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Motivation and objectives. Coq’s native support for inductive and coinductive types is nice but suffers
from a few limitations: (1) the default equality (Leibniz) on coinductive types is too strong, (2) the positivity
condition for defining such types is syntactic, (3) the guard condition for defining fixpoints and cofixpoints
is also syntactic. Point (1) usually forces us to define an appropriate notion of bisimilarity for each new
coinductive type. Point (2) prevents us from defining inductive and coinductive types in a compositional way,
and forces us to use encodings to obtain mixed inductive-coinductive types. Point (3) is not so problematic
for inductive types, since one may always resort to well-founded recursion, but is almost a showstopper when
it comes to coinductive types [5, 10]. We propose a formalisation of setoid variants of W-types and M-types
in order to circumvent these limitations [7].

While not as general as Coq’s native inductive and coinductive types, we claim that such an approach
could prove useful for many datatypes. For instance, eventually, this will make it possible to easily define
and work with datatypes such as

1. µX. A×F(X): finite extensional trees labelled in A. Here the µ notation denotes the construction of
an inductive type, and F(X) is an encoding for finite sets of elements of X. Such an inductive type is
not allowed natively since F does not satisfy the syntactic positivity condition (a priori).

2. νX. A × F(X): possibly infinite but finitely branching extensional trees labelled in A. Here the ν
notation denotes the construction of a coinductive type, and the occurrence of F yields the same
difficulty as above.

3. νX.µY.(Y +X): the mixed coinductive-inductive type of ‘clocks’, i.e., streams of zeros and ones with
infinitely many ones.

Inspiration. Category theory gives a solid starting point: inductive (resp. coinductive) types can be seen
as initial algebras (resp. final coalgebras) of appropriate functors [6]. However, not all functors admit initial
algebras and final coalgebras.

In Isabelle/HOL, Blanchette et al. give a solution based on bounded natural functors (BNF), which they
implemented in the AmiCo library [3]. Such functors are closed under various useful constructions, and they
have initial algebras and final coalgebras. Moreover, using the concept of ‘friend’, they make it possible to
define functions by (co)recursion up-to. Such a formalisation however relies on powerful features of the host
logic (HOL). E.g., the axiom of choice.

In Lean, Avigad et al. [2] proposed the use of quotients of polynomial functors (QPF), which actually
generalise bounded natural functors. Like in Isabelle/HOL, this path however requires the axiom of choice,
via the use of quotient types (together with propositional extensionality and functional extensionality).

In order to implement these structures in Coq while remaining axiom-free, we build them in the category
of setoids, i.e. types equipped with an equivalence relation. This setup makes it natural to solve issue (1):
we equip coinductive datatypes directly with the right notion of equality (i.e., bisimilarity).

Construction on paper. We focus on univariate polynomial functors, which are the key ingredient. Those
are sometimes called containers; we follow the presentation from [1].

A container (A ▷ B) is a pair of a domain of shapes A : Type and a type family B : A → Type which
associates to each shape a domain of indices. To each container (A ▷B) is associated a so-called polynomial
functor (also designed as the extension of the container), defined as P (X) =

∑
a:A(B(a) → X). Containers

provide a useful interface as they are closed under product, sum and composition. Every container admits
an initial algebra (resp. final coalgebra) defined as its so-called W-type (resp. M-type). W-types (resp.
M-types) are built as the inductive (resp. coinductive) tree where each node stores a shape a : A, and the
branches from that node are indexed by B a.



Axiom-free implementation: the need for setoids. Without assuming functional extensionality, one
cannot prove the initiality of W-types. This issue is solved by defining instead W-setoids, i.e. by equipping
W-types with a suitable equivalence relation. For M-types, the need for setoids is more obvious: bisimilarity
is the right notion of equality for them, and it does not coincide with Leibniz equality. Consequently,
we define M-setoids as M-types associated with a bisimularity relation (implemented via the coinduction
package [10]).

Categorically, this means that the objects we consider in the category are no more types but setoids, and
the arrows are no more functions but extensional functions, i.e. functions that respect setoid equivalence.
W-setoids (resp. M-setoids) are initial algebras (resp. final coalgebras) of polynomial functors of setoids. In
order for everything to work smoothly, especially for the composition of containers, we move to the setoid
counterpart to containers, as described in [4]. Those are pairs of a setoid domain of shapes A : Setoid and
a setoid family B : A → Setoid. Such families are more demanding than in the category of types: given two
equivalent shapes a and a′ in A, one should be able to translate elements of B(a) into elements of B(a′),
and vice-versa, in a proof-irrelevant way [8].

At the time of submission, we have a toolbox for defining and composing polynomial functors, computing
their containers, and producing their initial algebras and final coalgebras. To this end, we have defined
W-setoids and proved that the W-setoid of a container is indeed its initial algebra (a proof already present
in [9, 4]). Similarly, we have defined M-setoids and proved that they yield final coalgebras.

Future work. As introduced in [1] and implemented in Lean by Avigad et al. [2] (in a category of types
which is extensional thanks to strong axioms), the natural next step is to handle multi-parameters containers,
i.e., multivariate polynomial functors. This extension allows for defining parameterised inductive types; for
instance, list X is the initial algebra over Y of the bivariate functor L(X,Y ) = 1 +X × Y . A key property
is that multivariate polynomial functors are closed under initial algebra and final coalgebra constructions;
thus list as defined above is itself a (univariate) polynomial functor. This is also how one can deal with
inductive-coinductive datatypes as in the third example given above: λX.µY.(Y +X) is a polynomial functor.

Moving to quotients of polynomial functors [2] brings another orthogonal gain in expressiveness. For
instance, while the functor F used in the first two examples above is not polynomial, it is a quotient of the
list functor L (considering concatenation modulo associativity, commutativity, and idempotence).

Once this has been achieved, the next step will consist in adding support for (co)recursion up to friends
as done in Isabelle/HOL AmiCo’s package [3], to solve issue (3).
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