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Short Note 

A method to minimize edge effects in two-dimensional 
discrete Fourier transforms 

Yanick Ricard* and Richard J. Blakelyt 

INTRODUCTION 

Fourier transforms are widely used in analysis of two- 
dimensional (2-D) earth-science data, such as gravity and 
magnetic surveys, topographic models, and remote-sensing 
images. For example, manipulations of gridded magnetic or 
gravity data, such as upward and downward continuation, 
reduction to the pole, wavelength filters, pseudogravity trans- 
formation, and vertical derivatives (Hildenbrand, 1983), are 
greatly simplified with Fourier transforms, as are certain for- 
ward and inverse calculations (Parker, 1973; Parker and 
Huestis, 1974). Power spectra computed from 2-D Fourier 
transforms are used to estimate depth to the top and bottom 
of magnetic sources from gridded magnetic data (Spector and 
Grant, 1970; Connard et a]., 1983) and to estimate litho- 
spheric strength and Moho depth from gridded gravity data 
(Dorman and Lewis, 1970; Louden and Forsyth, 1982; 
McNutt, 1983). 

Despite its utility, application of the 2-D Fourier transform 
to measured data presents three practical problems. (1) Mea- 
sured data are necessarily sampled at discrete intervals, which 
places an upper limit on knowable wavenumbers. (2) Neces- 
sary restriction of measured data to finite areas may truncate 
important shapes in an arbitrary way and restrict resolution in 
the Fourier domain. (3) The fact that most observed quan- 
tities, including gravity and magnetic data. are not periodic 
functions (except at global scales) violates an implicit assump- 
tion of discrete Fourier analysis (Cordell and Grauch, 1982). 
These three problems, which are all dependent to some degree 
upon the orientation of the coordinate system, combine to 
produce edge effects that tend to obscure spectral patterns of 
geologic origin in calculated power-density spectra. 

In this paper, we suggest a simple technique to reduce edge 
effects caused by axis orientation in power-density spectra. 
The method replaces the rectangular array of discrete data 
with a circular window of data and makes use of a simple fact: 

rotation of a circular window of continuous data only affects 
the Fourier transform by an identical rotation. Data are first 
rotated about the origin by some angle, then Fourier trans- 
formed, and finally rotated back by the same angle. By stack- 
ing the results of this three-step procedure for various angles, 
the dependence on axis orientation is largely eliminated. We 
have found this procedure useful for studies that examine 
shapes of power-density spectra (e.g., Connard et a]., 1983; 
Simpson et a]., 1986). 

THE EDGE EFFECT 

In the following, we denote spatial and wavenumber coordi- 
nates by 2-D vectors s = (x, y) and k = (k,, k,), respectively, 
and write the 2-D Fourier transform F(k) of a continuous 
function f (x, y) as 

and the convolution of two functions f,(x, y) and f, (x, y) as 

Wavenumbers are inversely proportional to wavelengths h, 
and h, in the x and y directions, respectively; i.e., k, = 27r/k, 
and k, = 21r/h,. 

The cause of the edge effect is most easily seen by the con- 
struction of a discrete sampling function. Let f(s) represent a 
2-D, continuous set of data. We shall assume that 

exists and is finite. The 2-D Fourier transform exists under 
this condition and is given by equation (1). Real-world 
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measurements off (s), however, are often discrete and always 
finite. The sampled version off@) can be represented as the 
multiplication off (s) by a 2-D, rectangular array of impulses 
(Bracewell, 1965). For example, if the data are measured on (or 
are interpolated to) a rectangular grid of 2N + 1 columns and 
2M + 1 rows spaced Ax and Ay apart, respectively, then the 
measured survey can be represented as 

where 
N M 

The Fourier transform of fD(s) is given by the convolution of 
the Fourier transforms off (s) and d(s): 

where 

D(k) = 
sin (jk, Ax) sin (ik, Ay) 

Because of the periodicity of D(k), only wavenumbers between 
f n/Ax or fn/Ay (the Nyquist wavenumbers) need be con- 
sidered in the following discussion. For large N and M in 
equation (6), D(k) approaches a single impulse at the origin, 
and fD(s) approaches a perfect representation of f(s) for wave- 
numbers less than the Nyquist wavenumbers. For finite N and 
M, D(k) has part of its energy distributed in side lobes that are 
not isotropically distributed about the origin. The side lobes 
are rectangular in shape and the sides are parallel to the k, 
and k ,  axes; most energy in fact lies along the k, and k, axes. 
Consequently, finite N and M cause D(k) to smooth and dis- 
tort F(k) in ways that depend upon the orientation of the x, y 
coordinate system. 

The cause of the edge effect can be seen in another way. 
Discrete Fourier analysis implicitly assumes that the rectangu- 
lar window of data is repeated infinitely in both the x and y 
directions, like a checkerboard pattern. Because f(s) is not 
usually periodic in this way, discontinuities exist along the 
boundaries of each of the infinite set of repeated rectangles. 
The attempt to model these abrupt discontinuities with dis- 
crete samples causes additional rectangular distortions of 
FD (k). 

Several approaches are used to minimize the discontinuities 
along the boundary of fD(s). First, the outer rows and columns 
of fD(s) can be gradually attenuated to zero or to some other 
constant. Second, extra rows and columns can be added to 
fD(s). For example, rows and columns can be added so that 
the discontinuity between the first and last point of each orig- 
inal row and column is smoothed across the added margin by 
using a straight line or a smoothly curving function (Hilden- 
brand, 1983; Blakely, 1977). Finally, rows and columns can be 
added to fD(s) by repeating the rows and columns of fD(s) in 
some sequence, perhaps as mirror images (Mayhew, 1985). 

IMPROVED SPECTRAL ESTIMATES BY SUCCESSIVE 
ROTATIONS OF THE DATA GRID 

Our method attempts to remove edge effects by rotating 
edges relative to the data; real features and edge artifacts 

should thereby be separable. The method makes use of the 
fact that rotation off (x, y) about its origin only affects F(k) by 
an identical rotation. This can be seen by rewriting equation 
(1) in polar coordinates. Let s = (s, 8) and k = (k, 4). Then 
equation (1) becomes 

2n m 

F(k, 4) = f (r, 8)e- 'OS @-% ds do. 

Clearly, the Fourier transform of f(s, 8 + E) is F(k, 4 + E). 
Thus, if!@) is rotated about its origin by an angle E,  Fourier 
transformed, and rotated back by an angle - E ,  the result is 
simply F(k). We denote this three-step procedure by R, [ f (s)] 
where the subscript indicates the amount of rotation. Note 
that 

for any E. 
Rotation by angle E and subsequent regridding of a sampled 

function fD(s) can be seen as a rotation of f(s), while d(s) 
remains parallel to the x and y axes. Consequently, the rec- 
tangular side lobes caused by D(k) are always parallel to the k, 
and k, axes, whereas F(k) is rotated by an angle E.  Hence, 
application of the three-step procedure described above to d(s) 
[rotation of d(s) by E, Fourier transformation, and rotation 
back by -E] causes rotation of D(k) by an angle -E; i.e., 

Our method uses stacking to exploit relations (7) and (8) so 
that contributions to F,(k) due to F(k) are amplified at the 
expense of D(k): We make K calculations of Re [fD(s)] for K 
unique values of E,  add the amplitudes of the K spectra, and 
divide the sum by K. Hence, we define a new "rotational" 
amplitude spectrum of f,(s): 

Because amplitude spectra of real functions are symmetrical 
through the origin, it is only necessary that E range between 0 
and 812. We have found in most applications that ten to 
twenty rotations are sufficient to eliminate most of the edge 
effect. 

Prior to each three-step calculation of R, [ fD(s)], we discard 
all data that lie outside of the largest circle that fits within the 
rectangular grid of f,(s). Data outside the circle are replaced 
by the average of all values along the perimeter of the circle. 
Although this step reduces the quantity of data by a factor of 
(4 - n)/4 for square-shaped windows, or by about 21 percent, 
it helps eliminate the distortion caused by the rectangular 
window of data. 

In summary, our method consists of the following steps: 

(1) Find the largest circle which fits within the 
boundaries of fD(s) and replace with a constant all f',(s) 
that lie outside the circle. 

(2) Calculate R, [ fD ($1 : 
(a) rotate the coordinate system by an angle E and 

regrid Jb (s) using spline interpolation with respect to the 
new coordinate system; 

(b) Fourier transform the rotated grid; 
(c) calculate the amplitude grid of the Fourier 

transform grid; and 
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(d) regrid the amplitude spectrum with respect to a 
new coordinate system rotated by angle -E. 

(3) Repeat step (2) using K various values of E be- 
tween 0 and n/2 and add the results of each iteration to 
previous results. 

(4) Normalize the sum by dividing by K. 

TEST CASE 

A digital representation of a function having known spectral 
properties is required to test the method and to compare the 
method with other techniques. We compose our test function 
from a sum of L sinusoids, 

which has a Fourier transform given by 

6(k + k,) + 6(k - k,) 
6 =  I I 

(Bracewell, 1965). 
In the following example, we let L = 10 and A, = 1 for all d .  

The digital version f(s) (Figure 1) is an array of 128 by 128 
points. The band of knowable wavenumbers ranges from the 
fundamental wavenumbers. 

to the Nyquist wavenumbers, 

We purposely chose the wavelengths of two of the ten sinu- 
soids to lie outside of this band. One sinusoid that has wave- 
numbers greater than the Nyquist wavenumbers contributes 
aliasing errors to FD(k). Another sinusoid, which has wave- 
numbers less than the fundamental wavenumbers, contributes 
most of its energy near the origin, but also contributes to the 
edge discontinuity. The theoretical continuous spectrum is 
represented in Figure 2 where, for display purposes, the Dirac 
impulses are shown by small squares. 

Analyses of the test case by a conventional method and by 
the new method are shown in Figures 3 and 4, respectively. 
Figure 3 shows the power spectrum of fD(s) calculated by (1) 
adding 22 rows and columns to fD(s) in order to minimize the 
edge discontinuity, (2) calculating the Fourier transform of 
this expanded fD(s), and (3) squaring the amplitude of the 
Fourier coefficients. The result is substantially different from 
the theoretical continuous spectrum (Figure 2); it is difficult to 
discern the various peaks due to a rectangular distortion; and 
several spurious peaks appear. 

Figure 4 shows the power spectrum computed with the dis- 
crete rotational Fourier transform using 30 rotations. Spuri- 
ous peaks are not evident, and the shape in Figure 4 more 
closely resembles the theoretical continuous spectrum (Figure 
2). Note that, because of the first step of the procedure, Figure 
4 was computed with 21 percent fewer original data than 
Figure 3, yet produces a more accurate estimate of the con- 
tinuous spectrum. 

DISCUSSION 

The new technique has its greatest use in those studies that 
examine shapes and trends of Fourier transformed data (e.g., 
Connard et al., 1983; Simpson et al., 1986). Figure 5 shows an 
example of the benefits of the discrete rotational transform to 
interpretation of aeromagnetic data. Connard et al. (1983) ex- 
tended the method of Spector and Grant (1970) to estimate 
depth to the top and bottom of magnetic sources in part of the 
Cascade volcanic province in Oregon. Their technique was to 
(1) divide the magnetic survey into rectangular cells, (2) calcu- 
late the 2-D Fourier transform of each cell, (3) calculate 
averages of spectral values within rings concentric about the 
origin, and (4) analyze the shape of these averaged spectral 
values as a function of radial distance from the origin. Step (3) 
is a convenient way to render a 2-D data set into a 1-D curve, 
but its success depends upon accurate calculation of mean 
values in each concentric ring. 

To compare our technique with standard Fourier analysis, 
we applied both techniques to a 64 by 64 km subarea of the 
aeromagnetic survey shown in Figure 5 of Connard et al. 
(1983). Logarithms of squared amplitudes are shown as a func- 
tion of radial distance from the origin. Hence, calculating 
averages within concentric rings about the origin of the 2-D 
transform is identical to calculating averages within a sliding 
window in Figure 5. The scatter of spectral estimates is con- 
siderably reduced with the new technique; averages calculated 
within concentric rings will have a higher level of confidence. 
The method of Connard et al. (1983) assumes that magnetic 
sources are distributed so that 2-D transforms have no azi- 
muthal dependence. The discrete rotational transform ensures 
that orientation of the coordinate system does not detract 
from this assumption. 

CONCLUSIONS 

We have demonstrated in Figures 3 and 4 that, for this 
particular test case, the discrete rotational transform produces 
a more accurate representation of the continuous spectrum 
than does a Fourier transform of a rectangular window of 
data. We compared but did not show, the new method with 
three other techniques designed to reduce the edge effect: (1) 
addition of rows and columns which smooth the discontinuity, 
(2) addition of rows and columns which are mirror images of 
the measured data, and (3) smooth attenuation of outer rows 
and columns to a common value. The new method was su- 
perior in all cases. The new method has a great advantage 
over existing methods in that the data are not modified and 
surveys are not artificially expanded. 

We rely on empirical rather than mathematical arguments 
to justify our method. This method obviously suppresses dis- 
tortions that depend upon the azimuthal orientation of the 
coordinate system, but the method may have little or no effect 
on isotropic noise (i.e., noise that is a function of I k I). 

We expect that the discrete rotational transform will most 
benefit those studies that require examination of patterns of 
2-D spectra (e.g., Connard et al., 1983; Simpson et a]., 1986). It 
eliminates artifacts associated with the orientation of the rec- 
tangular sampling window, an effect that may tend to obscure 
spectral patterns related to geologic sources. 
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Test case 

FIG. 1. Sum of 10 sinusoids used as a test case for Figures 3 
and 4. Grid is composed of 128 rows and 128 columns. Con- 
tour interval is unity. 

-i o i 
kX , radianr/rampllng interval 

-2 0 2 
kx , radianrhamplina Interval 

FIG. 3. Logarithm of squared amplitudes calculated from the 
data shown in Figure 1. Twenty-two rows and columns were 
added to the data prior to calculation of the Fourier trans- 
form so as to replace the discontinuity between the first and 
last elements of each row and column with a straight line. 
Contour interval is unity. 

kx , tadlanrlrampllng Interval 

FIG. 2. Theoretical continuous spectrum of the function given FIG. 4. Logarithm of squared amplitudes of the data shown in 
by equation (10) and shown in Figure 1. Squares represent Figure 1 calculated by the discrete rotational transform 
locations of Dirac impulses. method. Thirty rotations were used. Contour interval is unity. 
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