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We argue that monadic interpreters built as layers of handlers stacked atop the free monad, as advocated
notably by the ITree library, also constitute a promising way to implement and verify abstract interpreters in
dependently-typed theories such as the one underlying the Coq proof assistant.

The approach enables both code reuse across projects and modular proofs of soundness of the resulting
interpreters. We provide generic abstract control flow combinators proven correct once and for all against
their concrete counterpart. We demonstrate how to relate concrete handlers implementing effects to abstract
variants of these handlers, essentially capturing the traditional soundness of transfer functions in the context
of monadic interpreters. Finally, we provide generic results to lift soundness statements via the interpretation
of stateful and failure effects.

We formalize all the aforementioned combinators and theories into a Coq library, and demonstrate their
benefits by implementing and proving correct two illustrative abstract interpreters respectively for a structured
imperative language and a toy assembly.

1 INTRODUCTION

The realm of mechanized verification of programming languages has reached a staggering degree of
maturity. Backing up meta-theoretical results with a formalization in a proof assistant has become
increasingly routine in the programming language research community [33]. But such formalization
efforts have not only become more common, they have grown in scale and ambition: large-scale
software is verified against faithful semantics of existing industrial-strength languages [14, 18, 24,
25].
When it comes to formalized proofs, details of representation matter greatly. Propositionally

specified transition systems are by and large the most popular: typically, the small-step semantics is
specified through proof rules, using a binary relation between dynamic configurations, and its transi-
tive closure describes executions. While extremely successful, such approaches have drawbacks. On
the practical side, these semantics are non-executable at their core, hence requiring significant extra
work to support crucial practice such as differential testing against industrial reference interpreters.
In reaction, frameworks such as Skeletal Semantics [2] or the K framework [35] have been designed
notably in order to support the automatic derivation of executable interpreters from the formal
semantics. On the theoretical side, they tend to lack support for equational reasoning, and often
give up on compositionality—recursive definition on the syntax—and modularity—independent
definition and combination of the features of the language.

These shortcomings become increasingly painful when formal developments scale. In contrast,
when applicable, monads and subsequently algebraic effects have long been recognized as an
appealing approach to modeling the semantics of effectful programs. The monad laws, extended
with algebraic domain-specific equations capturing the semantics of the effects at hand, yield
powerful reasoning principles. Monads have been both a pen-and-paper theoretical tool and a
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practical programming paradigm for decades, but have also become increasingly popular in the
mechanized realm. In particular, free monads [38] have been at the root of flexible, general-purpose
reasoning frameworks. Variations on this idea have appeared throughout the literature, for instance
as the program monad in the FreeSpec project [27], as I/O-trees [15], and as McBride’s general
monad [28].
In this paper, we focus on interaction trees [40] (ITrees), a recent realization of this approach

as a Coq library. ITrees are defined as a coinductive variant of the freer monad [22] and are
also closely related to resumption monads [32]. The library provide rich reusable components to
model and reason about effectful, recursive, interactive computations, while supporting extraction.
In particular, they make the definition of denotational semantics for first-order languages with
first-order effects straightforward.

ITrees have been applied in a wide range of projects, such as modeling network servers [23, 42],
transactional objects [26], concurrency [5], or non-interference [37]. Their largest application is
arguably the Vellvm project [41, 43], providing a compositional, modular and executable semantics
for a large sequential subset of LLVM’s intermediate representation. This application leverages the
approach’s modularity heavily, structuring the semantics into a series of layers, each plugging in
an independent implementation of a feature of the language.
In the present work, we seek to offer similar benefits of modularity and reusable components

for writing static analyses against ITree-based formal semantics and proving their soundness.
We place ourselves more specifically in the abstract interpretation framework [7, 8]. Abstract
interpretation is well known for providing richways of combining abstractions, through products [6]
or communication-based protocols [9, 17]. In this paper, we do not focus our attention on such
construction of rich abstract domains. Rather, we follow the big-step abstract interpreter line of
works [2, 10, 19, 21] in seeking to provide rich reusable combinators to lighten the construction of
verified abstract interpreters.

Our contributions can be crystallized as follows:

• we demonstrate that the paradigm of defining languages as layered monadic interpreters
can be used to simultaneously define a concrete and an abstract interpreter from a single
denotation of the source language;
• we identify that parameterizing abstract interpretation algorithms over the concrete lan-
guage’s monadic effects is key to this construction, and formalize a monad of abstract control
flow aflow capturing this idea;
• we express a notion of soundness applicable to layered monadic interpreters at intermediate
stages of their definition, which enables certification from composing independent soundness
proofs for each language feature;
• we provide a Coq implementation of the scheme as a reusable library, featuring a number of
pre-certified abstract interpretation algorithms;
• finally, we showcase this work by modularly certifying abstract interpreters for a standard
Imp language and a toy assembly language.

Our Coq development with meta-theoretical results and the library is available as open-source
software.
Section 2 starts by providing necessary background on ITrees and abstract interpretation. Sec-

tion 3 presents an overview of the library through the motivating example of a small Imp language.
Section 4 illustrates the challenges and motivates our design, whose programmatic component is
described in more detail in Section 5. Finally, Section 6 provides details on the meta-theory, and
the process of certifying an abstract interpreter from the perspective of a user of our library. We
conclude with related work and a quick summary.
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(* Embedding of pure computations *)
ITree.ret (r: R): itree E R := Ret r.

(* Sequencing computations *)
ITree.bind (u: itree E T) (k: T → itree E U): itree E U.

(* Atomic execution of an event. *)
ITree.trigger: E { itree E := fun e ⇒ Vis e Ret.

(* Fixed-point combinator *)
ITree.iter (body: I → itree E (I+R)): I → itree E R.

Fig. 1. ITrees: type signature of the main combinators

2 BACKGROUND

Typographic remarks. For clarity and conciseness, we take some light liberties with Coq code
included in this paper. When clear from context, we omit implicit arguments. We use mathematical
notations in lieu of traditional identifiers. Furthermore, we present simplified versions of the
code such as specialized definitions where the artifact is parametrized, or Fixpoint instead of
Equations. To clear any accidental confusion, we systematically reference the accompanying code
with hyperlinks symbolized by ( ).1 We make use of functions between type families, writing
E { F ::= ∀ {X}, E X→ F X for such a function between E, F : Type→ Type. We write 1 and
() for the unit type and its inhabitant.

2.1 Interaction Trees and Monadic Interpreters

Interaction Trees [40] (ITrees) have emerged in the Coq ecosystem as a rich toolbox for building
compositional and modular monadic interpreters for first order languages. The library also provides
an equational theory for reasoning about equivalence and refinement of computations. Through
this section, we introduce the programmatic side of this framework.

ITrees are a data structure for representing computations interacting with an external environ-
ment through visible events, defined as:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R) (* terminating computation *)
| Tau (t: itree E R) (* "silent" tau transition *)
| Vis {A: Type} (e : E A) (k : A → itree E R). (* event e yielding an answer in A *)

The datatype takes two parameters: a signature E that specifies the set of interactions the computa-
tion may have with the environment, and the type R of values that it may return. ITree computations
can be thought of as trees built out of three constructors. Leaves, via the Ret constructor, model pure
computations, return values of type R. Vis nodes model an effect e being performed, before yielding
to the continuation k with the value resulting from e. Finally, ITrees are defined coinductively,
allowing them to model diverging computations as non-well-founded trees. Accordingly, the Tau
constructor represents a non-observable internal step that occurs, much as in Capretta’s delay
monad [4].
One may think of ITrees as a low level imperative programming language embedded inside

Gallina. The library exposes the primitive combinators shown in Figure 1. ITrees have a monadic
structure: pure computations can be embedded via ret, and computations can be sequenced with
the traditional bind construct.2 A minimal effectful computation can be written ITree.trigger e,
yielding control to the environment to perform an effect e and returning the result. By virtue
of their coinductive nature, ITrees form what is sometimes referred to as a completely iterative
monad [1]. From the eye of the programmer, this captures the ability to write fixpoints using the
1https://gitlab.inria.fr/sebmiche/itree-ai
2We use x� c;; k x as a notation for bind c (fun x⇒ k x).
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op ∈ Op ::= ⊕ | ⊖ | ⊗
e ∈ E ::= x ∈ X | v ∈ V | e1 op e2
s ∈ C ::= skip | assert e | x := e | s1; s2 | if e then s1 else s2 | while e do s

Fig. 2. Imp: abstract syntax ( )

iter combinator. Operationally, iter f i is the computation repeatedly performing f i, each time
checking whether the result is a new accumulator inl j and continuing with iter f j, or if it is a
final value inr r and returning r.

To make things concrete, we turn to our main running example: a traditional Imp language [31]
whose abstract syntax is depicted on Figure 2. Arithmetic expressions contain variables inX, literals
inV and binary operations. Statements include the usual assignments, sequencing, conditionals
and loops, as well as an assert statement acting as a no-op if the condition is nonzero and failure
otherwise.
We model Imp’s dynamic semantics using ITrees in Figure 3. The process, already illustrated

in [40], and at scale notably in Vellvm [41], is split into two main phases.

Denotation. We first want to denote the syntax into an interaction tree. At this stage, events
are still symbolic (one can think of them as the labels in a labeled transition system modeling the
program). The “Event signature” section of Figure 3 shows the three features for which we choose
to use events in Imp:3

• Arithmetic (arithE) for binary arithmetic computations. The Compute event takes the parame-
ters to the operation and returns a value.
• Memory access (memE) for reading andwriting variables. Read x returns a value while Write x v

returns unit. Both will access the global memory state as a side-effect once implemented.
• Assertions (assertE). Assert v evaluates that v is non-zero and returns unit. It causes the
program to fail and abort as a side-effect if v is zero.

We call E the disjoint sum of these events, which forms the full event signature of Imp.
We can then move on to the denotation functions, defined by recursion on the syntax tree. The

code is mostly straightforward for expressions, with only binary computations requiring multiple
steps, and closely resembles a monadic interpreter as one would write e.g. in Haskell. Statements
are more of the same, but notice the use of control-flow combinators cond and while to implement
conditionals and loops. The ternary cond combinator simply desugars to a Coq-level if construct.
The only subtlety resides in the representation of loops: we define on top of iter a while combinator
using the accumulator as a single bit of information informing the combinator when to escape:

Definition while (guard: itree E V) (body: itree E 1) :=
ITree.iter (fun (_: 1) ⇒
v � guard;;
if v =? 0 then ITree.ret (inr ())
else body;; ITree.ret (inl ()))

We emphasize this notion of control flow combinators because they will later be key to the
definition and proof of abstract interpreters.

Handling. By representing Imp’s abstract syntax as ITrees, we have given a semantics to its
control flow, but its effects remain purely syntactic. We now provide handlers for each category of
effects, implementing them through an appropriate monad transformer.

3ITrees also hardcode divergence in the structure, making it available at all times.
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Variant arithE: Type → Type :=
| Compute (op: Op) (l r: V) : arithE V.

Variant memE: Type → Type :=
| Read (x: X) : memE V
| Write (x: X) (v: V) : memE 1.

Variant assertE: Type → Type :=
| Assert (v: V) : assertE 1.

Definition E := assertE +' memE +' arithE.

D
en
ot
at
io
n
as

IT
re
e

Fixpoint J·K𝑒 (e: E): itree E V:=
match e with
| (x: X) ⇒ ITree.trigger (Read x)
| (v: V) ⇒ ITree.ret v
| e1 op e2 ⇒ v1 � Je1K𝑒;; v2 � Je2K𝑒;; ITree.trigger (Compute op v1 v2)
end.

Fixpoint J·K (s: C): itree E 1:=
match s with
| skip ⇒ ITree.ret ()
| assert e ⇒ v � JeK𝑒;; ITree.trigger (Assert v)
| x := e ⇒ v � JeK𝑒;; ITree.trigger (Write x v)
| s1; s2 ⇒ _ � Js1K;; Js2K
| if e then s1 else s2 ⇒ v � JeK𝑒;; cond (v =? 0) Js1K Js2K
| while e do s ⇒ while JeK𝑒 JsK
end.

Ev
en
th

an
dl
er
s

Definition compute_binop (op: Op) (l r: V): V := (..).
Definition h_arith ‵{Monad M}: arithE { M :=
fun '(Compute op l r) ⇒
ret (compute_binop op l r).

Definition h_assert ‵{Monad M}: assertE { failT M :=
fun '(Assert v) ⇒
ret (if v =? 0 then None else (Some tt)).

Definition h_mem {S: Type} ‵{Monad M}: memE { stateT S M :=
fun e s ⇒ match e with
| Read x ⇒ ret (s, mem_get s x)
| Write x v ⇒ ret (mem_store s x v, tt)
end.

H
an
dl
in
g Definition eval (s: C): failT (stateT S (itree ∅)) 1 :=

hoist (fun u ⇒ hoist (handle_pure h_arith)
(handle_state h_mem u))

(handle_fail h_assert JsK).

Fig. 3. Imp: Building an ITree-based concrete interpreter

The arithmetic operations we consider here are pure, hence h_arith does not introduce any trans-
former; it only relies on a pure implementation compute_binop omitted here. Memory interactions
are stateful, which we implement with the traditional state transformer over a concrete state s: S

providing mem_store and mem_get operations (the latter returning 0 for undefined values). Finally,
asserts may fail, hence h_assert introduces failure via the usual failT transformer. These additions
of monadic transformers enable the implementation of events’ side-effects as pure computations.
We are finally ready to define our concrete interpreter for Imp, eval, by successively handling

all three layers of effects. Each handling removes an event family from the signature and adds a
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Operation or relation Axioms
∈: 𝑉 → 𝑉 # → Prop Relates to the Galois connection by 𝑣 ∈ 𝑥 ≜ 𝑣 ∈ 𝛾 (𝑥)
⊆? : 𝑉 # → 𝑉 # → bool Preorder 𝑐 ∈ 𝑥 → 𝑥 ⊆? 𝑦 → 𝑐 ∈ 𝑦
join (⊔) : 𝑉 # → 𝑉 # → 𝑉 # 𝑥 ⊆ 𝑥 ⊔ 𝑦 𝑦 ⊆ 𝑥 ⊔ 𝑦
meet (⊓) : 𝑉 # → 𝑉 # → 𝑉 # 𝑣 ∈ 𝑥 → 𝑣 ∈ 𝑦 → 𝑣 ∈ 𝑥 ⊓ 𝑦
widen : 𝑉 # → 𝑉 # → 𝑉 # 𝑥 ⊆ widen 𝑥 𝑦 𝑦 ⊆ widen 𝑥 𝑦{
measure_N : nat
measure : 𝑉 # → natmeasure_N

measure (widen 𝑥 𝑦) ≤ measure 𝑥

¬(𝑦 ⊆? 𝑥) → measure (widen 𝑥 𝑦) < measure 𝑥

⊤,⊥ : 𝑉 # ∀𝑣, 𝑣 ∈ ⊤ measure ⊤ = (0, . . . , 0)
const : 𝑉 → 𝑉 # 𝑣 ∈ const 𝑣

istrue, isfalse : 𝑉 # → bool istrue 𝑥 → 𝑣 ∈ 𝑥 → 𝑣 ≠ 0 isfalse 𝑥 → 𝑣 ∈ 𝑥 → 𝑣 = 0
opp : 𝑉 # → 𝑉 # 𝑣 ∈ 𝑥 → −𝑣 ∈ opp 𝑥

add, sub : 𝑉 # → 𝑉 # → 𝑉 # 𝑣1 ∈ 𝑥1 → 𝑣2 ∈ 𝑥2 → 𝑣1 {+,−} 𝑣2 ∈ {add, sub} 𝑥1 𝑥2

Fig. 4. Common lattice operations and numerical domain for Imp. 𝑉 and 𝑉 #
represent concrete and abstract

values. The measure order is lexicographic for both measure axioms.

monad transformer. The resulting semantic domain is hence failT (stateT S (itree ∅)) (where ∅
is the empty signature), i.e. a stateful computation that may fail (or diverge).
Getting there requires two final ingredients. First, the hoistmonadic combinator lifts a monad

morphism f: m { n under a transformer t, giving us hoist f: t m { t n. This allows us to chain
our monad transformations. Second, ITrees’ handle function4 applies an event handler to a program:

handle (h: E { M): itree E { M.

In this paper, M will always be monadT (itree F) for some monad transformer monadT and a smaller
event signature F. For clarity, we write handle_state, handle_fail, etc. to recall the monad trans-
former being applied with each use of the function. handle substitutes events with the specified
handler’s implementation and applies the monadic transformer transparently. Putting all the ingre-
dients together, we get the eval function from the end of Figure 3, which is a concrete interpreter
for Imp.
When evaluated on an Imp program and an initial state, eval returns an option (S * 1), i.e. the

final state and return value, if the program doesn’t fail. We can obtain an executable interpreter by
using Coq’s extraction feature.

2.2 Abstract Interpretation

Abstract interpretation [8] provides a simple and elegant way to compute sound approximations of
a program’s semantics, by mimicking the concrete evaluation of the program in an abstract fashion.
The analysis defines an over-approximation of the set of states and control flow of the concrete
program, trading accuracy in exchange for guaranteed termination.
An abstract domain defines approximations of program objects (values); for simplicity in this

paper we consider non-relational numerical domains. To further exemplify, we shall consider the
Interval domain, which abstracts sets of numerical values 𝑉 ⊆ Z𝑑 by 𝑉 # ⊆ Interval𝑑 , where
Interval = (Z ∪ {−∞}) × (Z ∪ {+∞}).

We use the standard formalization of domains as lattices equipped with union (join, ⊔), minimal
and maximal elements (⊥, ⊤), and a decidable order denoted by ⊆?. A pair of abstraction and
4The function is called interp in the ITree library. We reserve the words interpreter and interpretation for the resulting
concrete or abstract executable process through this paper to avoid any confusion.
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concretization functions (𝛼,𝛾) forming a Galois connection is expected to relate the abstract
domain to the concrete one, although we follow Pichardie [30]’s 𝛾-only encoding as summed up in
Figure 4.
To ensure termination during the analysis of loops, abstract domains come with a widening

operator equipped with a well-founded measure over vectors of naturals. It implies the common
widening insurance of “non-infinite increasing sequence of abstract values” [34].

Abstract interpretation has mainly two implementation variants; we elect to expose here in
pseudo-code “big-steps abstract interpretation”, which “mimics” the big steps operational semantics
of a language and replaces each concrete operation with its abstract counterpart. As for Imp, abstract
interpretation with the Interval abstract domain computes and propagate an Interval for each
variable (in X) of the program.

Assignment x := e simply performs an explicit update for 𝑥 in the memory𝑚#:

Jx := eK# (𝑚#) = 𝑣# ← J𝑒K#
return𝑚# [𝑥 := 𝑣#].

Abstract skip is a no-op, abstract sequence is also a sequence in the interpreter. Conditionals must
run both branches independently (from the same initial memory) and join the results (here not
showing the case of decidable conditions):5

Jif e then s1 else s2K# (𝑚#) = 𝑚#
1 ← Js1K# (𝑚#)

𝑚#
2 ← Js2K# (𝑚#)

return (𝑚#
1 ⊔𝑚#

2).
Loops while e do s could naively perform an unbounded number of (abstract) iterations. Termination
is hence ensured by the usage of the widening operator, which converges due to its well-founded
measure:

Jwhile e do sK# (𝑚#) = repeat𝑚#
1 ← JsK# (𝑚#)

𝑚#
2 ← widen𝑚# (𝑚# ⊔𝑚#

1)
if (𝑚#

2 ⊆ 𝑚#)
return𝑚#

𝑚# ←𝑚#
2.

That is, Jwhile e do sK# (𝑚#) is the least fixpoint of iterating the loop body with widening, applied
on𝑚#.

From these ingredients (replacing computations with abstract domain operations and control flow
with specific algorithms), the abstract interpretation framework [8] guarantees that the computation
of the abstract semantics always terminates and is safe, in the sense that the concretization of the
obtained semantics is always larger than the (usually intractable) concrete semantics.

We aim to fit this framework into a layered, monadic setting, in the style of Section 2.1. Looking
back, we can superficially notice that we would like to be able to see assignment as an effect,
but also that the control flow of the abstract interpreter differs vastly from the concrete one: in
particular, the required independent execution of branches seems at first incompatible with the
naive threading of state through binds. The ITrees toolkit seems to fall short: we illustrate how to
nonetheless recover similar techniques.

3 A TASTE OF OUR LIBRARY

Before getting into technical challenges and our solutions, let us illustrate the end result of
using our library to simultaneously define a concrete and abstract interpreters for Imp ( ). The
5We ignore guards in conditions and loops for now because the expression language will be user-supplied and inverting
arbitrary expressions is beyond the scope of this contribution.
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User code

A
bs
tr
ac
te

ve
nt
s

Definition V#:= Interval. (* intervals of Z, provided by library *)

Variant arithE#: Type → Type :=

| Compute# (op: Op) (l r: V#) : arithE V#.

Variant memE#: Type → Type :=

| Read# (x: X) : memE# V#

| Write# (x: X) (v: V#) : memE# 1
#.

Variant assertE#: Type → Type :=

| Assert# (v: V#) : assertE# 1
#.

Definition E# := assertE# +' memE# +' arithE#.

H
an
dl
er
s (* h_arith# and h_mem# are identical to the concrete case, they just use abstract values *)

Definition h_assert# ‵{Monad M} : assertE# { failT# M := fun '(Assert v) ⇒
ret (if isfalse v then (⊤, ⊥) else (* statically failing *)

if istrue v then (⊥, ⊤) else (* statically passing *)
(⊤, ⊤)). (* unknown *)

Se
m
an
tic

sa
sS

ur
fa

ce
AS

T

Fixpoint J·K𝑒 {b: bool} (e: E): SurfaceAST E E# V V# b :=
match e with
| (x: X) ⇒ do (Read v) and (Read# v)
| (n: nat) ⇒ ret (num_nat n) and (num_nat n)

| e1 op e2 ⇒ v1 � Je1K𝑒;; v2 � Je2K𝑒;; do (Compute op) and (Compute# op) on v1 and v2
end.

Fixpoint J·K {b: bool} (s: C): SurfaceAST E E# 1 1
# b :=

match s with
| skip ⇒ ret tt and tt#

| x := e ⇒ v � JeK𝑒;; do (Write x) and (Write# x) on v
| s1; s2 ⇒ _ � Js1K;; Js2K
| if e then s1 else s2 ⇒ v � JeK𝑒;; AST_If v Js1K Js2K
| while e do s ⇒ AST_While_unit JeK𝑒 JsK
| assert e ⇒ v � JeK𝑒;; do (Assert) and (Assert#) on v
end.

H
an
dl
in
g

Definition imp_interp (s: C): failT (stateT S (itree ∅)) 1:=
hoist (fun u ⇒ hoist (handle_pure h_arith)

(handle_state h_state u))

(handle_fail h_fail (ast2itree JsK#)).

Definition eval# (s: C): failT# (stateT# S# (aflow ∅)) 1
#:=

hoist (fun u ⇒ hoist (handle_pure# h_arith#)

(handle_state# h_state# ⊤))
(handle_fail# h_assert# (ast2aflow JsK)).

Definition imp_interp# := unfold ◦ eval#.

Fig. 5. Imp: Deriving both interpreters from a dual concrete/abstract denotation ( ).

code for this, given in Figure 5, is similar to Section 2.1 but derives both interpreters from a single
representation.

Having previously defined concrete events and their handlers, we now define matching abstract
events and their handlers. Some of these definitions are shared; for instance, the memory and
arithmetic handlers are parameterized on a map data structure and a numerical type respectively,
and their abstract implementation is identical to their concrete one. For h_assert# however, the
implementation differs because the abstract failure monad transformer failT# is different from
the standard failT: instead of adding failure to the analyzer, it turns return values into pairs of an
error value and a normal value. The error value indicates whether the failure path might have been
taken, while the normal value approximates the concrete program’s return value in non-failing
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cases—we come back to failT’s definition in Section 5.1. The h_assert# handler attempts to decide
the assertion’s condition using functions from the NumericalDomain class (which is implemented by
V# but not shown here) before returning such a pair.

We then proceed to denote Imp again, except this time we produce an object of the library-
provided type SurfaceAST E E# 1 1

# b,6 whose definition we delay until Section 5.2. Elements of
this datatype can be thought of as mixed representations that can be projected into either a concrete
or an abstract denotation depending on the value of b. This duality is most apparent in the ret-and
and do-and (event) statements, where both the concrete and the abstract values or events are
provided.

As with the denotation from Section 2.1, control flow in this representation relies on predefined
combinators, here AST_if and AST_while_unit. The name SurfaceAST comes from the fact that these
combinators are still arranged in a syntax tree at this stage. A key insight of this work is that while
control flow combinators can be unfolded into their ITree-based implementation immediately for
the concrete program, we must keep them symbolic throughout event handling for the abstract
program.

The construction of the final concrete evaluator for Imp differs from Section 2.1 only in that we
go through this intermediate representation JsK before recovering the original ITree via the generic
ast2itree ( ) function.

ast2itree: SurfaceAST E E# R R# false→ itree E R.

Naturally, there is another side to this coin; we can now as easily extract an abstract program,
which is represented into another monad, dubbed aflow ( ):

ast2aflow: SurfaceAST E E# R R# true→ aflow E R.

This new structure, a monad for abstract-interpretation control flow, will be thoroughlymotivated
through Section 4 and formally defined in Section 5.1. We shall show (also in Section 5.1) that
it supports its own notion of event handling, allowing us to mirror the handling process of the
concrete interpreter. An executable abstract interpreter in the form of an ITree is obtained by
eventually unfolding control flow structures after handling abstract events (unfold, defined in
Section 5.1).

Proving sound the abstract interpreter. All in all, we provide tools to define concrete and abstract
interpreters simultaneously in Coq as layered monadic interpreters. This is not all, however—we
also prove the abstract interpreter’s soundness! For pairs of denotations derived from a shared
SurfaceAST, the library proves the soundness of control flow structures and allows users to derive
the soundness of the abstract interpreter with minimal obligations. These are, specifically: values
returned in ret-and and events emitted in do-and should be related by the appropriate Galois
connection; and (more importantly) abstract event handlers should be sound w.r.t. their concrete
counterparts. Section 6 is dedicated to making this claim precise and substantiated.

Running the abstract interpreter. Since ITrees are executable, we can extract the proven sound ab-
stract interpreter into an OCaml program using Coq’s extraction feature7 and run it as a standalone
program ( ). As a minimal example, consider the following Imp program:

x := 2; y := 0;

while x do { y := 1; x := sub(x, 1); }

z := 5; assert(y); z := 6;

61# is the two-element unit lattice.
7Naturally, we can also extract the concrete interpreter, as is usual.
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The analyzer returns a final state indicating x ∈ (−∞, 2], y ∈ {0, 1} and z ∈ {5, 6}. The lower
bound on x is the direct result of widening after decrementing in the loop. The simple abstract
condition we use does not notice the decidable condition in the first iteration, thus allowing y = 0.
This causes the assert to be analyzed as potentially failing, so the final state (which might be at the
assert) has either z = 5 or z = 6.

Another case study: Asm ( ). To illustrate the expressivity of our framework, we also write and
prove correct an abstract interpreter for Asm, a toy control flow graph language featuring registers
and memory. This language presents two layers of handling into the state monad and is centered
around a CFG control flow structure (also provided by the library). Both its definition and proof are
very similar to that of Imp’s, and in fact the theorems for the soundness of memory handling are
shared.

4 DESIGN OF A LAYERED ABSTRACT INTERPRETER

We now discuss the theoretical ideas that enable the construction of a layered abstract interpreter
in Figure 5 and its modular proof of soundness. This section focuses on how the integration of
monadic event handling influences the design of the abstract interpreter. We build up to Figure 6,
which provides a bird’s-eye view of the dual concrete/abstract denotation process, and Figure 7,
which explains control flow structures that are key to our support for event handling. These figures
will underpin our presentation of the Coq implementation and proof in Sections 5 and 6.

4.1 Layered handling and intermediate proofs of soundness

Through Section 3, we have focused on embedding Imp into our surface language, and concluded
by summarily applying a series of event handlers on the resulting monadic denotation. Figure 6
shows the details of this handling process, including a preview of the modular proof mechanism.
One thing to keep in mind is that our abstract denotation (Figure 6, 1 ) is a hybrid between a

given source program and a traditional abstract interpreter: it is akin to an abstract interpreter
partially evaluated on a chosen input program. In particular, it will use algorithms like joins and
fixpoint approximations in lieu of conditions and loops. So while it mirrors the structure of the
concrete program, there isn’t a one-to-one match between the computations performed by these
two programs. There is only a one-to-one match between their trees of control flow combinators,
which is why we shall reflect this tree into a data-structure in order to guide the event handling
and proof.

The Imp program in Figure 6 features three control flow constructions: a conditional test through
if, and two slightly-hidden sequence points: one after reading x for the condition, and one between
the evaluation of add(x,1) and the assignment to y. These are materialized in the concrete and
abstract program as a box for the conditional8 ( 2 and 3 ) and as a circle for sequence points
(e.g. 4 ).

The source program also exhibits events from all three families assertE, memE, and arithE in-
troduced in Section 2.1. Each family is handled in turn by one of the “Handling” layers, where a
monad transformer is applied to supply the features required to implement its events. These events
disappear each time from the representation as they are substituted with pure computations. In
terms of typing, each handler trades part of the event signature for a monad transformer (except for
arithEwhich is pure). This continues until there are no more events left, at which point we “unfold”
the abstract interpreter into an executable form 5 , by implementing the control flow nodes into
the ITree monad.

8The concrete box is dotted because it is tracked propositionally, through sound', instead of being part of the data structure.
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Fig. 6. Overview of the event handling process for a simple Imp program.

Reads from top to bottom; for legend and notations, please see Section 4.1.
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Since each concrete event handler introduces a language feature, and each abstract handler a
corresponding analysis, each handling layer will contribute a key part of the proof of soundness for
the abstract interpreter. In general, soundness of an abstract interpreter w.r.t. a concrete semantics
expresses that the abstract value computed by the analyzer correctly over-approximates all possible
concrete executions. This final statement 8 is formalized as the sound predicate in Section 6.1.
However, this notion cannot be used for partially-handled programs because it ignores events (and
traces are not comparable due to differences in control flow).

Extending the concept of soundness to events is not too difficult; all we need is to formalize that
“identical” events be used on the concrete and abstract side. Naturally, events with parameters will
have different signatures, such as Write and Write# in Imp:9

Write: X→ V→ memE 1.

Write#: X→ V#→ memE# 1#.

This leads to defining Galois connections for events ( ), which we do for each individual event in
the source language, typically by matching arguments:

Write 𝑥 𝑣 ∈ Write# 𝑦 𝑣# ≜ 𝑥 = 𝑦 ∧ 𝑣 ∈ 𝑣# .

We can now address the soundness of partially-handled programs by introducing an intermediate
soundness predicate (dubbed sound' 6 ) which consists in matching the control flow combinator
trees and proving soundness only at the leaves. This means relating return values and events (as
in ret-and and do-and in Section 3) through Galois connections. This new predicate is initially
true as a result of the mirroring between ast2itree and ast2aflow, and the soundness of the user’s
ret-and and do-and arguments. It is preserved through each round of handling by a combination of
preserving the combinator tree (discussed just below) and the soundness of each abstract event
handler w.r.t. its concrete counterpart ( 7 ).
Only at the unfolding stage do we argue that the abstract interpretation algorithms used by

the abstract program are correct, which finally implies sound. The definitions and proofs for both
predicates are properly detailed in Section 6.

4.2 Preserving the combinator tree during event handling

So far in this section, we have assumed that event handling did not affect the nested structure of
control flow combinators in either program. Upon closer inspection however, it is not obvious that
this tree should remain the same when handling events. There are two reasons for this:
(1) Some monadic handlers add new data (e.g. global state) in the concrete program. Since the

abstract program explores multiple (often independent) paths of the concrete program, new
data in the abstract program should flow along the control flow paths of the analyzed program,
not the control flow paths of the analysis algorithms.

(2) Some monadic handlers simply add new control flow (e.g. failure) in the concrete program.
In this case, it is not even immediately clear whether a loop that might fail midway still
counts as a loop and whether the associated algorithms implemented in the abstract program
correctly account for this option.

To illustrate (1), consider the C-like expression ⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ ? ⟨𝑡𝑟𝑢𝑒-𝑣𝑎𝑙𝑢𝑒⟩ : ⟨𝑓𝑎𝑙𝑠𝑒-𝑣𝑎𝑙𝑢𝑒⟩, which
evaluates to 𝑡𝑟𝑢𝑒-𝑣𝑎𝑙𝑢𝑒 when the 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true, and 𝑓𝑎𝑙𝑠𝑒-𝑣𝑎𝑙𝑢𝑒 otherwise. Assuming that the
condition is not statically determined, the abstract program will compute an approximation of both

9The abstract return type could also be1, but using a lattice Galois-connected to the original type is more consistent.
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options using a joining “algorithm”, along these lines:

𝑡 ← J𝑡𝑟𝑢𝑒-𝑣𝑎𝑙𝑢𝑒K ;;
𝑓 ← J𝑓𝑎𝑙𝑠𝑒-𝑣𝑎𝑙𝑢𝑒K ;;
ret (𝑡 ⊔ 𝑓 ).

Notice how this models two different paths of the concrete program, but in terms of the abstract
program it is simply a normal sequence. If we tried to implement this abstract program as an ITree
and use the normal state monad handler w.r.t. some handler ℎ to add some global state, we would
get the following incorrect data flow:

𝑠 ↦→ (𝑠′, 𝑡) ← handle_state ℎ J𝑡𝑟𝑢𝑒-𝑣𝑎𝑙𝑢𝑒K 𝑠 ;;
(𝑠′′, 𝑓 ) ← handle_state ℎ J𝑓𝑎𝑙𝑠𝑒-𝑣𝑎𝑙𝑢𝑒K 𝑠′ ;;
ret (𝑠′′, 𝑡 ⊔ 𝑓 ),

The final state 𝑠′ of the 𝑡𝑟𝑢𝑒 branch is used as the initial state for evaluating the 𝑓𝑎𝑙𝑠𝑒 branch
(instead of 𝑠) and ignored in the join (instead of being joined with 𝑠′′). This happens because adding
state to a joining algorithm for analyzing pure programs does not result in a joining algorithm
for analyzing stateful programs. As a result, event handling in the abstract world requires each
algorithm (and therefore each abstract control flow combinator) to change in subtle ways to account
for new monadic effects.

With this in mind, reason (2) is more of the same, except that the changes needed in algorithms
to account for new concrete control flow are usually more substantial than to account for new data.
Our solution to this issue is to use parameterized control flow structures that always account

for the possibility of added state and non-local exits; they generalize, in a way, the usual notion
of what a “conditional” or a “loop” is. Figure 7 shows our models for two of these structures, the
sequence and do-loop. The left column shows the concrete version of each combinator while the
right column shows the interpretation algorithm that approximates it. Each of the computations
relies on parameters which are pure computations used to selectively enable or disable features of
the algorithm.
Focusing on the concrete sequence first (top left), we see that the sequence point after the

execution of p1 runs a “step” function that determines whether a non-local exit was taken (labeled
ERROR), in which case the program exits immediately, returning a value of type U2. Otherwise, the
second half p2 is run (path labeled OK) with the normal return value of p1 of type T1.
Writing the step function requires some introspection into the return type U1 of p1; in practice

this type is isomorphic to T1 + U2 at any given time, but interestingly it is not practical to define
it that way. This is because during handling T1, U1 and U2 change (e.g. into pairs when handling
into the state monad, some of them into options when handling in the failure monad), so the
isomorphism also changes, and it is significantly easier to factor that into the step function than
to add post-processing into p1. This explains why there are more intermediate types in these
combinators than datatypes manipulated by the program.10
The concrete do-loop combinator works in much the same way. The loop body first runs on the

initial value init of the loop variable, and returns a result of type U1 indicating either a successful
step or a non-local exit. This time the successful value of type U2 comes equipped with a true-ness
predicate (from a BooleanDomain class not discussed in detail here) which drives the decision to keep
looping or return. As before, U2 is basically isomorphic to Value * (T + U3) but defining it this way
creates issues during handling, so a new introspection function dist is introduced.

10As a convention, we name T𝑛 types that contain only material data manipulated by the concrete program (return values,
states...) and U𝑛 types that also contain control flow information (here, failures).

, Vol. 1, No. 1, Article . Publication date: March 2024.



Sébastien Michelland, Yannick Zakowski, and Laure Gonnord

Concrete world Abstract world

Sequence of p1 and p2

Concrete parameters:
step

Abstract parameters:
step, may_exit, merge

p1

?

p2

U1

step

OK:T1 ERROR:U2

U2

p1

p2

merge

U1

step

T1

U2

U2

if may_exit

do-loop of body

Concrete parameters:
step, dist

Abstract parameters:
step

body

? ?

init:T

U1
step

dist
OK:U2

ERROR:
U3

TRUE:
T

FALSE:
U3

init:T

join/widen

body

join/widen

T

U1

step
Value*T*U3

U3

Fig. 7. Diagram representation of parameterized seq and do-loop combinators.

The abstract combinators replicate much of this formalism, but are generally more linear because
they analyze all paths. For instance, the abstract sequence combinator evaluates both the ERROR

and OK paths and joins the result with the merge function at the end. merge is essentially a lattice
join except that it avoids joining when the error path is statically not taken, as conservatively
evaluated by the may_exit function. (It is not enough to rely on join-with-⊥ identities here because
the error path can carry extra data such as global states.) The abstract do-loop combinator follows
the same logic, but this time, a mixture of joining and widening is used to implement the fixpoint
approximation scheme. Note how U1 is introspected as a product Value*T*U3 since the abstract
interpreter looks at all paths.
Having these parameterized flow combinators allows us to perform event handling by adding

new monadic effects into the abstract program simply by reinstantiating them all with updated
parameters. These combinators are the least modular part of the design as they need to deal with
every monadic effect supported by the source language. Still, many control flow mechanisms derive
from simple primitives (non-local exits for instance model abort() but also break, continue, the first
halves of goto and try-catch, and so on), making this a worthwhile endeveavor in our view.

5 IMPLEMENTING THE ABSTRACT INTERPRETER

We now describe the programmatic side of the library in more detail. We first introduce the aflow
monad, and its primitive control flow structures. Then, we discuss the SurfaceAST previously shown
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Library codeInductive aflow (E: Type → Type) (R: Type): Type :=
| Ret (r: R)
| Vis {T} (e: E T) (k: T → aflow E R)

| Seq {U1 T1 U2: Type#}
(step: U1 → T1) (may_exit: U1 → bool) (merge: bool → U1 → U2 → U2) (* monadic params *)
(p1: aflow E U1) (p2: T1 → aflow E U2) (k: U2 → aflow E R)

| Fixpoint {T U1 U3 Value: Type#} ‵{BooleanDomain Value}
(step: U1 → Value * T * U3) (* monadic params *)
(body: T → aflow E U1) (init: T) (k: U3 → aflow E R)

| TailMRec (* ... *).

Fig. 8. Definition of the aflowmonad ( ).

Type# is a Type equipped with a Lattice.

in Section 3 that enables dual concrete/abstract denotations. Finally, we summarize our supported
control flow combinators and their varied implementation methods.

5.1 Primitive control flow structures and the aflowmonad

The aflow monad (defined on Figure 8) is a variant of the freer monad with built-in control
flow structures. Its monadic structure is based on the Ret constructor and a bind operation that
propagates recursively through each constructor’s continuation k: _→ aflow E R. We emphasize
that this bind represents a sequence in the abstract interpreter which, as discussed in Section 4, does
not carry monadic effects during handling—unlike the sequence combinator. The Vis constructor
provides the freer monad structure and behaves identically to the Vis constructor of itree.
The remaining constructors represent primitive control flow structures, which are the basic

building blocks of the abstract versions of the control flow combinators.
• Seq computes the sequence of two computations, accounting for monadic effects added by
event handling (and is the abstract sequence combinator from Figure 7);
• Fixpoint computes a post-fixpoint of a loop body (and is the abstract do-loop combinator
from Figure 7);
• TailMRec computes a post-fixpoint of a family of mutually-tail-recursive functions.

The key feature of aflow is that it implements event handling by using the parameters discussed
in Section 4.2. Now, monadic effects in abstract programs are quite different from their counterparts
in concrete programs. For instance, failT allows a concrete Imp program to crash. It goes without
saying that the corresponding abstract program will not itself crash; instead, it will simply add
crashing states to the set of potential final states with a lattice join. In general, monadic handling
in the abstract world boils down to two things: (1) using richer lattices to model new effects (e.g.,
whether the failure path might have been taken), and (2) adding new data-flow paths (e.g., joining
potential failure states with the final state).
We implement support for two effects: state (with the state monad transformer) and non-local

exits (with the failure monad transformer). The definitions for the traditional concrete transformers
and our chosen implementations for the abstract ones are summarized in Figure 9. The handlers for
stateT# and failT# are shown on Figure 10—we only show the Ret, Vis and Seq for conciseness and
refer the interested reader to the formal development. Most of their work consists in reinstantiating
the intermediate types and combinator parameters to enable the effect-internalization features
provided by the algorithms. Note that while we focus on the abstract program here, the effect of
handling in the concrete program can also be written as a parameter update, mirroring the process.

A detailed look at the code shows that in the state monad, handle_state# on Figure 10, an extra
global state s: S is provided as input and returned along the output. Vis supplies it to the event
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Transformer Description
stateT s stateT s m t = s→ m (s * t)

Threads the global state s through computations; each step takes the
current state as input and returns an updated one.

failT failT m t = m (option t)

Allows for an early exit (failure path) by returning None.
stateT# s stateT# s m t = s→ m (s * t)

Same as stateT.
failT# failT# m t = m (unit# * t)

Adds an extra return value indicating whether the failure path might have
been taken, with two possible values: ⊥ (not taken),()# (maybe taken).

Fig. 9. Summary of the monads in our implementation.

handler, which allows state events to be substituted with pure computations. Seq’s introspection
functions are updated to indicate that state doesn’t cause failure (may_exit unchanged) but it is
affected if a failure occurs elsewhere (merge joins it when b = true).
The failure monad, handle_fail# on Figure 10, follows a similar structure. In all constructors

except Ret, the return value et of the sub-program is passed to the continuation via the failT_kmerge
helper, preparing for an eventual merge with the return value er of the continuation. This con-
struction encodes the fact that the program may fail either before or during k. Notice, however, that
it doesn’t add a failure in-between (k is always executed). By contrast, a non-local exit is added
in Seq by programming may_exit to recognize the error flag from p1 and merge to propagate this
information to other transformers.
Of course, these transformations only make sense in light of the associated parameterized

algorithms. We first introduced these in the block diagrams of Figure 7, and now conclude their
exposition with their implementation at the end of Figure 10. This unfolding step is executed after
all events have been handled, such that the event signatures are E = E# = ∅ at this point.

5.2 The Surface AST and dual denotation

As illustrated on Figure 6, the key to our dual denotation scheme is to have the concrete and abstract
programs use the same flow combinator tree. Each of these structure can be crafted independently
by a user of the library, but this targeted structural similarity invites deriving both programs from
a single tree representation. We have briefly seen that representation as the SurfaceAST datatype in
Section 3. The Surface AST is mostly a convenience feature wrapping control flow combinators,
and its most remarkable feature is its dual concrete/abstract parameterization over events and
return values. Its simplified definition is shown on Figure 11.
The type is doubly parameterized (E, E# and R, R#), selecting one denotation with the boolean b

through the use of the csum type. An easy way to think about this typing is that for a fixed value of
b, occurrences of csum collapse either all to their first argument or all to their second argument.11

When passed to ast2itree and ast2aflow, leaves at AST_Ret and AST_Event convert directly to the
Ret and Vis constructors of itree E and aflow E# , while combinators are substituted with either the
concrete or the abstract implementation. Note how the extra parameterization is gone at this level
(save for AST_Do’s dist which enables macros, see below) so the complexity of handling monadic
events is hidden from the user.
11Which means that technically a SurfaceAST is either the concrete or abstract program, not both; but since all constructions
generate it for both values of b we still treat it as both.
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Fixpoint handle_state# (h: E{ stateT S (aflow F)): aflow E R → stateT S (aflow F) R :=
fun p s ⇒ match p with
| Ret r ⇒ Ret (s, r)

| Vis e k ⇒ '(s, t) � h e s;; handle_state# h (k t) s
| @Seq U1 T1 U2 step may_exit merge p1 p2 k ⇒

@Seq (S * U1) (S * T1) (S * U2)
(fun '(s, u1) ⇒ (s, step u1)) (may_exit ◦ snd)
(fun b '(su1, u1) '(su2, u2) ⇒ (if b then su1 ⊔ su2 else su2, merge b u1 u2))

(handle_state# h p1 s)

(fun '(s, t1) ⇒ handle_state# h (p2 t1) s)

(fun '(s, u2) ⇒ handle_state# h (k u2) s)
(* ... *).
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Definition failT_kmerge (et: unit# * T) (p: aflow E (unit# * R)): aflow E (unit# * R) :=
er � p;; ret (fst et ⊔ fst er, snd er).

Fixpoint handle_fail# (h: E { failT# (aflow F)): aflow E R → failT# (aflow F) R := fun p ⇒
match p with
| Ret r ⇒ Ret (⊥, r)

| Vis e k ⇒ et � h e;; failT_kmerge et (handle_fail# h (k (snd ex)))
| @Seq U1 T1 U2 step may_exit merge p1 p2 k ⇒

@Seq (unit# * U1) T1 (unit# * U2)

(step ◦ snd) (fun '(et, t) ⇒ unit#_to_bool et || may_exit t)

(fun b '(eu, u) '(et, t) ⇒ (eu ⊔ et, merge (unit#_to_bool eu || b) u t))

(handle_fail# h p1)

(handle_fail# h ◦ p2)

(fun et ⇒ failT_kmerge et (handle_fail# h (k (snd et))))
(* ... *).
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Fixpoint unfold (p: aflow ∅ R): itree ∅ R :=
match p with
| Ret r ⇒ ITree.ret r
| Seq step may_exit merge p1 p2 k ⇒

u1 � unfold p1;;
u2 � unfold (p2 (step u1));;
unfold (k (merge (may_exit u1) u1 u2))

| Fixpoint step body init k :=
pfp_u1 � ITree.iter
(fun t ⇒ u1 � unfold (body t);;

let next_t := t ⊔ proj3_2 (step u1) in
ret (if next_t ⊆? t then inr u1 else inl (widen t next_t)))

init;;
unfold (k (proj3_3 (step pfp_u1)))

(* ... *).

Fig. 10. Key operations in aflow: updating parameterized algorithms when handling into the state ( ) and

failure ( ) monads, and their eventual implementations ( ).

5.3 Implementing control flow combinators

The final piece in our puzzle for implementing the interpreters is defining concrete and abstract
flow combinators symmetrically at the top-level. We have delayed this presentation until now
because we actually provide multiple mechanisms for defining combinators, as a way to balance
flexibility (in using accurate abstract interpretation algorithms) with proof effort. Figure 13 shows
the six combinators that we implement, which can be categorized into three tiers.
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Library codeDefinition csum (R R#: Type): bool → Type := fun b ⇒ if b then R# else R.

Definition mksum (r: R) (r#: R#) (b: bool): csum R R# b := (* omitted *).

(* All constructors produce a [SurfaceAST E E# R R# b].
Typeclass instances for BooleanDomain and Galois connections omitted. *)

Inductive SurfaceAST {E E#: Type → Type} (R R#: Type): bool → Type :=

| AST_Ret {b} (r: csum R R# b) (* ret v and v# *)

| AST_Event {b} (e: csum (E R) (E# R#) b) (* do e and e# *)

| AST_Seq {b} (p: SurfaceAST T T# b) (k: csum T T# b → SurfaceAST R R# b) (* v � p;; k *)

| AST_If {b} (v: csum Value Value# b) (pthen pelse: SurfaceAST R R# b) (* if combinator *)

| AST_Do {b} (dist: csum (U → Value*R*R) (U# → Value#*R#*R#) b) (* do-loop combinator *)

(init: csum R R# b) (body: csum R R# b → SurfaceAST U U# b)
| AST_CFG (* omitted *).

Fig. 11. Surface level DSL ( ) for dual concrete/abstract denotations, with notations in comments.

Library code

Se
qu

en
ce

Definition seq (step: U1 → T1 + U2) (p1: itree E U1) (p2: T1 → itree E U2) :=
u1 � p1;; match step u1 with

| inl t1 ⇒ p2 t1
| inr err ⇒ ret err
end).

Definition seq# (step: U1 → T1) (may_exit: U1 → bool) (merge: bool → U1 → U2 → U2)
(p1: aflow E U1) (p2: T1 → aflow E U2) :=

aflow.Seq step may_exit merge p1 p2 aflow.Ret.

do
-lo

op

Definition do ‵{BooleanDomain Value} (step: U1 → U2 + U3) (dist: U2 → Value*T*U3)
(body: T → itree E U1) (init: T): itree E U3 :=
ITree.iter (fun t ⇒ u1 � body t;;

ret match step u1 with
| inl u2 ⇒ let '(v, loop, leave) := dist u2 in

if BooleanDomain_isfalse v then inr leave else inl loop
| inr err ⇒ inr err
end) init.

Definition do# ‵{BooleanDomain Value} (step: U1 → Value*T*U3) (body: T → aflow E U1) init :=
aflow.Fixpoint step body init aflow.Ret.

wh
il
e-
lo
op

m
ac
ro
s

Definition AST_While {b} init dist (cond body : csum R R# b → SurfaceAST E E# U U# b) :=
AST_Seq (cond init) (fun c ⇒
let '(value, r_true, r_false) := (* dist c, but through csum *) in
AST_If value (AST_Do r_true dist body) (AST_Ret r_false)).

Definition AST_While_unit

(cond : SurfaceAST E E# Value Value# b)

(body : SurfaceAST E E# unit unit# b): SurfaceAST E E# unit unit# b :=

AST_While (mksum tt tt#)

(mksum (fun v ⇒ (v,tt,tt)) (fun v ⇒ (v,tt#,tt#)))
(fun _ ⇒ cond)
(fun _ ⇒ AST_Seq body (fun _ ⇒ cond)).

Fig. 12. Simplified definitions of the seq, do-loop and while-loop combinators.

Primitive control flow structures: Some control flow combinators are provided directly with
an ITree implementation and a primitive structure in aflow; these are seq, do and tailmrec. The
definitions for seq and do, which implement the diagrams from Figure 7, are given at the start of
Figure 12. The concrete version in each is similar to the standard implementation discussed in
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Combinator Type Description
seq Primitive Pure sequence (with intermediate value)
do Primitive Do-loop with return value (fixpoint)
tailmrec Primitive Family of mutually-tail-recursive sub-programs
if Specializes tailmrec Conditional (with pure condition)
cfg Specializes tailmrec Assembly/IR-style Control Flow Graph
while AST macro C-style while loop (with effectful condition)

Fig. 13. Summary of combinators provided by the library.

Section 2, but with state and failure parameterized. The abstract version is just the corresponding
aflow constructor, since it’s only substituted with an implementation after handling events.

Specializations of primitive structures: The tailmrec combinator is fairly expressive, as it captures
all kinds of intra-functional control flow that traditionally gets compiled down to CFGs in IRs, such
as C-style conditions, loops, switch statements, etc. We define cfg as an instance of it (essentially
just encoding the fact that there is only one entry point) and if as the restricted case of a tailmrec
with two non-recursive subprograms.

Naturally, the abstract interpretation of an if statement is more accurately computed with a
simple join than with tailmrec’s general fixpoint approximation scheme. The library allows us to
specify and use such a specialized algorithm once it is proven correct. This allows for maintaining
accuracy with significantly less proof effort than defining a new primitive structure because if

gets tailmrec’s preservation-through-handling properties for free.

AST macros: Finally, we provide a while-loop combinator as a “macro” in the surface AST.
while(c) b unfolds to the equivalent of if(c) { do b while(c) } before the concrete and abstract
interpreters are extracted. The code for this as well as the unit-version used by Imp in Section 3
is shown at the end of Figure 12. With this method, no specialized algorithm can be used for
interpreting the loop in the abstract program, but no proofs are required at all.

6 LAYERED PROOF OF SOUNDNESS

After having defined a concrete and an abstract interpreter together, we finally turn out attention
to the formal certification of the latter w.r.t. the former.
The core property to prove is the following sound predicate, which captures the soundness

condition for programs with empty event signatures. It describes the traditional intuition that any
value that the concrete program could return must be covered through the Galois connection by
the abstract value returned by the unfolded abstract program:

sound (𝑝 : itree ∅ R) (𝑝# : aflow ∅ R#) ≜
∀𝑟 𝑟 #, 𝑝 returns 𝑟 →

unfold 𝑝# returns 𝑟 # →
𝑟 ∈ 𝑟 #,

where “𝑝 returns 𝑟” expresses that the computation terminates with value 𝑟 .12 Note that in case
of computations obtained by the construction of monadic interpreters, the return types R and R#

include at this stage global states and failure flags, so every feature of the source language is covered
by this single statement.

12The signatures being empty, there is at most one such leaf.
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The top-level theorem we establish then simply states that the interpreters are related by sound

after supplying suitable initial states. For instance for Imp ( ):

∀(𝑐 : C) 𝑠 𝑠#, 𝑠 ∈ 𝑠# → sound (imp_interp 𝑐 𝑠) (eval# 𝑐 𝑠#).
We go over the entire proof process in the next section and clarify which proof obligations need

to be provided by the user in Section 6.2.

6.1 Generic meta-theory

As discussed in Section 4, most of the proof of soundness is conducted over a stronger notion of
soundness that tracks the control flow tree, and is only lowered down to sound once all events have
been interpreted. We call this tree-aware predicate flow soundness ( ), and define it with

sound' (𝑝 : itree E R) (𝑝′ : aflow E# R#) : Prop
which asserts that 𝑝 and 𝑝′ have identical tree structure, and:
• Pairs of leaves (pure value and events) are related by appropriate Galois connections;
• Pairs of nodes (always the concrete and abstract version of the same combinator) use abstract
parameters that correctly approximate the concrete parameters. The definition of “sound
parameters” depends on each algorithm and we shall treat it as opaque here.

This predicate is initially true for nodes because ast2itree and ast2aflow produce identical
trees with sound initial parameters, and it is also true for leaves if the user’s denotation supplies
appropriate values and events in the ret-and and do-and statements.

Preserving sound' during handling. The key property of sound' is that it is preserved during
event handling as long as related concrete/abstract get handled into sound sub-programs. This
requirement is, of course, where the soundness of the abstract analysis for each language feature
comes into play: the user needs to prove that their abstract handlers are sound. The predicate for
this varies slightly depending on the monad transformer at hand, but is otherwise straightforward;
it is shown below. The predicate evl_in is the Galois connection for events.

Definition handler_sound_idT (h: E { itree F) (h#: E# { aflow F#) :=

∀ U U# (e: E U) (e#: E# U#), evl_in e e# → sound' (h e) (h# e#).

Definition handler_sound_stateT (h: E { stateT S (itree F)) (h#: E# { stateT S# (aflow F#)) :=

∀ U U# (e: E U) (e#: E# U#) (s: S) (s#: S#),

evl_in e e# → s ∈ s# → sound' (h e s) (h# e# s#).

Definition handler_sound_failT (h: E { failT (itree F)) (h#: E# { failT# (aflow F#)) :=

∀ U U# (e: E U) (e#: E# U#), evl_in e e# → sound' (h e) (h# e#).

The library provides theorems for lifting this handler soundness from individual events to
entire programs, thus accomplishing the preservation step shown by double arrows in the middle
column of Figure 6. There is one such theorem per monad transformer in which we handle events,
named handling_sound_*. Their proofs mostly express that the process of updating control flow
combinators’ parameters during event handling maintains their (opaque) soundness property. As
an example, the preservation theorem for the state monad ( ) is stated as

Lemma handling_sound_stateT

(h: E { stateT S (itree F)) (h#: E# { stateT S# (aflow F#))

(t: itree E R) (f#: aflow E# R#) s s#:

s ∈ s# →
handler_sound_stateT h h# →
sound' t f# →
sound' (handle_state h t s) (handle_state# h# f# s#).
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After handling all events, we finish by unfolding the abstract combinators. It is at this stage that
we finally prove that our parameterized abstract interpretation algorithms are sound approximations
of their associated concrete control flow structures. These lemmas are slightly intricate to state due
to the parameterization, but are otherwise unsurprising. Here is for example the statement for the
soundness of the sequence combinator ( ).

Lemma sound_seq
step (p1: itree E U1) (p2: T1 → itree E U2) (* Concrete parameters *)

step# may_exit# merge# (p1
#: aflow E# u1

#) (p2
#: T1

# → aflow E# U2
#): (* Abstract parameters *)

sound p1 p1
# →

(∀ t t#, t ∈ t# → sound (p2 t) (p2
# t#)) →

(* step#, may_exit#, merge# sound w.r.t. step *) →
sound (seq step p1 p2) (seq# step# may_exit# merge# p1

# p2
#).

These individual combinator theorems culminate in the library-provided sound_unfold ( ) theo-
rem:

Lemma sound_unfold : ∀ (𝑝 : itree ∅ R) (𝑝# : aflow ∅ R#),
sound' p p# → sound p p#,

which allows to conclude a formal proof that the abstract program safely approximates its concrete
original, as used at the bottom of Figure 6.

6.2 User-specific proof obligations: the case of Imp

In general for a pair of interpreters defined in the style of Section 3 which use monad transformers
and flow combinators from the library, the user has three kinds of proof obligations.
(1) After providing lattices for abstract types and Galois connections relating them to concrete

types, prove related algebraic laws;
(2) Prove that values and events specified in ret-and and do-and are sound;
(3) Prove that pairs of concrete and abstract handlers are sound.
In Imp’s case, the proof effort is particularly minimal because both the interval domain and the

handling of the finite memory storage for variables are also part of basic library utilities. In fact, all
the lemmas proven in the example file ImpArithFail.v ( ) (excluding two boilerplate one-liners)
are listed in Figure 14.
The first step is to establish the soundness of the ASTs. The proof proceeds by induction on

the input program’s syntax, but all nodes in the tree are handled by appropriate constructors of
a library-side SoundAST predicate. The only non-trivial obligations are for leaves, for which we
apply either SoundAST_Ret or SoundAST_Event, which reduce to goals about Galois connections. In
stmt_sound, these are all closed by now or easy.

A slightly more exciting proof can be found in the next section showing that the handlers are
sound. This is where most of the analysis for interesting language features is (in this case: arithmetic,
memory, and assertions), and also where our modular proof design shines. We show the proof
for h_arith_sound, which after listing the cases for each event reduces to proving that the interval
domain provides sound approximations of integer arithmetic operators. h_assert_sound is similar
but goes through more API layers not shown in this paper. Finally, the memory handler is already
proven sound by a library utility.
We emphasize that the ability to separate these three proofs is a direct benefit of using layered

monadic handling when defining the interpreters. Reusing language components with proven
analyses such as our basic memory handlers, while seemingly innocuous, is also made possible by
the unique modularity of this design.
Which leads into the final theorem, imp_interp_sound. This theorem is a direct transcript of

Figure 6 from bottom to top. It goes through every layer by chaining handlers until it reaches the
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User code

So
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Lemma expr_sound (e: expr): SoundAST JeK𝑒 JeK𝑒.
Proof. (* 7 lines *) Qed.

Lemma stmt_sound (s: stmt): SoundAST JsK JsK.
Proof.
induction s.
- apply SoundAST_Seq; [apply expr_sound|]. intros; now SoundAST_Event.
- now apply SoundAST_Ret.
- apply SoundAST_Seq; [apply expr_sound|]. intros; now SoundAST_Event.
- now apply SoundAST_Seq.
- cbn. apply SoundAST_Seq; [apply expr_sound|]. intros. now apply SoundAST_If.
- cbn. apply SoundAST_While; try easy.
* intros; apply expr_sound.
* intros. apply SoundAST_Seq; auto. intros; apply expr_sound.

Qed.

H
an
dl
er
s

Lemma h_arith_sound: handler_sound_idT (h_arith (itree ∅)) (h_arith# (aflow ∅)).
Proof.
intros ? ? [] [] H; try now intuition auto.
- apply sound'_ret. destruct H as [→ H]. now apply num_unary_sound.
- apply sound'_ret. destruct H as [→ H]. now apply num_binary_sound.

Qed.

Lemma h_assert_sound: handler_sound_failT (h_assert (itree ∅)) (h_assert# (aflow ∅)).
Proof. (* 9 lines *) Qed.

Fi
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Theorem imp_interp_sound (s: stmt) s1 s2:

s1 ∈ s2 → sound (imp_interp (ast2itree JsK) s1) (eval# (ast2aflow JsK) s2).
Proof.
intros Hinit.
apply sound_unfold. (* Unfolding *)
apply handling_sound_idT. (* Arith layer *)
{ apply h_arith_sound. }
apply handling_sound_stateT. (* Memory layer *)
{ apply Hinit. }
{ apply handler_sound_stateT_case, IMPMemory.handle_amem_sound. }
apply handling_sound_failT. (* Assert layer *)
{ apply handler_sound_failT_case, h_assert_sound. }
apply sound_ast2itree_ast2aflow, stmt_sound. (* Initial ASTs *)

Qed.

Fig. 14. Proof of soundness of the Imp interpreters defined in Section 3.

surface AST, at which point the combination of stmt_sound and a library theorem concludes. This
leaves us with an executable reference interpreter and a certified analyzer both derived from a
single denotation of a simple language.

6.3 Extending the library

While we are confident that the theory underlying this paper is expressive enough to cover a wide
range of applications, scaling to realistic languages and analyses will naturally require support for
more control flow combinators and monad transformers.

While it has not been the focus of this work, new non-relational abstract domains can be added
by instantiating the Lattice class and a relevant domain class such as NumericalDomain.
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The effort needed to add a new control flow combinator depends on the applicable method,
as discussed in Section 5.3. AST macros are free and specializations of existing combinators like
tailmrec require limited effort. The only proof obligations in this case are the preservation of the
specialized shape (e.g. an if being two non-recursive blocks) during handling, and the soundness
of the specialized algorithm (e.g. a join of both branches). Adding a new primitive control flow
structure in aflow requires providing an associated parameterized analysis algorithm, which is a
non-trivial abstract interpretation question, but otherwise follows a recurring template.

Adding support for a new monad transformer is the most transversal extension, mostly because
this requires analysis algorithms to account for any new data- or control-flow from that transformer,
which impacts a lot of code. We believe that this approach can still scale to capture common control
flow mechanisms, which are for the most part consistent across large numbers of real-world
programming languages.

7 RELATEDWORK

The seminal paper by Cousot and Cousot [8] has spawned an exceptionally rich literature around the
abstract interpretation framework. We refer the interested reader to recent introductory books [7,
34], and focus on works directly related to the peculiarities of our approach: mechanization and
modularity.

Mechanized abstract interpreters. The first attempt at mechanizing abstract interpretation in type
theory is probably due to Monniaux [29]. Later on, Pichardie identified during his PhD [30] that
the asymmetric 𝛾-only formulation of the framework was the key to alleviating issues with the
non-constructivity of the abstraction function encountered in Monniaux’s approach. We inherit
from this design.
The approach eventually culminated in the Verasco [17] static analyzer: a verified abstract

interpreter for the C language combining rich abstract domains to attain an expressiveness sufficient
for establishing the absence of undefined behavior in realistic programs. In particular, the analyzer
is plugged into CompCert [25] in order to discharge the precondition to its correctness theorem.
Verasco supports a notion of modularity essentially orthogonal to the one we propose in the present
work: they introduce a system of inter-domain communication based on channels inspired by
Astrée [9]. Extending our work to support such complex abstract domain combinations and scaling
from toy languages to realistic analyzers like Verasco is naturally a major perspective. In contrast,
we emphasize that Verasco offers none of the core contributions we propose in our approach: no
code reuse, no modularity in terms of effects, and a fuel-based analyzer to avoid having to prove
the termination of the analyzer.
Skeletal semantics [2] have been leveraged to derive abstract interpreters in a modular fashion

that shares commonalities with our approach. Skeletons and their interpretations provide a reusable
meta-language in which to code the concrete and abstract semantics of the languages similarly to
how we exploit ITrees and aflow with handlers. Despite this superficial similarity, the technical
implementations are completely different: in-depth comparison of the two approaches would cause
for a fruitful avenue.

Restricting ourselves to 𝛾-only formulations sacrifices part of the abstract interpretation theory:
the so-called “computational” style, deriving an abstract interpreter correct by construction from a
concrete one. Darais and Van Horn have introduced Constructive Galois Connections [12, 13] to
tackle this issue, and formalized their work in Agda.

Big-step abstract interpreters. A wide body of work has sought to modularize and improve code
reuse in the design and verification of abstract interpreters. Most of them share conceptually with
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our work the use of a monadic encoding relying on uninterpreted symbols that gets refined in
alternate ways.

Bodin et al. [2], previously mentioned, falls into this category and is mechanized in Coq as well.
Although Skeleton share some similarities with our approach, the derivation of abstract interpreters
from them is essentially ad-hoc. In particular, no principled treatment of effects of the kind our
framework offers is supported. Albeit with quite distinct objectives, Boulmé and Maréchal [3] have
also explored the use of monadic semantics to justify the soundness of abstract computations, in the
polyhedral domain. Their approach is significantly different to ours: they fix globally the domain,
and hence the monad, of interest; they rely on external oracles to embed an impure monad in Coq;
they use a form of Dijkstra monad to characterize abstractly the abstract domain itself. Their work
may offer hints to expand ours to richer domains.

Out of the realm of type theory, a wide range of non-mechanized, but paper-proved, frameworks
for the modular construction of sound abstract interpreters have been built in general purpose
programming languages.
Most notably, Darais et al. [10] adapt Van Horn and Might’s so-called Abstracting Abstract

Machine [36, 39] methodology to build abstract interpreters for higher order languages using
definitional interpreters written in a monadic style, rather than low level machines. Written in
a general purpose functional language, their approach relies on a representation of the program
with open recursion and uninterpreted operations, further refined into concrete, collecting and
abstract semantics. In order to ease the construction of such monadic interpreters, Darais et al. have
also identified so-called Galois Transformers [11], well-behaved monad transformers that transport
Galois connections and mappings to suitable executable transition systems.
Keidel et al. [19, 21] have proposed a framework for modularizing the concrete and abstract

semantics based on arrows [16], a generalization of monads. Arrows roughly play the role of
Skeletons in [2], and of the combination of concrete signatures and aflow in ours. The connection
between these abstractions would deserve a more thorough analysis.
Recently, Keidel et al. have considered the modular construction of fix-point algorithms for

big-step abstract interpreters [20]. This endeavor is orthogonal to our contributions and could
hopefully be formalized and incorporated.

8 CONCLUSION

We have presented a newway of buildingmodular abstract interpreters in dependent type theory: by
language features, following the paradigm of layered monadic interpreters. Having identified unique
challenges in handling control flow structures, we adapted the paradigm by using parameterized
abstract interpretation algorithms as carriers of monadic effects during the handling process. This
enabled us to mirror the process for defining concrete and abstract interpreters, and eventually
derive them both from a shared denotation. Additionally, the approach provides the expected
benefit of decoupling soundness proofs for each language feature, breaking down the complexity
of certification significantly. We have packaged all the contributions presented in this paper into a
reusable, freely available as an open-source, Coq library.

While we have demonstrated the viability of the approach with mechanized proofs for two simple
languages, Imp and Asm, much work remains to be done to scale it up to realistic languages such as
C or LLVM IR, and to realistic analyses such as relational domains and complex fixpoint iteration
strategies. Some of these extensions appear orthogonal at first (such as iteration strategies), but
others present challenges either in terms of abstract interpretation (e.g. designing parameterized
algorithms that support more monadic effects) or in the framework itself (e.g. defining relations
between values for an arbitrary language with arbitrary operations). Future work will explore these
avenues both theoretically and in implementation.
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