
Artifact Report: an Abstract, Certified Account
of Operational Game Semantics

Peio Borthelle (Université Savoie Mont Blanc), Tom Hirschowitz (CNRS),
Guilhem Jaber (Nantes Université), and Yannick Zakowski (Inria)

This artifact report is a companion to the ESOP’25 paper An abstract, cer-
tified account of operational game semantics [3]. The paper describes the con-
struction of a sound model for an abstract notion of language. The model is built
using a semantic technique named Operational Game Semantics (OGS).

All our results are formalized in the Coq proof assistant: this formalization1

constitutes the artifact we discuss in the present document. More specifically, our
formalization covers our main result, the soundness of the abstract OGS model
w.r.t. substitution equivalence (Theorem 8), as well as four example calculi: two
variants of call-by-value λ-calculi and two variants of µµ̃-calculi [4,5]. The only
axiom used is the Axiom K [17] for equality proof irrelevance2.

The README details the installation process, and the structure of the code. An
online rendering3 is available thanks to Alectryon [12]. Furthermore, our paper
provides systematic hyperlinks from statements to their formal Coq counterparts.
We encourage the interested reader to use these tools to navigate the code.

In this document, we focus first on users: how to read and instantiate our main
result. In a second time, we detail salient technical aspects of our formalization.

1 The OGS Library from the Perspective of a User

Our library is intended to be reusable. In this section, we describe to the inter-
ested user how to understand our result, and how to instantiate it.

Soundness Theorem The main theorem (Thm. 8) is proven in OGS/Soundness.v.
It quantifies over any language machine verifying the required hypotheses, that
is, an axiomatization in the style of abstract machines of substitution and eval-
uation. Slightly unfolding the definitions, it is typed as follows.

Theorem ogs_correction {Γ} Ω (x y : conf Γ)
: m_strat _ (inj_init_act Ω x) ≈ m_strat _ (inj_init_act Ω y)
-> forall γ : Γ =[val]> Ω, evalo (x t⊛ γ) ≈ evalo (y t⊛ γ).

In plain words, for any final scope Ω and language machine configurations x and
y, whenever the two OGS strategies obtained by embedding x and y into initial
strategy states are weakly bisimilar, then, for any assignment γ, substituting x
and y by γ and evaluating them to a final observation yields two weakly bisimilar
computations. In other words, either both substituted configurations diverge or
both return the same final result.
1 https://github.com/Lapin0t/ogs/tree/esop25
2 To ease dependent pattern matching due to the intrinsically scoped representation.
3 https://lapin0t.github.io/ogs/Readme.html

https://github.com/Lapin0t/ogs/tree/esop25
https://lapin0t.github.io/ogs/Readme.html

2 P. Borthelle et al.

Language Machine Instantiation Several instances of language machines
verifying the OGS soundness hypotheses are provided in the Examples/ folder.
Instanciating our generic semantics and proof with one’s favorite language always
follows the same blueprint. First define the standard syntax and substitution.
Then, because the language evaluator must be presented as an abstract machine,
define a family of configurations for this machine. Note that this abstract ma-
chine must reduce open configurations and these must also support substitution.
For some languages such as µµ̃-calculi [4], or say, Jump-With-Argument [10],
configurations are already a standard notion, but for others such as λ-calculi,
they are generally obtained by pairing a term with an evaluation context. Fur-
ther, define the observation structure. This amounts to deciding which part of
normal form configurations should be considered observable for the purpose of
observational equivalence testing, and which part should be considered as a set
of opaque values. Finally, when all these choices are made and the evaluator
written, it sufficies to verify the theorem hypotheses. In our experience, they are
always proven quite directly, without any surprising lemma required.

2 Inside the Beast: Implementation Details of Interest

We detail two salient aspects of our development. First, we have implemented
strategies as shallow monadic computations, which led us to develop an indexed
variant of the Interaction Tree (ITree) structure. Second, we have followed a
well-scoped approach, relying on the Equation library and the SProp universe.
This section is intended for experts readers familiar with the companion paper.

2.1 Strategies as Indexed Interaction Trees

Indexed Interaction Trees Library Rather than specifying labelled tran-
sition systems relationally in Prop, we have chosen a shallow Coq embedding
for implementing strategies, understood as possibly non-terminating computa-
tions featuring uninterpreted actions (move exchanges). This suggests reusing
the ITrees [18], which is designed for this purpose. It is also in line with Hancock
and Hyvernat’s similar construction of interaction structures [9] which represent
agents in client-server protocols as coinductive trees.

However, the ITree’s axiomatization of the possible actions is not expressive
enough for our purpose. In essence, they capture games where the set of allowed
client moves is constant throughout the game. To fix this, instead of describing
possible actions by a polynomial functor on Set, we describe them by an indexed
polynomial functor on SetI , for some set I representing active game positions.
The ITree/ folder thus contains a succinct port of the ITree library to this new
indexed setting. This part of the artifact could certainly be useful independently
of the OGS construction. We hope to extract it into a self-contained library.

This small library contains the coinductive definition of ITrees, their monadic
structure, and the standard iteration operator. We provide definitions for weak
and strong bisimilarity together with the main reasoning principles: strong bisim-
ulation up-to equivalence and weak and strong bisimulation up-to monadic bind.

Artifact Report on an Abstract Account of Operational Game Semantics 3

Both bisimilarity relations are defined using the Coinduction [14] library, which
provides enhanced coinduction principles based on a lattice theoretic fixed point
construction.4 This relies on the impredicativity of the Prop universe.

Eventually Guarded Iteration Apart from indexation, the main novelty are
two new iteration operators, respectively for guarded and eventually guarded
iteration (Prop. 5). They have been crucial in our OGS soundness proof and
could certainly be backported to the unindexed ITree library.

The standard unguarded operator can iterate any "loop body", but it must
insert a silent step after each iteration to be well-defined. Hence, it only produces
a fixed point of the loop body w.r.t. weak bisimilarity, and it is in general not
unique. In contrast, our two new operators do not insert any silent step after
iteration, and produce unique fixed points w.r.t. strong bisimilarity. For this to
work, they respectively require the loop body to feature a guard (a computation
step) at each iteration or infinitely often, i.e., after a finite number of iterations.

Theoretically, unguarded iteration can be axiomatized as a complete Elgot
monad structure [7] on ITrees quotiented by weak bisimilarity, while our new
guarded iteration operators yield two completely iterative monad structures with
different notions of guardedness on ITrees quotiented by strong bisimilarity [8].

Relationship with Transition Systems over Games Following Levy and
Staton [11], in the paper (Def. 19) we have defined strategies over some game
G : Game I J as a pair of active and waiting state families S+ : SetI and S− : SetJ ,
together with action and reaction morphisms. This data is dubbed by Levy and
Staton a big-step system over G and can be more succinctly expressed as a
coalgebra for the following endofunctor on SetI × SetJ .

(S+, S−) 7→ (D(finalG + JclientGK+S−), JserverGK−S+)

Instead of working with arbitrary coalgebras, we can equivalently see strategies
as their image in the final coalgebra, whose states consist of coinductive trees.
We do not construct this final coalgebra directly, but instead express it using
our indexed interaction tree construction. Given a polynomial endofunctor Σ
on SetI and an output family X, indexed interaction trees are given by the
following final coalgebra:5 itreeΣ(X) := νS. X + S +Σ(S).

The trick is to focus on strategies in an active positions, by considering the
sequence of choosing a client move and waiting for the next server move as one
unit. Indeed, the composition JclientGK+ ◦ JserverGK− is a polynomial functor,
and the states of the final coalgebra of strategies over G can be computed as:6

strat+G := itree(JclientGK+◦JserverGK−)finalG

strat−G := JserverGK−strat+G
4 Coinduction recently upgraded from the companion to a tower induction construc-

tion [15]. We have not made this port yet, and hence compile against Coq (8.17).
5 Note that this is exactly the same construction as given by Xia et al. [18], simply

taking place in the category SetI instead of Set.
6 We do not formally prove it computes the announced final coalgebra, but this can be

shown by straightforward fixed point calculation, recalling that D(X) := νA.X +A.

4 P. Borthelle et al.

Our implementation choices are then straightforward. We encode polynomial
endofunctors on SetI as indexed containers [2], which we dub events.

Record event (I : Type) := Event {
e_qry : I -> Type ;
e_rsp : forall i, e_qry i -> Type ;
e_nxt : forall i (q : e_qry i), e_rsp i q -> I }.

For some indexed container E : event I and output family X : I -> Type,
the interaction tree endofunctor and its final coalgebra are respectively:

Variant itreeF (REC : I -> Type) (i : I) :=
| RetF (r : X i)
| TauF (t : REC i)
| VisF (q : E.(e_qry) i) (k : forall r : E.(e_rsp) q, REC (E.(e_nxt) r)).
CoInductive itree (i : I) := go { observe : itreeF itree i }.

2.2 Scope Structures

Our development of intrinsically-typed-and-scoped syntax largely follows the
standard practice [6,1]. As this formalization style is heavy on dependent pat-
tern matching, we make great use of the Equations plugin [16]. A notable nov-
elty is that we abstract over the concrete representation of scopes and variables,
which are usually fixed to lists of object language types and well-typed de Bruijn
indices. Our motivation was pragmatic: using tailor made variable representa-
tions drastically reduced the amount of boilerplate in the complex µµ̃-calculi
instances.

The root cause is that most standard OGS examples involve separating object
language types into so-called positive and negative, with only variables of negative
type being shared between OGS players and observed. Given a strict predicate
is_neg : ty -> SProp, negative types can be constructed as the strict subset
{ t : ty | is_neg t }. The prime benefit is that definitional equality of neg-
ative types is exactly definitional equality of the underlying “vanilla” types. For
scopes containing only negative types, we lose this nice property if we represent
them naively as list { t : ty | is_neg t }. It is vastly more convenient to
work with the subset { ts : list ty | allS is_neg ts }, where allS de-
notes the strict universal quantifier on lists.

To allow for such "non-standard" scope representations and their custom
notion of well-typed variable, we devise a notion of scope structure close in
spirit to the Nameless, Painless approach [13]. A scope structure on S : Set
for object language types T consists of an element ∅ : S, a binary operation
⊕ : S → S → S and a family of variables ∋ : S → SetT , subject to the two
isomorphisms ∅ ∋ t ≈ ⊥ and (Γ ⊕ ∆) ∋ t ≈ (Γ ∋ t) ⊎ (∆ ∋ t). The category
of contexts is then taken to be the full image of ∋. In other words, objects are
elements of S and renamings Γ → ∆ are given by functions ∀t, Γ ∋ t → ∆ ∋ t.
This interface can then be instantiated both by lists and de Bruijn indices as well
as by our "subset scopes". The substitution metatheory is left mostly unchanged.

Artifact Report on an Abstract Account of Operational Game Semantics 5

References

1. Allais, G., Atkey, R., Chapman, J., McBride, C., McKinna, J.: A type and scope
safe universe of syntaxes with binding: their semantics and proofs. Proc. ACM
Program. Lang. 2(ICFP), 1–30 (Jul 2018). https://doi.org/10.1145/3236785

2. Altenkirch, T., Ghani, N., Hancock, P.G., McBride, C., Morris, P.: Indexed contain-
ers. J. Funct. Program. 25 (2015). https://doi.org/10.1017/S095679681500009X

3. Borthelle, P., Hirschowitz, T., Jaber, G., Zakowski, Y.: An abstract, certified ac-
count of operational game semantics. In: ESOP (2025)

4. Curien, P., Herbelin, H.: The duality of computation. In: ICFP. pp. 233–243. ACM
(2000). https://doi.org/10.1145/351240.351262

5. Downen, P., Ariola, Z.M.: Compiling with classical connectives. Log. Methods
Comput. Sci. 16(3) (2020). https://doi.org/10.23638/LMCS-16(3:13)2020

6. Fiore, M., Szamozvancev, D.: Formal metatheory of second-order abstract syntax.
Proc. ACM Program. Lang. 6(POPL), 1–29 (2022). https://doi.org/10.1145/
3498715

7. Goncharov, S., Milius, S., Rauch, C.: Complete elgot monads and coalgebraic re-
sumptions. In: MFPS. Electron. Note Theor. Comput. Sci., vol. 325, pp. 147–168.
Elsevier (2016). https://doi.org/10.1016/J.ENTCS.2016.09.036

8. Goncharov, S., Schröder, L., Rauch, C., Piróg, M.: Guarded and unguarded iter-
ation for generalized processes. Log. Methods Comput. Sci. 15(3) (2019). https:
//doi.org/10.23638/LMCS-15(3:1)2019

9. Hancock, P., Hyvernat, P.: Programming interfaces and basic topology. Ann. Pure
Appl. Log. 137(1-3), 189–239. https://doi.org/10.1016/J.APAL.2005.05.022

10. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semant.
Struct. Comput., vol. 2. Springer (2004)

11. Levy, P.B., Staton, S.: Transition systems over games. In: LICS. pp. 64:1–64:10.
ACM (2014). https://doi.org/10.1145/2603088.2603150

12. Pit-Claudel, C.: Untangling mechanized proofs. In: SLE. pp. 155—-174. ACM
(2020). https://doi.org/10.1145/3426425.3426940

13. Pouillard, N.: Nameless, painless. In: ICFP. pp. 320–332. ACM (2011). https:
//doi.org/10.1145/2034773.2034817

14. Pous, D.: Coinduction all the way up. In: LICS. pp. 307–316. ACM (2016). https:
//doi.org/10.1145/2933575.2934564

15. Schäfer, S., Smolka, G.: Tower induction and up-to techniques for CCS with fixed
points. In: RAMiCS. Lect. Note Comput. Sci., vol. 10226, pp. 274–289 (2017).
https://doi.org/10.1007/978-3-319-57418-9_17

16. Sozeau, M., Mangin, C.: Equations reloaded: high-level dependently-typed func-
tional programming and proving in coq. Proc. ACM Program. Lang. 3(ICFP),
86:1–86:29 (2019). https://doi.org/10.1145/3341690

17. Streicher, T.: Investigations into intensional type theory. Habilitiation Thesis, Lud-
wig Maximilian Universität (1993)

18. Xia, L., Zakowski, Y., He, P., Hur, C., Malecha, G., Pierce, B.C., Zdancewic, S.:
Interaction trees: representing recursive and impure programs in coq. Proc. ACM
Program. Lang. 4(POPL), 51:1–51:32 (2020). https://doi.org/10.1145/3371119

https://doi.org/10.1145/3236785
https://doi.org/10.1145/3236785
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/351240.351262
https://doi.org/10.23638/LMCS-16(3:13)2020
https://doi.org/10.23638/LMCS-16(3:13)2020
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1016/J.ENTCS.2016.09.036
https://doi.org/10.1016/J.ENTCS.2016.09.036
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.1016/J.APAL.2005.05.022
https://doi.org/10.1016/J.APAL.2005.05.022
https://doi.org/10.1145/2603088.2603150
https://doi.org/10.1145/2603088.2603150
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1007/978-3-319-57418-9_17
https://doi.org/10.1007/978-3-319-57418-9_17
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119

	Artifact Report: an Abstract, Certified Account of Operational Game Semantics

