crosses (instability dies out) and green circles (instability develops). The
best fits to the analytical expressions are shown a black dashed lines.

the segregation instability to develop. When the impact zone radius
is decreased, larger initial temperatures are required to overcome
diffusion of heat out from the molten region. Some computation
runs that constrain the threshold of instability are marked by red
crosses (when the initially segregated metal, resolidifies) and green
circles (when the initial metal sinking triggers further melting and
segregation).

In a second set of experiments the initial temperature of the planet
is 1100 K (200 K below T melt) and we vary the radius of the planet
(hence the �T of the impact which varies as R2) and the radius of the
impact zone. The bottom panel of Fig. 7 summarizes the results. No
melting occurs if the planet is too small (R < 1762 km) as in this case
�T < 200 K. Here again, for large impactors (impact zone radius
�R/6) the minimum �T for incipient melting is enough to trigger
a large-scale instability. For smaller impactor sizes, the threshold
�T increases when the normalized impact zone decreases.

The results of the numerical experiments, in particular the shape
of the boundary between the runaway instability domain and the
damping domain, can be supported by simple analysis. As was sug-
gested, two competing effects operate. The metallic phase in the
heated impact zone melts, segregates and sinks under its negative
buoyancy. A characteristic advection timescale for the metallic di-

apir can be devised from the Stokes sinking velocity and the diapir
radius Rd ,

τadv ≈ 9μm

2�ρgRd
. (38)

Simultaneously with the sinking, temperature of the diapir decreases
due to thermal diffusion. The maximum temperature at the centre
of the spherical diapir evolves as Tmax = T0 + �T erf(Rd/

√
4κt).

When the temperature drops below T melt, the metal freezes and
the diapir propagation stops. We can estimate a freezing timescale,
which is

τfreeze ≈ R2
d

4κ

�T 2

(Tmelt − T0)2
(39)

for (T melt − T 0)/�T � 1 (we used the fact that the error function is
approximately linear for small values of its argument). The instabil-
ity develops when the advection is much faster than the diffusion,
that is, for τ adv � τ freeze,

�ρgR3
d

18μmκ

�T 2

(Tmelt − T0)2
≡ Rc 
 1. (40)

This reasoning is similar to the usual argument in simple convec-
tion, leading to the Rayleigh number; here the critical parameter
is Rc. As the gravity g is proportional to the planetary radius R,
�T is proportional to R2 (see eq. 30) and the diapir radius Rd is
proportional to the impact zone radius Ri (we write Rd = f 3 Ri and
f 3 is of order 1), from (38) and (39) we get the instability condition

R3
i R5

(Tmelt − T0)2

 A ≡

(
3

2

)5 f 2
2

π 3 f 2
1 f 3

3

μmκC

G3ρ3�ρ
, (41)

where A is a dimensional number independent of the planetary
radius, the impact zone radius and the initial temperature. Conse-
quently, for the first set of experiments in the top panel of Fig. 7
where we plot T 0 against Ri/R, we get an equation for the instability
boundary

T0 = Tmelt − a1

(
Ri

R

) 3
2

, (42)

where a1 = R4/
√

A is a numerical constant. The numerically de-
termined threshold curve indeed crosses the y-axis near T melt =
1300 K. As for the exponent, we obtain the value 1.1 if we con-
sider the three points at high T 0 which conform to the assumption
(T melt − T 0)/�T � 1 of the above analysis. The best fit to the an-
alytical expression (42) at high T 0 is shown as black dashed curve
in Fig. 7. In the second set of experiments in the bottom panel of
Fig. 7 the instability domain should be constrained by

R = a2

(
Ri

R

)− 3
8

, (43)

where a2 = (T melt − T 0)1/4 A1/8. The exponent obtained from the
numerical experiments is 0.30, which is reasonably close to the
analytical value of 0.375. The best fit to expression (43) is shown
as black dashed curve in Fig. 7.

Notice that even rather small impactors are enough to trigger a
complete and rapid metal segregation provided that the planet is
large enough and/or the initial temperature is sufficiently close to
the melting point of metal. As both the initial energy thermal depo-
sition by the impact and the gravitational energy release associated
with segregation vary with the square of the proto-planetary radius,
this runaway core formation seems inescapable in growing planets
unless the population of impactors drifts to very small sizes.
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Figure 8. Metal volume fraction at t = 350 (first row) and t = 1700 (second row). Left-hand column: the viscosity is assumed uniform, independent of the
liquid metal content. Middle column: compaction Boussinesq approximation, the irrotational components of the velocity are computed with variable viscosity
but a uniform viscosity is assumed for the compressible flow. Right-hand column: full solution. The initial condition is identical in the three simulations. Colour
scale is the same as in Figs 1 and 9.

4.7 Full and approximate solutions

The simulations previously discussed have been computed in the
compaction Boussinesq approximation (Schmeling 2000). The time
necessary for a simulation increases more or less by one order of
magnitude when we implement this approximation rather than the
crudest approximation of uniform viscosity. Another order of mag-
nitude in time duration is needed to compute the full solution.
Accounting for porosity-dependent viscosity variations (full solu-
tion) somewhat increases the velocities with respect to the uniform
viscosity case. The differences between the three computations re-
main however small (less than 10 per cent) and do not seem to
justify the time spent for the full solution. The sinking velocity
of diapirs is mostly controlled by the high viscosity of the sur-
rounding solid phase. This is similar to what happens for the sink-
ing velocity of a sphere in a viscous medium: according to the
Rybczynski–Hadamard solutions (see e.g. Ribe 2007) an inviscid
sphere only falls 1.5 times faster than a solid sphere. The veloc-
ity of the fluid phase computed by the Darcy equation seems also
very weakly dependent on the level of approximation performed in
computing the pressure field.

In Fig. 8, we show three computations of the initial sinking of a
diapir at the same time, but performed with a uniform viscosity (left-
hand panel), the compaction Boussinesq approximation (middle
panel) or the full solution (right-hand panel). Accounting for the
decrease in viscosity proportional to the melt fraction increases the

sinking velocity of the first diapirs. The full solution is also slightly
faster than the compaction Boussinesq case. However except for
minor details the solutions remain very similar. Of course a stronger
dependence of viscosity with metal content (like in Golabek et al.
2008) may require an exact computation. To be able to run various
simulations in a reasonable amount of time, we generally use the
compaction Boussinesq approximation.

4.8 Initial conditions and geometry

The simulations discussed so far were confined to a square box and
assumed an initial uniform distribution of metal. Such an idealized
initial condition may not correspond to the real situation. The plan-
etesimals that impacted on the growing planet may have been par-
tially differentiated because of heating by short-lived radionuclides
and subsequent metal sinking by permeable flow (Yoshino et al.
2003). It is difficult to constrain a realistic initial condition for our
model. The distribution of metal and thermal state of the growing
planet reflects an integrated history of previous impacts and possi-
ble internal dynamical evolution. The length scale of metal–silicate-
rich heterogeneities in the growing planet is controlled by the de-
gree of differentiation of arriving impactors, by the degree of their
fragmentation and remixing upon impact, as well as by the size
of impactors. The composition of impacting planetesimals prob-
ably spanned a wide range between undifferentiated to largely
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differentiated bodies. The average size of impactors increases with
time during planetary accretion. It is reasonable to assume that the
characteristic size of inhomogeneities in metal–silicate distribution
in the target planet was smaller than the extent of the impact zone
of the latest impactor.

We computed an additional model where the initial metal con-
centration is random in each cell with exponential distribution and
mean value of 0.25 (same as in the previous cases). This grid size
heterogeneity represents variation on 10 km scale. Clearly, a spheri-
cal geometry would be better suited for a planetary core segregation
study. At present however, our code is implemented only in Carte-
sian geometry. To imitate the ratio of near-surface circumference to
radius for a sphere, we compute this additional model in a Cartesian
box of a large aspect ratio 3. Images of metal fraction are shown
in Fig. 9 (a smaller version of this figure was presented in Ricard
et al. 2009). The progression and outcome of this model are very
similar to the case with uniform initial metal fraction (Fig. 1), al-
though the total duration of the segregation is increased by a factor
∼2. The first large diapir originates in the impact zone and sinks
to the bottom. Subsequent diapirs advance the segregation as the

differentiated metal and silicates spread along the bottom and top
panels, respectively. The last region to undergo differentiation is the
deepest mantle. The initial random concentration results in patterns
that are no longer symmetric about the vertical mid-axis.

Various complexities of 3-D flow and spherical geometry are
necessarily poorly scaled in 2-D model. For example, the 2-D as-
sumption of uniform gravity overestimates the heat release by grav-
itational settling by ∼70 per cent – the equivalent of eq. (32) in
Cartesian coordinates and a uniform gravity is �E2 =
�ρg0 Rφ0(1 − φ0)/(2ρ). However assuming that gravity varies lin-
early with depth would underestimate �E2 by ∼30 per cent. To
obtain the same potential energy release in 2-D as in 3-D (see 32)
we can use a gravity varying as ĝ = z0.567 (z is the normalized
height). The numerical simulations using ĝ = 1, ĝ = z0.567, and
ĝ = z are depicted in Fig. 10. In these simulations, we assume an
initial heterogeneous metal concentration.

The left-hand column (uniform gravity) is very similar to the
results depicted in Fig. 1 (the only difference is an initial hetero-
geneous composition). As expected the segregation process slows
down when the gravity is zero at the centre (middle and right-hand

Figure 9. Evolution of the metal volume fraction in a rectangular box of aspect ratio 3 with a random initial composition. The impact zone radius is 1/4 of the
box depth. The normalized times are indicated. The compaction Boussinesq approximation is used on a regular grid with 600 × 200 grid cells.
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Figure 10. Metal volume fraction during segregation when the gravity is assumed constant (left-hand column), varies like z0.567 (middle column) or like z
(left-hand column). We assume a random initial composition. In the middle column, the energy release is similar to what would be released in a spherical
planet. The evolution is very similar to the case with constant gravity (left-hand column) when the time is multiplied by 3 (middle column) and 6 (right-hand
column). The complete segregation occurs for the three cases in ∼6, ∼18 and ∼24 kyr.

columns). Metal-rich zones tend to stagnate in the deep mantle
(right-hand column). However even if we use a gravity that increases
linearly from zero at the bottom of the box (right-hand column), we
still observe the same runaway segregation. The gravitational en-
ergy release is even then sufficient to eventually melt all the metal
(with the caveat of neglected latent heat of fusion). The main dif-
ference is an increased differentiation timescale by factors of ∼3
(ĝ = z0.567, middle column) or ∼6 (ĝ = z, right-hand column).

In all these simulations, we do not account for the temporal
change of gravity due to mass redistribution. In fact, as the differ-
entiation proceeds in a real planetesimal, the central region becomes
progressively denser compared to the upper layers. This results in
the gravity magnitude increasing more rapidly from the centre out-
wards than a linear increase for a uniform density body and also
increasing with time, and therefore enhances buoyancy. A more re-
alistic model of core formation would require solving our proposed
equations in 3-D spherical geometry. The thermomechanical equa-
tions would need to be coupled to a Poisson equation solving for the
gravity potential, as the redistribution of large masses during the
segregation results in non-uniform and constantly evolving gravity.

4.9 Rayleigh number and compaction length

In the reference calculation we have used a Rayleigh number Ra =
106 rather than 1010 which corresponds to the chosen parameters
(Table 1). It effectively translates into using thermal diffusivity four
orders of magnitude larger than the reference value (see eq. 14). We

used a smaller Rayleigh number to insure numerical stability of the
advection-diffusion equation for temperature. In Fig. 11, we show
a simulation where the Rayleigh number has been increased to 108.
This is the highest limit to which we may trust the accuracy of our
code.

Increasing the Rayleigh number reduces, as expected, the volume
of the metallic diapirs and increases their number. It somewhat
slows down the differentiation because the thermal diffusion is less
effective in bringing up the temperature above the melting point in
regions adjacent to the already differentiated parts. The complete
differentiation timescale increases roughly by a factor of ∼2 for this
two orders of magnitude increase in Ra, but the overall dynamics
remain unchanged.

We have also explored the dependence of the dynamics on the
value of the compaction length (see Fig. 12). We have varied δ2

between 10−3 (left-hand column) and 10−1 (right-hand column),
that is, a two orders of magnitude variation in μm/μf ; the reference
case described in Section 4.2 was calculated with δ2 = 10−2 (δ =
0.1). For cases with δ � 0.1 (right-hand column) we observe an
evolution very similar to our reference case. The trailing channels
widen and the characteristic non-dimensional time of segregation
decreases roughly as δ−1/2. For small compaction lengths, δ2 = 10−3

(left-hand column), as the segregation controlled by matrix com-
paction becomes less effective at global spatial scale, the picture
changes from the one with small number of dominant iron-rich di-
apirs to one with a larger number of weaker iron rich downwellings
and iron-depleted upwellings. As the compaction length is reduced,
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Figure 11. Metal volume fraction during segregation with Ra = 108. A
comparison with Fig. 10 (left-hand column) where Ra = 106 shows that
the increase of the Rayleigh number decreases the volume of the metallic
diapirs and increases the segregation time.

the non-dimensionalized differentiation timescale increases rapidly.
The complete extraction of metal from silicates becomes difficult.
There is most probably a threshold in δ below which the initial in-
stability dies out completely as the separation of metal from silicate
in the impacted zone becomes impossible.

Some caution is needed to translate the non-dimensional numbers
into dimensional parameters and time constraints. For example, a
change in the non-dimensional compaction length can be due to a
change in μm or to a change in μf . The former also affects the time
scaling and the Rayleigh number.

5 D I S C U S S I O N A N D C O N C LU S I O N

Up to now, the models of core mantle segregation by near-surface
partial melting followed by the destabilization of metallic diapirs

were often advocated but only illustrated by cartoons. To our knowl-
edge, our model is the first one to attempt a fluid dynamic modelling
with the complexities inherent to the problem: its multiphase nature,
the irrelevance of the standard Boussinesq approximation, and the
necessity to account for the energy conversion between gravitational
and thermal energies.

Our modelling however, includes some important simplifying
assumptions that must be discussed. First, we have neglected the
latent heat during metal phase change. This has greatly simplified
the formalism as the knowledge of temperature alone has been suf-
ficient to determine the proportion of liquid. If the latent heat were
properly accounted for, the instability would evolve at a somewhat
slower pace; upon reaching the iron melting temperature at a ma-
terial point, the proportion of liquid iron would gradually increase
from zero at a rate proportional to the rate of gravitational energy re-
lease, rather than changing from zero to maximum instantaneously.
In consequence, latent heat would somewhat moderate the increase
in temperature; the curved regime boundaries in Fig. 7 would be
displaced towards the ‘runaway instability’ region. Nevertheless, as
the average temperature in the planet at the end of the presented
simulation is well above the iron melting temperature (by ∼225 K),
even the latent heat buffering should not change significantly the
general evolution. As the core alloy melts at a temperature much
lower than the pure iron, it is also likely that its latent heat should
be significantly lower than that of the pure metal that we considered
in numerical applications.

Second, we have used the same Darcy interaction formalism at
all metal fractions. This assumes that both the molten metal and
the solid phase remain interconnected at all metal fractions. How-
ever, in reality, when the volume fraction of liquid metal reaches
few tens of percent, the mixture should rather resemble a slurry
of solid grains suspended in the molten metal. To account for this
accelerated separation at high metal fraction, an interaction pa-
rameter c (or equivalently permeability) with more complex metal
proportion dependence based on laboratory experiments could be
implemented.

Third, we have used a porosity dependent viscosity for the
silicates–molten metal mixture of the form μ∗ = 1 − φ. This is
a much weaker porosity dependence than is obtained in experimen-
tal studies on deformation of partially molten rock samples, where
the data is fitted to μ∗ ∝ exp(−αφ) dependence (Zimmerman &
Kohlstedt 2004; Scott & Kohlstedt 2006; Hustoft et al. 2007). For
olivine plus metallic melt the experiments of Hustoft et al. (2007)
yield α = 4. These experiments where performed up to porosity
0.2 at a relatively low pressure (300 MPa), where the dihedral angle
of the metallic melt exceeds 90◦. It is possible that as the dihedral
angle drops below 90◦ at high pressure, the exponent may become
even larger. One may argue that the exponential μ∗(φ) dependence
should be used in the modelling. However, there is no reason why
this empirical law should be valid at all porosities. In fact, as dis-
cussed above, a very crude approximation is the mere use of the
same Darcy flow formalism at all porosities, which does not cap-
ture the change of the physical mechanism when the originally
interconnected solid framework disaggregates into a suspension of
grains in liquid. With a linear μ∗(φ) dependence we circumvent the
need for a Stokes problem solver capable of handling large viscos-
ity contrasts. A stronger porosity dependence would bring no new
physics into the model; it would obviously result into quantitative
changes, such as reducing the already quite short timescale of seg-
regation. Results of our calculations with varied Rayleigh number
or compaction length suggest that the change in timescale would
only be moderate.
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Figure 12. Metal volume fraction during segregation with δ2 = 0.001 (left-hand column) and δ2 = 0.1 (right-hand column). This Figure can be compared with
Fig. 10 (left-hand column) where δ2 = 0.01. A decrease of the compaction length favours the upwelling of light silicate diapirs from the proto-core boundary
(left-hand column).

The fundamental ingredient of the runaway core formation pre-
dicted by our model is the same R2-dependence of both the thermal
energy deposition in the impact zone of a meteoric impact and
the gravitational energy release upon segregation, and their similar
magnitude. As soon as this energy reaches a few hundred kJ kg−1

(an equivalent temperature increase of few hundred degrees) for a
growing proto-planet, which occurs at R � 1500 km, rapid core
formation should occur within a few tens of thousand years. This
segregation cannot be delayed much longer as at some point the
R2-dependent impact heating will bring the planetary tempera-
ture close to the iron melting point. Although the extrapolation of
the 2-D modelling results to 3-D spherical planet are difficult, we
have observed that even small impacts (see Fig. 7) suffice to trigger
the core-forming instability.

The process of core formation predicted by our model is sig-
nificantly different from the usual cartoons (e.g. Stevenson 1990;
Righter 2003). The first diapir that crosses the mantle leaves a
cusp-like trailing conduit that connects the proto-core to the near
surface silicates across the undifferentiated material. Melting oc-
curs continuously both in the shallow and in the deep mantle. The
highest temperatures are reached in the conduit itself. The release of
gravitational energy increases the temperature both in the proto-core
and the shallow silicate mantle, and leaves the deep undifferentiated
mantle rather cold. The sinking of metallic diapirs is very fast (of
order of 10 kyr). Instead of the diapir having to deform the surround-

ing material as in a usual Stokes flow, the undifferentiated material
phases separate on the bottom side of the diapir, the silicates cross
the metallic phase, and accumulate behind the sinking diapir. The
motion of the diapir thus involves both the porosity wave and the
usual Stokes flow.

The timescale we obtain from our model, for example, a proto-
core formation in ∼110 kyr, obviously depends on the values of
the material parameters that control both the characteristic scales
and the dimensionless parameters in the equation. The largest un-
certainties in parameter values are carried by the viscosities. Both
the timescale τ used for non-dimensionalization and the Rayleigh
number depend on the solid viscosity (τ ∝ μm, Ra ∝ μ−1

m ), while
the square of the non-dimensionalized compaction length is propor-
tional to the solid to liquid viscosity ratio (δ2 ∝ μm/μf ). An order of
magnitude variation in solid viscosity translates into an equal vari-
ation of the timescale. A longer/shorter compaction length means a
faster/slower Darcy separation and affects the overall evolution in
a non-trivial manner. Taking into account the overall large number
of parameters, we have certainly not sampled the whole parameter
space. At any rate, the very large density loads, the high temperature,
and the presence of a liquid phase all point to a fast dynamics.

The potential inferences on the Earth’s core or mantle chemistry,
for example, the temperature of equilibration of various compo-
nents, that could be made from our modelling are limited by the
fact that we predict the proto-core formation in an early stage of
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planetary evolution where the proto-core mass is only a few percent
of that of the present-day Earth (because of the small radius of the
proto-planet and much higher density of the high-pressure phases
in a large planet’s core). Therefore most of the core mass of a large
differentiated planet was added after the situation described in this
paper by the still ongoing accretion of planetesimals.
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A P P E N D I X : A DV E C T I O N S C H E M E S

The advection of porosity requires an accurate, non-oscillatory nu-
merical scheme that is conservative and has negligible numerical
dissipation. The scheme should be able to handle extreme porosity
variations or shocks. We briefly discuss a second order, time im-
plicit, conservative, shock preserving, numerical scheme adapted
from the so called ‘total variation diminishing (TVD) flux limiting
schemes’ (e.g. Harten 1983; Sweby 1984; Pietrzak 1998) that we
use. These TVD flux limiting schemes supplement a low (first) order
scheme with the introduction of an additional flux. This additional
flux is a difference between the flux of a higher order scheme and
that of the low order scheme ‘limited’ (or ‘corrected’) in such a way
as to ensure an oscillation free scheme (Sweby 1984).

Here we consider an advection equation without a source term in
1-D

∂ξ

∂t
= −∂(ξ v̄)

∂x
≡ −∂ F

∂x
, (A1)

where the flux F = ξ v̄ is introduced; ξ stands for either φ or T in
our numerical code.

We work on an equidistant staggered grid of spacing �x
where ξ is evaluated at centres of 1-D ‘cells’ (. . . , ξ i−1, ξ i,
ξ i+1, . . .) and v̄ has values at mid-points or boundaries of the cells
(. . . , v̄i−1/2, v̄i+1/2, . . .).

In order to attain the precision of second order in time, the par-
tial derivative with respect to time is centred midway between the
current time level t and the next time level t + �t , that is,

∂ξ

∂t

∣∣∣∣t+�t/2

i

≈ ξi (t + �t) − ξi (t)

�t
. (A2)

The right-hand side of (A1) to be approximated is therefore
−∂ F/∂x |t+�t/2

i and is calculated as average of −∂ F/∂xi at times t
and t + �t , that is,

∂ F

∂x

∣∣∣∣t+�t/2

i

≈ 1

2

(
∂ F

∂x

∣∣∣∣t

i

+ ∂ F

∂x

∣∣∣∣t+�t

i

)
. (A3)
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The spatial derivative of the flux F centred in the ith cell is
approximated by (we omit the time indexing from now on)

∂ F

∂x

∣∣∣∣
i

≈ 1

�x

(
F+

i+1/2 + F−
i+1/2 − F+

i−1/2 − F−
i−1/2

)
, (A4)

where

F+/−
i+1/2 = v

+/−
i+1/2ξ

+/−
i+1/2. (A5)

In these equations the superscripts indicate the advection direction,

v+
i+1/2 = 1

2
(v̄i+1/2 + |v̄i+1/2|),

v−
i+1/2 = 1

2
(v̄i+1/2 − |v̄i+1/2|), (A6)

(therefore only one of v+ and v− can be different from zero at any
midpoint), and

ξ+
i+1/2 = ξi + λ+

i+1/2

2
(ξi+1 − ξi ) ,

ξ−
i+1/2 = ξi+1 + λ−

i+1/2

2
(ξi − ξi+1) , (A7)

where the two quantities λ+/− called ‘limiters’ are discussed below.
The approximation of the advection term (A4) can be therefore

written as

∂ F

∂x

∣∣∣∣
i

≈ 1

�x
(aiξi−1 + biξi + ciξi+1) , (A8)

where

ai = −v+
i−1/2

(
1 − λ+

i−1/2

2

)
− v−

i−1/2λ
−
i−1/2

2
,

bi = v+
i+1/2

(
1 − λ+

i+1/2

2

)
+ v−

i+1/2λ
−
i+1/2

2

− v+
i−1/2λ

+
i−1/2

2
− v−

i−1/2

(
1 − λ−

i−1/2

2

)
,

ci = v+
i+1/2λ

+
i+1/2

2
+ v−

i+1/2

(
1 − λ−

i+1/2

2

)
. (A9)

If all λ’s are set to zero one gets the simple upwind difference
scheme on a staggered grid, λ’s equal to one give the centred differ-
ence scheme. A more complicated choice leads to the total variation
diminishing (TVD) flux limiter schemes:

λ
+/−
i+1/2 = 0 UPWIND scheme

λ
+/−
i+1/2 = 1 CENTRED scheme

λ
+/−
i+1/2 = FL(R+/−

i+1/2) TVD flux limiter (FL) schemes,

where R depends on the ratio of gradients of ξ (with the local
gradient in the denominator and the gradient one cell upwind in the
numerator) and of the velocities, that is (Laney 1998)

R+
i+1/2 = v+

i−1/2(ξi − ξi−1)

v+
i+1/2(ξi+1 − ξi )

,

R−
i+1/2 = v−

i+3/2(ξi+2 − ξi+1)

v−
i+1/2(ξi+1 − ξi )

. (A10)

Various flux limiters can be chosen that have the properties to
be non-oscillatory and to minimize the dissipation (Leveque 1996).

They lead to numerical schemes close to second order centred dif-
ferencing where the function is smooth, and close to stable upwind
scheme near discontinuities.

Among the various flux limitersFL that were proposed, we tested

FL(R) = max[0, min(1,R)], (A11)

Figure A1. Test of a 2π rotation of an arbitrary concentration field shown
in the top left-hand panel. The concentration after one full rotation (left-
hand column) and the difference of final and initial concentration (right-
hand column) are shown for the simple UPWIND scheme, the MPDATA
algorithm with three iterations (Smolarkiewicz 1983), and the flux limiter
SUPERBEE schemes. Calculated on a grid with 400 × 400 grid cells with
the Courant number 0.4.
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which gives the ‘minmod’ scheme (Roe’s minmod transfer function;
Sweby & Baines 1981) and the ‘superbee’ scheme (Roe’s compres-
sive transfer function; Roe 1985),

FL(R) = max[0, min(1, 2R), min(2,R)]. (A12)

All these schemes (see also the Van Leer or MC flux limiter schemes;
van Leer 1977) become centred [i.e. FL(R) = 1] when the func-
tion is linear (i.e. when R = 1) and upwind [FL(R) = 0] near
oscillations (when R ≤ 0).

The approximation (A3) requires the flux derivative ∂ F/∂x |i at
both the current time level t and the next time level t + �t . The
flux derivative explicitly depends on ξ i−1, ξ i and ξ i+1 at the relevant
time level. The numerical approximation of (A1) is therefore semi-
implicit in time; in each time advancement of porosity a tridiagonal
system is solved. Note that the coefficients ai, bi and ci in (A8)
depend on velocities and in the case of flux limiter schemes also
on porosity through λ’s (A9). We assume that these coefficients are
constant from time t to time t + �t , so that the eq. (A1) is solved
as

ξ t+�t
i − ξ t

i

�t
= − 1

2�x

[
ai

(
ξ t

i−1 + ξ t+dt
i−1

) + bi

(
ξ t

i + ξ t+dt
i

)
+ ci

(
ξ t

i+1 + ξ t+dt
i+1

)]
. (A13)

If a source term S is present on the right-hand side of (A1), one
needs to evaluate it at intermediate time level t + �t/2 to keep the
second-order precision in time; St+�t/2

i can be calculated from S at
the current time level t and previous time level t − �told from

St+�t/2
i ≈

(
1 + �t

2�told

)
St

i − �t

2�told
St−�told

i . (A14)

If a diffusion term D∂2ξ/∂x2 is present in the eq. (A1), it can be
approximated by a second order in space and time Crank–Nicolson
scheme,

D
∂2ξ

∂x2
= D

2�x2

[(
ξ t

i−1 + ξ t+dt
i−1

) − 2
(
ξ t

i + ξ t+dt
i

) + (
ξ t

i+1 + ξ t+dt
i+1

)]
.

(A15)

The same formalism can be applied to advect the temperature
and the porosity (with no diffusion term). In two dimensions they
are advanced in two implicit half time steps, one in each direction
(alternate direction implicit or ADI method), which on a M × N
grid leads to M + N tridiagonal calls in each time step.

We tested the porosity advection schemes by calculating the ad-
vection (without any source terms) of a given porosity profile by a
2-D velocity field which corresponds to a rigid body rotation. The
calculation domain is a square box and the centre of rotation is in
the box centre. The initial porosity is zero except in two circular re-
gions of radius 0.15. In the bottom region the porosity is equal to 1.
In the other region the porosity has a conic shape with a maximum
equal to one at the centre. This initial porosity is advected by one
full rotation (2π ). The final porosity should therefore be identical
to the initial porosity.

Fig. A1 shows the initial porosity and the resulting porosity af-
ter one full rotation for several advection schemes. The difference
between the final and initial porosity is also plotted, and the root
mean squared error of the final porosity is given. The simple upwind
(or donor cell) scheme is highly diffusive. Much smaller error is at-
tained when the MPDATA algorithm, here with two corrective steps
(Smolarkiewicz 1983) is used. However MPDATA advection algo-
rithm, at least in our implementation, produces ripples near porosity
discontinuities. Our calculations confirm the positive definiteness of
MPDATA (porosity stays above zero), but the porosity is not bound
by its initial maximum value and exceeds 1. If MPDATA porosity
advection were used in the two-phase numerical code, porosities
above 1 would produce unphysical effects in the momentum equa-
tions. The superbee method gives the best results; we have also
tested other limiters. The porosity remains bounded between the
initial minimum and maximum values, which is consistent with the
TVD properties of the flux limiter schemes. Our modified flux lim-
iter schemes are semi-implicit in time. This assures their stability
even for large time stepping when the Courant number is greater
than one (i.e. 2�t |v|/�x > 1). This is not so for the time-explicit
MPDATA algorithm which becomes unstable. We use the superbee
flux limiter schemes in the two-phase numerical code.
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