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[1] Core formation, crystal/melt separation, mingling of immiscible magmas, and diapirism are fundamen-
tal geological processes that involve differential motions driven by gravity. Diffusion modifies the compo-
sition or/and temperature of the considered phases while they travel. Solid particles, liquid drops and
viscous diapirs equilibrate while sinking/rising through their surroundings with a time scale that depends
on the physics of the flow and the material properties. In particular, the internal circulation within a liquid
drop or a diapir favors the diffusive exchange at the interface. To evaluate time scales of chemical/thermal
equilibration between a material falling/rising through a deformable medium, we propose analytical laws
that can be used at multiple scales. They depend mostly on the non‐dimensional Péclet and Reynolds
numbers, and are consistent with numerical simulations. We show that equilibration between a particle,
drop or diapir and its host needs to be considered in light of the flow structure complexity. It is of funda-
mental importance to identify the dynamic regime of the flow and take into account the role of the inner
circulation within drops and diapirs, as well as inertia that reduces the thickness of boundary layers and
enhances exchange through the interface. The scaling laws are applied to predict nickel equilibration
between metals and silicates that occurs within 130 m of fall in about 4 minutes during the metal rain stage
of the Earth’s core formation. For a mafic blob (10 cm diameter) sinking into a felsic melt, trace element
equilibration would occur over 4500 m and in about 3 years.
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1. Introduction

[2] Bubbles and crystals travel through differenti-
ating magmas; metal drops and diapirs fell through
molten silicates during the formation of Earth’s
core [Stevenson, 1990; Rubie et al., 2003; Samuel
and Tackley, 2008; Monteux et al., 2009]; and
sometimes, coexistent immiscible magmas or metals
separate to reach gravitational equilibrium [Dawson
and Hawthorne, 1973; Dasgupta et al., 2006, 2009;
Morard and Katsura, 2010]. Differential motion
driven by gravity is a prerequisite for planetary dif-
ferentiation at all scales. While a phase travels
through and deforms the other, chemical and thermal
diffusion proceed towards thermodynamic equilib-
rium. Depending on material and flow dynamics,
non‐equilibrium fractionation could result from
inefficient mass/heat transfer from one phase to the
other during travel. In order to quantify the time scale
of thermodynamic equilibration, it is necessary to
model deformation of both phases and transport
dynamics.

[3] A generic physical description of these differ-
entiation mechanisms can be formulated by the
rise/fall of chemically (or thermally) distinct parti-
cles, drops or diapirs through a viscously deform-
ing medium. In this paper, the term particle refers
to a small self‐contained body significantly more
viscous than the surroundings and possibly solid,
while drop and diapir are defined by self‐contained
bodies as viscous or less viscous than the sur-
roundings and possibly inviscid. A diapir is a
large‐scale body with approximate sphericity, and
we use the term of drop for small‐scale body, when
surface tension controls the sphericity. The purpose
of this paper is to review and propose analytical
laws that describe the chemical/thermal equilibra-
tion of a traveling particle, drop or diapir, that can
be used at multiple scales and applied to a variety
of geological problems. This chemical equilibration
is that of minor or trace elements, migrating across
the surface of the traveling sphere, assuming that
the major element mineralogies, inside and outside
the sphere, do not change. We first draw attention

to results that are often overlooked in the geosci-
ence literature though acknowledged in engineer-
ing and mass/heat transfer communities. Indeed,
the mass and heat transfer between a liquid drop/
solid particle and a viscous surrounding medium
has been described for various industrial purposes
[Clift et al., 1978]. We then extend their use and
couple them to concentration models inside and
around the spherical body. We propose scaling
laws for the time of equilibration for 4 different
regimes: a particle with and without inertia, a drop/
diapir with and without inertia. Then, we propose
times of chemical equilibration during core for-
mation and silicate melt differentiation.

2. Models for the Equilibration of
Rising/Falling Particles, Drops,
and Diapirs

2.1. Chemical and Thermal Transfer
From a Sphere

[4] We restrict ourselves to the study of an indi-
vidual spherical particle, drop or diapir of radius R
in steady‐state motion with terminal velocity Ut. In
the following, the subscript “o” denotes the prop-
erties outside the sphere and “i” inside the sphere.
The viscosity ratio between the falling/rising body
and its host liquid is Rm = mi/mo and we speak of
“particles” when Rm = mi/mo � 1 and “drops” or
“diapirs” when Rm = mi/mo ] 1. All the notations
and parameters can be found in Table 1.

[5] In order for the dispersed phase to keep its
sphericity, the interfacial force has to exceed dis-
rupting forces, i.e. the viscous force and inertia,
that tend to deform the sphere. The smallest drops
or diapirs coalesce (they are swept by larger
spheres traveling faster), the largest deform, stretch
and eventually break‐up. For highly viscous flows,
the capillary number Ca = moUt/g (g is interfacial
tension), being the ratio between the viscous
stresses and the interfacial tension, reaches a criti-
cal value for break‐up conditions that depends on
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the viscosity ratio Rm across the surface. This
critical capillarity number Ca is about 0.1 for
high viscosity ratios and larger for low viscosity
ratios, for which the drop/diapir stretches and
forms a slender shaped body difficult to fragment
(see Stone [1994] for a review). For low viscosity
flows, perturbations of the interface generate
Rayleigh‐Taylor and Kelvin‐Helmoltz instabilities
that ultimately break up the drops [Kitscha and
Kocamustafaogullari, 1989]. This situation hap-
pens when the Weber number We = roUt

2R/g (ro
is external density), which is the ratio between
inertia and interfacial tension, reaches values
around 10 [Wierzba, 1990].

[6] For a body sinking or rising through a viscous
medium, two non‐dimensional numbers control the
dynamics of chemical equilibration of the traveling
sphere with its surroundings: (1) the Reynolds
number Re = RUtro/mo that describes the effect of
inertia to viscous force and (2) the Péclet number
Pe = RUt/Do that relates the diffusion time to the
advection time in the host liquid, D standing for
chemical diffusivity. As both Re and Pe include the
terminal velocity, it may be confusing to use

simultaneously the two numbers and we introduce
their ratio, also called the Schmidt number Sc =
Pe/Re = mo/(roDo). When the spherical body and
its host liquid have different physical properties,
the ratios of internal to external diffusivities RD =
Di/Do and viscosities Rm = mi/mo, have to be
considered.

[7] Starting from non equilibrium initial conditions,
the sphere and its surroundings tend to chemically
equilibrate by microscopic diffusion and macro-
scopic stirring. The stirring, i.e., the advection of
concentration by the flow, occurs outside and
possibly inside the sphere, due to the circulation
forced by the shear stress at the surface of the drop.

[8] We assume that the initial concentration c of
some trace element outside the sphere is uniform
and equal to c∞ while the concentration inside the
drop is equal to c0. The dimensionless transport
equation governing this process, assuming materi-
als are incompressible, is written as

@C

@t
¼ r � D

Pe

#

C � vC

� �
; ð1Þ

Table 1. Variables and Parameters of the Studied System Together With Expressions for the Proposed
Equilibration Times t

Parameter Notation Unit

Viscosity of the host liquid mo Pa s
Viscosity inside the sphere mi Pa s
Diffusivity of the host liquid Do m2 s−1

Diffusivity inside the sphere Di m2 s−1

Density of the host liquid ro kg m−3

Density of the sphere ri kg m−3

Radius of the sphere R m
Terminal velocity Ut m s−1

Initial concentration within the sphere c0 mol m−3

Concentration at infinity c∞ mol m−3

Dimensionless Number Notation Expression

Viscosity ratio Rm mi/mo

Diffusivity ratio RD Di/Do

Reynolds number Re RUtro/mo
Peclet number Pe RUt/Do

Schmidt number Sc Pe/Re = mo/(roDo)
Sherwood number Sh −h #

Co
surfi/hCo

surfi
Regime Equilibrium Timescale

Drop: low Re, low Rm � ¼ Pe
3

K

0:461 1þR�ð Þ�1=2
Pe1=2

þ 1
10RD

� �
Drop: high Re, low Rm � ¼ Pe

3
K

0:79 Pe1=2
þ 1

10RD

� �
Particle: low Re, high Rm � ¼ Pe

3
K

0:64 Pe1=3
þ 3

�2RD

� �
Particle: high Re, high Rm � ¼ Pe

3
K

0:6 Pe1=3Re1=6
þ 3

�2RD

� �
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where C stands for the normalized concentration
of any minor element of interest, i.e., C = (c − c∞)/
(c0 − c∞) and D for the dimensionless diffusion
coefficient being 1 outside the drop andRD = Di/Do

inside. To scale the quantities back to numbers with
dimensions, the dimensionless distance has to be
multiplied by the radius of the sphere R, and the
time by the advection time R/Ut. The initial non‐
dimensional concentrations are one inside and zero
outside.

[9] The local chemical equilibrium implies that the
concentration ci

surf on the inner side of the sphere is
controlled by thermodynamics to be Kcosurf, where
K is the partition coefficient at the surface (K =
ci
surf/co

surf). The final equilibrium is reached when
the outside concentration is homogeneous and equal
to c∞ and the inside concentration also homoge-
neous but equal to Kc∞. The normalized concen-
tration inside the sphere, Ci, evolves therefore from
1 to (K − 1)c∞/(c0 − c∞).

[10] The chemical and thermal diffusion of a trav-
eling sphere is the subject of numerous studies in
the chemical/heat transfer literature [e.g., Clift et al.,
1978; Levich, 1962] that we can only briefly intro-
duce here. Usually the mass transfer coefficient of
the sphere is defined as the Sherwood number:

Sh ¼ �R

#

csurfo

� �
csurfo

� �� c∞
¼ �

#

Csurf
o

� �
Csurf
o

� � ; ð2Þ

where hcosurfi and hCo
surfi, and h #

co
surfi and h #

Co
surfi

are the average concentrations at the surface of the
sphere and average gradients of concentration nor-
mal to it, with and without dimensions. The minus
sign in equation (2) insures the positivity of Sh.
Notice also that although the gradient of concen-
tration h #

co
surfi can have any sign, the normalized

gradient h #

Co
surfi is always negative. Because of the

similarity of heat and diffusion equations, all the
results on diffusion relating Schmidt and Sherwood
numbers have thermal counterparts where the mass
flux is equivalent to the Nusselt number Nu =
−R

#

Tsurf/(Tsurf − T∞), and the Schmidt number to
the Prandtl number Pr = mo/(ro�o), where T is tem-
perature and � thermal diffusivity.

[11] A very large number of semi‐empirical equa-
tions predicting Sh, can be found in the literature,
based on experiments and physical analysis.
However, simple boundary layer theories can be
developed to quantitatively describe mass fluxes at
the interface in the different flow regimes. The
general method is to express the velocity at the
surface of the sphere, estimate the shape of the dif-
fusion layer and perform careful averaging over

the sphere [Levich, 1962; Ribe, 2007]. The gen-
eral results for high enough Pe can be written in
the form

Sh ¼ aScmPen ¼ aScmþnRen; ð3Þ

where a, m and n are constants for a given
regime. The exponents can be found by scaling
arguments as summarized hereafter and the pre-
factor estimated analytically, numerically or
experimentally:

[12] 1. When Rm ] 1, i.e., in the case where the
internal viscosity is of the same order or smaller than
the external viscosity, the external flow experiences
the surface of the drop/diapir as a free‐slip boundary
condition. The surface velocity in the reference
frame of the drop/diapir is therefore of order Ut,
the transport term of the advection‐diffusion
equation v.

#

C is of order UtC/R (transport along
the surface of the sphere) and is balanced by a
diffusion term Dor2C of order DoC/d

2 across a
diffusion boundary layer of thickness d (diffusion
perpendicular to the surface of the sphere).
Therefore the diffusion boundary layer is of order
(d/R)2 / 1/Pe, and, as Sh = R/d

Sh ¼ aPe1=2 ¼ a Sc1=2Re1=2: ð4Þ

The details of the external velocity field control the
diffusion layer and hence the expression of the
constant a. (1) For low Re flows, inertia is negli-
gible, the external velocity is given analytically by
the Rybczynski‐Hadamard expression [Acrivos and
Goddard, 1965] and following Levich [1962] we
obtain

a ¼ 0:461

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þR�

s
: ð5Þ

(2) At very large Re, the flow becomes irrotational
and the analytical expression of the potential flow
yields a = 0.79 [Clift et al., 1978].

[13] 2. When Rm � 1, the sphere behaves rigidly.
In its own reference frame, the surface velocity is
zero then increases away to Ut. Two cases must
then be considered. First, at low Re, there is no
viscous boundary layer as viscous forces dominate
everywhere in the domain. As a consequence the
velocity increases from 0 to Ut over the distance R
so that the velocity is of order Utd/R at the distance
d. The balance between advection and diffusion
now gives (Utd/R)(C/R) / DoC/d

2, which leads to
(d/R)3 / 1/Pe and thus to

Sh ¼ aPe1=3 ¼ a Sc1=3Re1=3; ð6Þ
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where a = 0.64 [Levich, 1962]. Second, at large Re,
the situation is more complex. In this case, there is
a viscous boundary layer of thickness d′ where the
inertia term of the Navier‐Stokes equation roUt

2/R
is balanced by the viscosity moUt/d′

2. The diffusive
boundary layer is therefore embedded in a viscous
layer of thickness d′ / R Re−1/2. The velocity at
the distance d of the particle surface is of order
Utd/d′ = UtdRe

1/2/R. The balance between diffu-
sion and advection is now (UtdRe

1/2/R)(C/R) /
DoC/d

2 which leads to (d/R)3 / 1/(Re1/2Pe) and
thus to

Sh ¼ aRe1=6Pe1=3 ¼ aSc�1=6Pe1=2 ¼ aSc1=3Re1=2; ð7Þ

where a = 0.6 [Ranz and Marshall, 1952].

[14] 3. For a non moving body, the diffusion
equation can be solved exactly and Sh = 1. This is a
special case, that does not obey the asymptotic
equation (3) valid for high Pe. In the intermedi-
ate regime where Pe is small, various empirical
expressions for each specific case can be found in
the literature. For example, for Re � 1, Clift et al.
[1978] propose Sh = 1 + (1 + a4/3Pe2/3)3/4 in the
case Rm ] 1 (which generalizes equation (4)) and
Sh = 1 + (1 + a3Pe)1/3 in the case Rm � 1 (which
generalizes equation (6)). These expressions are
cumbersome and the cases where diffusion dom-
inates advection not very interesting physically. For
numerical applications, the reader should use the
maximum of the asymptotic equation (3) and of the
diffusive limit Sh = 1.

2.2. Equilibration Time Scales

[15] Once the Sherwood number is known (the
average concentration gradient), to compute the
evolution of the concentration within the sphere,
we must now relate hCo

surfi to hCii, the average
concentration of the spherical body. Hence we
integrate the diffusion equation (1) to get

@ Cih i
@t

¼ 3

Pe

#

Csurf
o

� � ¼ �3
Sh

Pe
Csurf
o

� �
: ð8Þ

The thermodynamic equilibrium at the surface
implies ci

surf = Kco
surf, or in term of normalized

concentrations,

Csurf
i ¼ KCsurf

o þ K � 1ð Þ c∞
c0 � c∞

: ð9Þ

[16] The concentration diffuses from the surface
where the concentration gradient is h #

Co
surfi/RD.

Therefore a reasonable profile for the radial con-
centration inside the drop is

Ci rð Þ ¼ Csurf
i

� �þ #

Csurf
o

� �
RD

f rð Þ: ð10Þ

The function f(r) characterizes the concentration
profile and verifies the conditions at the surface
and the center of the sphere: f(1) = 0, f ′(1) = 1
and f ′(0) = 0. This function should also satisfy
some positivity constraint as the real concentration
ci(r) should be everywhere positive. We do not
impose such a condition. Our models implies that
the concentration near the surface of the sphere is
always positive and this controls the average con-
centration (related to the integral of Ci(r)r

2) which
is always positive as we see below.

[17] Equation (10), averaged over the volume of the
sphere, gives for the radial average concentration

Cih i ¼ Csurf
i

� �� #

Csurf
o

� �
b RD

¼ Csurf
o

� �
K þ Sh

b RD

� �

þ K � 1ð Þ c∞
c0 � c∞

; ð11Þ

where the second equality uses averaged equation (9),
and where b is positive and given by

1

b
¼ �3

Z 1

0
f rð Þr2dr: ð12Þ

[18] Combining equations (8) and (11) we predict an
exponential homogenization of the concentration

@ Cih i
@t

¼ � 1

�
Cih i � K � 1ð Þ c∞

c0 � c∞

� �

with � ¼ Pe

3

K

Sh
þ 1

bRD

� �
:

ð13Þ

With real dimensions, the solution is simply

ciðtÞh i ¼ c0 exp � Ut

R�
t

� �
þ Kc∞ 1� exp � Ut

R�
t

� �� �
: ð14Þ

These last expressions show that the average con-
centration in the sphere reaches exponentially the
asymptotic equilibrium value and provides an esti-
mate of the characteristic homogenization time t as
a function of K, Pe, Re,RD andRm (which controls
the appropriate expression of Sh). It also shows that
the average concentration is always positive, inde-
pendently of the choice of f(r), hence b, that we
estimate for two limiting cases:
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[19] 1.WhenRm� 1, there is no recirculation inside
the sphere. When diffusivity of the outer material is
large, 1/(bRD) � K/Sh, the time of equilibration in
dimensional quantities is t = R2/(3bDi), which is
the same as the classical value obtained for diffu-
sion in a sphere with imposed surface concentra-
tion R2/(p2Di) [Carslaw and Jaeger, 1959], when
b = p2/3. This is obtained for f(r) = −sin(pr)/(pr),
which indeed verifies f ′(0) = f(1) = 0, and f ′(1) = 1. In
our equilibration experiments, the concentration is
not imposed at the sphere surface but at infinity.
The diffusion toward the sphere must also proceeds
outside the sphere and using equation (13) with
Sh = 1 we predict for the equilibration time of a
static sphere (with real dimension)

�s ¼ K
R2

3Do
þ R2

�2Di
: ð15Þ

The equilibration of a sphere with concentration
maintained at infinity is indeed slower than when
this concentration is imposed at the surface and
depends on internal and external diffusivities and
on the partition coefficient.

[20] 2. When Rm ] 1, there is an internal recircu-
lation inside the drop/diapir, the concentration at
the center is close to the concentration at the sur-
face because of the efficient inner transport. Thus,
the radial concentration profile within the fluid
sphere must also satisfy f(0) = 0. The simplest
polynomial function that verifies all four conditions
f(0) = f ′(0) = f(1) = 0, and f ′(1) = 1 is f(r) = r2(r − 1)
which results in b = 10.

[21] For the convenience of the reader, the expres-
sions for the equilibration times in the different
regimes are summarized in Table 1.

3. Numerical Examples

[22] The goal of this section is to compare full
numerical solutions for the time of equilibration
with the analytical laws proposed above. Hence we
run 2D axisymmetric numerical simulations of the
incompressible Navier‐Stokes equation coupled
with the mass transfer equation. The experiments
are performed using the finite element method
(FEM) implemented in the Elmer open software
(CSC IT–Center for Science, 2010, available at
http://www.csc.fi/english/pages/elmer). The com-
puting domain consists of an axisymmetrical cyl-
inder with height and diameter of 40 R. In the
center of the cylinder is a motionless sphere of
radius R. Constant inflow of magnitude Ut parallel
to the axis of symmetry together with zero con-
centration boundary condition are prescribed at the
bottom of the cylinder, neglecting thus the influ-
ence of other drops. Free‐slip boundary condition
for velocity, and zero concentration are imposed at
the sides of the cylinder. At the top, a flow parallel
to the symmetry axis is forced, and a Neumann
boundary condition of zero concentration gradient
is prescribed. Finally, at the surface of the sphere,
zero normal velocity and zero tangent traction are
prescribed. A jump in concentration is imposed
according to the choice of the partition coefficient,
while the concentration flux remains continuous.

Figure 1. Maps (close‐ups) of the nondimensional velocity relative to the average drop velocity (arrows) and con-
centration (color) for falling (a) particle in Re < 1 flow, (b) drop in Re < 1 flow (in to out viscosity ratio Rm = 10−3)
and (c) particle in a higher Re flow (being 50 here). The spheres fall under their own weight and start with a com-
position of 1 (light grey) and the surrounding material has a zero concentration initially (green). All models have
Péclet number Pe = 2800 and equal diffusivity in and out of the sphere (RD = 1). Snapshots are taken after a
falling distance of 36 (Figure 1a), 41 (Figure 1b) and 283 (Figure 1c), times the sphere radius.
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[23] Using FEM allows us to refine the mesh in the
boundary layer around the sphere in order to have a
good resolution for the velocity and transport
equations, together with the refinement in the wake
where more complicated structures of the flow
appear at high Re. We use up to 80 000 mesh
nodes. For each of the simulations, the time of
equilibration t is computed through a least‐squares
fit of the time series of hCi(t)i. We explore its
dependence on the non‐dimensional numbers Pe in
the range 102–105, Re in the range 0–170 and
diffusivity and viscosity ratios RD and Rm, in the
range 10−1–103 and 10−3–103, respectively.

[24] Typical flows are shown in Figure 1 (velocity
in the sphere reference frame is depicted by arrows,
concentration by color scale). For a rigid sphere
and low Reynolds number (panel a, Rm = 100,
Re = 0.1), the flow is a typical Stokes flow,
homogenization proceeds from the surface, and a
tail is emitted in the wake of the sphere. When the
internal viscosity is reduced keeping the same low
Reynolds number (panel b, Rm = 10−3, Re = 0.1), a
circulation is induced within the drop with veloci-
ties comparable to the terminal velocity, and we
note two minima for the concentration, along the
symmetry axis and at the surface. As Re increases
(panel c, Rm = 104, Re = 50), the symmetry of the
flow breaks down and a vortex is generated behind
the sphere. The variety of flows, within and outside
the sphere, is the expression of the diversity of
regimes for chemical and heat transfer. The tran-
sition from the drop/diapir case, in which the inner
circulation is pronounced, and the particle case,
where the sphere acts as a solid, occurs for Rm
between 1 and 500 in our calculations.

[25] In Figure 2 we depict the average radial con-
centrations corresponding to cases with and with-
out internal recirculation, for the situations and
times of the cases in Figures 1b and 1c (the case in
Figure 1a, without recirculation is comparable to
the case in Figure 1c for what concerns the average
radial concentration). Although the fits are not
perfect, the analytical profiles capture the behavior
of the numerical solutions. The quality of the
approximations are increasing with time, as equili-
bration proceeds. As the average concentrations in
the sphere involves Ci(r)r

2, and are therefore
mostly controlled by the concentration near r = 1,
more accurate fits are not needed.

[26] To benchmark the quality of the predictive
laws proposed above, we compute the evolutions of
the concentrations in numerical simulations. These

evolutions can be closely matched by exponentials,
as predicted. In Figure 3, the Pe dependence pro-
posed above reproduces the results of the simula-
tions in the various cases, at low and high Re. The
proposed analytical expressions are in very good
agreement with the numerical experiments. For the
drop/diapir case, the analytical model with inviscid
flow gives a lower bound for the time of equili-
bration since viscosity should slow motion in
boundary layers. In Figure 3, the role of the cir-
culation within the drop/diapir is expressed by the
shorter equilibration time for the fluid sphere case
relative to the solid case. Indeed, the circulation
within the sphere produces efficient stirring that
generates stronger chemical/thermal gradients which
diffuse away more rapidly. As Pe increases, the
non‐dimensional time of equilibration increases. To
keep the same reference time scale for the non‐
dimensionalization (fixing the values for Ut and R)
while increasing Pe implies that diffusivity has to
be decreased. It is then expected that keeping the
velocity constant and decreasing the diffusivity
thwarts equilibration.

[27] The observed role of Re in the simulations is
also consistent with our predictions with and
without internal circulation, as seen in Figure 4.
Increasing Re leads to a decrease of the dimen-
sionless time of equilibration. At high Re, veloci-
ties can be larger and stronger velocity gradients
are allowed which favor a faster mixing. Indeed,
the higher the Re the thinner the boundary layer
around the sphere, and thus the more efficient the
diffusion across the drop interface. However, this
mechanism is somewhat modest since a limited
reduction of the equilibration time by a factor of
2 requires more than 3 order of magnitude higher
Re. The onset of the wake instability does not
generate significant changes in the equilibration
style mostly because the flux of elements/heat is
dominated by the fluxes at the front of the sphere
while it remains close to zero in the wake.

[28] Figure 5 shows t as a function of RD for a
fixed Pe for the drop/diapir and particle cases at
low and high Re. Again the numerical results show
a good agreement with our theoretical predictions:
when RD > 1, diffusion inside the sphere is more
efficient than outside. Hence, diffusion in the host
liquid is the limiting parameter for equilibration
and t does not depend on RD, cf. equation (13).
For RD < 1, diffusion in the sphere is the limiting
parameter and as a consequence t decreases with
RD. As explained above, the analytical model for the
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high Re drop regime represents a lower bound for the
analytical model since inviscid fluid is considered.

4. Discussion and Conclusions

[29] We presented approximate analytical models
to predict equilibration times for spherical particles,
drops and diapirs traveling through a viscously
deforming surroundings due to buoyancy forces.
Numerical simulations for a wide range of parameters
confirm our predictive laws that can be used in
geophysical problems at any scale. Small differences
between analytical and numerical predictions can
however be noticed (particularly visible in Figure 4
where we use a vertical linear scale). This might be
due to the several assumptions of the analytical
models (asymptotic expressions and choices of
simple radial profiles) or of the numerical simula-
tions (finite size of the computation domain).

[30] We showed that it is fundamental to take into
account the flow structure and hence evaluate the
correct regime for a given situation. The existence
of an internal circulation within the spherical body
is essential since it significantly reduces the time
needed for equilibration. Compared to the purely
diffusive systems, advective motion gives rise to
thinner boundary layers and thus raises concentra-
tion gradients. Consequently, diffusion transport
inside the spherical body and whole equilibration
are more efficient than for a particle or motionless

drop/diapir. When inertia dominates over the vis-
cous forces, the boundary layer is even thinner
speeding up further diffusion across the rim.
Concerning the role of diffusivity and viscosity, a
high diffusion rate of the surrounding host liquid
always favors a rapid equilibration. The role of
the external viscosity is more complex. The time of
equilibration decreases both when the external
viscosity is too low (in which case no stirring
occurs within the drop) and when it is too large (in
which case the terminal velocity and the internal
velocities also decrease). The cases where the
internal and external viscosities are close, i.e., the
transition between drops (internal recirculation)
and particles (no internal recirculation), are difficult
to predict analytically. In the low Re number limit,
the flow can be expressed as a function of Rm by
the Rybczynski‐Hadamard formulae but a choice
has to be made for the value of b (b = 10 for a drop,
b = p2/3 for a particle). The situation is even more
complex at high Re numbers where the real solu-
tion lies in between the two analytical cases.

[31] The predictive laws are scale‐independent and
can be applied to various geophysical settings with-
out computing the full mass transfer problems. A
small scale problem is hybridization of mafic blob
falling in a more silicic melt. We choose typical
numbers as those of Grasset and Albarède [1994]:
200 kg m−3 density excess than the felsic surround-
ings [Huppert et al., 1982], viscosities of 500 Pa s

Figure 2. Average concentrations in the sphere as a function of normalized radius, corresponding to the cases in
Figures 1b and 1c (solid lines). The profile approximations (dashed lines), equation (10) with f(r) = r2(r − 1) and
f(r) = −sin(pr)/(pr), are in reasonable agreement with the simulations, particularly near r = 1.
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and 25000 Pa s for the mafic blob and host silicic
melt and viscosity, respectively, and 10 cm for the
blob diameter. The Rybczynski‐Hadamard formula
gives a terminal velocity of Ut = 5.3 · 10−5 m s−1

which implies Re = 2 · 10−7. The corresponding
dynamic regime is that of a drop traveling at low Re.
To compute the time of equilibration we use typical

diffusion coefficients of 10−12 m2 s−1 for trace
elements for both liquids. As a consequence, Pe is
about 2.7 · 106. We arbitrarily choose a partition
coefficient of 2 between the two melts which means
that a trace element will be twice more abundant in
the mafic enclave than in the silicic melt after full
equilibration. The mafic blob is much less viscous
than the surrounding melt. Stirring inside the body
thus enhances the hybridization rate and the char-
acteristic time of equilibration is 2.7 years corre-
sponding to a falling distance of 4535 m. This is a
significantly shorter time than if equilibration pro-
ceeded only by static diffusion obtained from
equation (15). Without any movement the equili-
bration could be attained in about 60 years. Notice,
that many people would use the classical expression
t = R2/(p2Di) that gives for this case an equilibra-
tion time of 8 years, but is physically inappropriate
as it neglects the diffusion in the surroundings of
the sphere and the partition coefficient.

[32] For small iron droplets falling through a sili-
cate magma ocean during early planetary differ-
entiation, we use values similar to those given by
Rubie et al. [2003], with a drop size of R = 0.5 cm.
The most uncertain and critical parameter is the
viscosity of molten silicates composing the magma
ocean ranging in a wide interval 10−4–100 Pa s.
Choosing 0.01 Pa s gives us a terminal velocityUt =
0.6 m s−1 using the work of Brown and Lawler
[2003] for high Re flows. The viscosity of iron
droplets is fixed at mi = 0.01 Pa s [Vočadlo et al.,
2000] and we choose a partition coefficient of
K = 30, which would be that for nickel at a pres-

Figure 3. Nondimensional time of equilibration as a
function of Péclet number (Pe) for drops and particles,
at Re = 0 and Re = 50. In these simulations, the ratio
of internal to external diffusivity is RD = 1000 and for
the drop Rm = 0.1. The analytical relationships are
depicted by dashed lines.

Figure 4. Nondimensional time of equilibration as a
function of Re for drops and particles. In these simula-
tions the Péclet number is Pe = 2800, ratio of internal
to external diffusivity is RD = 1000 and for the drop
case, ratio of in and out viscosities is Rm = 0.1. The ana-
lytical relationships for low and high Re are depicted by
dashed lines. The transition from low to high Re regime
happens around Re = 1.

Figure 5. Nondimensional equilibration time as a func-
tion of diffusivity ratio RD for drops and particles, at
low and higher Reynolds number Re (Re = 0 and 50
here). In these simulations the Péclet number is Pe =
2800 and for the drop viscosity ratio Rm = 0.1. The ana-
lytical relationships are depicted by dashed lines.
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sure of 50 GPa [Li and Agee, 2001]. The diffusivity
of nickel in liquid iron is set to Di = 10−8 m2 s−1

which is estimated from self‐diffusion in liquid
Fe at high pressure [Dobson, 2002]. The diffu-
sion coefficient in molten silicate is chosen to
be Do = 10−9 m2 s−1, imposing a diffusion ratio of
10. Using parameters above results in Pe, Re, and
Rm of 3 × 106, 1000, and 1, respectively. Hence,
the regime is that of a drop in a high Re fluid.
In this case equilibration should be attained in
4 minutes with a traveled distance around 126 m.
This distance is certainly shorter than the depth of
a magma ocean that could be generated from
an impact with a Mars‐sized object [Tonks and
Melosh, 1992]. Our predictions are of the same
order of magnitude as the results obtained by
Rubie et al. [2003] considering the uncertainties
on the parameters. However, our theory takes into
account the flow within the drop and effect of
high Re, and thus proposes an intrinsically faster
time of equilibration and shorter distance than
Rubie et al. [2003].

[33] Further applications can be made (crystal set-
tling in granitoids or ignimbrites, immiscible silicate
and carbonatitic melts segregation etc…) using the
correct proposed predictive relationships. How-
ever, we have made 3 main assumptions that have
to be considered as limitations:

[34] 1. First, sphericity was assumed, which is
known to be matched for drops when the surface
tension dominates and for low Re, and for solids
having a spheroidal shape. The deformation of
diapirs and drops by viscous stresses along the
boundaries can lead to peculiar shapes possibly
skirted and with instabilities leading to break‐up.
More complex calculations have to be performed to
follow the shape evolution in such case.

[35] 2. A second assumption involves non‐interacting
bodies. In the case of the previously advocated
metallic rain in magma oceans the coalescence and
influence of neighboring droplets have to be taken
into account [Ichikawa et al., 2010].

[36] 3. Third, we assumed pure buoyancy driven
flow. The settling of particles and drops can be
influenced by the effect of rotation or other forces
that we have not considered in the present study.
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