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a b s t r a c t

Weakening and shear localization in the lithosphere are essential ingredients for understanding how and
whether plate tectonics is generated from mantle convection on terrestrial planets. We present a new
theoretical model for the mechanism of lithospheric weakening and shear-localization and hence plate
generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospher-
ic rocks. Grain size evolves through the competition of coarsening, which drives grain growth, with dam-
age, which drives grain reduction. However, in a two-phase medium the interface between phases
induces Zener pinning, which impedes grain growth and facilitates damage. The size of the pinning sur-
faces is given by the roughness of the interface, and damage to the interface causes smaller pinning sur-
faces, which in turn drive down the grain-size, forcing the rheology into the grain-size-dependent
diffusion creep regime. This process allows damage and rheological weakening to co-exist, which is nor-
mally considered impossible in single phase assemblages. Moreover pinning greatly inhibits grain-
growth and shear-zone healing, which is much faster in single phase materials. Hence, the resulting
shear-localization is rapid (less than 1 Myr), but the healing time for a dormant weak zone is very slow
(greater than 100 Myrs); these effects therefore permit rapidly forming and long-lived plate boundaries.
The model therefore provides a key ingredient and predictive theory for the generation of plate tectonics
on Earth and other planets.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

The unique occurrence of plate tectonics on Earth amongst all
terrestrial planets in our solar system is one of the major enigmas
in Earth and planetary science. Although it is now widely recog-
nized that plate tectonics is an expression of mantle convection –
wherein subducting slabs both drive plates and cool the planet
(Davies and Richards, 1992; Bercovici, 2003) – how plate tectonics
arises self-consistently from convective motions has been the sub-
ject of study for over 30 years (e.g., Kaula, 1980; Hager and O’Con-
nell, 1979, 1981; Ricard and Vigny, 1989; Vigny et al., 1991;
Bercovici, 1993, 1995; Tackley, 1998, 2000b,c; Bercovici and Ri-
card, 2005; van Heck and Tackley, 2008; Foley and Becker, 2009);
see reviews by Bercovici et al. (2000), Gurnis et al. (2000), Tackley
(2000a) and Bercovici (2003). Even with significant progress, a
comprehensive theory to explain the generation of plate tectonics
has yet to be achieved.

That Earth has plate tectonics but her ostensible twin Venus
does not has been one of the key mysteries in the plate-generation

problem, and it has motivated much speculation about planetary
conditions, including the requirement of liquid water, for plate
tectonics to exist. While a traditional view has been that water
lubricates plates by, for example, introduction of sediments at sub-
duction zones or serpentinization along faults (e.g., Tozer, 1985;
Lenardic and Kaula, 1994; Korenaga, 2007; Hilairet et al., 2007),
the Earth’s lithosphere might be as dry as that of Venus, because
of dehydration melting at ridges (Hirth and Kohlstedt, 1996); this
has lead some to speculate that water’s role is in keeping Earth’s
surface temperature cool enough to permit plate boundary forma-
tion by failure (Lenardic et al., 2008) or damage (Landuyt and
Bercovici, 2009b). That plate tectonics is also presumed to be a
necessary condition for a temperate climate – by the negative
carbon dioxide feedbacks associated with erosion, weathering
and volcanism (Walker et al., 1981) – implies that a habitable cli-
mate and plate tectonics are mutually required. Plate tectonics
may also be necessary for the existence of life by providing a
source of thermodynamic disequilibrium through continuous recy-
cling of the surface (e.g., Southam and Westall, 2007; Martin et al.,
2008). The discovery of many terrestrial planets in other solar sys-
tems over the last fifteen years (e.g., Charbonneau et al., 2009) has,
therefore, emphasized the importance of understanding the condi-
tions for plate tectonics as one (although perhaps not a unique)
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requirement for liquid water and presumed habitability. Of course
the only readily available observation of terrestrial exo-planets is
their mass, which has caused some debate as to whether size is
more or less conducive to plate tectonics (Valencia et al., 2007;
Valencia and O’Connell, 2009; O’Neill and Lenardic, 2007),
although recent studies suggest that other factors such as surface
conditions are equally or more important (Korenaga, 2010; van
Heck and Tackley, 2011; Foley et al., 2012), which corresponds to
the Earth-Venus comparison. However, this debate has highlighted
the importance of understanding the physics of plate generation in
order to predict how planetary conditions facilitate or inhibit plate
tectonic formation.

The primary candidates for predictive theories of plate genera-
tion essentially belong to two classes, that from some perspectives
are not so far from each other. First, a widely used approach is the
‘‘plasticity’’ formalism in which plates are assumed to be generated
– i.e., an otherwise cold and strong lithosphere develops weak
plate boundaries – when convective stresses exceed a certain yield
stress (e.g., Trompert and Hansen, 1998; Tackley, 2000b; Richards
et al., 2001; Stein et al., 2004; van Heck and Tackley, 2008; Foley
and Becker, 2009). While this method is computationally facile, it
requires an unusually low yield-stress (relative to the known
strength of rocks). Furthermore, the plasticity method only allows
plate boundaries to form so long as they are being deformed and
are above the yield stress, and thus it does not produce one of
the major observations of plate tectonics: dormant plate bound-
aries which are long-lived and can be re-activated (Gurnis et al.,
2000), and are thus probably key to initiation of new subduction
zones in cold lithosphere (Toth and Gurnis, 1998; Lebrun et al.,
2003; Hall et al., 2003).

The other method of plate generation is to presume that plate
boundaries are the sites of damage zones that undergo shear-local-
ization and weakening during deformation, and that subsequent
material damage survives for geologically extensive periods even
after deformation ceases (Bercovici, 1998; Tackley, 2000c; Berco-
vici et al., 2001a,b; Auth et al., 2003; Bercovici and Ricard, 2003;
Bercovici and Ricard, 2005; Ricard and Bercovici, 2003, 2009; Land-
uyt et al., 2008; Landuyt and Bercovici, 2009a; Rozel et al., 2011).
Given the need for deep lithospheric shear localization, simple brit-
tle failure and/or weakening by fluid pore pressure are implausible.
Observations of localized shear in mantle peridotites, i.e., mylo-
nites, where extensive grain-size reduction has occured (White
et al., 1980; Etheridge and Wilkie, 1979; Jin et al., 1998; Furusho
and Kanagawa, 1999) has prompted much activity in exploring
grain-size shear-localizing feedback mechanisms (e.g., Kameyama
et al., 1997; Braun et al., 1999; Montési and Hirth, 2003). In this
case the self-weakening positive feedback occurs because of the
interaction of grain-size dependent rheologies (such as diffusion
creep or grain-boundary sliding; see Hirth and Kohlstedt (2003))
and grain-reduction driven by deformation through dynamic
recrystallization (e.g., Karato et al., 1980; Urai et al., 1986; Derby
and Ashby, 1987; Doherty et al., 1997; Shimizu, 1998; Lee et al.,
2002).

However, this localizing feedback mechanism is problematic for
several reasons. First, grain-reduction by recrystallization is coinci-
dent with dislocation creep while rheological softening by grain-
reduction occurs in other creep mechanisms like diffusion creep
(Etheridge and Wilkie, 1979; De Bresser et al., 1998, 2001) (c.f. Faul
et al., 2011); thus the necessary components of the feedback mech-
anism ostensibly occur in exclusive domains of deformation space
(e.g., on a stress-grain-size deformation map). This problem has re-
cently been examined by considering the evolution of grain-size
distributions wherein a rock sample has a mixture of rheological
mechanisms simultaneously occuring, e.g., dislocation creep in
large grains and diffusion creep for smaller grains (Ricard and
Bercovici, 2009; Rozel et al., 2011); however, even here localization

appears to be weak because eventually the grain-size distribution
will evolve mostly to one region of deformation space or the other
hence mitigating any feedback.

Second, while the physics of recrystallization is understood
from experiments on the microscopic scale and is known to be
associated with the propagation of dislocations and development
of subgrains leading to subgrain rotation, the macroscopic expres-
sion of recrystallization in the evolution of mean-grain-size is not
always well articulated and usually based on empirical relation-
ships for how strain-rate drives dislocation density (e.g., Karato
et al., 1980; Bercovici and Karato, 2003; Montési and Hirth,
2003) although this is not necessarily drawn from physical conser-
vation laws. However, thermodynamic considerations from dam-
age theory suggest that grain-size reduction invariably entails an
increase in surface free energy, which is drawn from deformational
work (Bercovici and Ricard, 2005; Landuyt et al., 2008; Ricard and
Bercovici, 2009; Rozel et al., 2011) and this has been verified with
experiments and the ‘‘paleowattmeter’’ relations of Austin and
Evans (2007).

Finally, while localization due to grain-reduction causes mate-
rial damage with some history and longevity, grain-growth by
coarsening (e.g., Lifshitz and Slyozov, 1961; Hillert, 1965; Atkinson,
1988) and hence healing of weak zones in single mineral or single-
phase systems is quite fast (Karato, 1989). Indeed, using parame-
ters for grain-growth tabulated in Rozel et al. (2011) for 1 mm
grains at 1000 K temperature, erasure of fine-grained weak zones
in the lower lithosphere would occur in less than a million years.

These problems with grain-size weaking mechanisms have been
a major barrier to progress on understanding lithospheric localiza-
tion and plate generation. However, many of these problems are
due to the assumption of single-phase mineral assemblages,
whereas actual lithosphere is at least two major components or
phases, i.e., while peridotite is mostly olivine (about 60% by volume)
it has a major second component of pyroxene. Secondary phases are
known to retard grain-growth and coarsening because of the imped-
ance of grain-boundary migration by secondary phase obstructions
(e.g., Herwegh et al., 2005; Warren and Hirth, 2006; Mehl and Hirth,
2008), otherwise known as Zener pinning (Smith, 1948). Zener pin-
ing itself is an active area of metallurgical research because of its
control on grain evolution and recrystallization (e.g., Doherty
et al., 1997; Manohar et al., 1998; Couturier et al., 2003; Harun
et al., 2006; Roberts, 2008, and references therein).

In this paper we examine grain growth and damage in a two-
phase material such as peridotite; we hypothesize that the interac-
tion (e.g., via Zener pinning) between grain evolution and the evo-
lution of pinning surfaces and/or inclusions is key to lithospheric
localization and plate generation. The size and shape of pinning
surfaces are represented generically by the interface between
phases, which is implicitly the surface obstructing grain boundary
migration. The density of interfacial area (i.e., interface area per
unit volume) is a proxy for the concentration of pinning surfaces
that obstruct grain growth. More specifically, the interface density
is a measure of the dispersal of the phases or mixture homogene-
ity. If the mixture were completely segregated such that the phases
were separated by one continuous and smooth (flat or spherical)
interface, then the interface area density would be minimal and
there would be no pinning of grains within each phase. However
if one phase were dispersed through the mixture in tiny inclusions
then interface area density approaches its maximum value (being
the dissolution limit), in which case pinning of the other phase’s
grains would be prevalent.

Therefore, if the interface between phases undergoes deforma-
tion, stretching and break-up by damage (e.g., Holyoke et al., 2006;
Skemer et al., 2009), then interface area density and curvature are
increased (e.g., smaller inclusions; see Fig. 1). The greater concen-
tration of obstructing surfaces pins or constrains the mineral grains
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to ever smaller sizes, which forces the rheology to remain in diffu-
sion creep (also experimentally inferred by, Etheridge and Wilkie,
1979; Warren and Hirth, 2006; Mehl and Hirth, 2008), while also
blocking grain growth. This mechanism therefore potentially
solves two major obstacles to grain-damage theory: (1) it allows
damage and grain-reduction to occur simultaneously with grain-
size weakening and (2) grain growth and healing are greatly slo-
wed down if not blocked entirely by interfacial barriers, thereby
leading to long-lived dormant weak zones. While the concept that
Zener pinning imposes permanent diffusion creep while blocking
grain growth is well known, the new but necessary ingredient
needed to permit the localization feedback is that damage occurs
directly to the interface and inclusions, which indirectly (e.g.,
through pinning) drives grain-size reduction.

We therefore develop a continuum theory for grain evolution in
a two-phase deformable medium, allowing for the interaction be-
tween inclusion (i.e., interface area) and grain evolution through
Zener pinning. This paper combines the two-phase theory of com-
paction and damage of Bercovici et al. (2001a), Ricard et al. (2001),
Bercovici et al. (2001b), Bercovici and Ricard (2003) and Ricard and
Bercovici (2003), and the two-phase treatment of grain-damage of
Bercovici and Ricard (2005), Landuyt et al. (2008) and Landuyt and
Bercovici (2009a) with the grain-evolution and damage theory of
Ricard and Bercovici (2009) and Rozel et al. (2011). Although the
physics of the system is intrinsically complex, we use the self-sim-
ilarity assumptions of Rozel et al. (2011) to develop a final simple
theory that involves a few new coupled evolution equations for
grain-size and interface curvature. This theory is compared to
grain-growth experiments and applied to some simple-shear test

cases to examine (1) the implied effective rheology, and whether
it permits weakening and localization, and (2) the evolution of a
damaged zone during deformation (i.e., to examine the rapidity
of plate boundary formation) and after deformation ceases (i.e.,
to test plate boundary longevity after dormancy). Although more
experimental research is needed to better understand interface
growth and damage, the essential physics robustly demonstrates
that localization and plate-boundary formation via this mechanism
is significant, rapid and semi-permanent.

2. Model

The theoretical model of a two-phase grained continuum
undergoing damage as well as Zener pinning at the interface be-
tween phases is developed completely in Appendices A–G. How-
ever, we describe here the essence of the model and provide the
simplest set of governing equations that can be used to compare
to experiments and for geodynamic applications.

2.1. Phases, grains and interfaces

The two-phase grained continuum is representative of, for exam-
ple, mantle peridotite made of olivine and pyroxene minerals. The
two phases are of comparable (though not identical) densities, vis-
cosities and other properties, which are combined into a non-dilute
mixture (e.g., 60%–40% mixture by volume). Phases are denoted by
the subscript i where i = 1 or 2. For example the phase volume frac-
tions are /i where

P
i/i ¼ 1; since the volume fractions are

Fig. 1. A sketch, left column, from (Skemer et al. (2009), Fig. 7) of deformation of a peridotitic mylonite of an olivine phase (white) surrounding a secondary orthopyroxene
phase (grey). With increasing deformation and shear (indicated on the far left), the orthopyroxene porphyroclasts or inclusions of multiple grains are deformed and even
disaggregated into sharper features and smaller inclusions, as well as mixed and dispersed through the primary olivine phase. Deformation initially drives grainsize reduction
for large grains in both phases by dynamic recrystallization. However, deformation, shearing and mixing also increase the complexity and curvature of the interface between
the two phases (i.e., they drive ‘‘interface damage’’), which facilitates Zener pinning of grains. The resulting pinning not only retards grain growth but can, as theorized in this
paper, facilitate grain-damage and even reverse coarsening. Corresponding examples of natural assemblages are shown in micrographs in the right column (white arrows
indicate corresponding orthopyroxene porphyroclasts or inclusions) with the top two frames from Skemer et al. (2009) and the bottom one from Warren and Hirth (2006).
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dependent (i.e., /2 = 1 " /1) we will often refer to just one fraction /
= /1, which we usually ascribe to the volume fraction of the minor
phase (e.g., / is the pyroxene volume fraction, and 1 " /, the olivine
one; see also Appendix A).

The phases are also assumed to be grained materials with un-
ique grain-size distributions. The generic grain-size is denoted by
R, which acts as the independent variable in ‘‘grain-size space’’,
and each phase’s grain-size distribution defines an average grain-
size Ri. The grains of each phase evolve separately through the
competition between surface-tension driven coarsening, which
acts to increase grain-size, and damage (i.e., the application of
deformational work toward creating new grain boundary area
and energy), which acts to reduce grain-size. The continuum
grain-growth theory for a single phase is thoroughly described
by Ricard and Bercovici (2009) and Rozel et al. (2011), and the
two-phase derivation is presented in Appendices B–E.

The phases are separated by an interface, which we assume to
be isotropic, and is thus described by a scalar interface density a,
i.e., the interfacial area per unit volume of the mixture (Bercovici
et al., 2001a). The interface density is associated with the interface
morphology, and in particular a characteristic coarseness, or radius
of curvature of the interface r such that a # 1/r; i.e., for a given
mixture, the more tortuous, distorted or disaggregated its inter-
face, the smaller will be the interface coarseness r and the larger
will be the interface density a (see Fig. 2). Moreover, damage is also
applied to the interface wherein deformational work creates more
interface area and energy by, for example, rending, stretching and
stirring.

Finally, both grain growth and grain damage are affected by the
interface between phases, which acts like a blocking or pinning
surface that limits grain growth and distorts the grain boundaries.
(The pinning effects are described qualitatively below in Section 2.2
and more thoroughly in Appendix C.) Most importantly, damage to
the interface causes ever finer pinning surfaces, which in turn drive
grains to smaller sizes (by both reversing coarsening and enhanc-
ing damage), and into a permanent diffusion creep regime. There-
fore damage to the interface forces grain-size reduction to occur
simultaneously with diffusion creep and associated grain-size-
dependent viscosity, which leads to a strong shear-localizing feed-
back mechanism.

2.2. Zener pinning

As grain boundaries in either phase move (e.g., by grain growth)
they can impinge on the interface between phases, which acts as a

barrier that pins the grain boundary. The pinning is caused because
the deflection of the grain boundary around an obstruction creates
more grain boundary area and surface energy and thus requires ex-
tra work to move the grain boundary past the obstacle. The inter-
facial density a and related interface curvature 1/r determine the
extent of grain boundary pinning; indeed the characteristic radius
of curvature r of the interface can be treated as a proxy for obstacle
size (see Appendix A).

2.2.1. Zener pinning force
The classical relation for pinning force was derived by Zener as

reported by Smith (1948) for a flat grain boundary of one phase
moving and impinging on a small inclusion of the other phase
(Fig. 3); since then the theory has been developed and explored
at length to adjust some of the original simplifying assumptions
(e.g., Hellman and Hillert, 1975; Wörner and Cabo, 1987; Rios,
1987; Hillert, 1988; Harun et al., 2006; Roberts, 2008). In the sim-
plest case, the net surface tension force of a single spherical inclu-
sion of size r pulling normal to the grain boundary and thereby
pinning it, is

fn ¼ ci2pr cos h sin h ð1Þ

where ci is the grain-boundary surface tension in phase i and h is
defined in Fig. 3 (see also Appendix C). The net force due to an
ensemble of such inclusions touching the grain-boundary of area
!A ¼ 4pR2 is shown in Appendix C to have the form of

Fn ¼
3cið1" /iÞ!A

2r
PðR=rÞ ð2Þ

where PðUÞ is a positive and monotonically increasing function,
and any quantity accented like !Q is specific to a grain of size R.
Although this force relation has been derived assuming that pin-
ning is due to small particles or impurities on the grain boundaries,
it is also basically applicable to pinning in assemblages of minerals
with comparable volume fractions and grain-sizes (see Appendices
C.3 and G.2).

2.2.2. Grain boundary distortion
As shown in Appendix C.2, the work done in changing grain-size

against this pinning force can be used to infer the distortional ef-
fects of Zener pinning. For example, with pinning and resultant dis-
tortion, the effective grain-boundary curvature and surface area
become, respectively,

Fig. 2. A sketch, showing interpretations of grainsize R and interface coarseness or radius of curvature r on micrographs of synthetic peridotites from Hiraga et al. (2010). The
left panel shows a mixture of 91% forsterite (green [light grey]) in which the grainsize is R = R2, and 9% enstatite (blue [dark grey]) in which R = R1 (adapted from, Hiraga et al.
(2010), Fig. 2b); in this case the grains are dispersed, r is essentially equal to the grainsize of the minor phase R1, and Zener pinning occurs more through the classical
mechanism of small particles pinning a large grain boundary (see Appendix C.1). The right panel is for a mixture of 42% enstatite and 58% forsterite (adapted from, Hiraga
et al. (2010), Fig. 2f) in which grains are clustered and r is mostly set by the maximum curvature on the interface that occurs through distortions; in this case distortions and
pinning occur by grain-boundary splitting (see Appendix C.3). The scale of both frames is approximately 5 lm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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!Ci ¼
2
R
þ 3ð1" /iÞ

2r
PðR=rÞ ð3aÞ

!Ai ¼ !Aþ 3ð1" /iÞ
2r

Z R

0
PðR0=rÞ!A0dR0 ð3bÞ

Thus as R/r becomes large, grains become more distorted and thus
have increasing effective curvature and surface area. Moreover, the
pinning effect implies that bigger grains are more distorted than
smaller ones (for a given r), which has a profound influence on both
grain growth and damage. In particular, coarsening is normally dri-
ven by small grains with large curvature, and hence large internal
pressure and chemical potential, diffusing mass into large grains
with smaller curvature (thus large grains grow at the expense of
small ones). However, with pinning, large grains are more distorted
than smaller ones, thus the contrast in curvature and chemical po-
tential is reduced and mass diffusion retarded; if the large grains are
severely distorted (e.g., by pinning surfaces with very small r) then
the curvature contrast and direction of diffusion can be reversed
causing grain reduction instead (small grains grow at the expense
of large ones). Likewise, damage to grains also depends on the con-
trast in surface energy between a large grain before induced dam-
age and fission, and that of the multiple grains after fission. Since
multiple grains have more surface area than the single grain of
the same net volume, the change in surface energy during fission
requires energy, which is obtained from deformational work.
However, if pinning and distortion increase the large grain’s surface
area more than it does for the multiple smaller grains, then the
energy contrast is smaller, hence less deformational work is
required to induce fission and thus damage is facilitated. These
grain-boundary distortion effects appear as a Zener pinning factor
in the grain-growth law, which thus couples grain evolution to
the evolution of interface curvature, both of which are affected by
damage.

2.3. Governing equations

The theoretical model is developed fully in the Appendices, but
we summarize the essential equations here. Although the model is
derived for a general viscous two-phase mixture with a general
grain-size distribution in each phase, the final governing equations
involve two key assumptions. First, since both mineral phases are
solid-state their relative motion is likely to be negligible and thus
at a given point in space we assume they have the same velocity
v. Second, as done by Rozel et al. (2011), we assume the grain-size
distribution is close to a self-similar distribution in that it always
retains the same shape and its mean, variance and amplitude are

uniquely determined by a characteristic grain-size Ri in each phase
i.

The essential governing equations for our two-phased contin-
uum with grain-damage and Zener pinning are

@/
@t
þ v ' $/ ¼ 0 and $ ' v ¼ 0 mass conservation ð4aÞ

0 ¼ "$Pþ $ ' "sþ "qgþ $ðciaÞ momentum conservation ð4bÞ

_e ¼ aisn"1
i þ k3"m

k3

bi

Rm
i

! "
si rheological law ð4cÞ

Dr
Dt
¼ gGi

qrq"1 "
r2

cig
W interface curvature evolution ð4dÞ

DRi

Dt
¼ Gi

pRp"1
i

Zi "
k3

k2

R2
i

3ci
ð1" ÞWiZ

"1
i grain-size evolution ð4eÞ

where qi, Pi, and si are the density (assumed constant), effective
pressure (including the effect of grain-boundary surface tension)
and deviatoric stress tensor of each phase, respectively, and the vol-
ume average of any quantity q is defined as "q ¼

P
i/iqi. Moreover, ci

is the surface tension on the boundary between grains of the same
phase, ci is the interface surface tension (i.e., on the boundary be-
tween grains of different phases), and the interface area density
(interface area per unit volume) a is given by

a ¼ gð/Þ
r

ð5Þ

where g(/) is a function that vanishes at / = 0 and 1 (e.g., for spher-
ical inclusions, g = 3/1/2 = 3/(1 " /)); see Appendix A. The consti-
tutive law relation (4c) between stress si and strain-rate

_e ¼ 1
2
ð$v þ ½$v)yÞ ð6Þ

is a composite rheology describing dominance of dislocation creep
at large grain-sizes and the prevalence of diffusion creep at small
grain-sizes; the coefficients ai and bi are rheological compliance
coefficients for phase i (see Appendix F.7).

The evolution equations for interface roughness (or radius of
curvature) r and mean grain-size Ri, (4d) and (4e), describe the
competition between coarsening and damage (first and last terms
on the right side of each equation, respectively). Coarsening repre-
sents the tendency toward minimum surface energy by increasing
grain-size and/or interface coarseness, while damage represents
the storage of deformational work as surface energy by grain
reduction and/or interface rending and distortion. The coarsening
terms contain various coefficients including growth rate constants
Gi and Gi and exponents p and q. The damage terms involve the
partition fraction of deformational work going to create new
interface area and energy; is the remaining fraction of work
going to create grain-boundary area and energy; and Wi ¼ $v : si

is the deformational work on phase i and W ¼
P

i/iWi ¼ $v : "s.
However, as stipulated by dynamic recrystallization theory, dam-
age to grains only occurs in the fraction of the medium that is
deforming by dislocation creep, which is prescribed by defining

¼ 1þ k3"mbi

k3aiR
m
i sn"1

i

! ""1

ð7Þ

(see Appendix F.7). Damage to the interface does not necessarily fol-
low this constraint since the interface can still be distorted and
disaggregated even if the phases undergo diffusion creep.

Perhaps most significantly, the grain-size evolution equation
contains the Zener pinning factor (see below Section 2.4)

Zi ¼ 1" cnð1" /iÞ
Ri

r

! "nþ1

where cn ¼
3bnknþ3

2ðnþ 3Þk2
ð8Þ

Fig. 3. Sketch of Zener pinning configuration in which a grain boundary of one
phase moves past an inclusion composed of the other phase. The surface tension of
the grain boundary ci acts on the intersection between the inclusion and the grain
boundary. See Appendix C, and in particular Fig. C.1, for more detailed development.
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and n and bn are constants in the relation for the function PðR=rÞ
(see Appendix F.4).

Finally, several of the governing equations contain the factor kn,
which is the nth moment of the normalized grain-size distribution
(see (F.8)) but is simply kn ¼ en2r2=2 for a log-normal distribution
(where we assume a dimensionless variance r = 0.8); see Appendix
F.6.

2.4. Influence of Zener pinning

The role of the Zener pinning factor Zi appearing twice in the
grain evolution law, (4e), warrants discussion. Similar Zener pin-
ning factors have been noted in prior studies on grain-growth
(see Harun et al., 2006; Roberts, 2008, and references therein);
the effect of Zi on damage, however, has not been previously
determined.

The presence of Zi in the coarsening term, e.g., the first term on
the right side of (4e), shows that grain growth is limited by inter-
face coarseness r; this implies that as damage to the interface
reduces r and thus increases interface area density a according to
(4d), grain growth is increasingly limited to smaller sizes. Clearly
small grains will be limited in growth by Zener pinning as
Zi ! 0 in (4e), which occurs as they approach the size
r=½cnð1" /iÞ)

1
nþ1 (see (8)). However, grains that are larger than that

size will, in principle, be driven to shrink because of Zener pinning
effects. In particular, Zener pinning adds to the effective surface
energy of a large grain by distorting its boundary and increasing
its effective curvature (see (3)), which consequently increases the
grains internal pressure or free energy (i.e., chemical potential).
The Zener pinning effect is more profound for larger grains than
smaller ones, thus it is possible for bigger grains to have larger
effective curvature – and hence pressure and chemical potential
– than smaller grains, thereby causing them to diffuse mass to
the smaller grains and shrink. Thus Zener pinning potentially
works to both limit grain growth for small grains as well as drive
grain-size reduction for large grains. If r itself is reduced by damage
then the grains are driven to shrink further.

The factor of Z"1
i in the damage term (second on the right side

of (4e)) implies that Zener pinning facilitates damage. This can be
understood physically by considering the work needed to cause
grain fission, which is equivalent to the surface energy created in
splitting a grain into smaller grains. A large grain experiencing Ze-
ner pinning has excess surface energy (relative to the undistorted
grain of the same size), and when it is split the resulting smaller
grains have less Zener pinning force on them. Thus, the difference
in energy before and after splitting is not as large with Zener pin-
ning as without it, therefore less work is required to damage and
split the grain.

Therefore, Zener pinning effects captured by the factor Zi in the
grain evolution relation (4e), act to both slow down grain growth
and even diffusively shrink grains as well as enhance grain dam-
age, especially as r is reduced and interfacial area density increased
by damage according to (4d).

3. Comparison with grain-growth experiments

Hiraga et al. (2010) experimentally measured grain-growth in
various synthetic mixtures of forsterite and enstatite, and the re-
sults of their study are directly relevant to our model. In particular,
we can apply our grain-growth relations without deformation and
damage to the experimental data and constrain the form of the Ze-
ner pinning factor Zi as well as the interface coarsening parame-
ters. The growth laws (4d) and (4e) without damage, and using
the form of Zi given by (8), lead to

drq

dt
¼ gGi ð9Þ

dRp
i

dt
¼ Gi 1" cnð1" /iÞ

Ri

r

! "nþ1
" #

ð10Þ

The data for mean grain-sizes versus time for each phase in various
mixtures are reproduced from Hiraga et al. (2010) in Table 1. Hiraga
et al. (2010) assumed the grain-sizes followed a power-law evolu-
tion of the form Rp

i "Rp
0 ¼ kit, where R0 is the mean grain-size at

t = 0 and ki is a growth rate. These authors then inferred that RiðtÞ
flattened in time because of a large value of p = 4 or 5, and that
the effect of pinning was manifest in a /-dependent ki. However,
in the limit of a pure single phase system / ? 0, one should recover
the classic value of p = 2, which would suggest that p is also /
dependent. We instead propose that, according to (9) and (10),
the grain evolution undergoes normal grain growth with p = 2 when
pinning is insignificant (when the grains are small or equivalently
when Zi * 1), and then transition to much slower grain growth
when pinning ensues (i.e., as Zi ! 0). Once pinning dominates,
the grain growth is dictated by the growth of the pinning radius
or coarseness r, which follows a growth rate gGi + Gi. In this case
the grain growth curves would flatten not because p P 4 but be-
cause they are pinned to the slow growth of r. Moreover, the time
to transition to a pinned state is dependent on /, as is the interface
coarsening rate gGi; thus different growth rates for different mix-
tures are readily accounted for by our model.

We can examine the nature of the asymptotic pinned state at
relatively large times to constrain the form of the Zener pinning
factor Zi, as well as infer the nature of the interface coarseness r
since it is not directly measured in the experiments. Using these
constraints we can then compare the full grain and interface evo-
lution predicted by the model to the experiments.

3.1. The ‘‘pinned state’’ limit

We can test whether and when the pinned state is reached in
the experiments for both phases by setting Zi * 0 in (8); eliminat-
ing r between the resulting equations for i = 1 and 2, we define the
function

Xðt; n;/Þ ¼ /1R
nþ1
2 ðtÞ

/2R
nþ1
1 ðtÞ

" 1 ð11Þ

Table 1
Data from Hiraga et al. (2010) for mean grainsize versus time of forsterite and enstatite in a synthetic peridotite mixture; / is the volume fraction of enstatite, t is time in hours,
and Ri is the mean grainsize in lm , where i = 1 indicates enstatite and i = 2 indicates forsterite.

t / * 0 / = 0.03 / = 0.09 / = 0.15 / = 0.24 / = 0.34 / = 0.42

R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1

0 2.8 0 1.5 0.5 1.0 0.4 0.6 0.3 0.6 0.4 0.4 0.3 0.5 0.5
0.5 3.7 0 1.6 0.5 1.1 0.5 1.1 0.5 1.0 0.6 0.5 0.4 0.6 0.6
1 4.4 0 1.5 0.7 1.6 0.4 1.3 0.5 1.1 0.4 0.6 0.5 0.9 0.7
3 4.9 0 2.4 0.8 1.9 0.6 1.6 0.6 1.4 0.6 0.7 0.5 1.1 0.8
10 5.7 0 3.6 1.2 2.3 0.9 2.0 0.8 1.7 1.0 0.9 0.6 1.3 1.2
50 6.3 0 4.9 1.1 3.0 1.1 2.9 1.1 2.1 1.4 1.3 1.0 2.1 1.7
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in which X ¼ 0 when Zi ¼ 0 for both phases. The quantity X is un-
ique to each experiment with a different volume fraction / = /1 (see
Table 1), as well as being a function of time t and the exponent n.
We can examine the average X for all the experiments (excluding
the case / * 0), X , through time and for various n (Fig. 4a) to infer
that X ! 0 and hence Zi ! 0 for only the last 2 or 3 times in the
experiment (i.e., t P 3 h), and only for n * 1. The sum of X over
the last 3 times in the experiments is only a function of n, and we
indeed find n * 1 minimizes this quantity (Fig. 4b). Thus grain
growth reaches the pinned limit of Zi ! 0 provided n = 1, and for
sufficiently large times.

The experiments do not provide data on the coarseness r but we
can deduce what the model should predict for r once the experi-
ments reach the pinned state at large times. Again writing that
Zi * 0 for n = 1, we determine that r2 equals both c1/2R

2
1 and

c1/1R
2
2, and thus its volume average is

~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1/1/2ðR2

1 þR2
2Þ

q
ð12Þ

which we evaluate using the experimental data (Table 1) and com-
pare to the full model evolution results discussed below (see Figs. 5–
7, red curves).

a b

Fig. 4. A test of the pinned state conditions for which the Zener pinning factor defined in (8) reaches Zi * 0, or equivalently the function X defined in (11) goes to 0, in the
experiments of Hiraga et al. (2010) as described in Section 3.1. Plots show (a) the value of X averaged over the experiments with different / (excluding / * 0) versus time t (in
hours) for different Zener factor exponents n defined in Section 8; and (b) the sum of this average value over the last three measured times (t P 3 h) versus n.

Fig. 5. A comparison of the theoretical model (curves) with the data (points) of Hiraga et al. (2010) as described in Section 3 for q = 1.5 and other parameters indicated. Green
[light grey] is for the major phase (forsterite) grain-size R2, blue [dark grey] is for the minor phase (enstatite) grain-size R1, and red [medium grey] is for the interface
coarseness r with data points ~r inferred from (12). Note that r remains close to the minor phase grain-size R1 for small / = /1, as expected, and is smaller than both grain-sizes
for large /. Grain-sizes and coarseness are in lm and time t is in hours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.2. Full model comparison to experiments

We next compare model calculations for grain evolution with
the experiments. We fix n = 1 and p = 2 and infer the basic grain-
growth rate for the major phase G2 * 10 lmp/h from the experi-
ment with / * 0 (i.e., /2 * 1) at early times; we assume for sim-
plicity that G1 * G2.

We integrate the model equations for the seven experimental
volume fractions / (see Table 1) for various Gi and q, assuming that
g = 3/1/2. We use the experimental values of Ri at t = 0 for initial
conditions, but then compare the model predictions to later exper-
imental values.

Lacking data on the initial interface coarseness r, we integrate
the model equations assuming r at t = 0 is comparable to a charac-
teristic small grain-size, i.e., r ¼ 0:5 lm at t = 0 for all cases. We can
compare the model calculations for r to the inferred asymptotic
data ~r given in (12).

For the case of / * 0 the volume fraction of enstatite is not en-
tirely zero (see Hiraga et al., 2010) and thus some pinning was seen
to occur at later times; the value of / in this case was below exper-
imental resolution, thus we simply assume / 6 10"2 and adjust it
slightly to match that experiment.

To infer possible values of q and Gi, we simply attempt to fit the
model calculations to the ‘‘mantle peridotite’’ case of / = 0.42. We

Fig. 6. Same as Fig. 5 except for q = 2, and other parameters indicated.

Fig. 7. Same as Fig. 5 except for q = 4, and other parameters indicated.
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then use these parameters for all other cases to test the generality
of the model. Thus, we do not try to minimize the misfit for all case,
only the ones with lowest and highest /. One could, of course, ad-
just other assumptions and parameters (e.g., the initial values of r)
and provide closer fits to the experiments. However we only wish
to see how well the model can predict the basic trends with the
simplest assumptions, and what are the likely ranges of Gi and q.

In comparing the model to the experimental data, we also
approximate uncertainty in the experimental mean grain-sizes
from the grain-size distributions (see Hiraga et al., 2010, Fig. 5).
These distributions have nearly self-similar shapes, whose full
half-widths (i.e., the full width of the distribution at half the ampli-
tude) are approximately equal to the mean grain-size Ri. More-
over, the scatter in the distribution peak (i.e., the location of the
mode) is roughly over the Ri=2. We thus assume that the uncer-
tainty in the mean grainsize is ,Ri=4.

Figs. 5–7 display model versus experimental data for various Gi

and q. The best fitting curve is probably for q = 4 which would explain
the inference that p > 4 by Hiraga et al. (2010), and this can be readily
seen by fitting the pseudo-data for ~r given by (12). However, the pin-
ned state, and the dominance of the evolution in r, only occurs for the
last 2 or 3 time steps, and given the additional uncertainty in the
mean grain-sizes, other values of q are permissible, including values
slightly less than 2 and as large as 5 or 6. Different values of q provide
varying fits to the data for intermediate values of 0 < / < 0.42; the fit
to the data is reasonable for these intermediate cases except for the
case / = 0.34, which no model is able to fit (at least, with our assump-
tion that all experiments share the same initial r).

For each q, the values of Gi are much smaller than Gi, although
the exact value of Gi depends slightly on q as is to be expected (gi-
ven that q also determines the dimensions of Gi).

In the end, using the grain-growth model that allows for evolv-
ing pinning surfaces, we find that the same grain-growth parame-
ters Gi = 10 lm2/h and p = 2 can be used for all experiments with
different /, and that the slowing of grain-growth occurs as the sys-
tem approaches the pinning limit, not because p P 4. The eventual
grain-growth in both phases is governed by the interface evolution
equation for r with 1.5 6 q 6 5 (and q = 4 possibly being the best
fit), and Gi=Gi 6 10"2.

Finally, we contend that extracting the normal growth parame-
ters p and Gi from experiments with natural polycrystalline sam-
ples is elusive and probably of limited interest for geophysical
applications. In particular, various choices of p and Gi could be used
to match the / * 0 experiments at early times, but the match to all
other experiments depends only on q and Gi. Thus, in our interpre-
tation, the grain growth in peridotite in geological settings is con-
trolled by the rate of evolution of the interface between phases,
hence by the parameters q and GI, not by the grain coarsening of
the individual phases. Even in the experiments with nominally
pure olivine case of Hiraga et al. (2010), the presence of less than
1% of the enstatite minor phase constrained the grain growth by
Zener pinning after only a few hours.

4. Simple shear applications with damage and deformation

We examine several sample applications of the full evolution
equations with damage, including (a) steady-state simple-shear
flow to infer the effective rheology of the continuum under visco-
metric motion; and (b) evolution of grain-size and interface coarse-
ness in simple shear. Multi-dimensional flows will be examined in
later papers (e.g., Bercovici and Ricard, in preparation).

4.1. One-dimensional simple shear and damage: governing equations

For the basic one-dimensional simple-shear model, we assume
the medium is contained in a horizontal layer of finite width L in y

and infinite and uniform in x. Velocity boundary conditions are ap-
plied so that v ¼ uðyÞx̂, which according to (4a) implies that the
volume fraction / = /1 = 1 " /2 is constant; therefore assuming /
is initially uniform it must remain uniform.

Given the simple shear assumption, the only component of the
strain-rate tensor is _e ¼ 1

2
@u
@y, and thus the only component of the

stress tensor is the shear stress si given by (4c) or simply

_e ¼ aisn
i þ

[i

Rm
i
si ð13Þ

where [i ¼ ðk3"m=k3Þbi. Thus the strain-rate _e can be treated as the
imposed simple-shear that determines both stresses s1 and s2 in
each phase, given mean grain-sizes Ri and rheological constants
ai and [i in each phase. Assuming that the power-law exponent
for each phase is n = 3 then (13) is invertible and thus

sið _eÞ ¼ Ei "
1
Ei

[i

3aiR
m
i

where Ei

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[i

3aiR
m
i

! "3

þ
_e

2ai

! "2
s

þ
_e

2ai

0

@

1

A
1=3

ð14Þ

In this case the deformational work on phase i is simply

Wi ¼ 2 _esi and thus W ¼
X

i

/iWi ¼ 2 _e
X

i

/isi ð15Þ

The momentum Eq. (4b) implies that both "s ¼
P

i/isi and
cigð/Þ=r "P are uniform in y; these conditions are satisfied assum-
ing si, r, Pi and thus Ri (since Pi includes squeezing from grain-
boundary surface tension) are uniform in y, which then implies by
(13) that _e is uniform as well. In this case all quantities are only
functions of time t, and the 1-D time dependent relations for inter-
face curvature and grain size, become, following (4d) and (4e),

drq

dt
¼ gGi "

qrqþ1

cig
W ð16Þ

dRp
i

dt
¼ Gi 1" hi

R2
i

r2

$ %
" k3

k2

pRpþ1
i

3ci

ð1" ÞWi

1" hi
R2

i
r2

h i ð17Þ

where is variable as defined in (7). Given the comparison to
experiments in Section 3, and all the implicit assumptions therein,
we use the Zener pinning factor defined in (8) with n = 1, for which

hi ¼ c1ð1" /iÞ ð18Þ

where cn is also defined in (8) (see also Appendix F.4).

4.1.1. Dimensionless relations
We use classical dimensional analysis (Bridgman, 1922) to scale

stress, strain-rate, time and length (for both interface radius of cur-
vature and grain-size) according to

si ¼ sss0i ð19Þ
_e ¼ "asn

s _e0 ð20Þ

t ¼ 1
G

"[
"asn"1

s

! "p=m

t0 ð21Þ

ðr;RÞ ¼
"[

"asn"1
s

! "1=m

ðr0;R0Þ ð22Þ

where the stress scale is

ss ¼
3k2

k3

Gc
p ð1" Þ"a

"a
"[

! "pþ1
m

 ! m
nðm"p"1Þþmþpþ1

ð23Þ

and again recall that the average of any quantity Q is Q ¼
P

i/iQ i.
One can estimate these scales for the Earth’s lithosphere by

using the material properties for olivine summarized by (Rozel
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et al., 2011, Table 1, drawn from various sources referenced there-
in). At a lower lithospheric temperature of T = 1000 K, and for p = 2
and n = m = 3, we obtain ss * 800 MPa, and thus the scale for
strain-rate is 10"14 s"1, while the length (grain-size) scale is
50 lm, and the time scale is about 130 yrs. Given the sensitivity
of kinetic effects on temperature, which thus affect viscosity and
grain-growth, the stress and strain-rate scales are likewise variable
with temperature; e.g., for a deeper lithospheric temperature of
T = 1200 K, the stress and strain-rate scale are 140 MPa, and
2 - 10"12 s"1, respectively, while the length scale becomes 60 lm
and the time scale drops to 3 yrs.

Using these scales, we arrive at the dimensionless governing
equations, which (after dropping the primes on dimensionless
variables) become

_e ¼ aisn
i þ bisi=R

m
i ð24Þ

drq

dt
¼ -ðQ" rqþ1WÞ ð25Þ

dRp
i

dt
¼ Gi 1" hi

R2
i

r2

$ %
1"

Rpþ1
i

!i 1" hi
R2

i
r2

h i2

Wi

1þ bi
aiR

m
i sn"1

i

$ %

0

BB@

1

CCA ð26Þ

where ai ¼ ai="a, bi ¼ [i="[, Gi ¼ Gi=G, !i ¼ Gici=Gc, Wi and W are still
defined as in (15), and

Q ¼ k3

3k2

Gicig2

Gc
p ð1" Þ

q

"[
"asn"1

s

! "p"q
m

ð27Þ

- ¼ 3k2

k3

q
p ð1" Þ

Gc
gGci

ð28Þ

Neither the grain-boundary energy ci nor the grain-growth coeffi-
cient Gi are expected to differ much between phases, and thus
Gi * !i * 1. If the phases do not differ appreciably rheologically
either then ai * 1 and bi * 1 as well. However, even if the phases
had identical mechanical properties, the difference in volume frac-
tion /i still demands different grain-size solutions from (26).

The parameter Q represents the rate of interface coarsening rel-
ative to grain-growth rate. Since the interface density and curva-
ture is, for example, due to inclusions of one phase separated by
the other phase, the interface coarsening rate is associated with
the mass transfer between inclusions across an immiscible phase,
which is necessarily extremely slow (given that is is diffusion lim-

ited) and we assume that at best Q < 1 and more likely Q+ 1; this
is also in agreement with the comparison to experiments in Sec-
tion 3. Given the lack of direct measurements of Gi (our indirect
inference in Section 3 not withstanding), we will explore the ef-
fects of varying Q.

4.2. Steady-state simple-shear and an effective shear-localizing
rheology

In steady-state the dimensionless governing equations become

_e ¼ aisn
i þ bisi=R

m
i ð29Þ

rqþ1W"Q ¼ 0 ð30Þ

Rpþ1
i Wi 1þ bi

aiR
m
i sn"1

i

$ %"1

"!i 1" hi
R2

i

r2

$ %2

¼ 0 ð31Þ

Eqs. (29)–(31) are solved for a given range of strain-rates _e to find si,
r and Ri. For all cases, we assume the phases do not differ much in
their material properties and thus ai ¼ bi ¼ Gi ¼ !i ¼ 1. The results
are displayed as (a) effective constitutive curves for the average
stress "s ¼

P
i/isi versus _e, and theoretical deformation maps of

interface radius of curvature r versus mean stress "s, and mean
grain-size "R ¼

P
i/iRi versus "s (Figs. 8 and 9). The stress–strain-

rate plots also show the relation for pure dislocation creep
"s ¼ _e1=n (assuming ai ¼ 1) for comparison to a medium undergoing
no damage and grain-reduction. The deformation maps of R versus
"s further display a transition curve between diffusion and disloca-
tion creep wherein aisn

i ¼ bisi=R
m
i ; this implies a mean transitional

grain size (see also (F.34))

Rc ¼
X

i

/i
bi

aisn"1
i

! "1=m

* fncð"sÞ ð32Þ

which we use to delineate diffusion creep ðR < RcÞ (shaded in the
figures) from dislocation creep ðR > RcÞ. However, it should be
noted that while this transition is distinct for a single grain, in a
medium with a grain-size distribution both diffusion and disloca-
tion mechanisms occur simultaneously.

In general, the effective rheological behavior has very weak (or
non-existent) dependence on the grain-growth exponent p. As
shown by Rozel et al. (2011), if grain-damage in a single-phase
material only occurs by dislocations, as per (7), then the effective
rheology remains close to the dislocation creep regime and there
is little weakening or grain-size reduction. Moreover, in a two-phase

a b

Fig. 8. Dimensionless effective stress–strain-rate constitutive law (top frame) interface coarseness or radius of curvature r (bottom left frame), and mean grainsize
R ¼

P
i/iRi (bottom right frame). The pure dislocation creep constitutive relation "s ¼ _e1=n is also displayed (dashed-dot curve). Shading in the "s vs R deformation map

indicates diffusion creep (gray shading) and dislocation creep (no shading), with the boundary defined by (32), computed with q = 2 (using q = 1.5 or q = 4 has little effect on
the boundary); This plot shows the effect of various q for different values of Q (a and b), and fixed values of m and p, as indicated, and the volume fraction set to /1 = / = 0.4.

36 D. Bercovici, Y. Ricard / Physics of the Earth and Planetary Interiors 202-203 (2012) 27–55



medium, grain-growth is largely stalled by pinning (which is exac-
erbated when interface damage reduces r) and grain-size eventually
tracks the evolution of the interface coarseness r (e.g., see Section 3).
Thus, in total, the influence of the grain evolution equation and in
particular of p is weak.

However, the effective rheology displays a variety of behaviors,
depending strongly on the size of the interface coarsening expo-
nent q and relative coarsening rate Q. For small q (e.g., q 6 2 for
the cases shown in Fig. 8) at small strain-rates, the medium is
highly viscous and in the dislocation creep regime. For these same
q and large strain-rates the medium is driven well into the diffu-
sion creep regime and can either display plastic yielding for ‘‘inter-
mediate’’ q (i.e., q = 2 for the cases shown) or velocity weakening at
‘‘smaller’’ q (i.e., q < 2). The transition from viscous to either plastic
or velocity-weakening clearly occurs at the transition from disloca-
tion to diffusion creep given by Rcð"sÞ. For ‘‘larger’’ q (e.g., q = 4 in
the cases shown) the medium displays a monotonic power-law
behavior without plasticity or velocity-weakening; however, the
material is in the diffusion creep regime with small grains even
at low strain-rates and is thus always considerably weaker than
if it were in pure dislocation creep. Thus even with ‘‘large’’ q, a
shear zone experiencing grain-reduction via interface damage
and pinning will be weaker and/or more highly deformed than a
neighboring zone with large grains in dislocation creep.

The parameter Q primarily affects where in deformation space
the transition from viscous to plastic or velocity-weakening behav-
ior occurs for ‘‘small’’ q, and the strength of the material relative to
that in dislocation creep for ‘‘larger’’ q (Fig. 8). Decreasing Q causes
the transition to weakening behavior to occur at smaller strain-rate
_e, which is to be expected since a lower strain-rate or stress is suf-
ficient to drive damage and softening behavior when interface
coarsening or ‘‘healing’’ is slow. Likewise the strength of the mate-
rial at larger q is reduced for smaller Q because r (and thus Ri)
must be reduced much more before healing can balance damage.

The effect of varying both q and the grain-size sensitivity on
rheology, represented by the exponent m, indicates that the differ-
ence between q and m determines whether plastic or velocity-
weakening behavior occurs (Fig. 9). For grain-volume (Nabarro-
Herring) diffusion creep with m = 2, the medium tends toward
power-law viscous behavior without plasticity or velocity weaken-
ing, although the medium is still driven into diffusion creep and is
weaker than if it were in dislocation creep. For more strongly
grain-size sensitive creep (such as grain-boundary diffusion or Co-
ble creep with m = 3), the medium can more readily experience
plasticity or velocity weakening.

As shown in the scaling analysis in the Appendices (Appendix
H.1) the sign of the slope of the high-strain rate branch depends
simply on the sign of q "m + 1. Thus low q and/or high m promotes
plasticity or velocity-weakening at high strain-rates. While large
q > m " 1 leads to power-law type behavior, it also promotes a
weak diffusion creep rheology at all strain-rates.

In summary, what dominates the deformation behavior is inter-
face damage and the subsequent influence of interface curvature on
grain evolution by Zener pinning, and thence the effect of grain-size
on rheology. In particular, interface damage and the increase in
interfacial curvature drives the grain-size down by pinning, until
the rheology is dominated by self-softening grain-size-dependent
diffusion creep. Thus the increase in interface curvature through
damage combined with Zener pinning allows damage and grain-
size-dependent deformation to co-exist, unlike the traditional dy-
namic recrystallization mechanisms in a single phase.

4.3. Evolution of grains and interface with damage in simple shear

The steady-state solutions and effective rheology determined
by our model predict the existence of localized mylonitic-type
(small grain-size) weak zones, given the feedback between grain-
size and interface dynamics. However, two key questions remain
with regard to the evolution of weak zones. First, how much time
is needed to reach a steady state weak zone from pristine condi-
tions? Second, how long will a damaged shear zone persist after
deformation ceases? If the shear zone develops in a time much
longer than the maximum age of a tectonic plate (O(100) Myrs),
then the weakening mechanism is not particularly relevant. Like-
wise if an inactive shear-zone vanishes in a time much shorter than
the age of a plate then the mechanism is also not geologically per-
tinent (i.e., for predicting the existence of long-lived dormant weak
zones or plate boundaries).

We can address the above questions by numerically integrating
(with standard adaptive Runge-Kutta ordinary-differential equa-
tion solvers) (25) and (26) given an imposed strain-rate – and
stress and deformational work derived from (24) – until the stea-
dy-state is reached. After steady state is reached the strain-rate
is set to zero and the system is allowed to evolve back to its origi-
nal conditions (Fig. 10)

Numerical solutions show that grains initially grow while the
interface coarseness or radius of curvature r shrinks, until the Ze-
ner pinning effect becomes significant and starts to drive grain
reduction also; eventually the low-stress steady state is reached
wherein healing balances damage. For example, in the case for

a b

Fig. 9. Same as Fig. 8, except for showing the effect of various q for two values of m (bracketing m = 3), given a fixed Q+ 1, and p as indicated.

D. Bercovici, Y. Ricard / Physics of the Earth and Planetary Interiors 202-203 (2012) 27–55 37



q = 2 and nondimensional strain-rate _e ¼ 10"2, steady-state is
reached within a dimensionless time of about 104 (Fig. 10a). After
a steady state is reached and the driving strain-rate removed, the
original conditions are recovered within a dimensionless time of
106. Thus, for this case, shear-zone development is roughly 100
times faster than shear-zone erasure. For q = 4 the shear-zone is
developed in the same amount of time, but erasure takes roughly
four orders of magnitude longer (Fig. 10c). Although not shown,
cases with q = 1.5 differ little from the case with q = 2, with the era-
sure time being somewhat faster. Thus, for example, with a lower
lithosphere at about 1000 K temperature, the time scale is approx-
imately 100 yrs (see Section 4.1.1), and thus it takes about 1 Myrs
for a shear-zone to develop, and after deformation ceases about
100 Myrs for the shear-zone to vanish for q = 2, and 1 Tyrs for q = 4.

For a larger more tectonically active strain rate _e ¼ 10, the local-
ization time (time to reach steady state) is much shorter (by about
two orders or magnitude) for both q = 2 and 4; however, the heal-
ing time remains unchanged (Fig. 10b and d). Although not shown,
cases with smaller Q (i.e., Q ¼ 10"3 as opposed to those shown
with Q ¼ 10"2), the weakening is more dramatic (i.e., the stress
drop is deeper) and the time for the weak zone to vanish is propor-
tionally longer.

For the cases shown with Q ¼ 10"2, the low strain-rate systems
involve a stress drop during shear-zone formation of less than an
order of magnitude, but by about an order of magnitude for the
high strain-rate cases. The stress drop is slightly stronger for the
secondary phase than the primary one because pinning tends to
be more effective on the secondary phase. Moreover, the stress
drop is slightly larger for q = 4 than for q = 2 at low strain rates,
and vice-versa at large strain rates. For smaller Q ¼ 10"3, the stress
drops roughly 2 orders of magnitude at high strain-rate. Again, for
a 1000 K lower lithosphere, the stress scale is about 800 MPa (see
Section 4.1.1) and so stress drops by two orders of magnitude will
reach tectonic stresses. For all cases the grain-sizes and interface
courseness drop by 2-3 orders of magnitude during shear-zone
development, and with a grain scale of about 50 lm, the grain-size
will drop to a several tenths of a lm.

Approximate analytic solutions are derived in Appendix H.2 and
verified by comparison to the numerical results (see Fig. H.2),
which allows us to explore the dependence of damage and
localization time as well as healing and recovery time on both
strain-rate _e and interface coarsening rate Q; in using the analytic
solutions we fix the parameters m = n = 3 and q = 2 (since the
recovery time for q = 4 is astronomically long). A useful quantity

a b

c d

Fig. 10. Dimensionless grainsizes Ri , interface radius of curvature r and stresses in each phase si versus time (for parameters indicated). The four frames a–d are for two
different q each for two different strain-rates _e as indicated; other parameters such as Q; p;m, and / are also indicated (the parameter - = 1 in all cases). Blue [dark grey]
curves are for the minor phase i = 1 (i.e., with /1 = / = 0.4) and the green [light grey] curves are for major phase i = 2(/2 = 1 " / = 0.6); red [medium grey] curves are for r. In
these calculations, strain-rate _e is imposed until steady-state is reached in order to gauge the time needed to reach a shear-localized low-stress state. Once steady-state is
reached _e is set to zero (hence stress is zero, indicated by grey region) and the system is allowed to evolve back to its initial state in r, which measures the healing time or
longevity of the weak zone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to consider is the ratio of healing and recovery time to damage and
localization time, i.e., (tr " ts)/ts (where ts is the time for the shear
zone to develop and reach steady state, and tr is the total final time
after the strain-rate has been turned off for t > ts and for r to return
to its original state); this ratio indicates the longevity of a weak
zone after formation relative to its actual formation time
(Fig. 11). The ratio is always several powers of 10, and increases
with increasing strain-rate significantly; for the chosen q, m and
n, the ratio increases with _e to the power 2/3 (see Appendix H.2).
In the end, model solutions demonstrate that the formation time
for weak zones or plate boundaries is typically much much shorter
than their recovery and erasure, or healing time. In total, this
mechanism readily explains both rapid formation and extended
longevity of plate boundaries.

5. Discussion

One of the key aspects of our two-phase model of grain-damage
is that damage is mostly imposed on the interface between phases,
while direct damage to grains is greatly reduced when they are
small and in the diffusion creep regime. However, damage in-
creases interface density and curvature, which in turn drives down
mean grain-size by Zener pinning (see Section 2.4) into the ‘‘per-
manent’’ diffusion creep state. In this way, damage co-exists with
grain-size induced weakening, thereby allowing the requisite feed-
back for shear-localization. Moreover, if deformation ceases and
the localized zone becomes dormant, Zener pinning blocks healing
and grain growth, forcing it to follow coarsening of the interface
which is implicitly much slower.

Recent studies by Warren and Hirth (2006) and Skemer et al.
(2009) on deformation in natural peridotites are relevant to the
predictions of our model, and analyses of lower crustal materials
display similar behavior (Mehl and Hirth, 2008). (It should also
be noted that aside from grain-size feedbacks, self-softening can
also occur due to shearing and interconnection of very soft second-
ary phases e.g., see Holyoke et al. (2006) for analysis of crustal
rocks.) Both peridotite studies observe continuous deformation
and breakdown of pyroxene inclusions and suggest a strong con-
trolling effect of the secondary phase. Indeed, Warren and Hirth

(2006) note that fine-grained olivine shear zones in mylonites
are consistently correlated with populations of small pyroxene
and spinel inclusions, and attribute this to pinning (see also Mehl
and Hirth, 2008); they also infer that pinning forces olivine grains
into a ‘‘permanent’’ diffusion creep regime as found by our theoret-
ical analysis. Experimental deformation maps, however, still tend
to be presented in terms of stress and the grain-size for the major
phase (olivine), and the influence of interface density is only indi-
rectly evident in the grain-size data by qualitative distortion of re-
gime boundaries. Direct data on the size distribution of interface
coarseness and its evolution are lacking, and this is the information
perhaps most essential for testing the theory presented here. How-
ever, our theory at least provides some guiding hypothesis for fu-
ture experiments. For example, one of the more speculative
aspects of the current theory regards the phenomenological laws
for the evolution of interface density (comparison to grain-growth
experiments in Section 3 not withstanding), which we demon-
strate is a key component of the theory; it is thus very important
to understand at a micro-physical scale what controls both pro-
cesses of interface coarsening and damage.

Coarsening of the interface likely occurs both by grain-growth
in each phase (and therefore is limited by the slowest grain-growth
rate of the two phases), and by smoothing of interface distortions, a
process which is necessarily slow as it implies diffusion along a
contorted interface path or across another phase (see Solomatov
et al., 2002, and references therein). Thus interface coarsening is
certain to be much slower than that for grains of like composition
that are in contact with each other (which is also implied by the
comparison to grain-growth experiments in Section 3).

Since interface coarsening involves diffusive mass flux of the
secondary phase along the interface itself or across the primary
phase, then its rate is thermally controlled by standard diffusion
kinetics (e.g., Herwegh et al., 2005). The diffusive mobility of the
secondary phase might also be facilitated by its solubility in the
primary phase, as with Ostwald ripening (see Voorhees, 1992;
Solomatov et al., 2002), which also increases with increased tem-
perature. Thus the enhanced lithospheric healing (relative to dam-
age) on hotter planets like Venus would still hold, consistent with
the climatic explanation for why Earth has plate tectonics and Ve-
nus does not (Lenardic et al., 2008; Landuyt and Bercovici, 2009b),
and how surface temperature influences the likelihood of plate tec-
tonics occurring on super-Earths (Foley et al., 2012). In particular,
an increase in the interface coarsening coefficient Gi, or its dimen-
sionless version Q, with higher temperature suppresses localiza-
tion and weakening (Fig. 8) and greatly reduces the healing
recovery time (Fig. 11). In the end, the coarsening coefficient Gi

likely depends on various properties, including composition and
temperature, and needs to be further examined experimentally
or possibly by molecular dynamics models.

Damage to the interface at a microscopic scale is likely to be a
complex process relying on several possible mechanisms. Warren
and Hirth (2006) suggest that secondary phase inclusions break
down by translation of grains via grain-boundary sliding, which
implies basic disaggregation of inclusions into their component
grains. Disaggregation and mixing of grains does not necessarily
require propagation of dislocations and recrystallization of new
grains, and thus could proceed regardless of rheological mecha-
nisms (as is assumed in the theory here). If inclusions exist as or
are reduced to single grains, it is possible they could only be bro-
ken down further by dislocations and recrystallization (Skemer
et al., 2009), which would cease once they left the dislocation creep
regime. However, even if single-grain inclusions deform by diffu-
sion creep, they and the interface around them will still deform
and be stretched into shapes with greater surface area and mean
curvature, without changing volume or mean size; e.g., a spherical
inclusion stretched into a needle shape is likely to cause more

Fig. 11. Ratio of healing and recovery time (from a localized damage state back to
the initial state, from (H.10)) to the localization and damage time (from the initial
state to the steady damaged state, i.e., ts which arises from the sum of (H.7) and
(H.8)) versus dimensionless strain-rate _e for several values of the interface
coarsening rate Q. Recovery and localization times are based on the approximate
analytic solutions from Appendix H.2. Solutions are for q = 2,m = n = 3, and are
largely insensitive to the parameter - and initial interface radius of curvature ro.
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Zener pinning on grains around it. Further experiments clearly
need to be carried out to track the evolution of both grain-size
and interface morphology, although the data may exist already
from past experiments.

Regardless of experimental studies, field measurements might
provide a test for the shear-localizing mechanism proposed here,
or in general any grain-size related localizing mechanism. In par-
ticular, taken at face value, our model predicts that ultra-low-
strain-rate diffuse plate boundaries (e.g., Gordon, 2000) would oc-
cur on the non-localizing branch of the constitutive curves (see
Figs. 8 and 9), while sharper shear zones would be associated with
the high-strain-rate localizing or weakening branch of the the
same curves. The low strain-rate curves generally correlate with
dislocation creep (with some exceptions) while the high-strain rate
curves correlate with grain-size sensitive diffusion creep with
grain-reduction. Since lattice-preferred orientation in olivine oc-
curs in the dislocation creep regime, the dominant rheology should
be reflected in shear-wave splitting measurements. Grain damage
theory would thus predict that diffuse plate boundaries would in-
volve more seismic anisotropic fabric in the deep lithosphere than
sharper shear boundaries, although a comparison of such bound-
aries would ideally be for similar stress environments, such as
within the same plate, and assuming that other effects, such as
shape-preferred orientation in a sharp shear zone, can be separated
out.

6. Conclusion

Shear localization and weakening through grain-size reduction
has been considered one of the key mechanisms for plate genera-
tion because it can exist in the deep lithosphere, involves material
damage that permits dormant weak zones, and has observational
support in mylonitic mantle rocks. However, theories of grain-size
reduction have been problematic because of the exclusive rheolog-
ical domains that preclude the co-existence of grain reduction by
damage and weakening by grain-size-dependent diffusion creep;
without coupling of both mechanisms it is difficult to sustain a po-
sitive shear-localizing feedback. Moreover, grain growth in single-
phase (mono-minerallic) materials is rapid and would, by itself,
not be able to sustain a dormant weak zone.

However, actual lithospheric materials are at least two-phase
(polyminerallic), such as peridotites with olivine (as the major
phase) and pyroxenes (as the secondary phase). In these materials,
grain growth in both phases is retarded because of effects like Ze-
ner pinning; in particular, the interface between the phases acts
like an obstacle to grain growth. This interface itself evolves be-
cause of deformation and coarsening and is thus likely to have a
dynamic influence on grain evolution. We have therefore devel-
oped from classical first principles a continuum theory of two-
phase grain-damage allowing for the interaction between grains
and interface through Zener pinning.

We find that, depending on its density or curvature, the inter-
face between phases does indeed retard grain-growth and even
tends to make grains more susceptible to damage (see Sections
2.2.2 and 2.4) although direct damage to grains is self-limited
when the grains enter the diffusion creep regime. However, the
most profound effect is that damage causes an increase in interface
area density and curvature (e.g., size reduction or stretching of pin-
ning inclusions), which, through Zener pinning, drives down the
size of grains into the diffusion creep regime. This mechanism
therefore allows grain-size reduction via damage (albeit indirectly)
to coexist with grain-size–dependent softening, thus leading to the
weakening or shear-localizing feedback needed to generate plate
boundaries.

Equally profound is that grain growth is dictated by coarsening
of the interface, which is extremely slow, and orders of magnitude

slower than the formation time for weak zones. Indeed analysis of
our model shows that while weak zones are likely to develop to a
steady state in 1 Myrs or less, dormant zones will take several
100 Myrs or more to vanish. This effect thus permits long-lived
weak zones along dormant plate boundaries to exist at least as
long as a typical plate age.

The theory presented herein is a culmination of two-phase
damage theories and grain-damage models that capture the essen-
tial physics of plate generation. With further testing and refine-
ment, this framework will (we hope) provide understanding for
the origin of plate tectonics on Earth, as well as predictions for
the conditions for plate tectonics and all its attendant phenomena
on terrestrial planets in other solar systems.
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Appendix A. Phases, interfaces and mass conservation

The model continuum is a mixture of two immiscible compo-
nents, or phases, each of which has, at a point in space, a unique
grain-size distribution. In treating the separate phases (irrespec-
tive of grains), we identify them by a phase distribution function
ui, which is 1 where phase i exists and 0 where it does not (see
Bercovici et al., 2001a). The volume of phase i within the control
volume dV is

dVi ¼
Z

dV
uidV ¼ /idV ðA:1Þ

where /i is the volume fraction of phase i in the control volume dV,
and

P2
i¼1/i ¼ 1. Moreover, if we have any quantity or property at a

point in space within phase i called ~qi, then its volume average qi

over the phase is defined such that
Z

dV
~qiuidV ¼ qi/idV ðA:2Þ

It is often convenient to refer to one of the volume fractions simply
as /, and we choose (arbitrarily) /1 = /, in which case /2 = 1 " /.

We can also use the function ui to define the interfacial area be-
tween phases

dAI ¼
Z

dV
k$uikdV ¼ adV ðA:3Þ

where a is the interfacial area density (interfacial area per unit vol-
ume of the mixture) which is independent of phase index i since
$u1 ¼ "$u2 (see Bercovici et al., 2001a).

The interface density a is an important property of this model
because it governs the density of surfaces that block grain-growth
by Zener pinning, as discussed in Section 2.2. The interface density
has been prescribed previously (Ganesan and Poirier, 1990; Berco-
vici et al., 2001a; Bercovici and Ricard, 2005) to be an isotropic
function of volume fraction / = /1 and interface fineness F , which
is the inverse of coarseness represented by the interface mean ra-
dius of curvature r (Bercovici and Ricard, 2005; Landuyt and Berco-
vici, 2009a). Clearly for a given interface radius of curvature, the
interface density must vanish as / ? 0 or 1. But, also, for a given
/ the interface density can vary depending on homogeneity of
the mixture, e.g., on the size of inclusions of one phase inside the
other (each inclusion itself being composed of an ensemble of
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grains of like phase). For example, in a dilute mixture of spheres of
phase 1 each of radius r and surrounded by phase 2, we readily find
a = 3//r; however, we generalize this to non-dilute systems by
assuming

a ¼ Fgð/Þ ¼ gð/Þ
r

ðA:4Þ

such that g vanishes at / = 0 and 1 and r is now a mean radius. Thus,
for a given a mixture of spherical inclusions of mean radius r of both
phases, g can be assumed to take the symmetric form
g = 3/1/2 = 3/(1 " /), which captures both dilute limits / ? 0 or 1.

When we consider the two-phase medium to be a simple mix-
ture of grains of two components, then the interface radius of cur-
vature r can be partially characterized by grain-sizes in some
statistical mixture (see Appendix G). However, r is also governed
by grain clumping, stretching, flattening, and/or squeezing of
grains in between other grains (see Appendix C.3 as well as
Fig. 2); thus in any interface treatment of a two-phased grained
medium, r is independent of (or not uniquely dependent on) each
phase’s grain-size.

A.1. Mass conservation

Even though the two rock phases in the continuum are grained,
the grains are assumed to be in complete contact, i.e., there are no
gaps, voids or fluids on the grain boundaries, and thus the grains
fill all space. The effect of damage on void generation and the pres-
ence of fluids has been covered elsewhere; this form of damage has
been shown to be a poor candidate for shear-localization across
most of the lithosphere (Bercovici and Ricard, 2005; Landuyt and
Bercovici, 2009a), although it is in good agreement with failure
envelopes for porous rocks (Ricard and Bercovici, 2003). The
phases are also assumed to be incompressible such that the density
of phase i (where i = 1,2) qi is a constant; moreover, there is no ex-
change between phases. These assumptions lead to the classical
mass conservation equation for two-phase continua:
@/i

@t
þ $ ' ð/iviÞ ¼ 0 ðA:5Þ

where the velocities of each phase vi are potentially different.
However, since the two phases in our typical applications to

mantle dynamics are both solid-state minerals, phase separation
is likely negligible, which argues for assuming that the phase
velocities are the same, i.e., v1 = v2. If v1 = v2 = v then the volume
averaged velocity is also "v ¼

P
i/ivi ¼ v, and thus the sum of

(A.5) over i shows that v is solenoidal. Therefore the mass conser-
vation relation (A.5) can be recast as
@/
@t
þ v ' $/ ¼ 0 and $ ' v ¼ 0 ðA:6Þ

which is also reproduced as (4a) in Section 2.3.
However, for much of the following development we employ

independent phase velocities for the sake of generality, but remark
as needed on the effect of assuming vi = v.

Appendix B. Grain distributions and evolution

B.1. Grain distributions and average properties

The exact number of grains per unit volume between the sizes
of R and R + dR in phase i at a point in space at position x is
emiðR;x; tÞdR. The total number of grains in phase i within the con-
trol volume dV is thus

dNi ¼
Z

dV
ui

Z 1

0
emi dR

! "
dV ¼

Z 1

0

Z

dV
ui emi dV

! "
dR

¼ dV/i

Z 1

0
midR ðB:1Þ

where midR is the average number of grains between R and R + dR
over the volume of phase i within the control volume dV, and ui

and /i are defined above in Appendix A. The total number of grains
in phase i within a macroscopic volume V is

Ni ¼
Z

V

Z 1

0
midR/idV ðB:2Þ

The volume of the phase i can be determined either by integrating
over the distribution function ui as in (A.1), or equivalently by add-
ing up the volumes of all the grains in the phase. The volume of a
single grain of size R is !V ¼ 4

3 pR3 where in fact p can represent
either the classical value of 3.14159. . . or a geometric factor for a
regular polyhedral shape (Ricard and Bercovici, 2009). The volume
of phase i in the control volume dV is thus

dVi ¼
Z

dV
ui

Z 1

0

!Vemi dRdV ¼
Z 1

0

!VmidR

! "
/idV ðB:3Þ

and hence by equivalence to (A.1) we obtain
Z 1

0

!VmidR ¼ 1 ðB:4Þ

as inferred by Ricard and Bercovici (2009) for a single-phase
medium.

Having introduced !V, we also note that any variable !Q similarly
accented defines a quantity or property specific to a grain of size R.

The density of phase i is qi, which is assumed a constant (i.e., the
phases are incompressible). The mass of a grain of size R in phase i
is thus !mi ¼ qi

!V. The total mass of phase i in the control volume dV
is

dMi ¼
Z

dV
qiuidV ¼ qi/idV ðB:5Þ

but also

dMi ¼
Z

dV

Z 1

0
!mi emi dRuidV ¼

Z 1

0
!mimidR

! "
/idV ðB:6Þ

and hence
Z 1

0
!mimidR ¼ qi ðB:7Þ

which is a useful relation, although in fact is really just equivalent to
(B.4).

B.2. Grain-size and grain quantity evolution

The number of grains of phase i within a portion of distribution
space from R1 to R2 and over a finite control volume DV is

ni ¼
Z

DV

Z R2

R1

midR/idV ðB:8Þ

The control volume DV is assumed fixed and open, and likewise the
portion of grain-size space between R1 and R2 is fixed and open to
transfer of mass from other populations from the surrounding dis-
tribution. In this case, the rate of change of grain numbers is

@ni

@t
¼
Z

DV

Z R2

R1

@mi/i

@t
dRdV

¼ "
Z

DA

Z R2

R1

midR/ivi ' n̂dA"
Z

DV
½mi

_Ri)R2
R1

/idV

þ
Z

DV

Z R2

R1

CidR/idV ðB:9Þ

where DA is the surface area of the control volume, n̂ is the unit
normal to a surface area element dA, _Ri is the growth rate of a grain
of size R in phase i, Ci accounts for discontinuous or distal transfer
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of grain numbers from non-neighboring populations within the
grain-size distribution (i.e., from breaking or fusing of grains), and
we have used the fact that vi and /i are independent of grain-size.
Allowing the volume DV to be arbitrary, taking the limit that
R2 " R1 = dR ? 0 and using Stokes theorem, we arrive at

@/imi

@t
þ $ ' ðvi/imiÞ þ /i

@

@R
ð _RimiÞ ¼ Ci/i ðB:10Þ

Using (A.5), the above Eq. (B.10) becomes

@mi

@t
þ vi ' $mi þ

@

@R
ð _RimiÞ ¼ Ci ðB:11Þ

which is the same as for a single phase material as shown by Ricard
and Bercovici (2009).

Let us now consider the rate of change of a quantity Hi in phase
i within a closed and deformable volume DV; Hi could represent
the mass or internal energy of phase i. Likewise this quantity exists
per grain as !hi, which, for example, could be the mass or internal
energy of a single grain of size R in phase i. The macroscopic and
grain-scale quantities are related according to

Hi ¼
Z

DV

Z 1

0

!hiðRÞmidR/idV ðB:12Þ

The rate of change of Hi moving with phase i in this closed deform-
ing control volume is

DiHi

Dt
¼
Z

DV

Z 1

0

Di
!himi/i

Dt
þ !himi/i$ ' vi

 !
dRdV ðB:13Þ

where the $ ' vi term represents the rate that the volume of phase i
in DV expands. The above equation can be recast – using (A.5) and
(B.11) – as

DiHi

Dt
¼
Z

DV

Z 1

0
mi

Di
!hi

Dt
þ !hi

Dimi

Dt

 !
dR/idV

¼
Z

DV

Z 1

0
mi

Di
!hi

Dt
þ !hiðCi "

@ _Rimi

@R
Þ

 !
dR/idV

¼
Z

DV

Z 1

0
mi

Di
!hi

Dt
þ _Ri

@!hi

@R

" #
" @

@R
_Ri

!himi

& '
þ !hiCi

 !
dR/idV

ðB:14Þ

Defining the full derivative in grain space as

di

dt
¼

Di

Dt
þ _Ri

@

@R
ðB:15Þ

and assuming that _Ri
!himi ! 0 as R ? 0 or 1 (i.e., the distribution

vanishes above a maximum grain-size, and since !hi is an extensive
grain property, e.g., grain mass, energy, etc., it also vanishes at zero
grain-size), then (B.14) becomes

DiHi

Dt
¼
Z

DV

Z 1

0
mi

di
!hi

dt
þ Ci

!hi

 !
dR/idV ðB:16Þ

Thus for example, if Hi = Mi, the mass of phase i, then,

DiMi

Dt
¼
Z

DV

Z 1

0
mi

di !mi

dt
þ Ci !mi

! "
dR/idV ðB:17Þ

Since the volume is closed, DiMi
Dt ¼ 0, and since the volume is arbi-

trary, then we require
Z 1

0
mi

di !mi

dt
þ Ci !mi

! "
dR ¼ 0 ðB:18Þ

However, we assume that the processes of mass transport by con-
tinuous transfer between neighboring grain populations (e.g., due
to diffusion of mass between grains and continuous coarsening)

and that due to discontinuous transfer between non-neighboring
populations (breaking or fusion of grains) are decoupled, in which
case we specify that
Z 1

0

di !mi

dt
midR ¼ 0 and

Z 1

0
!miCidR ¼ 0 ðB:19Þ

which is similar to the case for a single phase as specified in Ricard
and Bercovici (2009).

In some instances it is convenient to define the linear differen-
tial operator

Di

Dt
¼ di

dt
þ Ci

mi
. Di

Dt
þ _Ri

@

@R
þ Ci

mi
ðB:20Þ

in which case we can rewrite (B.16) and (B.17) as

DiHi

Dt
¼
Z

DV

Z 1

0

Di
!hi

Dt
midR/idV ðB:21Þ

and

DiMi

Dt
¼
Z

DV

Z 1

0

Di !mi

Dt
midR/idV ¼ 0 ðB:22Þ

Appendix C. Zener pinning force and work

C.1. Classical Zener pinning

The classical relation for pinning force was derived by Zener as
reported by Smith (1948) for a flat grain boundary of one phase
impinging on an inclusion of the other phase (see Fig. 3); see also
Hellman and Hillert (1975), Wörner and Cabo (1987), Rios (1987),
Hillert (1988), Harun et al. (2006) and Roberts (2008). In this treat-
ment, the grain boundary intersects the surface of the inclusion of
radius r and the grain boundary surface tension ci (force per unit
length) pulls on the inclusion tangent to the grain boundary and
all along the intersection curve. Assuming local dynamic equilib-
rium at the intersection itself, then the grain boundary intersects
at the wetting angle; since surface tension ci on the interface be-
tween phases is the same on either side of this intersection, the
wetting angle would be 90o; i.e., at the intersection, the grain
boundary would be normal to the inclusion’s surface. The net force
from the grain boundary surface tension, integrated around the
intersection curve of length 2prsinh (where h is defined in Fig. 3
or Fig. C.1), is only along the symmetry axis and thus normal to
the grain boundary, with a net force of

fn ¼ ci2pr cos h sin h ðC:1Þ

This force is often assumed to be at its maximum regardless of the
intersection or contact position (Smith, 1948; Harun et al., 2006),
which occurs at h = 45"; however this assumption merely gives a
scaling law for the magnitude of the normal force fn and is not read-
ily justified. The actual normal force can act in opposite directions
on the grain boundary depending on whether the boundary is above
or below the mid-plane of the inclusion; indeed the inclusion is
known to pull up on the boundary initially on first contact (Smith,
1948; Harun et al., 2006) and then pin the boundary only as it
moves past the inclusion. The net pinning force is only due to the
fact that the initial contact of a moving boundary with an inclusion
is asymmetric with its departure from the inclusion. In particular,
first contact occurs when the grain boundary is a distance r from
the inclusion’s center, while departure occurs when the boundary
is a distance significantly greater than r from the inclusion center,
since the grain boundary is already stuck to the inclusion. More-
over, the curvature of the grain boundary itself (assumed to be zero
in Zener’s original theory) breaks the symmetry of the approach and
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departure (Hellman and Hillert, 1975; Wörner and Cabo, 1987; Har-
un et al., 2006).

The derivation of the total pinning force that the inclusion exerts
on the grain boundary as it passes around the inclusion is complex
and we only summarize it here (seeHellman and Hillert, 1975;
Wörner and Cabo, 1987, for details). If s is the distance between
the center of the inclusion and the unperturbed grain boundary
(see Fig. C.1), then the pinning force is a function of U = R/r and
u = s/r. During passage around the inclusion the average pinning
force is obtained after expressing h(U,u) and computing

hfni ¼
1

RM " Rm

Z RM

Rm

fnds ¼ cipr2

RM " Rm

Z UM

Um

sinð2hðU;uÞÞdu ðC:2Þ

where Um = Rm/r and UM = RM/r are the minimum and maximum
relative radii at which the grain boundary is in contact with the
inclusion; i.e., if the outwardly moving grain boundary has a radius
less than Rm then it has not yet made contact with the inclusion in
which case it is spherical and the inclusion is outside the grain; if
the grain boundary has a radius RM it has departed from the grain,
it is also spherical and the inclusion is now inside the grain. If the
grain boundary were to pass around the inclusion without sticking
to it then RM " Rm would equal 2r; however because sticking causes
the first contact of the grain boundary with the inclusion to differ
from departure, then RM " Rm > 2r. This complex problem has a
simple solution because the shape of the spherical interface around
the single spherical inclusion is given by a catenoidal shape (Hell-
man and Hillert, 1975) and thus the function h(U,u) is analytic.

However, we require the net Zener pinning force on an ensemble
of inclusions. Assuming that inclusion size is tightly distributed
around the size r, then the number of inclusions in a control volume
DV dispersed through phase i is approximately N ¼ ð1" /iÞ
DV= 4

3 pr3
( )

and thus the number of inclusions per unit volume is
simply n = 3(1 " /i)/(4p r3). Assuming inclusions are randomly
distributed, then the number of inclusions within range of touching
the grain boundary with area !A is n!AðRM " RmÞ ¼ 3ð1" /iÞ!A
ðRM " RmÞ=ð4pr3Þ. The total average component of force acting
normal to the grain boundary (and thus like an effective pressure
force resisting boundary migration) due to all inclusions touching
the grain boundary is thus

Fn ¼ hfnin!AðRM " RmÞ ¼
3cið1" /iÞ!A

4r

Z UM

Um

sinð2hðU; uÞÞdu

¼ 3cið1" /iÞ!A
2r

PðR=rÞ ðC:3Þ

where PðUÞ ¼ 1
2

R UM
Um

sinð2hðU;uÞÞdu.

The seminal Zener-pinning paper of Smith (1948) assumed that
approach and departure distances between the grain boundary and
inclusion are effectively symmetric, but that the inclusion exerts
the maximal pinning force, in which case UM = (R + r)/r, Um =
(R " r)/r and sin(2h) = 1, which leads to a constant PðR=rÞ ¼ 1.
Subsequent papers, however, have shown P to be a positive and
monontonically increasing function of R/r (Hellman and Hillert,
1975; Wörner and Cabo, 1987), which implies that Zener pinning
is more efficient for large grains than for small ones, which is ver-
ified experimentally (see Wörner and Cabo, 1987; Harun et al.,
2006). A large number of forms for PðUÞ have been proposed from
experiments or simulations in the metallurgical literature (see
Manohar et al., 1998); however, we find in Section 3 that a simple
linear PðUÞ provides the best fit to experimental data for grain
growth in synthetic peridotites (see also Appendix F.4).

Finally, it should be noted that the classical Zener pinning argu-
ments are most relevant for small minor-phase impurities on the
major phase grain boundaries, as occurs in metallurgical applica-
tions; in this limit r would be uniquely described by the minor
phase characteristic or mean grain-size Rj, where j indicates the
phase for which /j+ 1. This limit is also born out in our compar-
ison with experiments in Section 3. For larger secondary phase vol-
ume fractions the classic model and assumptions are less valid; in
this case the pinning radius r is likely independent or not uniquely
dependent on grain-size, as illustrated below and also with a sta-
tistical mixture model in Appendix G. However, the essential form
of the macroscopic Zener pinning force is largely independent of
these model assumptions.

C.2. Zener pinning: effective grain boundary shape and energy

Although the thermodynamics of our system is explored fully in
Appendix E, we briefly discuss the energy contribution of Zener
pinning here. In particular, given the pinning force Fn exerted by
the interface on a given grain boundary by (2), then the work done
by the grain boundary to grow against this force over a distance dR
is FndR. The total increment in grain-boundary energy during grain
growth by dR and involving an increase in grain-boundary area d!A
is therefore

d!ni ¼ ci d!Aþ 3ð1" /iÞ
2r

P!AdR

! "
ðC:4Þ

and the rate of change of grain-boundary energy is

di
!ni

dt
¼ ci

di
!A

dt
þ 3ð1" /iÞ

2r
P!A

diR

dt

 !
¼ ci

!Ci
di

!V

dt
ðC:5Þ

where

!Ci ¼
2
R
þ 3ð1" /iÞ

2r
P ðC:6Þ

is an effective grain-boundary curvature, and we have used the
identities d!A=d!V ¼ 2=R, and !AdR ¼ d!V (i.e., using !A ¼ 4pR2 and
!V ¼ 4

3 pR3). Likewise the total energy stored on the grain boundary
during growth of the entire grain is

!ni ¼ ci
!Aþ 3ð1" /iÞ

2r

Z R

0
P!AdR

! "
¼ ci

!Ai ðC:7Þ

where !Ai is an effective grain boundary surface area. Note that

!Ci ¼
@ !Ai

@!V
¼ d!V

dR

 !"1
@ !Ai

@R
¼ 1

!A

@ !Ai

@R
ðC:8Þ

which recovers (C.6).
These thermodynamic relations show that pinning acts to

increase the grain-boundary’s curvature and surface area by

Fig. C.1. Sketch of Zener pinning configuration in which a grain boundary of one
phase moves past an inclusion composed of the other phase. As opposed to Fig. 3,
which shows the simple and classical flat-boundary configuration (Smith, 1948),
this figure shows the configuration with a curved grain boundary and in which the
first contact and departure distances between grain boundary and inclusion are
delineated. In either case the surface tension of the grain boundary ci acts on the
intersection between the inclusion and the grain boundary. The grain boundary first
connects with the inclusion when it reaches a size R = Rm and departs from the
inclusion when it reaches R = RM.
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distorting it (see also (3)). The increased curvature induces a larger
effective grain-boundary surface tension force that increases the
grain’s internal pressure and hence chemical potential; this
consequently enhances diffusion of atoms out of the grain, thereby
hindering grain growth and even promoting shrinkage. The
distortional effect on surface area similarly facilitates damage by
reducing the surface energy contrast between a large grain before
fission and the smaller resulting grains after fission (see Section 2.2.2
for further discussion). These effects are essential to how Zener
pinning is incorporated into a continuum macroscopic theory.

Finally, throughout this paper we generally assume that the
surface energies for grain boundaries of a single phase ci, and be-
tween different phases along their interface ci are constants. In
principle they might be functions of temperature and chemical
composition, which then invokes surface entropies and chemical
potentials (i.e., rather than the surface energy only involving
reversible work). However, these effects are not critical for our pur-
poses and are therefore neglected.

C.3. Pinning force due to grain-boundary splitting

The classical approach of Zener pinning assumes that the
impeding force is due to small particles and impurities on the grain
boundaries; however, this assumption is not necessarily applicable
to pinning in assemblages of minerals with commensurate volume
fractions and grain-sizes. Large grains of one phase impinging on
smaller grains of the other phase do appear to undergo boundary
distortions analogous to the traditional Zener pinning assumption
(e.g., see Fig. 2, left panel). In assemblages of, for example, natural
and synthetic peridotite (Hiraga et al., 2010), where the grain-size
and/or volume fractions of minerals are comparable, the grains of
different minerals appear to grow along each other’s grain-bound-
aries, effectively splitting the boundaries and squeezing in be-
tween each others grains, without ever engulfing opposite grains
(Fig. C.2). In this case, the grains growing along the opposite
phase’s grain boundaries develop protuberances or ridges, which
experience resistive forces comparable to the pinning force. The
force of resistance to growth of these sharp features can be exam-
ined by a simple model of a ridge-like protuberance extending into
the opposite phase’s grain boundary, as illustrated in Fig. C.2.

For simplicity and physical scaling, we consider a single spher-
ical grain composed of phase i growing into the grain boundaries of
surrounding phase j. The protuberances are assumed to be triangu-
lar ridges of height y, inner angle 2h, and an arc-length given by
how the phase j grains are in contact with the single phase i grain.
For example, in the model considered in Fig. C.2, the spherical grain
has sectoral contact surfaces with four grains of phase j, and thus

has four ridges of arc-length pRi (where Ri is identified as the ra-
dius of grain of phase i).

The total surface tension force resisting growth of one ridge is
ð2ci cos h" cjÞpRi. An equilibrium dihedral angle h is reached if
there were no other forces and this surface tension force is zero.
However since the grain is growing, it is in disequilibrium and
we assume the ridge has grown past the dihedral-angle equilib-
rium point and the surface tension forces on the ridge are resisting
further growth (before reaching this dihedral-angle point, surface
tension on the ridge would accelerate growth by drawing the ridge
into the grain boundary, i.e., drive ‘‘wetting’’ of the grain bound-
ary). The number of ridges on the spherical grain is the number
of grains of phase j in contact with the grain of phase i, and this
is approximately the number density of grains of phase j times
the volume in which they might be in contact with the single grain,
i.e., /j=ð43 pR3

j Þ - !AiRj ¼ 3ð1" /iÞ!Ai=!Aj given that !Aj ¼ 4pR2
j . The to-

tal force resisting grain growth on the single grain of phase i is thus

Fn ¼ ð2ci cos h" cjÞpRi
3ð1" /iÞ!Ai

!Aj
ðC:9Þ

However, we wish to pose the force Fn in terms of the interface area
density a. The interface area due to one grain of phase j in contact
with the spherical grain of phase i is the resulting ridge surface area
2ypRi/cosh plus any ‘‘flat’’ contact area, which we write as c!Ai where
c < 1. The total interface surface area in volume V is this single con-
tact area ð2ypRi= cos hþ c!AiÞ times the number of ridges on the
spherical grain (3ð1" /iÞ!Ai=!Aj) times the number of similar spheri-
cal grains of phase i in the volume /iV= 4

3 pR3
i

( )( )
. Thus the interface

area per volume is

a ¼ ð2ypRi= cos hþ c!AiÞ
3ð1" /iÞ!Ai

!Aj

3/i

Ri
!Ai

ðC:10Þ

We can thus write the force resisting grain growth as

Fn ¼ ð2ci cos h" cjÞ
a

3/i

!Ai
Ri

2y= cos hþ 4cRi
ðC:11Þ

The surface tensions ci, ci and cj are related or commensurate and
thus we assume that the resisting force 2ci cos h" cj > 0 is a frac-
tion of the grain-boundary surface tension, i.e., equals bci where
0 < b < 1. Moreover, as discussed in Appendix A we define
a ¼ Fgð/Þ ¼ g=r (see (A.4)) and assume g = 3/i/j = 3/i(1 " /i). Tak-
ing these assumptions together the force resisting grain growth is

Fn ¼
bcið1" /iÞ!Ai

r
YðRiÞ ðC:12Þ

where we generalize Ri/(2ycosh + 4cRi) to be a monotonically
increasing function Y(R) as is P in the simple Zener pinning model.

a b

Fig. C.2. Grain growth in assemblages of two minerals with comparable grain size and/or volume fraction occurs along the opposite minerals grain boundaries. Growing
grains develop polygonal or polyhedral shapes with protuberances splitting the opposite mineral’s grain boundary, as shown in an example of synthetic peridotite (a) from
Hiraga et al. (2010) where blue [dark grey] is enstatite/pyroxene, green [light grey] is forsterite/olivine, and the average grainsize is approximately 1 lm. A simple model (b)
illustrates these protuberances as ridges circumscribing a spherical grain growing between four other grains (i) with a cross section corresponding to the dashed line, and a
force vector diagram showing surface tension forces on one cross-section of a ridge (ii) which is used to estimate the force resisting grain growth. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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In a mixture of grains of comparable volume fractions and grain-
sizes this model of grain growth inhibition by grain-boundary split-
ting should be symmetric between phases (i.e., each of their grains
grow against some combination of Zener pinning and grain bound-
ary splitting). The final relation for this effective blocking or pinning
force (C.12) is not exactly the same as that obtained for the classical
Zener pinning model with small inclusions (C.3), but the form and
dependence on interface density a (or interface roughness r), on
volume fraction of opposing phase 1 " /i, and on grain-size R are
comparable. The consistency between this model of grain boundary
splitting with the Zener pinning model argues for employing a sin-
gle general law for the grain pinning or impeding force as shown by
(2).

Appendix D. Momentum conservation

Conservation of momentum for creeping two-phase flow has
been dealt with extensively in previous studies (McKenzie, 1984,
1985, 1987; McKenzie and Holness, 2000; Spiegelman, 1993a,b,c;
Bercovici et al., 2001a; Bercovici and Ricard, 2003; Katz, 2008).
Allowing for each phase to have internal grain boundaries with
surface energy ci yields an additional effective pressure due to
the squeezing of grains by their own grain-boundary (Ricard and
Bercovici, 2009); the total force balance equation is thus

0 ¼ "$ð/iPiÞ þ $ð/iciKiÞ þ $ ' ð/isiÞ þ qi/igþ hi ðD:1Þ

where Pi is the pressure in phase i, si is the viscous stress, g is grav-
ity, hi is the interphase interaction force, and Ki ¼

R1
0

!Ci
!VmidR is the

average grain-boundary curvature in phase i (Ricard and Bercovici,
2009).

In general, and as specified in Bercovici et al. (2001a) and Berco-
vici and Ricard (2003), the interaction force is

hi ¼ cDvi þ P/$/i þxi$ðciaÞ ðD:2Þ

where c is a drag coefficient, P⁄ is an effective interface pressure, a is
the interface area density as defined already in (A.3) and (A.4); ci is
now, in the continuum formulation, the effective surface tension on
the interface between phases, which differs slightly from the micro-
scopic description (see Appendix E.1), and xi is the weighting factor
for how much the interface surface tension and energy are embed-
ded in phase i (where

P2
i¼1xi ¼ 1). Moreover, we prescribe, for any

quantity Q, that DQi ¼ ðQ " QiÞ=ð1" /iÞ where Q ¼
P

i/iQ i so that
DQ1 = Q2 " Q1 and D Q2 = Q1 " Q2.

Following the same arguments for determining the interface
pressure P⁄ as in Bercovici et al. (2001a) and Bercovici and Ricard
(2003), and defining an effective internal pressure Pi ¼ Pi þ ciKi,
Eq. (D.1) becomes

0 ¼ "$ð/iPiÞ þ $ ' ð/isiÞ þ qi/igþ cDvi

þ
X

j

ð1"xjÞPj

 !
$/i þxi$ðciaÞ ðD:3Þ

or equivalently

0 ¼ "/i$Pi þ $ ' ð/isiÞ þ qi/igþ cDvi

þxiðDPi$/i þ $ðciaÞÞ ðD:4Þ

For a specific mixture of solid silicates as in peridotite we eventually
assume that Dvi * 0. In this case, since there is only one velocity
vi = v, we need only one momentum equation, in particular the
sum of (D.3) over i:

0 ¼ "$Pþ $ ' "sþ "qgþ $ðciaÞ ðD:5Þ

which is as also shown in (4b). Although we would only use
"s ¼

P
i/isi, the stresses si are still determined by the rheology of

each phase according to (4c).

Appendix E. Thermodynamics of two-phase grained media

E.1. Energy conservation

The total energy of both phases inside a control volume DV is

E ¼
Z

DV

X

i

/i

Z 1

0
!mi

!E i þ ci
!Ai

& '
midRþ ðeci "

X

i

ciÞa
 !

dV ðE:1Þ

where !E i is the specific internal energy (energy per mass) of a grain
inside phase i, !Ai is the effective grain-boundary surface area as de-
fined in (C.7).

Moreover, eci is the true interface surface tension, and we re-
move the grain-boundary energy that has been replaced by inter-
face (the "

P
icia term). These two interface effects however add

simply, which allows us to define an effective interface energy
ci ¼ eci "

P
ici; we assert that ci is positive or else complete mixing

would be a minimum energy state and hence spontaneous (i.e., the
phases would be miscible in each other). Lastly, we have neglected
kinetic energy to be consistent with the assumption of creeping
flow.

The rate of change of this energy, assuming the control volume
is closed and deformable, and also employing (B.16) and (C.5), is

DE
Dt
¼
Z

DV

X

i

/i

Z 1

0

di !mi
!E i

dt
þci

!Ci
di

!V

dt

 !

miþ !mi
!E iþci

!Ai

& '
Ci

" #

dRþci

eDa
Dt

 !

dV

¼
Z

DV

X

i

/i

Z 1

0

Di

Dt
!mi

!E iþci
!Ai

& '
midRþci

eDa
Dt

 !

dV

ðE:2Þ

where we have used the definition of Di=Dt from (B.20) and we
prescribe

eD
Dt
¼
X

i

xi
Di

Dt
ðE:3Þ

as the material derivative traveling with the interface between
phases (see Bercovici and Ricard, 2003), and we have used the
assumption that the phases are incompressible (i.e., D(dV)/Dt = 0).

Alternatively the Gibbs relationship for an energy increment in
the same control volume is (see Ricard and Bercovici, 2009)

dE ¼
Z

DV

X

i

/i

Z 1

0
Tdð!mi

!SiÞ " !Pidð!mi=qiÞ þ !lid !mi þ cid !Ai

& '
mi

h 

þ T !mi
!S i " !Pi !mi=qi þ !li !mi þ ci

!Ai

& '
Cidt

i
dRþ cida

'
dV ðE:4Þ

where !S i is the specific entropy of a grain in phase i, !Pi is the pres-
sure inside a grain, !li is chemical potential in a grain, and T is the
temperature within the control volume, the components of which
are assumed to be in local thermal equilibrium. Using (E.4) to write
DE/Dt and subtracting this from (E.2) yields

Z

DV

X

i

/i

Z 1

0
!mi

di
!E i

dt
" T

di
!S i

dt
þ !Pi

dið1=qiÞ
dt

 !" 

þDi !mi

Dt
ð!E i " T !S i þ !Pi=qi " liÞ

%
midR

"
dV ¼ 0 ðE:5Þ

Allowing for each parenthetical term in the integrand to be zero
independently (see Ricard and Bercovici, 2009) leads to a Gibbs
relation for individual grain energy

di
!E i

dt
¼ T

di
!S i

dt
" !Pi

dið1=qiÞ
dt

or d!E i ¼ Td!Si " !Pidð1=qiÞ ðE:6Þ

and the grain chemical potential

!li ¼ !E i " T !Si þ !Pi=qi ðE:7Þ
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respectively. Since the phases are incompressible, then dqi = 0 and
d!E i ¼ Td!Si. Assuming expansion of scales applies within a grain
then !E i ¼ T !Si in which case !li ¼ !Pi=qi.

The conservation of energy, accounting for sources of work and
heat acting on or within a fixed but open control volume DV with
surface DA, requires that (see also Bercovici and Ricard, 2003; Ri-
card and Bercovici, 2009)

@E
@t
¼
Z

DV

X

i

Z 1

0

@ð!mi
!E i/imiÞ
@t

þ ci
@ð !Ai/imiÞ

@t

 !
dRþ ci

@a
@t

 !
dV

¼ "
Z

DA

X

i

/i

Z 1

0
ð!mi

!E i þ ci
!AiÞmidRvi ' n̂þ cia~v ' n̂

 !
dA

þ
Z

DV

X

i

vi ' gqi/idV þ
Z

DA

X

i

vi ' ð"PiIþ siÞ ' n̂dA

þ
Z

DA
ciaev ' n̂dAþ

Z

DV
QdV "

Z

DA
q ' n̂dA

ðE:8Þ

where ~v ¼
P

ixivi is the effective velocity of the interface between
phases, and we include the work done by grain boundary surface
tension on the surface of the control volume within the work done
by the effective pressure Pi. Moreover, while both the heat produc-
tion Q and heat flow q might be different for separate phases (e.g., Q
could be written as

P
i/iQ i) we only retain these terms symbolically

until we drop them later, since they are not crucial for our intended
application.

In the standard method of reducing the energy balance law, we
invoke Green’s integral theory to remove the volume integral
(since the volume DV is arbitrary), employ (A.5) and (B.11) to con-
tract the Reynolds transport terms, and use

P
ivi' of (D.3) to elim-

inate mechanical work terms, eventually arriving at

X

i

/i

Z 1

0

Di

Dt
!mi

!E i þ ci
!Ai

& '
midRþ ci

eDa
Dt
¼ cðDvÞ2

þ
X

i

/isi : $vi " DP
eD/
Dt
þ Q " $ ' q ðE:9Þ

where recall that / = /1 (and /2 = 1 " /) and we have again used
(B.20), and we note that (Dv)2 = Dvi ' Dvi while
DP = DP1 = P2 " P1. Employing the Gibbs relation (E.4), written
more compactly with the operator Di=Dt, (E.9) becomes

X

i

/i

Z 1

0
T

Dið!mi
!S iÞ

Dt
" !Pi

Dið!mi=qiÞ
Dt

þ !li
Di !mi

Dt
þ ci

Di
!Ai

Dt

 !
midR

þ ci

eDa
Dt
¼ cðDvÞ2 þW" DP

eD/
Dt
þ Q " $ ' q ðE:10Þ

where

W ¼
X

i

/isi : $vi ðE:11Þ

is the total deformational work done on a point in space (i.e., an
infinitesimal control volume). We have not included the drag work
c(Dv)2 in W since this accounts for how the actual work exerted on
the volume is transmitted internally between phases, and thus does
not constitute an external source of work and energy. In later sec-
tions we will also refer to deformational work within each phase
Wi ¼ si : $vi such that W ¼

P
i/iWi, as well as to work within each

grain !Wi ¼ !si : $vi such that

W ¼
X

i

/i

Z 1

0

!Wi
!VmidR ðE:12Þ

where !si can be, in principle, distinct between grains because of the
grain-size dependent viscosity.

E.2. Entropy production

We use the energy balance equation derived in the previous
section along with the Second Law of Thermodynamics to infer
the rate of entropy production. Since this production is necessarily
positive, we can later use non-equilibrium thermodynamics to in-
fer phenomenological laws and damage relationships (see Appen-
dix E.3).

The total entropy in the control volume DV is

S ¼
Z

DV

X

i

/i

Z 1

0
!mi

!S imidRdV ðE:13Þ

The Second Law of Thermodynamics states that internal entropy
production must be greater than or equal to zero, which is written
as

DS

Dt
¼
Z

DV

X

i

/i

Z 1

0

Dið!mi
!SiÞ

Dt
midRdV P "

Z

DA

1
T

q ' n̂dA ðE:14Þ

where "ðq=TÞ ' n̂ is the external entropy flux through the surface of
the closed volume (e.g., due to conduction, radiation, etc). Using
(E.10) (divided by T, which is assumed uniform across grains and
phases) to eliminate Dið!mi

!S iÞ=Dt from (E.14), eventually leads to

X

i

/i

Z 1

0

!Pi=qi " !li

& 'Di !mi

Dt
" ci

Di
!Ai

Dt

 !
midR" ci

eDa
Dt
" DP

eD/
Dt

þ cðDvÞ2 þWþ Q " 1
T

q ' $T P 0 ðE:15Þ

Following (E.7) we argue that, because the phases are incompress-
ible and by appealing to expansion of scales (over the scales in
which T is uniform), then !li ¼ !Pi=qi, in which case (E.15) becomes
the final total entropy production relation

"
X

i

/ici

Z 1

0

Di
!Ai

Dt
midR" ci

eDa
Dt
" DP

eD/
Dt
þ cðDvÞ2 þW

þ Q " 1
T

q ' $T P 0 ðE:16Þ

from which we construct nonequilibrium thermodynamic con-
straints and phenomenological laws for grain and interface coarsen-
ing and damage.

E.3. Nonequilibrium thermodynamics and damage laws

We can identify in (E.16) the various entropy sources associated
with the rate of change in grain and interface surface areas driven
by surface tension, deformational work, heat production and lastly
thermal diffusion. Applications of this theory to lithospheric shear
localization, however, do not require considerations of heat pro-
duction or transfer and thus we hereafter neglect both Q and q.
Moreover, we further assume that, in a polyminerallic material
where both phases are of comparable viscosity, separation velocity
Dvi between phases is small enough to make c(Dv)2 negligible rel-
ative to other heat sources; indeed, for later applications we will,
for simplicity, assume Dvi * 0. (Indeed, when the phase velocities
vi are identified with the macroscopic mixture velocity v, the inter-
face velocity ev also becomes v, and the material derivatives rela-
tive to phases or interfaces, i.e., Di/Dt and eD=Dt, simply become
the bulk material derivative D=Dt ¼ @=@t þ v ' $.) Finally, we as-
sume that the kinetic processes governing changes in grain-size
within phases and changes in curvature of the interface between
phases are decoupled (e.g., diffusion between neighboring grains
of the same phase does not affect diffusion across the interface be-
tween the two phases) and must independently satisfy the Second
Law of Thermodynamics. With these assumptions, (E.16) becomes
two relations, one for entropy production due to the interaction of
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the two phases across their interface, the other for grains and
grain-boundaries within a given phase:

" ci

eDa
Dt
" DP

eD/
Dt
þ W P 0 ðE:17aÞ

"
X

i

/ici

Z 1

0

Di
!Ai

Dt
midRþ ð1" ÞW P 0 ðE:17bÞ

where is the partitioning fraction representing how much defor-
mational work goes into work on the interface between phases, i.e.,
interface ‘‘damage’’; thus ð1" ÞW remains to do work on the grain
boundaries and generate dissipative heating, and we include the full
term in (E.17b) to denote the total work available for grain-damage.

E.3.1. Interface growth and damage
Damage on the interface between phases has been dealt with

extensively in two-phase damage theory by Bercovici et al.
(2001a), Bercovici and Ricard (2003, 2005) and Ricard and Berco-
vici (2003) and related papers. However, here we briefly develop
the interface damage relations using somewhat more compact
non-equilibrium thermodynamics relationships and also for the
sake of completeness.

Sans damage. As defined in (A.4), the interface area density is
a ¼ Fgð/Þ where F ¼ 1=r is the interface fineness (Bercovici and
Ricard, 2005), or equivalently the interface curvature; and g(/) is
a function of / that vanishes at / = 0 and / = 1. In the absence of
damage and deformational work done on the interface, (E.17a)
becomes

" ciF
dg
d/
þ DP

! " eD/
Dt
" cig

eDF

Dt
P 0 ðE:18Þ

According to the theory of non-equilibrium thermodynamics (de
Groot and Mazur, 1984), eD/=Dt is a thermodynamic flux (i.e., rate
of change of volume fraction) driven by conjugate thermodynamic
force of "ðciFdg=d/þ DPÞ (i.e., net pressure drop across the inter-
face squeezing one phase or the other). Likewise, eDF=Dt is a ther-
modynamic flux (i.e., rate of change of interface curvature) driven
by a conjugate force "cig (surface tension). The phenomenological
laws that guarantee a positive entropy production are
eD/
Dt
¼ "K11 ciF

dg
d/
þ DP

! "
" K12cig ðE:19aÞ

eDF

Dt
¼ "K12 ciF

dg
d/
þ DP

! "
" K22cig ðE:19bÞ

where K is a 2 - 2 positive definite matrix and by Onsager’s reci-
procal relations we write K21 = K12 (since the thermodynamic
forces are not explicitly functions of velocity). Using (E.19) and
(E.18)becomes

K11 ciF
dg
d/
þ DP

! "2

þ 2K12 ciF
dg
d/
þ DP

! "
cigþ K22ðcigÞ

2 P 0

ðE:20Þ
The choice of K is non-unique, but the simplest positive definite
candidates are either Kij = kikj or Kij = jidij where ji > 0 The phenom-
enological laws (E. 19) are likely decoupled because in the equilib-
rium static limit of eDð/;FÞ=Dt ! 0, one should recover the Laplace
condition for surface tension on an interface, given here by
ciFdg=d/þ DP ¼ 0, where Fdg=d/ ¼ @a=@/ represents interface
curvature (Bercovici et al., 2001a). Decoupling requires that Kij = ji-

dij, in which case

eD/
Dt
¼ "j1 ciF

dg
d/
þ DP

! "
ðE:21aÞ

eDF

Dt
¼ "j2cig ðE:21bÞ

Eq. (E.21a) states that the phase with the higher pressure tends to
expel the other phase, while (E.21b) implies that in the absence of
deformation, the interface coarsens with time.

Avec damage. We next restore damage and deformational work
to the entropy production, as in (E.17a). However, we assume
that damage goes primarily into increasing the interface density
a and fineness F , which is equivalent to decreasing r (e.g., break-
ing or stretching inclusions), and not into creating more volume
fraction /. In prior two-phase damage papers (Bercovici et al.,
2001a; Bercovici and Ricard, 2003, 2005; Ricard and Bercovici,
2003) damage could be associated with void creation as a repre-
sentation of microcracking, wherein voids could be filled with a
mobile volatile phase (water, melt, air) by Darcy flow. However,
here / concerns the volume fraction of another solid silicate
phase and thus it is unfeasible for damage to induce voids that
are readily filled with a solid silicate. Therefore, an adjustment
for damage to the phenomenological laws (E.21) that still satisfies
(E.17a) is

eD/
Dt
¼ "j1 ciF

dg
d/
þ DP

! "
ðE:22aÞ

eDF

Dt
¼ "j2cigþ cig

W ðE:22bÞ

The coefficient j1 = B"1 where B is typically related to the resis-
tance to compaction, i.e., an effective bulk viscosity (McKenzie,
1984; Bercovici et al., 2001a; Ricard et al., 2001; Bercovici and Ri-
card, 2003); however, given that the two-phases here are both solid
silicate, this resistance is effectively infinite, i.e., eD/=Dt * 0. Finally
using F ¼ 1=r, (E.22) becomes

DP ¼ " ci

r
dg
d/

ðE:23aÞ

eDr
Dt
¼ gGi

qrq"1 "
r2

cig
W ðE:23bÞ

where (E.23a) is now simply the static (or quasi-static) Laplace con-
dition for surface tension on the interface.

Eq. (E.23b) represents the evolution of interface roughness in
which surface tension, or the tendency toward minimum surface
energy, acts to coarsen or smooth the interface between the two
phases, while deformational work or damage acts to distort or rend
the interface.

However, we expect coarsening of the interface not to acceler-
ate the smoother the interface gets. In particular, we preclude fi-
nite time singularities in the growth of r; i.e., if j2 were constant
in r and r = r0 at t = 0, then r ¼ r0=ð1" j2cigr0tÞ, which is singular
at finite t. We have therefore defined j2ci ¼ Gi=ðqrqþ1Þ where
q P 1 to preclude unphysical growth of r.

It is also reasonable to assume that interface damage is more
effective the smaller the interface curvature 1/r (e.g., larger inclu-
sions), although the dependence on curvature possibly occurs
through not merely the factor of r2, which really arises from writ-
ing the growth equation in terms of r instead of fineness F . How-
ever, here we assume is constant for simplicity and for lack of
any evidence to the contrary.

In the end, (E.23b) is the final evolution equation for interface
coarseness r, and is displayed in (4d) with the assumption that
both phases have the same velocity vi = v such that eD=Dt ¼ D=Dt.

E.3.2. Grain growth and damage
The essential physics of grain evolution is contained in the

grain-boundary entropy production relation (E.17b), which we re-
write but breaking out the Di=Dt operator to highlight the contin-
uous and discontinuous population transfer in grain-size space:
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"
X

i

/ici

Z 1

0

!Ci
di

!V

dt
mi þ !AiCi

 !
dRþ ð1" ÞW P 0 ðE:24Þ

where we have used (C.5) and (C.7). Again, the first term in the inte-
grand of (E.25a), proportional to mi, represents continuous or diffu-
sive transfer of mass between neighboring populations of grains of
different size by coarsening and the tendency to reduce net grain-
boundary surface energy. The second term, proportional to Ci, rep-
resents discontinuous mass transfer between distal populations due
to breaking or fusing of grains.

In the absence of work and damage (i.e., ð1" ÞW ¼ 0), one can
infer linear phenomenological laws from (E.25a) through the for-
malism of nonequilibrium thermodynamics. Such general laws
typically couple the thermodynamics fluxes d!V=dt and Ci of each
grain population of given size R in each phase i to every other grain
population and phase. The resulting equations are moderately elu-
cidating but identical to that inferred by Ricard and Bercovici
(2009); however the salient points of this exercise can be summa-
rized as follows:

0 the law for continuous/diffusive grain-growth recovers Lifshitz-
Slysov coarsening theory (Lifshitz and Slyozov, 1961),
0 the continuous and discontinuous phenomenological laws can

be decoupled,
0 the law for Ci allows only grain fusion when there is no damage

present.

These relations are shown in detail by Ricard and Bercovici
(2009) for a single phase, and they are still valid for two phases,
assuming the phenomenological laws between phases are decou-
pled. In the presence of damage, the continuous grain evolution
law tends toward homogeneous (single grain-sized) distributions
and not necessarily grain-reduction, which Ricard and Bercovici
(2009) deemed unphysical. However, damage permits the law for
Ci to include grain reduction through fission or breakage.

Since the development of these laws is no different than what
has been demonstrated in Ricard and Bercovici (2009) we do not
repeat it here. Moreover, final integro-differential phenomenolog-
ical laws are of considerable complexity, which causes them to be
of limited utility. Instead, we adopt the simplifying assumptions of
the subsequent study by Rozel et al. (2011) to infer a practical and
useful set of grain-growth laws for mean grain-size.

Following the findings of Ricard and Bercovici (2009) that dam-
age affects only discontinuous population flux (i.e., Ci), we assume
that the continuous grain-growth law describes coarsening only
and thus satisfies positive entropy production by itself; therefore
(E.25a) separates into two relations

X

i

/ici

Z 1

0

!Ci
di

!V

dt
midR 6 0 ðE:25aÞ

X

i

/ici

Z 1

0

!AiCidR 6 ð1" ÞW ðE:25bÞ

as was also reasoned by Rozel et al. (2011). Along with mass conser-
vation and grain-size distribution laws, (E.25) will comprise the
core relations for grain dynamics, as will be discussed in the follow-
ing section.

Appendix F. Self-similar grain evolution laws

At this point the evolution of interface density a or curvature 1/r
is reasonably well constrained by (E.23b). However, to complete
the evolution law for the grain-size distribution (B.11), we require
both _Ri (or equivalently di

!V=dt) and Ci. As stated previously, one
can formally derive relations for _Ri and Ci from non-equilibrium

thermodynamics, as done in Ricard and Bercovici (2009). However,
here we adopt the simpler approach of Rozel et al. (2011) and as-
sume that the grain-size distribution mi follows a self-similar distri-
bution, wherein the distribution shape is conserved while the
distribution moments (e.g., mean, variance, skewness, etc.) as well
as amplitude are all defined by a single characteristic grain-size,
which evolves with time.

Normal grain-growth or coarsening without deformation or
damage follows a self-similar distribution in the limit of very long
times, usually in the form of log-normal distributions. As done in
Rozel et al. (2011), we assume that mi retains a nearly self-similar
shape even in the presence of damage. Mathematically, we are
essentially using a trial function for mi that is known to be a solu-
tion to the system in the absence of damage. There is qualitative
justification for using self-similarity in the presence of damage
and grain reduction. In the same sense that during coarsening
the distribution broadens (increases variance) while its mean-size
grows (thus the variance and mean are proportional), the distribu-
tion is also expected to narrow (decrease variance) as the mean-
size shrinks during damage and grain reduction. In particular,
small grains are less susceptible to damage and reduction than
are larger grains (i.e., Zener pinning is less effective on smaller
grains); thus during grain reduction, the small-grain tail of the dis-
tribution propagates to smaller sizes more slowly than the large-
grain tail, thereby pinching the distribution as the mean-size
diminishes; hence the distribution’s mean and variance are both
expected to drop simultaneously.

F.1. Summary of equations governing grain evolution

Before proceeding with our self-similar trial function for mi, we
summarize the necessary equations:

0 Grain-size evolution is governed by the distribution continuity
law (B.11):

Dimi

Dt
þ @ðmi

_RiÞ
@R

¼ Ci ðF:1Þ

0 That grains fill all the volume constrains the distribution mi to
obey (B.4), or
Z 1

0

!VmidR ¼ 1 ðF:2Þ

0 The kinetic laws for _Ri (or di !mi=dt) and Ci are constrained by
mass conservation, leading to (B.19), or

Z 1

0

di !mi

dt
midR ¼ 0 ðF:3aÞ

Z 1

0
!miCidR ¼ 0 ðF:3bÞ

0 Positivity of entropy production on the grain boundary leads to
(E.25b), but we further assume entropy production is positive
independently in each phase, and thus

ci

Z 1

0

!Ci
di

!V

dt
midR 6 0 ðF:4aÞ

ci

Z 1

0

!AiCidR 6 ð1" ÞWi ¼ ð1" Þ
Z 1

0

!Wi
!VmidR ðF:4bÞ

where the effective grain boundary area !Ai and curvature !Ci are gi-
ven by (C.7) and (C.6), which include grain-boundary distortion ef-
fects due to Zener pinning that therefore couple grain growth to
interface curvature evolution given by (E.23b)

Eqs. (F.1)-(F.4) are sufficient to construct the grain evolution
laws in both phases.
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F.2. Self-similar grain evolution

We here follow the arguments of Rozel et al. (2011) and assume
not only that the grain-size distribution is self-similar, but that
since the terms in (F.1) must have the same spatial symmetry (or
else they cannot balance), the self-similar shape of mi will set the
form of _Ri and Ci as well.

Rozel et al. (2011) considered applications to uniform systems
and thus all material time derivatives were equivalent to @/@ t.
Here we assume that variables which are functions of both space
x and time t are only functions of a time variable t following ‘‘par-
ticles’’ i.e., infinitesimal control volumes. However, our governing
equations involve material derivatives in different frames, i.e., Di/
Dt, which is in the frame of phase i, and eD=Dt, which is in the frame
of the interface between phases. Given that both phases are solid
silicates, we adopt the simplifying assumption that they have the
same velocity v and thus vi ¼ ~v ¼ v; in this case all material deriv-
atives are the same and represented by D=Dt ¼ @=@t þ v ' $. We
will therefore write that any function f ðR;x; tÞ ¼ f ðR; tÞ where t
measures time following a particle at velocity v, and thus
Df=Dt ¼ @f=@t.

A self-similar grain-size distribution is represented by

miðR; t;xÞ ¼ miðR; tÞ ¼ BðRiðtÞÞHðuÞ ðF:5Þ

where now u ¼ R=Ri, B is an amplitude that depends only on the
time-dependent characteristic mean grain-size Ri of phase i, and
H is a shape function for the distribution (e.g., a log-normal form),
which is only a function of the similarity variable u. Here we assume
each phase’s distribution has a different amplitude, mean grain-size
and variance. Strictly speaking, each phase should have separate
similarity variables, i.e., ui instead of u. However, we assume the
phase’s distributions have the same mathematical shape H and
since the form of equations for each phase are the same we denote
the similarity variable by the single symbol u for convenience; in
the final mean-growth law all instances of the similarity variable
vanish anyway.

One can immediately constrain B by using (F.2):
Z 1

0

!VmidR ¼ 4
3
pR4

i BðRiÞ
Z 1

0
u3HðuÞdu ¼ 1 ðF:6Þ

which implies that

B ¼ 3
4pk3R

4
i

ðF:7Þ

where we define

kn ¼
Z 1

0
unHðuÞdu ðF:8Þ

The form of @mi=@t determines the form of all other terms in (F.1)
and this appears as

Dmi

Dt
¼ @mi

@t
¼ " 3

4pk3R
5
i

dRi

dt
1
u3

du4H
du

ðF:9Þ

as explained in Rozel et al. (2011). Since Ci necessarily has the same
shape as @mi=@t, we write

Ci ¼
3

4pk3R
5
i

DðRiÞ
1
u3

du4H
du

ðF:10Þ

where DðRiÞ is an as yet to be determined amplitude function of Ri

representing discontinuous grain population transfer (Rozel et al.,
2011). In a similar fashion, we write that

@ð _RimiÞ
@R

¼ 3
4pk3R

5
i

CðRiÞ
1
u3

du4H
du

ðF:11Þ

which implies, after integration (see Rozel et al., 2011) that

_Ri ¼ CðRiÞ
b
H
þ uþ 3

H

Z u

0
Hðu0Þdu0

! "
ðF:12Þ

where CðRiÞ is an amplitude function of Ri representing continuous
grain population transfer.

In principle the mass conservation relations (F.3) provide con-
straints on the unknown functions CðRiÞ and DðRiÞ and constant
b. However, (F.3b) provides no additional constraints because it
is automatically satisfied by (F.10); i.e.,
Z 1

0
!miCidR #

Z 1

0

du4H
du

du ðF:13Þ

which identically equals zero given that u4H ? 0 as u ? 0 or1 (i.e.,
a log-normal shaped H converges to 0 at finite u). However, (F.3a)
implies that
Z 1

0

di !mi

dt
midR #

Z 1

0
R2 _RimidR

#
Z 1

0
bu2 þ d

du
u3
Z u

0
Hðu0Þdu0

! "! "
du ¼ 0 ðF:14Þ

which implies

b ¼ "3
Z 1

0
Hðu0Þdu0 ðF:15Þ

and thus (F.12) becomes

_Ri ¼ CðRiÞ u" 3
H

Z 1

u
Hðu0Þdu0

! "
ðF:16Þ

as shown already by Rozel et al. (2011).
Since (F.9), (F.10) and (F.12) have the same form according to

(F.1), it is not surprising that, when substituted into (F.1), they
yield the simple mean-size grain-growth law (see Rozel et al.,
2011)

dRi

dt
¼ CðRiÞ " DðRiÞ ðF:17Þ

However, the entropy production relations (F.4a) and (F.4b) are
needed close the grain-growth relation by constraining the hereto-
fore unknown functions CðRiÞ and DðRiÞ.

F.3. Nonequilibrium thermodynamic constraints on C and D

F.3.1. Continuous grain-size evolution and coarsening
Entropy production due to coarsening, as stated in (F.4a) and

using (C.6), and (F.16) along with the definition of
mi ¼ 3HðuÞ=ð4pk3R

4
i Þ, yields

Z 1

0

!Ci
!A _RimidR ¼ 3CðRiÞ

k3R
2
i

Z 1

0

2
u
þ 3ð1" /iÞ

2U
Pðu=UÞ

! "

- u3H " 3u2
Z 1

u
Hðu0Þdu0

! "
du 6 0 ðF:18Þ

where in general U ¼ r=Ri. The first integral, not involving Zener
pinning and the function P, can be determined by integration by
parts as shown by Rozel et al. (2011), i.e.,

2
Z 1

0
u2H " 3u

Z 1

u
Hðu0Þdu0

! "
du

¼ 2k2 " 6
Z 1

0
udu

Z 1

0
Hðu0Þdu0 " 6

Z 1

0
u
Z u

0
Hdu0du

! "

¼ 2k2 " lim
X!1

3X2k0 " 3
Z X

0

d
du

u2
Z u

0
Hdu0

! "
" u2H

! "
du

$ %

¼ 2k2 " lim
X!1

3X2k0 " 3X2
Z X

0
Hdu0 þ 3

Z X

0
u2Hdu

! "
¼ "k2 ðF:19Þ
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The integral involving Zener pinning is a function of U ¼ r=Ri and is
proportional to

IðUÞ¼
Z 1

0
Pðu=UÞ u3H"3u2

Z 1

u
Hðu0Þdu0

! "
du

¼"
Z 1

0
P

d
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¼
Z 1

0

Z u
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u03du0HðuÞdu

ðF:20Þ
Having sorted out these various integrals, (F.18) eventually
becomes

3k2

k3

CðRiÞ
R2

i

1" 3ð1" /iÞ
2k2

Ri

r
Iðr=RiÞ

! "
P 0 ðF:21Þ

which is guaranteed by the linear phenomenological law

CðRiÞ ¼
C/

R2
i

Zi ðF:22Þ

where C⁄ is a positive coefficient and

Zi ¼ 1" 3ð1" /iÞ
2k2

Ri

r
Iðr=RiÞ ðF:23Þ

is the Zener pinning factor. The mathematical form of Zi depends on
assumptions about P and hence I , which we will discuss below in
Section F.4. However, for monotonically increasing PðR=rÞ, I is a
decreasing function of r=Ri (e.g., see Appendix F.4). In this case,
the continuous growth rate (F.16) in phase i is positive for suffi-
ciently small mean grain-size Ri but approaches zero as the
grain-size reaches a limit governed by the interface radius of curva-
ture r, and changes sign if Ri exceeds this limit. In the limit of no
Zener pinning (i.e., either r ?1 or /i = 1) we obtain Zi ¼ 1 and sim-
ple coarsening and grain-growth is recovered.

F.3.2. Discontinuous grain-size evolution and damage
The entropy production due to discontinuous grain evolution in

the presence of deformational work and damage is given by (F.4b),
which, with (C.7), (C.8) (F.10) and (F.11) becomes

ci

Z 1

0
C1

!AidR ¼ ci
DðRiÞ
CðRiÞ

Z 1
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@ _Rimi

@R
!AidR

¼ "ci
DðRiÞ
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_Rimi
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@R
dR

¼ "ci
DðRiÞ
CðRiÞ

Z 1

0

_Rimi
!A!CidR 6 ð1" ÞWi ðF:24Þ

The final integral in (F.24) is the same as in (F.18), thus (F.24) in
general becomes

3ci
k2

k3

DðRiÞ
R2

i

Zi 6 ð1" ÞWi ðF:25Þ

which is satisfied provided

DðRiÞ ¼
k3

k2

R2
i

3ci

ð1" ÞWi

Zi
ðF:26Þ

where 6 1 and represents a partitioning fraction for deforma-
tional work stored on grain boundaries (i.e., work remaining after
a fraction is stored on the interface between phase).

F.4. Zener pinning factor

To determine the Zener pinning factorZi we must state a form for
P, and there are several possibilities. The monotonically increasing
form inferred by Wörner and Cabo (1987) is PðR=rÞ ¼
Pðu=UÞ ¼ aþ b0 logðu=UÞ, where a = 0.01 and b0 = 0.126. In this case
we would obtain I ¼ b0k3=3. For a general power-law relation
Pðu=UÞ ¼ ðbn=nÞðu=UÞn, we would obtain I ¼ bnknþ3=½ðnþ 3ÞUn).
We can thus write a general relation for the Zener pinning factor

Zi ¼ 1" cnð1" /iÞ
Ri

r

! "nþ1

where cn ¼
3bnknþ3

2ðnþ 3Þk2
ðF:27Þ

in which we use n = 0 to denote the logarithmic P; this relations
leads to the general Zener pinning factor displayed in (8).

Although the logarithmic function is based on analysis of the
catenoidal shape of a pinned grain boundary, it also applies to pin-
ning by one inclusion on an otherwise pristine boundary, and not
on an ensemble of inclusions causing a corrugated or multiply dim-
pled boundary. The logarithmic function is really only valid for
R > r and is thus both singular as R ? 0 and induces a strong neg-
ative Zener pinning force for vanishing grains, when in fact the
force should vanish for small grains. Instead we employ a power-
law relation that goes to zero for vanishing grain-size R or u, and
we constrain it to be tangent to the logarithmic law proposed by
Wörner and Cabo (1987). If we use a linear law n = 1, then it leads
to P ¼ b1u=U where b1 = 1/20. Indeed, as shown in Secion 3, com-
parison to the experimental data implies that this simple linear P

is best, in which case we obtain

Zi ¼ 1" c1ð1" /iÞ
R2

i

r2 ðF:28Þ

which is the Zener pinning factor used in the simple-shear applica-
tions in Section 4.

F.5. Final grain evolution law

The relation for mean grain-size evolution is given simply by
(F.17), which can now be closed using the ‘‘continuous evolution
and coarsening’’ function CðRiÞ from (F.22) and the ‘‘discontinuous
evolution and damage’’ function DðRiÞ from (F.26) finally resulting in

dRi

dt
¼ DRi

Dt
¼ Gi

pRp"1
i

Zi "
k3

k2

R2
i

3ci
ð1" ÞWiZ

"1
i ðF:29Þ

where the Zener pinning factor Zi is given by (F.27), or (F.28) for the
simple case of n = 1, and we have defined C/ ¼ Gi=ðpRpþ1

i Þ where
p P 1 to preclude accelerated or singular grain-growth. This
power-law assumption is also obtained from simple kinetic
assumptions (Lifshitz and Slyozov, 1961; Ricard and Bercovici,
2009) and also what is experimentally observed (Karato et al.,
1980; Hiraga et al., 2010). This development thus leads to the final
governing equation for mean grain-size shown in (4e).

F.6. Log-normal distribution

As in Rozel et al. (2011) we close the self-similar formulation by
assuming a log-normal self-similar distribution wherein

HðuÞ ¼
1ffiffiffiffiffiffiffi

2p
p

ru
e"ðlog uÞ2=ð2r2Þ ðF:30Þ

where r is a dimensionless variance, and in which case two impor-
tant integral quantities are

KnðUÞ ¼
Z U

0
unHðuÞdu ¼

1
2

en2r2=2 erf
logðUÞ " nr2

ffiffiffi
2
p

r

! "
þ 1

$ %
ðF:31Þ

and from (F.8)
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kn ¼ Knð1Þ ¼ en2r2=2 ðF:32Þ

Rozel et al. (2011) show that, for minerals of geophysical interest
(Slotemaker, 2006; Stipp et al., 2010; Hiraga et al., 2010) the vari-
ance is constrained by 0.5 6 r 6 1, but we choose throughout
r = 0.8, which makes little qualitative difference in the results.

The log-normal distribution H(u) has a mode (i.e., peaks) at
uM ¼ e"r2 and the grainsizes at the half-peak are given by
u, ¼ uMe,r

ffiffiffiffiffiffiffiffiffi
logð4Þ
p

. For r = 0.8, the mode is at uM * 1/2 (i.e., at a
grain-size R * Ri=2), and the distribution width at the half-peak
is ðuþ " u"Þ * 2uM * 1. This half-width is therefore approximately
equal to the characteristic mean grain-size Ri, as demonstrated
experimentally in Hiraga et al. (2010) (see also the discussion of
the experimental grain-size distributions and uncertainties in
Section 3.2).

F.7. Grain-size averaged creep laws

Silicate grains undergo a range of possible rheological re-
sponses, but for the time-scales and stresses involved with man-
tle-lithosphere dynamics, diffusion and dislocation creep are the
two primary mechanisms of relevance. Within a given grain of size
R inside phase i, the constitutive relation is

!_ei ¼
ðai!sn"1

i Þ!si for R P Rc ðdislocation creepÞ
ðbi=R

mÞ!si for R 6 Rc ðdiffusion creepÞ

(
ðF:33Þ

where !_ei and !si are the strain-rate and stress within the grain,
!si ¼ 1

2
!si : !si is the second invariant of the stress, and the function

RcðsÞ ¼
bi

aisn"1

! "1=m

ðF:34Þ

defines the transition between the two creep mechanisms. Assum-
ing the stress is the same across all grains within a control volume,
so that !si ¼ si, then the average strain-rate is given by

_ei ¼
Z 1

0

!_ei
!VmidR ¼ 1"K3ðRc=RiÞ

k3

! "
aisn"1

i þK3"mðRc=RiÞ
k3

bi

Rm
i

$ %
si

ðF:35Þ

which represents a mean constitutive relation averaged over the
grain-size distribution. The function Kn is defined by (F.31), and
in particular Kn(0) = 0 and Kn(+1) = kn, and thus the composite
rheology (F.35) switches from diffusion to dislocation creep as the
average grain size Ri increases. Therefore accounting for the
grain-size distribution in the rheological law allows both mecha-
nisms to exist simultaneously within a sample. While this constitu-
tive law is tractable, it is not analytically invertible, i.e., we cannot
use it to write the relation for sið _eiÞ. Rozel et al. (2011) proposed
a composite rheology given by

!_ei ¼ ai!sn"1
i þ bi=R

m( )
!si ðF:36Þ

wherein the mechanism yielding the largest strain-rate dominates.
The average strain-rate in this case is simply

_ei ¼
Z 1

0

!_ei
!VmidR ¼ aisn"1

i þ k3"m

k3

bi

Rm
i

! "
si ðF:37Þ

which is a good approximation to the actual average rheology (F.35)
and thus we adopt it hereafter. In the final governing Eq. (4) we
eventually assume that both phases have the same velocity vi = v
in which case there is also only one strain-rate _e as given by (6).

Although the medium is assumed to deform according to this
composite rheology, dynamic recrystallization theory stipulates
that damage to grains only occurs in the fraction of the medium
that is deforming by dislocation creep. As shown by (Rozel et al.,
2011), this is accomplished by prescribing that the grain-damage

partitioning obeys _ei ¼ aisn
i or that the partitioning fraction is

given by

¼ 1þ k3"mbi

k3aiR
m
i sn"1

i

! ""1

ðF:38Þ

Note that the stress is still determined as a mixture of diffusion and
dislocation response for an imposed total strain-rate, but the dam-
age to grains only occurs for the part of the strain-rate undergoing
dislocation creep.

Appendix G. Statistical treatment of interface and pinning

G.1. Interface of mixed grains

We can use an idealized mixture of grains of two phases to
demonstrate one representation of the interface and its effect on
grain growth through pinning. Here we assume the two-phase
mixture is made of spherical (or regular polyhedral) grains of each
phase and that the interface morphology is only determined by the
shape of the grains themselves and some contact fraction between
the two phases. This assumption is a simplification since the inter-
face morphology can be determined by more than just mean grain
sizes, e.g., by non-spherical interfaces due to grain clumping,
stretching or grain-boundary splitting (see Section C.3), in which
case the interface ‘roughness’ r is independent of grain-size. How-
ever the statistical mixture method provides one way of quantify-
ing the interface curvature r in terms of grain geometry.

The interface area in a control volume dV is given by
dAI ¼

R
dV adV (see also (A.3)) while the total grain boundary area

of phase i is given by

dAi ¼
Z

dV
/i

Z 1

0
4pR2midR

! "
dV ¼

Z

dV
/iaidV ðG:1Þ

which defines the grain-boundary area density /iai. For example, in
a distribution of uniform spherical grains ai ¼ 3=Ri, while using the
self-similarity approximation (see Appendix F) ai ¼ 3k2=ðRik3Þ,
where Ri is the characteristic grain-size of phase i.

In the statistical mixture formulation, the interface area must
be less than or equal to the smaller of the grain boundary areas
i.e., a ¼ s minð/1a1;/2a2Þ, which we can approximated with the
function

a ¼
s
Y

i

/iai

X

i

ð/iaiÞm
 !1=m ðG:2Þ

where m is a generic exponent. The quantity s is the fraction of
smaller grain-boundary area that is in contact with the opposite
phase (e.g., s is small if the grains clump, but approaches unity if
they are well dispersed), and is neither constant nor uniform since
it evolves as grains are mixed, deformed and damaged. Using the
expressions of ai in term of Ri,

a ¼
3"s
Y

i

/i=Ri

X

i

ð/i=RiÞm
 !1=m ¼

3"s/1/2

X

i

ðð1" /iÞRiÞm
 !1=m ðG:3Þ

where "s ¼ s if the grains have identical radii, and "s ¼ ðk2=k3Þs if we
use a self-similar distribution.

Using the relation a = g(/)/r and assuming g = 3/1/2 (see
Appendix A) then the interface radius of curvature would be

r ¼ 1
"s

X

i

ðð1" /iÞRiÞm
 !1=m

ðG:4Þ
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i.e., the interface radius is some average of each phase radius, times
a factor that expresses how well the phases are mixed together. It
has the expected behavior in that r ! Ri="s if /i ? 0, i.e., the inter-
face is dominated by the minor phase; moreover, r ! Ri if the min-
or phase is dispersed ("s! 1 and /i ? 0) and r > Ri if these grains
clump ("s! 0 and /i ? 0). However, while this relation expresses
r as a function of phase volume fractions and grain-sizes, it still de-
pends on an independent quantity "s and thus r is an independent
quantity itself.

G.2. Zener pinning in mixed grains

G.2.1. Pinning force
The classical Zener pinning force derived for the small inclu-

sions in Section C.1 leading to (C.3) assumes a uniform size distri-
bution of inclusions such that the number density of inclusions
available to pin a grain of phase i is simply ð1" /iÞ 4

3 pr3
( )"1. How-

ever, if the pinning inclusions are simply other grains of opposite
phase j with a non-uniform size distribution mj, then we must re-
place the number of grains per unit volume of the pinning phase

4
3 pr3
( )"1 with mj(R0)dR0 for pinning grains between the sizes of R0

and R0 + dR0; after integrating over all pinning grain-sizes the pin-
ning force on one grain of size R becomes

FnðRÞ ¼ 2pcið1" /iÞ!AðRÞSj

Z 1

0
R02mjðR0ÞPðR=R0ÞdR0 ðG:5Þ

where we introduce Sj where 0 < Sj 6 1, to account for the fact that
only a fraction of grains of phase j will be available to pin the grain
of phase i, for example if phase j grains undergo clumping. If the dis-
tribution of inclusions follows a self-similar distribution according
to (F.5)–(F.7), and the function PðUÞ ¼ b1U as implied in Sections
3 and F.4, then this force becomes

FnðRÞ ¼
3cið1" /iÞ!AðRÞ

2Rj

k1

k3
Sjb1

R

Rj
ðG:6Þ

which is similar in form to the simple pinning force (2) or (C.3).

G.2.2. Pinning factor
We can use the pinning force (G.6) to infer the energy and shape

of a grain boundary in the presence of pinning as in Appendix C.2,
which leads to the entropy production relations (E.25) (or equiva-
lently (F.4)). With our generic Zener pinning force (C.3), these en-
tropy production relations suggest a Zener pinning factor Zi

given by (F.28), as derived in Appendices F.3.1, F.3.2 and F.4. Using
the statistical formalism instead, and in particular (G.6), eventually
leads to a Zener pinning factor

Zi ¼ 1" c1ð1" /iÞSj
k1

k3

R2
i

R2
j

ðG:7Þ

where cn is still as defined in (F.27). The grain-growth law would be
the same as (F.29) but with the Zener pinning factor replaced with
(G.7).

G.3. Relation between interface area and pinning

We can demonstrate that the statistical mixture formulation for
the interface area described in Appendix G.1 gives a relation for
interface pinning radius r that is consistent with the expression
for the Zener pinning effect developed in Appendix G.2.

First, the comparison to experiments on synthetic peridotites
presented in Section 3 implies grains undergoing static growth or
coarsening in each phase eventually reach a pinned state in which
they track the growth of the pinning radius r such that the Zener
pinning factor Zi * 0. In this case, using (F.28) leads to

r2 * c1ð1" /iÞR2
i ðG:8Þ

which can be recast as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ð1" /iÞr2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

X

i

ð1" /iÞ
2R2

i

r
ðG:9Þ

(in Section 3 we used (12) instead, although either relationship is
appropriate). The above relation is identical to (G.4) provided that
m ¼ 2 and "s! 1=

ffiffiffiffiffi
c1
p

in the pinned state, which demonstrates that
expressing interface area and curvature in terms of a statistical mix-
ture of grains is consistent with the pinning physics.

Finally, we can compare the Zener pinning factor expressed in
terms of r with that derived by a statistical grain mixture model
to constrain the pinning fraction Sj and show it is related to the
grain-sizes, volume fractions and contact fraction "s. We use the
expression (G.4) for r with m ¼ 2 and substitute it into the expres-
sion for Zi given by (F.28); equating this Zi to the Zi given by (G.7)
yields

"sR2
iX

i

ð1" /iÞ
2R2

i

¼ Sj
k1

k3

R2
i

R2
j

ðG:10Þ

which implies that

Sj ¼ "s
k3

k1

R2
jX

i

ð1" /iÞ
2R2

i

ðG:11Þ

This expression for Sj shows that the availability of secondary phase
particles of phase j to pin grains of phase i depends on the contact
fraction between phases "s as expected. In particular, when /j ? 0,
Sj ¼ "sk3=k1, which shows that except for a normalizing factor, both
Sj and "s measure the extent of mixing between the two phases.

The statistical representation gives a direct estimate of the pin-
ning size r for a grain mixture of regularly shaped grains. The
resulting relations for the interface density and the Zener pinning
force are consistent with each other and with the analogous rela-
tions that use r directly. Although r can thus be expressed as a
function of /i and Ri, it is still an independent quantity because
of its dependence on "s. Indeed, the evolution equation for r (see
(E.23b) or (4d)) would now become an evolution equation for "s
coupled to the evolution equations for Ri and /i from the grain-
growth and mass conservation laws; i.e., the interface damage
equation would now describe how the contact between phases in-
creases through further damage, stretching and mixing.

Appendix H. Approximate analytic solutions for simple shear
applications

H.1. Steady state case and effective rheology

Approximate and practical scaling laws for the solutions to the
steady state system (29)–(31) and the resulting effective rheology
can be obtained with relatively simple assumptions. The numerical
solutions indicate that the grain-size evolution is dominated by the
Zener pinning factor Zi approaching 0, in which case we assume
that Ri * r=

ffiffiffiffi
hi
p

(see the definition of Zi in (8) or (F.28) for the case
with n = 1, and (18) for the definition of hi). (This result is due to the
grain-damage partitioning factor of = – see (7) – in (31) becom-
ing very small in the diffusion creep regime, causing the first term
in that equation to vanish, which then likewise requires the Zener
pinning factor Zi that appears in the second term to also vanish.)
However we generalize this approximation by assuming that
grain-sizes in both phases stay close to the mean size
R ¼

P
i/iRi * cr where c ¼

P
i/i=

ffiffiffiffi
hi
p

(which is valid so long as
/1 and /2 do not differ drastically).

We further make approximations about the rheological states in
which the system resides. In the large grain limit, which corre-
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sponds to lower strain-rates, we assume dislocation creep entirely
dominates in which case (29) becomes _e * aisn

i ; if we take the vol-
ume fraction weighted average of this and assume si * "s then we
simply arrive at _e * "sn since

P
i/iai ¼ 1. In the small grain limit,

which corresponds to high strain-rates, we use the assumption
that Ri * cr, and that deformation is dominated by diffusion creep,
whence (29) becomes _e * bisi=R

m
i , which, when averaged over vol-

ume fraction /i, becomes _e * "s=ðcrÞm; with this assumption, (30)
can be used to infer that

"s * 1
2
Qcqþ1

! " m
qþmþ1

_e
q"mþ1
qþmþ1 ðH:1Þ

We can compare these scaling laws to the numerical solutions and
find they are in remarkable agreement (Fig. H.1). Thus plastic
behavior occurs when q = m " 1 and shear-localizing behavior oc-
curs when q < m " 1.

H.2. Time-dependent case and grain evolution

The fully time-dependent evolution equations (24)–(26) can be
solved analytically with assumptions similar to those made for the
steady state case discussed in Section H.1. As above we adopt the
approximation that Ri * cr, where c ¼

P
i/i=

ffiffiffiffi
hi
p

and assume the
rheologies of phases are not appreciably different such that
a1 ¼ a2 ¼ a and b1 ¼ b2 ¼ b (which, both being normalized are thus
unity; but we will retain the symbols for completeness).

For grain-sizes less than the transitional size Rc (see (32)), i.e.,
Ri < Rc , or r < Rc=c ¼ rc , we assume diffusion creep dominates
such that stress in either phase approximately obeys
s ¼ ðcrÞm _e=b, where, for the fixed strain-rate case considered,

rc ¼
1
c

b
a1=n _e1"1=n

! "1=m

ðH:2Þ

For r > rc dislocation creep dominates such that s ¼ ð _e=aÞ1=n. In total,
(25) becomes

drq

dt
¼

- Q" 2cm _e2

b rqþmþ1
& '

for r 6 rc

- Q" 2 _e1þ1=n

a1=n rqþ1
& '

for r P rc

8
><

>:
ðH:3Þ

This relation can be condensed into a single equation

du
dt
¼ -j1=mQ1"1=mð1" umÞ where u ¼ ðj=QÞ1=mrq ðH:4Þ

and

ðj; mÞ ¼
2cm _e2

b ; qþmþ1
q

& '
for r 6 rc

2 _e1þ1=n

a1=n ; qþ1
q

& '
for r P rc

8
><

>:
ðH:5Þ

Although (H.4) is integrable, there is only an analytical solution for
select values of m. However, for values of q = 2 and m = 3 one obtains
the implicit relations

3-j1=mQ1"1=mtþA¼
log

ffiffiffiffiffiffiffiffiffiffiffiffi
u2þuþ1
p

u"1

! "
"

ffiffiffi
3
p

tan"1
ffiffi
3
p

1þ2u

& '
for r6 rc; m¼3

2log
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ
ffiffi
u
p
þ1

p
ffiffi
u
p
"1

! "
þ2

ffiffiffi
3
p

tan"1
ffiffi
3
p

1þ2
ffiffi
u
p

& '
for r P rc; m¼ 3

2

8
>>><

>>>:

ðH:6Þ

where A is an integration constant. We assume that at time t = 0 the
interfacial radius of curvature starts at r = ro > rc, i.e., in the disloca-
tion regime (where m = 3/2). The time to reach the transitional ra-
dius rc is

tc ¼
2

3-j2=3Q1=3 log
ffiffiffiffiffi
uo
p

" 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uc þ

ffiffiffiffiffi
uc
p
þ 1

p
ffiffiffiffiffi
uc
p
" 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uo þ

ffiffiffiffiffi
uo
p

þ 1
p

 !(

þ
ffiffiffi
3
p

tan"1

ffiffiffi
3
p

1þ 2
ffiffiffiffiffi
uc
p

 !
" tan"1

ffiffiffi
3
p

1þ 2
ffiffiffiffiffi
uo
p

 !" #)
ðH:7Þ

where uc and uo correspond to ro and rc respectively according to
(H.4) with m = 3/2. For t > tc the system follows the diffusion regime
solution with m = 3 (and with the initial condition that r = rc at t = tc).
The time to reach the steady state u = 1 from the transition time tc is
infinity, but the time to reach us, where 0 < us " 1+ 1 is

ts " tc ¼
1

3-j1=3Q2=3 log
ðu0c " 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

s þ us þ 1
p

ðus " 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02c þ u0c þ 1

p
 !(

"
ffiffiffi
3
p

tan"1

ffiffiffi
3
p

1þ 2us

 !
" tan"1

ffiffiffi
3
p

1þ 2u0c

 !" #)
ðH:8Þ

where u0c is the value of u associated with rc by (H.4) but for m = 3
(i.e., u0c differs from uc). The total time to reach steady state ts is
the sum of (H.7) and (H.8).

Fig. H.1. Dimensionless effective stress–strain-rate constitutive law similar to the
cases shown in Fig. 8bb, solved numerically (circles) and compared to the scaling
laws given by (H.1), in which the gray dashed line is the simple dislocation creep
limit _e * "sn.

Fig. H.2. Same as Fig. 10a, but for one case (parameters indicated) in comparison to
the approximate analytic solution (H.6), shown in symbols. Circles indicate when
the system is in dislocation creep, squares indicate when it is in diffusion creep, and
diamonds when it is recovering via pure healing, grain-growth and interface
coarsening with no damage (i.e., _e ¼ 0).
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If deformation ceases at time ts, then the interface coarsens (r
grows) according to

r ¼ -Qðt " tsÞ þ rq
s

( )1=q ðH:9Þ

where rs is associated with us. The time needed to recover the origi-
nal state with interface curvature radius ro after cessation of defor-
mation is given by

tr " ts ¼
rq

o " rq
s

-Q
ðH:10Þ

The analytic solutions for r(t) and the predicted mean stress closely
match the numerical solutions (Fig. H.2). Thus, the ratio of recovery
time tr " ts to localization time ts can be determined from the ana-
lytic solutions, as is discussed in Section 4.3 and displayed in Fig. 11.
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