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Operational game semantics (OGS) is a method for interpreting programs as strategies in suitable games, or
more precisely as labelled transition systems over suitable games, in the sense of Levy and Staton. Such an
interpretation is called sound when, for any two given programs, bisimilarity of associated strategies entails
contextual equivalence. OGS has been applied to a variety of languages, with rather tedious soundness proofs.

In this paper, we contribute to the unification and mechanisation of OGS. Indeed, we propose an abstract
notion of language with evaluator, for which we construct a generic OGS interpretation, which we prove
sound. Our framework covers a variety of simply-typed and untyped lambda-calculi, notably featuring fixed
points, continuations, and recursive datatypes. All constructions and proofs are entirely mechanised in the
Coq proof assistant.
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1 INTRODUCTION

Operational game semantics [18, 20] (OGS) is a method for constructing models of programming
languages. OGS finds a sweet spot between contextual equivalence, which is entirely syntactic,
and game semantics [2, 11], which is syntax-free. OGS models are generally easier to construct
than proper game models, e.g., some languages have OGS models but no known proper game
model [17]. Furthermore, OGS models are useful for proving the correctness of decision procedures
for contextual equivalence [4, 14, 22].

OGS proceeds by interpreting open programs as labelled transition systems (LTSs) and comparing
the resulting LTSs w.r.t. weak bisimilarity. The labelled transitions model the interactions of the
considered program with any possible environment, i.e., a substitution and an evaluation context.
Crucially, the constructed LTSs are first-order, even for higher-order languages.

Each OGS model comes with a soundness proof, i.e., a proof that for all pairs of programs, weak
bisimilarity of induced strategies entails contextual equivalence. Such proofs are rather difficult,
and are done by hand on a case-by-case basis. They rely on a notion of composition of LTSs.

A few authors have attempted to design a unified theory of OGS. Notably, Levy and Staton [21]
offered a high-level categorical framework. More recently, Laird [19] proposed a unifying framework
for OGS, in which he proves that weak bisimilarity of LTSs is a congruence w.r.t. composition, a
standard lemma towards soundness.
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Contribution. In this work, we go further, and prove a generic soundness result, mechanised
in Coq. We thus contribute to both unification and mechanisation of OGS. Our contributions to
unification are as follows.
• We introduce an abstract notion of language with evaluator, called a language machine, which
notably covers several 𝜆-calculi and variants of 𝜆𝜇�̃�-calculi [7, 8].
• For any language machine, we construct an OGS model.
• We prove that this model is sound w.r.t. some abstract analogue of contextual equivalence,
under suitable hypotheses.

We furthermore provide a complete Coq mechanisation of our results, to emphasise their computa-
tional aspects and firmly ground our model in a constructive meta-theory. We favour a traditional,
code-less, exposition along the paper for clarity. For the interested reader, we however systematically
use hyperlinks represented by ( )1 to link definitions and theorems to their mechanised counter-
part. The Coq development is inspired by Levy and Staton’s transition systems over games [21],
and includes notably the following main contributions.
• We present OGS using the well-scoped approach ( ), in the sense that everything is indexed
by typing contexts, and variables are accessed as de Bruijn indices. This is in sharp contrast
with previous work, which uses nominal style.
• We instantiate our abstract notion of language on several concrete examples: a simply-typed
call-by-value 𝜆-calculus with recursion ( ), a pure untyped call-by-value 𝜆-calculus ( ), the
𝜆𝜇�̃�𝑄 -calculus [7] ( ), the polarised System L ( ), and the polarised SystemD ( ) fromDownen
and Ariola [8].
• We implement ( ) an indexed variant of the interaction trees library [25], which we use to
define LTSs coinductively — as opposed to the more traditional, relational definition.
• We introduce ( ) a new fixed-point combinator over a system of so-called eventually guarded

equations, whose solution is unique w.r.t. strong bisimilarity. We use this combinator to define
composition of OGS LTSs, which is a crucial ingredient to the soundness proof.

Before diving into the details, let us provide a high-level overview of the technical development.

Overview. Our first step, in §2, consists in reformulating the standard contextual equivalence
used in OGS, namely Closed Instantiation of Use (CIU) equivalence [23, 24]. The definition of CIU
equivalence is similar to contextual equivalence, but w.r.t. a simpler notion of context. Mason and
Talcott proved that CIU equivalence in fact coincides with contextual equivalence.

Standard CIU equivalence checks that its arguments, say𝑀 and 𝑁 , behave the same under any
closed instantiation of their free variables, in any closed evaluation context of some fixed, basic
type like the booleans: 𝐸 [𝑀 [𝜎]] � 𝐸 [𝑁 [𝜎]], for some notion of observation of closed booleans.
We argue that, up to mild expository adjustments, this may in fact be viewed as𝑀 and 𝑁 behaving
the same under any closed instantiation of their free variables. The idea is to make the ambient
evaluation context explicit, modelling it as a “context variable”. Thus, we move from terms𝑀 to so-
called named terms 𝛼 [𝑀] for some context variable 𝛼 , or, in 𝜇�̃�-style notation, ⟨𝑀 | 𝛼 ⟩, and putting
𝑀 in some evaluation context 𝐸 is now modelled as a mere instantiation {𝛼 ↦→ 𝐸}. There is a slight
twist to handle the top-level context, but ignoring this for now, up to such expository adjustments,
one may consider CIU equivalence as comparing its arguments under any closed instantiation.
We call this substitution equivalence. This slightly non-standard presentation— conflating both
usual values and evaluation contexts into a single syntactic category of generalized values—is
instrumental to simplify the axiomatisation of a language and the generic OGS construction.
1To the anonymous reviewers: for the purpose of this submission, we link to an entirely anonymous github repository.
They can be soundly followed without breach of anonymity.
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After briefly recalling OGS on a simple language in §3, we introduce our abstract notion of
language with evaluator, called language machine in §4. For this, there is a basic, straightforward
infrastructure, and then what we view as the core of OGS, namely how evaluation shapes the
messages exchanged by the program and environment. Roughly, the basic infrastructure consists of
• a set of types — contexts are then defined as sequences of types,
• a family of configurations, indexed by contexts, and
• a family of values, indexed by sequents, i.e., pairs of a context and a type.

In this presentation, configurations replace the more usual syntactic category of terms and values
subsume both the usual values and evaluation contexts. Configurations and values come with a
substitution operation that replaces variables with values.
Beyond this basic infrastructure, language machines further feature an evaluation map, whose

shape is inspired by the treatment of messages (a.k.a. moves) in traditional OGS. There, when a
normal form is reached, it is immediately split into:
• the head variable, on which the normal form is stuck,
• the observation performed on it, which may introduce fresh variables, and
• the filling, which assigns values to these fresh variables.

A message is then sent to the other player, consisting of the head variable and the observation; the
filling is stored for later use.

Example 1.1. The simplest example is perhaps when the normal form is a value 𝑣 . With explicit
context variables, this is modelled as ⟨ 𝑣 | 𝛼 ⟩, for some context variable 𝛼 . In this case:
• The head variable is 𝛼 .
• The observation is a “return” observation ⟨𝑥 | □ ⟩, saying that we are returning a value to the
head variable, here denoted by □. The returned value is not given in the observation but instead
referred to by the fresh variable 𝑥 , to be understood as a binder.
• Finally, the filling is the assignment {𝑥 ↦→ 𝑣}.

Example 1.2. A slightly less trivial, yet typical example is when the normal form has the shape
𝐸 [𝑥 𝑣], for some evaluation context 𝐸 and value 𝑣 . In our notation, this looks like ⟨𝑥 | •𝑣 ;𝐸 ⟩. In
this case:
• The head variable is 𝑥 .
• The observation is an “apply” observation ⟨□ | •𝑦;𝛼 ⟩, saying that we are applying the head
variable □ to some argument 𝑦 in the context 𝛼 .
• Finally, the filling is the assignment {𝑦 ↦→ 𝑣, 𝛼 ↦→ 𝐸}.

We model this in the abstract setting by introducing the notion of observation structure. An
observation structure is a type-indexed family of observations, equipped with a map dom associating
a context to each observation. Evaluation is then postulated as a partial map from configurations
to triples of
• a head variable 𝑥 in the current context,
• an observation 𝑜 over the type of 𝑥 , and
• a value of the expected type for each variable in dom(𝑜),

satisfying some coherence axioms.

Remark 1.3. In this case, what is meant by partial map is a map 𝐴 → 𝒟𝐵, where 𝒟 denotes
Capretta’s delay monad [5], see Definition 4.5 below.

This axiomatisation suffices for defining an abstract counterpart of the substitution equivalence
introduced in §2 (Definition 4.24), and of OGS (§5). For the latter, we first introduce an abstract
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notion of two-player game, essentially following Levy and Staton [21], and construct such a game
from any language machine. Moves (a.k.a. messages) in this game are pairs of a variable and an
observation over its type. We then define the interpretation of the language’s configurations as
strategies in this game.
We are then in a position to state our main result (Theorem 6.14), in §6, which states that any

two configurations that have weakly bisimilar interpretations as strategies, are in fact substitution
equivalent. For the result to actually hold, however, we need to make an additional hypothesis.
This was surprising to us, as this hypothesis is trivially satisfied in most languages we know. To
the best of our knowledge, this is the first time this condition is explicitly identified.

Let us note that this hypothesis is adjacent but orthogonal to the well-known “infinite chattering”
problem in game semantics or process calculi, i.e., the composition of total strategies. In OGS
settings, an important reasoning step is to exhibit a bisimulation between a composition of two
strategies on one side and a configuration evaluation on the other side. While the evaluation
unsurprisingly features only (silent) reduction steps, the composition features both reduction steps
and (again silent) interaction steps. As such, the bisimulation needs to “skip over” interaction steps.
To justify this skipping over, the main stake is to find reduction steps often enough, in between P
and O interaction steps. Essentially, the problem is that upon receiving a message, a player will
replace the head variable with a value, but this may not yield a reducible active configuration. One
such case, dubbed chattering, is when the replacing value is again a variable. This is easily dealt
with in our proof with some type indexing, structurally enforcing acyclicity. Our new hypothesis is
needed in the other case, i.e. when the replacing value is not a variable, as nothing can be deduced
about reduction steps of the obtained configuration.
For example, let us consider the “return” observation above𝑚 B ⟨𝑥 | □ ⟩. Upon reception of a

message of the form (𝛼 ′,𝑚), a player starts by instantiating the head variable 𝛼 ′. If this is in turn a
variable, then the other player finds themselves in a similar situation, and so on, until some non-
variable value is reached, by finiteness of chattering as discussed above. The active configuration
now has the shape ⟨𝑥 | 𝐸 ⟩, for some 𝐸. However, it might well be the case that ⟨𝑥 | 𝐸 ⟩ still does
not reduce2. In the meantime since the first message, not a single reduction step has happened. In
order to ensure that the interaction is productive w.r.t. reduction steps, we need to make sure that
this instantiation process terminates: this is precisely the purpose of our additional hypothesis,
postulating well-foundedness of the relation describing these problematic instanciations.

Plan. After explaining the idea of substitution equivalence in §2 and briefly recalling OGS in §3,
we introduce language machines and the general notion of substitution equivalence in §4. We
then define the OGS model of any language machine in §5. We sketch the soundness proof in §6,
with a focus on our fixed-point combinator for eventually guarded equations. Finally, we provide a
comparison with the existing literature in 8, and conclude and give some perspectives in §9.

2 CIU EQUIVALENCE THROUGH SUBSTITUTION EQUIVALENCE

In this section, we explain the idea of substitution equivalence, and the necessary pre-processing
step that come with it, on a simple example, namely simply-typed, call-by-value 𝜆-calculus with a
unit type and recursive functions. Terms are generated by the following grammar

values ∋ 𝑣,𝑤 F 𝑥 | {} | 𝜆rec 𝑓 , 𝑥 . 𝑝
programs ∋ 𝑝, 𝑞 F 𝑣 | 𝑝 𝑞

2For example if 𝑥 is of function type and 𝐸 is a context starting by applying the hole to some value.
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where 𝜆rec binds 𝑓 and 𝑥 in 𝑡 , as usual. The language is typed. Types and typing contexts are
generated by the following grammar,

𝐴, 𝐵 F ⊤ | 𝐴→ 𝐵 Γ F 𝜀 | Γ, 𝑥 : 𝜏

with the following, standard typing rules.

𝑥 : 𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏 Γ ⊢ {} : ⊤

Γ, 𝑓 : 𝐴→ 𝐵, 𝑥 : 𝐴 ⊢ 𝑝 : 𝐵
Γ ⊢ 𝜆rec 𝑓 , 𝑥 . 𝑝 : 𝐴→ 𝐵

Γ ⊢ 𝑝 : 𝐴→ 𝐵 Γ ⊢ 𝑞 : 𝐴
Γ ⊢ 𝑝 𝑞 : 𝐵

From now on, all terms are implicitly considered as coming with a typing derivation. Capture-
avoiding substitution is defined as usual, and we evaluation contexts are defined by the following
grammar

contexts ∋ 𝐸 F □ | 𝑝 𝐸 | 𝐸 𝑣.

Context application is defined accordingly. Finally, evaluation is defined by the following inference
rules.

(𝜆rec 𝑓 , 𝑥 . 𝑝) 𝑣 → 𝑝 [𝑓 ↦→ (𝜆rec 𝑓 , 𝑥 . 𝑝), 𝑥 ↦→ 𝑣]
𝑝 → 𝑞

𝐸 [𝑝] → 𝐸 [𝑞]

As explained in the introduction, ciu equivalence of 𝑝 and 𝑞 is defined to mean 𝐸 [𝑝 [𝜎]] �
𝐸 [𝑞 [𝜎]], for all closing substitutions 𝜎 and boolean contexts 𝐸, for some fixed equivalence relation
� between booleans closed programs. More precisely,

Notation 2.1. We write Γ ⊢ 𝜎 : Δ for assignments to each variable 𝑥 : 𝜏 ∈ Δ of a value of type 𝜏 in
context Γ.

Definition 2.2. Two programs ⊢ 𝑝, 𝑞 of type ⊤ are said to coterminate whenever the evaluation of
𝑝 ends iff the evaluation of 𝑞 ends, or more precisely, (𝑝 →∗ {}) ⇔ (𝑞 →∗ {}).

Definition 2.3. For any context Γ and type 𝐴, two programs Γ ⊢ 𝑝, 𝑞 : 𝐴 are ciu-equivalent, which
we denote by 𝑝 ≈ciu 𝑞, iff for all assignments 𝜀 ⊢ 𝜎 : Γ, and closed evaluation contexts 𝐸 of type unit
with a hole of type 𝐴, 𝐸 [𝑝 [𝜎]] and 𝐸 [𝑞 [𝜎]] coterminate.

With the main purpose of unifying notions, and hence simplifying the abstract framework, we
want to put context application 𝐸 [−] and substitution (−)[𝜎] on an equal footing in this definition.

Let us first give a bird’s eye view of the process, and only then get into some technical detail.
The overall idea is to compile our simply-typed, call-by-value 𝜆-calculus down to a slightly

lower-level language [7, 8], in which
• evaluation contexts are first-class values,
• there are context variables, which may be replaced by evaluation contexts in substitutions, just
like program variables may be replaced by values, and
• evaluation gets closer in style to an abstract machine, as it now operates on “configurations”
⟨𝑝 | 𝜋⟩, i.e., pairs of a program 𝑝 and an evaluation context 𝜋 .

This change in style is reflected in the syntax of evaluation contexts by writing
• •𝑣 ;𝜋 instead of 𝜋 [□ 𝑣], and
• 𝑝•;𝜋 instead of 𝜋 [𝑝 □].

Thus, e.g., a reduction of the form

(𝜆rec 𝑓 , 𝑥 . 𝑥) 𝑣 𝑤 → 𝑣 𝑤
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will be interpreted as taking place in a suitably-typed, variable evaluation context 𝛼 , and compiled
down to

⟨(𝜆rec 𝑓 , 𝑥 . 𝑥) 𝑣 𝑤 | 𝛼⟩ → ⟨𝑤 | ( (𝜆rec 𝑓 , 𝑥 . 𝑥) 𝑣)•;𝛼⟩ evaluate argument
→ ⟨(𝜆rec 𝑓 , 𝑥 . 𝑥) 𝑣 | •𝑤 ;𝛼⟩ push argument
→ ⟨𝑣 | (𝜆rec 𝑓 , 𝑥 . 𝑥)•; •𝑤 ;𝛼⟩ evaluate argument
→ ⟨𝜆rec 𝑓 , 𝑥 . 𝑥 | •𝑣 ; •𝑤 ;𝛼⟩ push argument
→ ⟨𝑣 | •𝑤 ;𝛼⟩ 𝛽 reduce.

The main point of this is that, upon compilation into this lower-level language, comparing programs
𝑝 and 𝑞 becomes comparing configurations ⟨𝑝 | 𝛼⟩ and ⟨𝑞 | 𝛼⟩, and the effect of 𝐸 [−[𝜎]] in the
source language may be achieved by the mere substitution

−[𝜎, 𝛼 ↦→ 𝐸] .
Let us now give a bit more technical detail on the lower-level language.
Low-level types 𝜏 are either simple types 𝐴, or negated simple types ¬𝐴. Programs have simple

types 𝐴, while evaluation contexts have negated types ¬𝐴. We have syntactic categories for
programs and evaluation contexts, and a configuration is a pair of a program of some type 𝐴 and
of an evaluation context of type ¬𝐴. Values and programs are defined and typed exactly as before.
Evaluation contexts and configurations are specified by the following grammar.

values ∋ 𝑣,𝑤 F 𝑥 | {} | 𝜆rec 𝑓 , 𝑥 . 𝑝
programs ∋ 𝑝, 𝑞 F 𝑣 | 𝑝 𝑞
contexts ∋ 𝜋, 𝜅 F 𝑥 | •𝑣 ;𝜋 | 𝑝•;𝜋

configurations ∋ 𝑐, 𝑑 F ⟨𝑝 | 𝜋 ⟩
The typing rules for values and programs are again exactly as before (except that typing contexts
may now comprise evaluation context variables). Furthermore, the variable typing rule now covers
the fact that any evaluation context variable 𝛼 : ¬𝐴 is an evaluation context of type ¬𝐴. Further
typing rules, for evaluation contexts and configurations, are shown in the first part of Figure 1.
Capture-avoiding substitution is defined straightforwardly, and evaluation rules are in the second
part of Figure 1. We may now introduce substitution equivalence.

Γ ⊢ 𝑣 : 𝐴 Γ ⊢ 𝜋 : ¬𝐵
Γ ⊢ •𝑣 ;𝜋 : ¬(𝐴→ 𝐵)

Γ ⊢ 𝑝 : 𝐴→ 𝐵 Γ ⊢ 𝜋 : ¬𝐵
Γ ⊢ 𝑝•;𝜋 : ¬𝐴

Γ ⊢ 𝑝 : 𝐴 Γ ⊢ 𝜋 : ¬𝐴
Γ ⊢ ⟨𝑝 | 𝜋 ⟩

⟨𝑝 𝑞 | 𝜋 ⟩ → ⟨𝑞 | 𝑝•;𝜋 ⟩
⟨ 𝑣 | 𝑝•;𝜋 ⟩ → ⟨𝑝 | •𝑣 ;𝜋 ⟩

⟨ 𝜆rec 𝑓 , 𝑥 . 𝑝 | •𝑣 ;𝜋 ⟩ → ⟨𝑝 [𝑓 ↦→ (𝜆rec 𝑓 , 𝑥 . 𝑝), 𝑥 ↦→ 𝑣] | 𝜋 ⟩

Fig. 1. Typing and evaluation rules for the lower-level variant of call-by-value 𝜆-calculus

Definition 2.4. For any context Γ, two configurations Γ ⊢ 𝑐, 𝑑 and 𝑑 are substitution equivalent,
which we denote by 𝑐 ≈sub 𝑑 , iff for all assignments (𝛼 : ¬⊤) ⊢ 𝜎 : Γ, 𝑐 [𝜎] and 𝑑 [𝜎] coterminate, in
the sense that (𝑐 →∗ ⟨ {} | 𝛼 ⟩) ⇔ (𝑑 →∗ ⟨ {} | 𝛼 ⟩).

The main point of this section is:
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Proposition 2.5. For any context Γ and type 𝐴 of the source language, two programs Γ ⊢ 𝑝, 𝑞 : 𝐴
are ciu-equivalent iff, in the typing context (Γ, 𝛽 : ¬𝐴) (with 𝛽 fresh w.r.t. Γ), ⟨𝑝 | 𝛽 ⟩ and ⟨𝑞 | 𝛽 ⟩ are
substitution equivalent.

Proof. There is a one-to-one correspondence between assignments (𝛼 : ¬⊤) ⊢ 𝜎 : (Γ, 𝛽 : ¬𝐴) in
the lower-level language and pairs of an assignment 𝜀 ⊢ 𝛾 : Γ and an evaluation 𝐸 context of type
⊤ with a hole of type 𝐴 in the source language. Furthermore, for such assignments and context,
⟨𝑝 | 𝛽 ⟩[𝜎] and 𝐸 [𝑝 [𝛾]] coterminate in the obvious sense, so result follows. □

3 A PRIMER ON OGS

In this section, we explain OGS on the example language introduced in the previous section.
The rough idea of OGS is that of a game between Proponent (P), and Opponent (O), each of

which holds complementary program fragments, and follows a strategy dictated by evaluation. P
and O both name their program fragments with variables, and moves in the game allow them to
send variables, albeit in a constrained way, but no proper terms.

There are thus two kinds of positions in the game, in which one player is active and the other is
waiting. Intuitively, the active player is evaluating some configuration, while the waiting one is
storing their values and waiting to be solicited by the active player. When the active player, say A,
gets stuck on a variable held by the waiting player, say W, then A sends a message to W, which
becomes active.
Messages are determined by the normal forms hit by evaluation and proceed by splitting them

into a head variable, an observation and an assignment. The message will consist of the head
variable and the observation, while the assignment is kept private, only sharing its variables.
Assuming the configuration is well typed, normal forms may take the following forms.
⟨𝑥 ′ | •𝑣 ;𝜋 ⟩ — Player A wants to compute the application 𝑥 ′ 𝑣 , but does not have access to the

function 𝑥 ′; in this case they create fresh variables, say 𝑦 and 𝛼 , record the assignment {𝑦 ↦→ 𝑣,

𝛼 ↦→ 𝜋}, and send the message (𝑥 ′, ⟨□ | •𝑦;𝛼 ⟩);
⟨ 𝑣 | 𝛼 ′ ⟩ — Player A has reached a value, but only W knows what to do with it next; in this case,

A creates a fresh variable, say 𝑦, records the assignment {𝑦 ↦→ 𝑣}, and sends the message
(𝛼 ′, ⟨𝑦 | □ ⟩).

Notation 3.1. Although messages are really the pair of a head variable and an observation, we
conflate them with their embedding into (normal) configuration. As such, the above messages
(𝑥 ′, ⟨□ | •𝑦;𝛼 ⟩) and (𝛼 ′, ⟨𝑦 | □ ⟩) are also written ⟨𝑥 ′ | •𝑦;𝛼 ⟩ and ⟨𝑦 | 𝛼 ′ ⟩, respectively. It may not
be immediately obvious to the reader how to figure out which is the head variable in this notation:
we use it when the context makes it clear which player is active, and which player generated which
variable; in this case, the head variable in a message by some player is the single variable generated
by the other player.
Furthermore, in order to clarify which player generated which variable, we tend to prime all

variables generated by the (initially) waiting player.

Remark 3.2. A message like 𝑥 ·⟨□ | • 𝑦;𝛼 ⟩ is often noted in the literature on OGS as 𝑥 (𝑦, 𝛼),
following a process-calculi notation, or as 𝑐𝑎𝑙𝑙𝑥 (𝑦, 𝛼). Such a message corresponds to a question
of the channel 𝑥 , providing the 𝑦 as an argument and 𝛼 as the return channel. A message like
𝛼 ·⟨𝑥 | □ ⟩ is then noted as 𝛼 (𝑥) or as 𝑟𝑒𝑡𝛼 (𝑥), and corresponds to an answer of 𝑥 via the channel 𝛼 .

When the interaction is well-bracketed, as this is the case for languages without control operators,
continuation names like 𝛼 are often omitted. Here, we choose to work in the more general setting
of possible non-well-bracketed interactions, so that we crucially use them.

Returning to our explanation of OGS, let us now explain how messages are received:

7
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• upon receiving a message ⟨𝑥 ′ | •𝑦;𝛼 ⟩, player W looks up the value, say 𝑣 ′, of 𝑥 ′ in their store,
and evaluates ⟨ 𝑣 ′ | •𝑦;𝛼 ⟩;
• upon receiving a message ⟨𝑦 | 𝛼 ′ ⟩, player W looks up the value, say 𝜋 ′, of 𝛼 ′ in their store, and
evaluates ⟨𝑦 | 𝜋 ′ ⟩.
Since our mechanisation is well-scoped, we record the context increments Θ incurred by each

message type:
• for a message of the form ⟨𝑥 ′ | •𝑦;𝛼 ⟩, with 𝑥 ′ : 𝐴→ 𝐵, the fresh variables are 𝑦 and 𝛼 , so the
context increment is Θ𝐴→𝐵 := (𝑦 : 𝐴, 𝛼 : ¬𝐵);
• for a message of the form ⟨𝑦 | 𝛼 ′ ⟩, with 𝛼 ′ : ¬𝐴, the fresh variable is 𝑦, so the context increment
is Θ¬𝐴 := (𝑦 : 𝐴).

In this particular toy language, as there is at most one kind of observation per type of the head
variable, and since the fresh variable’s names are uniquely determined in the well-scoped approach
with De Bruijn indices, messages are entirely determined by the “called” variable, i.e., 𝑥 ′ and 𝛼 ′
above. Assuming variables are split into those, say Γ, of A, and those, say Δ, of W, we may define
messages that A may send to be all 𝑥 ′ : 𝜏 ∈ Δ where 𝜏 ≠ ⊤. Indeed:
• if 𝜏 is a non-negated type, then it must have the shape 𝐴→ 𝐵, and the message is ⟨𝑥 ′ | •𝑦;𝛼 ⟩
in the extended context pair (Γ + Θ𝐴→𝐵,Δ);
• if 𝜏 is a negated type ¬𝐴, then the message is ⟨𝑦 | 𝑥 ′ ⟩ in the extended context pair (Γ +Θ¬𝐴,Δ).

Notation 3.3. We denote byΘ𝑥 the context incrementΘ𝜏 corresponding to the type of the variable
𝑥 : 𝜏 ∈ Δ.

From there, we may define the positions and moves of the game as follows.

Definition 3.4. A position is a pair of typing contexts, together with a boolean tag indicating
activity. We denote active positions by (Γ,Δ)+, and passive ones by (Γ,Δ)− .
A move from an active position (Γ,Δ)+ is some 𝑥 ′ : 𝜏 ∈ Δ with 𝜏 ≠ ⊤; its target position is
(Γ + Θ𝑥 ′ ,Δ)− .
A move from a passive position (Γ,Δ)− is the same with roles switched, i.e., some 𝑥 : 𝜏 ∈ Γ with

𝜏 ≠ ⊤; its target position is (Γ,Δ + Θ𝑥 )+.

Remark 3.5. Each tagged pair (Γ,Δ)+ is only the position of one player, say P, at some point in
the game. Variables in Γ are those generated by P. The position being active, moves are calls to
variables in Δ. The position held by the other player at the same time is (Δ, Γ)− .

Example 3.6. Let us consider the position formed by the typing contexts Γ = (𝜅 : B) and
Δ = (𝛼 : (B → B) → (B → B)) with B the type of booleans tt,ff . The configuration ⟨ 𝜆𝑥 .𝑥 | 𝛼 ⟩
formed by the identity function, in the position (Γ,Δ)+, may interact with the assignment [𝛼 ↦→
⟨□ | • tt; •not;𝜅 ⟩], that is taken in the dual position (Δ, Γ)+, with not the negation operator of
type B→ B. The interaction would produce the trace formed by the following sequence of moves:

𝛼 ·⟨𝑥1 | □ ⟩ 𝑥1·⟨□ | • 𝑦1;𝛼2 ⟩ 𝛼2·⟨𝑥2 | □ ⟩ 𝑥2·⟨□ | • tt;𝛼3 ⟩
𝑦1·⟨□ | • tt; 𝛽1 ⟩ 𝛽1·⟨ tt | □ ⟩ 𝛼3·⟨ff | □ ⟩ 𝜅 ·⟨ff | □ ⟩

We then define strategies coinductively:

Definition 3.7. A strategy from some active position (Γ,Δ)+ consists either of a formal, silent
move to the same position (Γ,Δ)+, or of a move𝑚 from it, together with a residual strategy from
the target position of𝑚.
A strategy from some passive position (Γ,Δ)− is a map associating to each move𝑚 from it a

residual strategy from the target of𝑚.

8
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The basic result that makes an OGS useful, and which we prove below in the abstract setting, is:
Theorem 3.8. If two strategies are weakly bisimilar, then they are substitution equivalent.

Here, weak bisimilarity between two strategies is also defined coinductively in the straightforward
way:

Definition 3.9. Two strategies 𝑆 and 𝑇 from some active position are weakly bisimilar iff
• if 𝑆 , after finitely many silent moves, plays some move𝑚, then 𝑇 also plays𝑚 after finitely
many silent moves, and furthermore the residual strategies are again weakly bisimilar,
• and conversely.
Two strategies 𝑆 and 𝑇 from some passive position are weakly bisimilar iff, for each move, the

residual strategies of 𝑆 and 𝑇 are weakly bisimilar.
Our task is now to carve out from this concrete example (and the few others we have in mind)

what makes it work.

4 ABSTRACT MACHINES, ABSTRACTLY

In order to get to the core of the OGSmethod and its soundness proof, we start by introducing some
abstractions decoupling us from the syntactic details of a particular language. Building upon this
basis wewill in later sections provide a high-levelOGS construction (§5) and its soundness proof (§6).
Following standard practice in dependently-typed programming we adopt an intrinsically typed,
well scoped presentation of all syntactic constructions [3, 9]. In the remainder of this section, we
define contexts and families (§4.1), introduce successively evaluators (§4.2), substitution structures
on families (§4.3), and observations (§4.4), and finally introduce language machines and define
substitution equivalence (§4.5).

We fix a set 𝑇 of types for the whole section.

4.1 Contexts, families and variables

In intrinsically-typed settings, a context is simply a list of types. To match common practice, we
append to the right. Variables are given by typed de Bruijn indices 𝑖 : 𝜏 ∈ Γ. Formally, contexts are
defined inductively by the following two inference rules ( ),

∅ : Ctx 𝑇
Γ : Ctx 𝑇 𝜏 : 𝑇

Γ, 𝜏 : Ctx 𝑇
while de Bruijn indices ( ) are defined by the following ones.

top : 𝜏 ∈ Γ, 𝜏
𝑖 : 𝜏 ∈ Γ

pop 𝑖 : 𝜏 ∈ Γ, 𝜎
Definition 4.1 ([9], ). A family is a Ctx 𝑇 -indexed set, i.e., a map Ctx 𝑇 → Set.
A sorted family is a map of type 𝑇 → Ctx 𝑇 → Set.
For a sorted family X, an element 𝑢 : X 𝜏 Γ may be thought of as an X-term of type 𝜏 in context

Γ.
Example 4.2. de Bruijn indices—i.e., variables—form a sorted family and so do values. On the

other hand, configurations form a family.
Definition 4.3. A morphism 𝑓 : X _ Y of families consists of a map 𝑓 : ∀Γ : Ctx 𝑇, X Γ → Y Γ.
A morphism 𝑓 : X _ Y of sorted families consists of a map 𝑓 : ∀𝜏 : 𝑇, Γ : Ctx𝑇, X 𝜏 Γ → Y 𝜏 Γ.
Proposition 4.4. Families (resp. sorted families) and morphisms between them form a category

Fam 𝑇 (resp. Fams 𝑇 ).
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4.2 Evaluators

In this subsection, we introduce abstract evaluators. For our purposes, an evaluator should be
some sort of abstract machine for our language. As in the introductory example (Fig. 1) the typing
judgment of the configurations of this machine only mentions a typing context. For this reason
they are represented by an unsorted family.

We wish to handle languages with non-termination, and it is the only effect we consider in this
paper. Therefore it is natural to look at monadic evaluators in the delay monad [5], which we now
recall.

Definition 4.5 ( ). Let𝒟 𝑋 = 𝜈𝐴. (𝑋 +𝐴), where 𝜈 denotes the coinductive type former. Thus,
an element of 𝒟 𝑋 is either ret 𝑥 for some 𝑥 : 𝑋 , or 𝜏 .𝑎 for some 𝑎 : 𝒟 𝑋 , coinductively.

Notation 4.6. We write interchangeably (𝑥 ← 𝑢; 𝑣 𝑥) and 𝑢 >>= 𝑣 for the bind ( ) operator of
𝒟—evaluate 𝑢, and if it returns some 𝑥 , then evaluate 𝑣 𝑥 . We also denote by D the pointwise
lifting of the delay monad to categories of families over some fixed set, typically Fam 𝑇 and Fams 𝑇 .
We write ≈𝒟 for weak bisimilarity ( ), i.e., either both sides loop or both terminate on the same
element 𝑥 : 𝑋 . We write ≊

𝒟
for strong bisimilarity ( ), i.e., either both sides loop or both terminate

on the same element in the same number of 𝜏 steps. Finally, when 𝑅 is a relation, we write 𝒟 𝑅

for the lifting of the delay monad to the category of relations, relaxing the definition of weak
bisimilarity and relating elements in 𝒟 that both loop or both terminate on elements related by 𝑅.

In addition to the evaluator eventually computing a normal form, we postulate an embedding of
normal forms into configurations, such that evaluating a normal form 𝑛 returns 𝑛.

Definition 4.7 ( ). An evaluation structure on C : Fam 𝑇 and N : Fam 𝑇 is given by maps:

eval : C _ 𝒟 N emb : N _ C
such that eval ◦ emb ≈𝒟 ret.

Example 4.8 (𝜆rec, ). eval simply captures the evaluation rules described in Section 1, but turns
their relational description into an executable big-step interpreter in the delay monad.

In the above definition C andN should be thought of respectively as the families of configurations
and normal forms. Both will be further described in the following subsections.

4.3 Substitution

Let us now flesh out the role of variables. The idea is that, through indexing, variables occur in
configurations, and may be substituted with some values. We explain in this section what it means
for a sorted and unsorted family to have a substitution operation. As is standard in the well-scoped
approach, we mean substitution in the parallel sense. The basic ingredient for this is the the notion
of context map from Fiore and Szamozvancev [9], which we call assignments.

Definition 4.9 ( ). For any contexts Γ,Δ : Ctx𝑇 and sorted familyX, anX-assignment 𝜎 : Γ—[X]→Δ,
or assignment when X is clear from context, consists of an element of X 𝜏 Δ, for all 𝑥 : 𝜏 ∈ Γ, i.e.,
we have

−—[−]→− : Ctx 𝑇 → Fams 𝑇 → Ctx 𝑇 → Set

Γ—[X]→Δ B ∀𝜏 : 𝑇, 𝜏 ∈ Γ → X 𝜏 Δ.

Using assignments we can readily define a candidate type for substitution:

sub : ∀𝜏 : 𝑇, Γ,Δ : Ctx 𝑇, X 𝜏 Γ → (Γ—[X]→Δ) → X 𝜏 Δ

10

https://github.com/ogs-lics24/ogs-lics24/tree/lics/theories/ITree/Delay.v#L14
https://github.com/ogs-lics24/ogs-lics24/tree/lics/theories/ITree/Structure.v#L45
https://github.com/ogs-lics24/ogs-lics24/tree/lics/theories/ITree/Eq.v#L153
https://github.com/ogs-lics24/ogs-lics24/tree/lics/theories/ITree/Eq.v#L23
https://github.com/ogs-lics24/ogs-lics24/tree/lics/theories/OGS/Machine.v#L37
https://github.com/ogs-lics24/ogs-lics24/tree/lics/theories/Examples/Lambda/CBVTyped.v#L275
https://github.com/ogs-lics24/ogs-lics24/tree/lics/theories/Utils/Ctx.v#L134


An abstract, certified account of operational game semantics ESOP ’25, 2025, Hamilton, Canada

This type can be more succintly expressed as X _ JX,XK𝑠 using the following internal substitu-

tion hom of sorted families:

J−,−K𝑠 : Fams 𝑇 → Fams 𝑇 → Fams 𝑇

JX,YK𝑠 𝜏 Γ = ∀Δ : Ctx 𝑇, (Γ—[X]→Δ) → Y 𝜏 Δ

Definition 4.10 ( ). A substitution monoid X : Mon 𝑇 is a sorted family X : Fams 𝑇 with maps:

var : −∈−_ X sub : X _ JX,XK𝑠
subject to associativity and unitality laws.

Remark 4.11. Each functor JY,−K has a left adjoint − ⊙𝑠 Y, and since maps X _ JY,ZK𝑠 are
naturally isomorphic to mapsX⊙𝑠Y _ Z, we recognise the internal-hom presentation of monoids.
Categorically, a substitution monoid amounts to a monoid object in the skew-monoidal category
(Fams 𝑇,−∈−,−⊙𝑠−), see [9].

We now know what it means for a sorted family—for example the values of our language—to
have a substitution: to be a monoid. To extend this notion to unsorted families, like configurations,
we want to consider a slightly different notion of substitution, where the object of the substitution
and the replacements are not of the same family, and do not even live in the same category. In
particular, we wish to model the substitution of all the variables of a configuration by values. To do
this we can realise that our internal substitution hom actually arises as the pointwise lifting of an
other “exponentiation”, this time of an unsorted family:

J−,−K : Fams 𝑇 → Fam 𝑇 → Fam 𝑇

JX,YK Γ B ∀Δ : Ctx 𝑇, (Γ—[X]→Δ) → Y Δ

Our substitution of variables in configurations C by valuesV may now be typed as C _ JV, CK.

Definition 4.12 ( ). Given a substitution monoidM : Mon𝑇 , a substitutionM-module X : M-Mod
is a family X : Fam 𝑇 equipped with a map:

sub : X _ JM,XK

subject to associativity and unitality laws.

Remark 4.13. Each functor JV,−K also has a left adjoint − ⊙ V and much like the substitution
of sorted families is a monoid in disguise, substitution of families is a monoidal action in disguise.
Categorically, a substitution module is a form of module over a monoid. Indeed (Fam 𝑇,−⊙−)

constructs a skew right-module category over the skew monoidal category (Fams 𝑇,−∈−,−⊙𝑠−).
Such amodule category is sometimes called an actegory when not skew. In this setting, a substitution
module is a skew right-module object in (Fam 𝑇,−⊙−).

4.4 Observations

We now tackle perhaps the most important for the OGS construction: the messages that Proponent
and Opponent will exchange. As informally explained in §3, these messages arise from splitting
normal forms into their outer, “inert” part, and their inner part to be hidden. More precisely, we
postulate that any normal configuration decomposes into three parts: the head variable on which it
is stuck, an observation, and a collection of values filling the observation, i.e., an assignment out of
the domain or holes of the observation.

Variables and assignments being already described, it remains to axiomatise observations. Once
this is done, we will axiomatise evaluators as evaluation structure with suitable substitution, in
which normal forms are given by suitably typed triples of a variable, an observation, and an
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assignment. Our axiomatisation of observations relies on the following notion of an observation
structure.

Definition 4.14 ( ). An observation structure O is a type-indexed set O : 𝑇 → Set together with
a map:

dom : ∀𝜏 : 𝑇, O 𝜏 → Ctx 𝑇

We denote by Obs 𝑇 the set of observation structures on 𝑇 .

Remark 4.15. Observations occur in the literature under various names [15, 18, 20, 26].

Example 4.16 (𝜆rec, ). We recall elements of §3 in light of these abstract definition. Since all types
are negative in 𝜆rec, we simply take as set of types 𝑇 all 𝜏 : 𝐴 | ¬𝐴. There is a single observation at
each type, whose domain captures the associated context increment. At a negated type ¬𝐴, a fresh
variable at type 𝐴 intended to carry the returned value is introduced. At a non-negated types, i.e.,
at an arrow type 𝐴→ 𝐵, the domain carries fresh variables at ¬𝐵 for the context and at 𝐴 for the
value.

Remark 4.17. Observation structures could be presented as a sorted family. We choose the above
equivalent definition presenting them as binders for convenience in the mechanisation.

Let us now define compatible pairs of a head variable and an observation:

Definition 4.18 ( ). Given an observation structure O : Obs 𝑇 , the family O• of pointed observa-
tions is defined by

O• Γ B ∃𝜏 : 𝑇, (𝜏 ∈ Γ) × O 𝜏 .

Its domain map is defined by:

dom• : ∀Γ,O• Γ → Ctx 𝑇

dom• (𝜏, (𝑖, 𝑜)) B dom 𝑜.

It remains to incorporate the filling assignment:

Definition 4.19 ( ). Given any observation structure O : Obs𝑇 , sorted family of valuesV : Fams𝑇 ,
we define a family of normal forms NO,V consisting of pairs of a pointed observation and an
assignement filling its domain withV-terms.

NO,V Γ B ∃𝑜 : O• Γ, dom• 𝑜 —[V]→ Γ.

Notation 4.20. We denote normal forms ((𝑥, 𝑜), 𝛾) : NO,V Γ by 𝑥 · 𝑜 (𝛾), thinking of 𝑜 as a postfix
projection, or method call with principal 𝑥 and arguments𝛾 . E.g., 𝑝 ·fst(), 𝑓 ·app(𝑥) or𝑘 ·ret(true).

4.5 Abstract evaluators and substitution equivalence

We are at last in a position to bring everything together and introduce our abstract notion of
language with evaluator, called language machine.

Definition 4.21. A language machine over any set 𝑇 consists of
• a substitution monoidVM of values,
• a substitutionVM-module CM of configurations,
• an observation structure OM , and
• an evaluation structure (evalM, embM) on CM and NOM ,VM .

Let Machine 𝑇 denote the set of language machines over 𝑇 .

Notation 4.22. For any language machineM:
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• We use the shorthand NM instead of NOM ,VM
• We denote both substitution structures, on values and configurations, by −[−], relying on
context to disambiguate.
• We write Γ →M Δ for Γ—[VM]→Δ.
• We extend the notation for substitution from values to assignments: for any composable
assignments Γ

𝛾
−→M Δ

𝜎−→M Θ, we denote by 𝛾 [𝜎] the assignment mapping any 𝑥 : 𝜏 ∈ Γ to
(𝛾 𝑥) [𝜎].
• We often consider embM as an implicit coercion, hence confuse normal forms 𝑥 · 𝑜 (𝛾) with the
corresponding configurations.
• We extend the notation 𝑥 · 𝑜 (𝛾) to 𝑣 · 𝑜 (𝛾), for any suitable value 𝑣 : using the previous point,
this denotes the configuration (𝑥 · 𝑜 (𝛾)) [𝑥 ↦→ 𝑣], for some fresh 𝑥 .

Finally, subscripts are often omitted whenM is clear from context.

Let us now define substitution equivalence, our variant of ciu equivalence. For this, we need
to fix the way we observe “closed” configurations. In fact, in applications, configurations are
never actually closed, because of our presentation style. Typically, in the language of §2, a “closed”
configuration of any type 𝐴 in fact has a free continuation variable 𝛼 : ¬𝐴. We define observation
on such configurations to be the projection of their evaluation to pointed observations:

Definition 4.23 ( ). Let evaloM : CM _ O•M be defined by evaloM B 𝒟 𝜋1 ◦ evalM .

Using this, let us at last define substitution equivalence.

Definition 4.24 ( ). Given a language machineM : Machine 𝑇 and contexts Γ,Δ : Ctx 𝑇 , two
configurations 𝑢,𝑤 : CM Γ are substitution equivalent at Δ, written 𝑢 ≈sub 𝑤 iff:

∀𝛾 : Γ →M Δ, evalo (𝑢 [𝛾]) ≈𝒟 evalo (𝑤 [𝛾])

Remark 4.25. There are two peculiarities with our substitution equivalence. First the substitutions
we are quantifying over are not closing, but rather target an externally quantified context Δ; second
we do not compare normal forms, but only their projection to pointed observations, i.e., the head
variable and the observation (evalo vs eval).

These two aspects are linked. Indeed in more standard ciu or contextual equivalence, one must
choose a particular observation type 𝜏 , usually chosen as the type of booleans, or the unit type
when it is sufficient which in our setting would amount to setting Δ = ∅,¬𝜏 . These final types are
usually positive types, so that observations at ¬𝜏 do not bind variables: they have empty domain. As
such, in the usual case of positive final types, normal forms are equivalent to pointed observations.
Instead of introducing all these restrictions and somewhat arbitrary choices, we rather parameterize
on any collection of final types Δ, and project to pointed observations. This way, we uphold the
principle of never syntactically comparing anything but observation.

To conclude this section we introduce the core hypothesis on a language machine, relating
evaluation and substitution, which is crucial for the soundness proof of §6.

Definition 4.26 ( ). In a machineM : Machine𝑇 , evaluation respects substitution iff the following
two conditions hold.
• For all contexts Γ, configurations 𝑢 : C Γ, and assignments 𝛾 : Γ →M Δ, we have

eval (𝑢 [𝛾]) ≈𝒟
(
𝑛 ← eval 𝑢 ;
eval ((emb 𝑛) [𝛾])

)
.
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• For all types 𝜏 , contexts Γ,Δ, observations 𝑜 : O 𝜏 and assignments 𝛾 : dom 𝑜 →M Γ and
𝛿 : Γ →M Δ,

(emb (𝑥, 𝑜,𝛾)) [𝛿, 𝑥 ↦→ 𝑥] = emb (𝑥, 𝑜,𝛾 [𝛿])
where 𝑥 : 𝜏 is fresh w.r.t. Γ and Δ.

Remark 4.27. The first equation of the above definition can be thought of as saying that for a
configuration, “substituting then evaluating” is equivalent to “evaluating then substituting and eval-
uating”. The second equation can be thought of as saying that for a normal form, “embedding then
substituting while keeping the head variable fixed” is equivalent to “substituting then embedding”.

Remark 4.28. Let us mention in passing the following categorical characterisation of substitution-
respecting evaluation. The starting point is that normal forms feature a candidate V-module
structure in the Kleisli category (Fam 𝑇 )𝒟 of the delay monad:

−[−] : N _ JV,D NK
𝑛[𝜎] B eval ((emb 𝑛) [𝜎]).

Evaluation respects substitution iff the above is indeed a module structure, and if emb and eval
are bothmodule morphism, between this module structure and the lifting of the substitution module
structure of C from Fam𝑇 to (Fam𝑇 )𝒟. Because of the particular expression of normal forms, all
these facts reduce to the two simple equations of Def. 4.26, explaining how emb and eval commute
with substitutions.

5 OPERATIONAL GAME SEMANTICS IN THE ABSTRACT

We now turn to the construction of the OGS, for any language machine, in the sense of Defini-
tion 4.21. First, in §5.1, we recall a general notion of game due to Levy and Staton [21]. We then
introduce the OGS game (§5.2), together with themachine strategy arising from a language machine
(§5.3).

5.1 Games and strategies

Levy and Staton’s notion of game is parameterised by sets 𝐼 and 𝐽 of active and passive positions,
respectively. The definition then proceeds to postulate families of active moves from 𝐼 to 𝐽 , and
passive moves from 𝐽 to 𝐼 . As this is symmetric, we start by introducing a notion of “half-games”,
and then define games as pairs thereof.

Definition 5.1 ( ). A half-game H over sets 𝐼 and 𝐽 consists of
• an 𝐼 -indexed family of moves moveH : 𝐼 → Set, and
• a next map nextH : ∀𝑖 : 𝐼 , moveH 𝑖 → 𝐽 .

We denote by HGame 𝐼 𝐽 the set of half-games over 𝐼 and 𝐽 .

Remark 5.2. Concretely, in any active position 𝑖 : 𝐼 , nextH 𝑖 𝑚 returns the position reached after
playing some move𝑚 : moveH 𝑖 .

Notation 5.3. We generally omit the position in nextH 𝑖 𝑚, merely writing nextH 𝑚.

Let us now define games.

Definition 5.4 ( ). A game G over sets 𝐼 and 𝐽 consists of
• a client half-game clientG : HGame 𝐼 𝐽 ,
• a server half-game serverG : HGame 𝐽 𝐼 , and
• a set of final moves finalG : Set .
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We denote by Game 𝐼 𝐽 the set of games over 𝐼 and 𝐽 .

Remark 5.5. The idea is that the moves of clientG and serverG are played between P and O,
while the final moves are played “to the outside”.

Notation 5.6. Given any game G : Game 𝐼 𝐽 , we write move𝑃G for client moves and move𝑂G for
server moves, overloading nextG for both.

Warming up, we can define the dual of a game by swapping its two half-games:

Definition 5.7. The dual G⊥ : Game 𝐽 𝐼 of a game G : Game 𝐼 𝐽 is defined by swapping the client
and server: clientG⊥ B serverG , serverG⊥ B clientG and finalG⊥ B finalG .

Now that games are defined, we turn to defining strategies in a game G : Game 𝐼 𝐽 . The idea is
that a strategy for P on G consists of
• families 𝐴 : 𝐼 → Set and 𝑃 : 𝐽 → Set of active and passive states, respectively,
• a partial “action” map, which for any active state 𝑎 : 𝐴 𝑖 associates—when it is defined—either a
final move in finalG , or a next move𝑚 : move𝑃G 𝑖 in the client half-game of G, together with a
next passive state in 𝑃 (nextG 𝑚), and
• a “reaction” map, which to any passive state 𝑝 : 𝑃 𝑗 andmove𝑚 : move𝑂G 𝑗 in the server half-game
of G associates a next active state in 𝐴 (nextG 𝑚).

A strategy for Opponent on G, or counter-strategy, is dual to this: it is simply a strategy on G⊥.
Let us now formalise all this in coalgebraic style, for which we need to define the following

functors.

Definition 5.8 ( ). Given any half-game H : HGame 𝐼 𝐽 we define two functors (𝐽 → Set) →
(𝐼 → Set), the action functor JHK+ and the reaction functor JHK− :

JHK+ X 𝑖 B ∃𝑚 : moveH 𝑖, X (nextH 𝑚)
JHK− X 𝑖 B ∀𝑚 : moveH 𝑖, X (nextH 𝑚).

We may now define strategies.

Definition 5.9. Given a game G : Game 𝐼 𝐽 , a strategy S for G consists of
• a family S+ : 𝐼 → Set of active states,
• a family S− : 𝐽 → Set of passive states,
• an action morphism

playS : S+ _ 𝒟 (finalG + JclientGK+ S−),
• and a reaction morphism

coplayS : S− _ JserverGK− S+.
We denote by S : StratG the set of strategies for G.

Remark 5.10. The occurrence of the delay monad in the action morphism means that we allow P
to “think forever” and never actually play. This is crucial for interpreting languages with general
recursion.

The main point of OGS consists in interpreting configurations as strategies in some game, in the
hope that weak bisimilarity between configurations entails substitution equivalence. Let us define
weak bisimilarity.

Definition 5.11. Given two strategies S,T : StratG , a bisimulation 𝛼 : S ≈G T consists of
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• an 𝐼 -indexed relation 𝛼+ : S+ 𝑖 → T + 𝑖 → Prop between active states,
• a 𝐽 -indexed relation 𝛼− : S− 𝑗 → T − 𝑗 → Prop between passive states,

together with the following conditions:{
play𝛼 : playS ≈[𝛼+ → 𝒟(EqR + JclientGK+ 𝛼−)]≈ playT
coplay𝛼 : coplayS ≈[𝛼− → JserverGK− 𝛼+]≈ coplayT

where we write 𝑢 ≈[𝑅 → 𝑆]≈ 𝑣 = ∀𝑖 𝑥 𝑦, 𝑅 𝑖 𝑥 𝑦 → 𝑆 𝑖 (𝑢 𝑥) (𝑣 𝑦) and lift functors to relations in
the straightforward way. As is usual, bisimilarity is defined as the largest bisimulation.

5.2 The OGS game

In this subsection, we define the OGS game corresponding to any language machine. For §5.2–5.3,
we fix a set 𝑇 of types and a language machineM = (V, C,O, eval, emb), dropping the subscript.

To start with, final moves in the OGS game are pointed observations in some fixed context
Δ : Ctx𝑇 , which we fix for §5.2–5.3. A typical such context is the singleton 𝛼 : ¬B, so that a pointed
observation on Δ is either (𝛼, true) or (𝛼, false).
As hinted in the primer (§3), moves in the OGS game consist of pointed observations, each of

which introduces fresh shared variables. Accordingly, positions of the OGS game consist of lists
(Γ1, . . . , Γ𝑛) of contexts, each Γ𝑖 modelling the variables introduced by the 𝑖th move (intuitively in
some abstract play leading up to the current position).

Definition 5.12 ( ). An interleaved context is a list of contexts.We denote by ICtx𝑇 = Ctx (Ctx𝑇 )
the set of interleaved contexts.

Of course, we may extract from any interleaved context the variables introduced by P, and those
introduced by O:

Definition 5.13 ( ). We define two collapsing functions ↓+, ↓− : ICtx 𝑇 → Ctx 𝑇 as follows:
↓+∅ := ∅
↓+(Φ, Γ) := ↓−Φ + Γ

↓−∅ := ∅
↓− (Φ, Γ) := ↓+Φ.

Remark 5.14. Intuitively, ↓+ retains from an interleaved context the variables that are unknown
to the currently active player, starting with the last introduced context. Symmetrically, ↓− retains
those that are unknown to the passive player, which does not include the last introduced context.
Concretely, we have:

↓+(Γ1, . . . , Γ2𝑛) = Γ2 + Γ4 + . . . + Γ2𝑛
↓+(Γ1, . . . , Γ2𝑛+1) = Γ1 + Γ3 + . . . + Γ2𝑛+1
↓− (Γ1, . . . , Γ2𝑛) = Γ1 + Γ3 + . . . + Γ2𝑛−1
↓− (Γ1, . . . , Γ2𝑛+1) = Γ2 + Γ4 + . . . + Γ2𝑛 .

Let us now define the OGS game, as expected. This in fact only depends on the fixed context Δ
and the observation structure of the considered language machine.

Definition 5.15 ( ). The OGS half-game HOGS of type

HOGS : HGame (ICtx 𝑇 ) (ICtx 𝑇 )
moveHOGS Φ B O• ↓+Φ

nextHOGS Φ𝑚 B (Φ, dom• 𝑚).

Furthermore, the OGS game OGS is defined by

clientOGS B HOGS serverOGS B HOGS finalOGS := O• Δ.
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5.3 The machine strategy

Recalling that we have fixed a language machineM : Machine 𝑇 at the beginning of §5.2, we now
introduce the strategy, called themachine strategy, induced byM and Δ in the game OGS. Unfolding
definitions, such a strategy should comprise two families M̃+ and M̃− , and morphisms

M̃+ Φ _ 𝒟 (O• Δ + ∃𝑚 : O• ↓+Φ, M̃− (Φ, dom• 𝑚))

M̃− Φ _ ∀𝑚 : O• ↓+Φ, M̃+ (Φ, dom• 𝑚),

for all interleaved contexts Φ. A naive definition of the machine strategy is as follows:

• Active states in any M̃+ Φ are pairs (𝑐,𝛾) of a language configuration 𝑐 : C (Δ + ↓+Φ) and an
assignment 𝛾 : ↓−Φ→M ↓+Φ recording the values of variables shared with the other player, in
terms of their variables.
• Passive states in any M̃− Φ are mere assignments ↓+Φ→M Δ + ↓−Φ recording the values of
variables shared with the other player, in terms of their variables.
• The next move played by any active state (𝑐,𝛾) is obtained by evaluating 𝑐 . If 𝑐 diverges, then
so does the strategy. Otherwise, 𝑐 evaluates to some normal form 𝑥 · 𝑜 (𝛿), then the strategy
plays (𝑥, 𝑜). If 𝑥 is in Δ, then (𝑥, 𝑜) is a final move in O• Δ; otherwise, it is a non-final move in
O• ↓+Φ, and the resulting passive state is the copairing [𝛾, 𝛿].
• The reaction of any𝛾 to some pointed observation (𝑥, 𝑜) with domainΘ is merely (𝑥 [𝛾] ·𝑜 (𝛿), 𝛾),
where 𝛿 denotes the obvious assignment Θ→M Δ + ↓−Φ + Θ (recalling Notation 4.22).

In fact, we refine this naive definition to explicitly account for dependencies between values and
variables: the value stored by some player for variables in a Γ𝑖 must depend only on previously
introduced variables. We formalise this with the following refinement of the notion of assignment,
recalling the “final” context Δ fixed at the beginning of §5.2.

Definition 5.16 ( ). We define the active and passive OGS environments Env+, Env− : ICtx 𝑇 →
Set by mutual induction as follows.

𝜀 : Env+ ∅ 𝜀 : Env− ∅
𝑒 : Env− Φ

𝑒, · : Env+ (Φ, Γ)
𝑒 : Env+ Φ 𝛾 : Γ →M (Δ + ↓+Φ)

𝑒,𝛾 : Env− (Φ, Γ)

Remark 5.17. Concretely, for any even interleaved context Φ = (Γ1, . . . , Γ2𝑛), active and passive
OGS environments have the form

(𝜀,𝛾1, ·, 𝛾3, ·, . . . , 𝛾2𝑛−1, ·) and (𝜀, ·, 𝛾2, ·, 𝛾4, . . . , ·, 𝛾2𝑛),
respectively. Symmetrically, for any odd interleaved context Φ = (Γ1, . . . , Γ2𝑛+1), active and passive
OGS environments have the form

(𝜀, ·, 𝛾2, ·, 𝛾4, . . . , ·, 𝛾2𝑛, ·) and (𝜀,𝛾1, ·, 𝛾3, ·, . . . , 𝛾2𝑛+1),
respectively. Intuitively, the active player is to play next, hence did not play the last move. Accord-
ingly, active OGS environments thus end with ·: they do not store the values of variables introduced
by the last move. Symmetrically, passive OGS environments end with a proper assignment 𝛾𝑖 .
Beware, of course, that the active player in an even interleaved context is P, while the active player
in an odd interleaved context is O.

Like the interleaved contexts by which they are indexed, OGS environments can be collapsed
into basic assignments.
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Definition 5.18 ( ). The collapsing functions for OGS environments are defined by mutual
induction as follows.

↓+ : Env+ Φ → ↓−Φ→M (Δ + ↓+Φ)
↓+ 𝜀 := elim∅
↓+ (𝑒, ·) := (↓− 𝑒) [𝑤],
↓− : Env− Φ→ ↓+Φ→M (Δ + ↓−Φ)
↓− 𝜀 := elim∅
↓− (𝑒,𝛾) := [↓+ 𝑒, 𝛾]

where wkn denotes the obvious weakening: we have Φ = (Φ′, Γ) for some Φ′ and Γ, and the result is

↓+Φ′ 𝑒−→M Δ + ↓−Φ′ 𝑤−→M Δ + ↓−Φ′ + Γ,
recalling ↓− (Φ′, Γ) = ↓+Φ′ and ↓+(Φ′, Γ) = ↓−Φ′ + Γ.

We now have everything in place to define the machine strategy.

Definition 5.19 ( ). The machine strategy M̃ : StratOGS is defined as follows:
• the family of active states is M̃+ Φ B C (Δ + ↓+Φ) × Env+ Φ ;
• the family of passive states is M̃− Φ B Env− Φ ;
• the action morphism is defined by

playM̃ : M̃+ _ 𝒟 (O• (Δ) + JÕGSK+ M̃−)
playM̃ Φ (𝑐, 𝑒) B

𝑥 · 𝑜 (𝛾) ← eval 𝑐 ;{
ret (inl (𝑥, 𝑜)) if 𝑥 ∈ Δ
ret (inr ((𝑥, 𝑜), (𝑒,𝛾))) if 𝑥 ∈ ↓+Φ ;

• the reaction morphism is defined by

coplayM̃ : M̃− _ JÕGSK− M̃+
coplayM̃ Φ 𝑒 (𝑥, 𝑜) B (𝑥 [↓−𝑒] · 𝑜 (𝛿𝑜 ), (𝑒, ·)),

where 𝛿𝑜 denotes the obvious assignment dom(𝑜) →M ↓−Φ + dom(𝑜).

To finish up, we define two functions injecting configurations (resp. assignments) into active
(resp. passive) machine strategy states ( ),

J−K+ : C Γ → M̃+ (∅, Γ) J−K− : (Γ →M Δ) → M̃− (∅, Γ)
J𝑢K+ B (𝑢 [𝑤], 𝜀) J𝛾K− B (𝜀,𝛾)

where𝑤 denotes the obvious weakening Γ →M Δ + Γ.

6 SOUNDNESS

In this section, we prove the soundness of our model, i.e., for any pair of configurations 𝑢 and𝑤 ,
bisimilarity of induced strategies entails substitution equivalence:

∀𝑢,𝑤, J𝑢K+ ≈+ogs J𝑤K+ → 𝑢 ≈sub 𝑤 ,

where
• ≈+ogs denotes the positive component of bisimilarity between strategies (Definition 5.11) in the
OGS game (Definition 5.15), and
• ≈sub denotes substitution equivalence (Definition 4.24).
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Following standard OGS methods, our proof for this statement uses a crucial intermediate
definition, namely composition of strategies with counter-strategies.

We first describe what composition should do, intuitively, and show how soundness follows from
two main properties properties of composition, adequacy and congruence. It will then remain to
actually define composition, and prove both properties.
As before, we fix a set 𝑇 of types, a “final” context Δ, and a language machineM = (V, C,O,

eval, emb), omitting subscripts.

6.1 Soundness from composition

Composition should take as arguments an active and a passive state over the same interleaved
context in the machine strategy, and return (a computation of) a pointed observation over the final
context Δ. It should thus be a map

∀Φ, (C (Δ + ↓+Φ) × Env+ Φ) → Env− Φ→ 𝒟 (O• Δ).

Intuitively, given any 𝑢 : C (Δ +↓+Φ), 𝑒 : Env+Φ, and 𝑓 : Env−Φ, the composition (𝑢, 𝑒) ∥ 𝑓 should
work as follows. We start by evaluating 𝑢.

(1) If 𝑢 diverges, then so does (𝑢, 𝑒) ∥ 𝑓 .
(2) If 𝑢 reduces to 𝑥 · 𝑜 (𝛾) with 𝑥 a final channel, then (𝑢, 𝑒) ∥ 𝑓 finishes with the pointed

observation 𝑥 · 𝑜 .
(3) If 𝑢 reduces to 𝑥 · 𝑜 (𝛾) with 𝑥 in the support of 𝑓 , then (𝑢, 𝑒) ∥ 𝑓 continues, roughly, as
((𝑓 𝑥) · 𝑜, 𝑓 ) ∥ (𝑒,𝛾).

The two main properties that we expect composition to satisfy are the following.

Definition 6.1. Suppose given a composition map ∥ of the above type.
(1) Composition is adequate ( ) iff, for all configurations 𝑐 : C Γ and assignments 𝛾 : Γ → Δ,

evaluating and observing 𝑐 [𝛾] yields the same result as composing J𝑐K+ and J𝛾K− , up to weak
bisimilarity, i.e., evaloM (𝑐 [𝛾]) ≈𝒟 J𝑐K+ ∥ J𝛾K− .

(2) Weak bisimilarity is a congruence ( ) for composition iff, for any weakly bisimilar active states
𝑠1 and 𝑠2 and for any passive state 𝑡 , 𝑠1 ∥ 𝑡 and 𝑠2 ∥ 𝑡 are weakly bisimilar, and symmetrically.

Remark 6.2. It might not obvious that adequacy type-checks at all. But by construction J𝑐K+ ∥ J𝛾K−
lives in𝒟 (O• Δ), and so does evaloM (𝑐 [𝛾]), since eval

o
M is the composite

C Δ
eval−−−→ 𝒟 (NM Δ) 𝒟 𝜋1−−−−→ 𝒟 (O• Δ).

Let us readily show that soundness follows from composition:

Proposition 6.3. If any adequate composition for which weak bisimilarity is a congruence exists,

then OGS is sound.

Proof. For any configurations 𝑐1, 𝑐2 : C Γ with bisimilar interpretations J𝑐1K+ and J𝑐2K+, and any
assignment 𝛾 : Γ →M Δ, we have

evaloM (𝑐1 [𝛾]) ≈𝒟 J𝑐1K+ ∥ J𝛾K− by 1
≈𝒟 J𝑐2K+ ∥ J𝛾K− by 2
≈𝒟 evaloM (𝑐2 [𝛾]) by 1,

hence 𝑐1 ≈sub 𝑐2, as desired. □
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6.2 Defining composition

We have shown that soundness follows from the existence of an adequate and congruent composi-
tion. In this section, we explain how to construct such a composition, up to suitable hypotheses.

The naive formalisation of the above intuitive definition of composition is not guarded: a priori,
some composition 𝑠 ∥ 𝑡 could be caught in a loop in the third case, with 𝑠 and 𝑡 exchanging moves
indefinitely, and thus not producing any value in𝒟 (O• Δ), even after infinitely many computation
steps.
This is rather subtle: by definition, even a single computation step in the configuration of the

active state counts as productive, even though it models some sort of “silent” step. Indeed, each
silent step contributes to constructing a value in 𝒟 (O• Δ). The problem comes from potential
infinite sequences of moves played without a single computation step, i.e., at each step, 𝑢 does not
reduce, but is 𝑥 · 𝑜 (𝛾).

At this point, it seems reasonable to ask: since adequacy is stated up to weak bisimilarity, isn’t it
possible to add a formal silent step in front of the third case? This does yield a valid definition, but
we were not able to prove it adequate. Indeed, Coq’s coinduction principle, which essentially states
the existence and uniqueness of fixed points, only works up-to strong bisimilarity. And this is for
good reason, because replacing strong bisimilarity with weak bisimilarity leads to a false statement,
as illustrated by the following example.

Example 6.4. Letting 1 = {★} and 2 = {true, false} denote respectively the one and two-
element sets, consider the map 𝑒 : 1→ 𝒟 (1 + 2) mapping any 𝑥 : 1 to ret (inl 𝑥). This map can
be iterated and intuitively encodes the recursive definition of a map 𝑓 : 1 → 𝒟 2 caught in an
infinite loop.

Indeed a fixed point of 𝑒 w.r.t. weak bisimilarity is a map 𝑓 : 1→ 𝒟 2 such that, for all 𝑥 : 1, we
have

𝑓 𝑥 ≈𝒟 𝑒 𝑥 >>=

{
inl 𝑥 ′ ↦→ 𝑓 𝑥 ′

inr 𝑦 ↦→ ret 𝑦,
which by definition of 𝑒 simplifies to 𝑓 𝑥 ≈𝒟 𝑓 𝑥 .

This equation is solved by the standard iteration operator by defining 𝑓 𝑥 B tau (𝑓 𝑥), i.e.,
𝑓 𝑥 B tau𝜔 . But in fact it is also solved by any 𝑓 : 1 → 𝒟 2, in particular 𝑓 𝑥 B ret true and
𝑓 𝑥 B ret false, so uniqueness cannot hold. The same phenomenon occurs for other equations,
such as 𝑒 𝑥 B tau𝑛 (inl 𝑥).
This example shows that we cannot afford to merely add a formal silent step in front of the

problematic third case. But it also shows that we should better aim for adequacy up to strong
bisimilarity, as adequacy up to weak bisimilarity is beyond the reach of Coq’s coinduction principle.

In order to do this, let us examine more closely the potential causes of divergence.
First, in the third case, 𝑡 will replace 𝑥 with its value. Divergence would happen if this value was

a variable, and the value of that variable was again a variable, and so on. Fortunately, because OGS
positions are interleaved contexts, the chain of variables obtained by such successive instantiations
reaches older and older layers and, hence must stop eventually.

But then, even when the head variable is instantiated with some proper value, nothing guarantees
that some redex is reached.

Example 6.5. Consider a configuration of the form ⟨ 𝜆𝑥 .𝑣 | 𝛼 ′ ⟩ in the language of §2, where 𝛼 ′ is
a variable created by the passive player, say O. Then, the active player, say P, creates a variable, say
𝑦, for 𝜆𝑥.𝑣 , and plays (𝛼 ′, ⟨𝑦 | □ ⟩). Roles are then switched, and O becomes active, maybe with a
configuration of the form ⟨𝑦 | [𝑤 ′] · 𝜋 ′ ⟩. At this point, we have a proper instantiation of the played
variable 𝛼 ′, but no reduction occurs yet! Indeed, it is only when O plays – a move of the form
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(𝑦, ⟨□ | [𝑤] · 𝜋 ⟩) – that P becomes active again, with a configuration of the form ⟨ 𝜆𝑥.𝑣 | [𝑤] · 𝜋 ⟩,
which reduces at last.

In the general case, nothing guarantees that any finite chain of instantiations reaches a redex.
(The reader is invited to imagine some weird language in which some redexes are infinite patterns.)

To avoid such redex-free infinite instantiation chains, we make an additional hypothesis on the
considered language machine, which we show is satisfied by our applications. There is some degree
of freedom here. We choose a version that relies on observations only:

Definition 6.6 ( ). Let ≺ denote the binary relation on ∃𝜏 : 𝑇, Obs 𝜏 defined by (𝜏2, 𝑜2) ≺ (𝜏1, 𝑜1)
iff there is a non-variable value 𝑣 such that applying the observation 𝑜1 to 𝑣 returns without any
reduction step a normal form with observation 𝑜2. More formally, this means that there exists a non-
variable value 𝑣 : V Γ 𝜏1, assignments 𝛾, 𝛿 and a variable 𝑖 such that eval (𝑣 ·𝑜1 (𝛾)) ≊𝒟 ret (𝑖 ·𝑜2 (𝛿)).

The language machineM has finite redexes iff ≺ is well founded.

Example 6.7. Let us consider an extension of simply-typed 𝜆-calculus with lists and deep pattern
matching. Thus, types now include list(𝐴), for all types 𝐴, we introduce a new syntactic category
of patterns, ranged over by 𝑝, 𝑞, . . ., and extend the definition of values and programs as follows:

𝑝 F 𝑥 | [] | 𝑥 :: 𝑝
𝑣 F . . . | [] | 𝑣1 :: 𝑣2
𝑝 F . . . | match 𝑒1 with . . . 𝑝𝑖 → 𝑒𝑖 . . . end

Furthermore, we add the following inference rules for the reduction relation.

𝑣 | 𝑥 ⊳ [𝑥 ↦→ 𝑣] [] | [] ⊳ []
𝑣2 | 𝑝 ⊳ 𝛾

𝑣1 :: 𝑣2 | 𝑥 :: 𝑝 ⊳ (𝛾, 𝑥 ↦→ 𝑣1)

𝑣 | 𝑝1 ⊳ 𝛾
match 𝑣 with 𝑝1 → 𝑒1, . . . end→ 𝑒1 [𝛾]

𝑣 | 𝑝1 ̸ ⊳𝛾
match 𝑣 with 𝑝1 → 𝑒1, 𝑝2 → 𝑒2, . . . end→ match 𝑣 with 𝑝2 → 𝑒2, . . . end

Example 6.8. Let us consider a rather ad-hoc language machine where this relation ≺ can admit
an arbitrarily long, yet finite chain. To do so, we consider an untyped version of the language of
Figure 1, and extend the grammar as follows,

values ∋ 𝑣 F . . . | [𝑝]
programs ∋ 𝑝, 𝑞 F . . . | fork(𝑝, 𝑞) | yield𝑖 (𝑖 ∈ N)

contexts ∋ 𝜋 F . . . | [𝑝] · 𝜋

and the evaluation rules as follows.

⟨ fork(𝑝, 𝑞) | 𝜋 ⟩ −→ ⟨𝑝 | [𝑞] · 𝜋 ⟩
⟨ yield𝑛 | [𝑝1] · . . . · [𝑝𝑛] · 𝜋 ⟩ −→ ⟨𝑝𝑛 | [𝑝1] · . . . · [𝑝𝑛−1] · 𝜋 ⟩.

The fork(𝑝, 𝑞) instruction pushes a suspended computation [𝑞] onto the stack, while the yield𝑛
instruction resumes the 𝑛th suspended computation from the stack. The observation structure O is
then extended with observations ⟨yield𝑛 | 𝑥1 · . . . · 𝑥𝑝 · □⟩, for all 𝑝 < 𝑛 ∈ N. This gives rise to the
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following sequence of observations:
⟨□ | 𝛼 ′ ⟩ ≻ ⟨ yield𝑛 | □ ⟩ ≻ ⟨ yield𝑛 | 𝑥1 · □ ⟩
≻ ⟨ yield𝑛 | 𝑥1 · 𝑥2 · □ ⟩ ≻ . . . ≻ ⟨ yield𝑛 | 𝑥1 · 𝑥2 . . . 𝑥𝑛−1 · □ ⟩

where we omit the typing information, e.g., working in an untyped setting.

So now we know that the coinductive definition of composition is semantically productive, but
it remains to convince Coq! For this, we introduce a novel form of iterator, which takes as input
what we call an eventually guarded recursive definition. Intuitively, an eventually guarded recursive
definition is a family of mutually recursive definitions, in which each definition becomes guarded
after finitely many unfoldings. Let us make this more precise.

Definition 6.9 ( ).

• An equation consists of a set 𝑋 of variables, a set 𝑌 of constants, and a definition function
𝑋 → 𝒟 (𝑋 + 𝑌 ).
• An element 𝑢 : 𝒟 (𝑋 + 𝑌 ) is guarded if it is not of the form ret (inl 𝑥).
• Similarly, an equation 𝑒 : 𝑋 → 𝒟 (𝑋 + 𝑌 ) is pointwise guarded if for all 𝑥 , 𝑒 𝑥 is guarded.

Definition 6.10 ( ). An equation 𝑒 : 𝑋 → 𝒟 (𝑋 + 𝑌 ) is pointwise eventually guarded if for all 𝑥 ,
there is an 𝑛 : N such that 𝑒𝑛 𝑥 is guarded, where

𝑒0𝑥 := ret (inl 𝑥)

𝑒𝑛+1 𝑥 := 𝑒 𝑥 >>=

{
inl 𝑥 ′ ↦→ 𝑒𝑛 𝑥 ′

inr 𝑦 ↦→ ret 𝑦.

Our iterator for eventually guarded definitions is the proof of

Proposition 6.11 ( ). All pointwise eventually guarded equations admit a unique fixed point w.r.t.

strong bisimilarity.

We then define the equation for composition, as follows.

Definition 6.12 ( ). The composition equation is given by the following map.

comp-eqn : M̃+∥M̃− → 𝒟 (O• Δ + M̃+∥M̃−)
comp-eqn (𝑢,𝑤) B
playM̃ 𝑢 >>={
inl 𝑟 ↦→ ret (inl 𝑟 )
inr (𝑚,𝑢′) ↦→ ret (inr ((coplayM̃ 𝑤 𝑚), 𝑢′))

We prove ( ) this equation is pointwise eventually guarded by combining the hypothesis that
M has finite redexes, together with a well-founded induction on the age of the channel—depth in
the interleaved context—the two composed strategies are interacting over. This enables finding
a reduction step after some finite amount of interaction steps, i.e., iterations of the composition
equation. This legitimates the following.

Definition 6.13 ( ). Composition is the unique fixed point of comp-eqn w.r.t. strong bisimilarity.

The statement of adequacy of composition quantifies configurations and assignments. We gener-
alize it to arbitrary active and passive states of the machine strategies and prove it by applying the
uniqueness principle of the composition fixed point. After some equational reasoning on assign-
ments we conclude with the hypothesis that forM, evaluation respects substitution (Def. 4.26) and
we have proved:
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Theorem 6.14 ( ). IfM has finite redexes and evaluation respects substitution, then bisimilarity

of induced LTSs is sound w.r.t. substitution equivalence.

7 IMPLEMENTATION DISCUSSION

Through this section, we highlight a few relevant aspects of our formal development.

Disagreement between the paper and mechanisation. We have made sure to remain as faithful to
our mechanisation as possible, but two minor technical differences remain.

A first superficial distinction concerns the emb operator (Def. 4.7). In the mechanisation, instead
of this embedding of normal forms—that is, of triplets 𝑥 · 𝑜 (𝛾)—into configurations, we use a more
expressive but equivalent operation embedding 𝑣 · 𝑜 (𝛾) triplets into configurations. This operator
can be thought of as applying the observation 𝑜 with arguments 𝛾 to the value 𝑣 .
The second distinction concerns the representation of strategies. In Definition 5.9, we define

strategies as a coalgebra, that is by a carrier (S+ and S−) and a morphism (action and reaction). In
the Coq mechanisation, instead of working with such coalgebras, we opt to work with elements

of the final coalgebra. In doing so, we introduce an indexed variant of interaction trees ([25], )
which has been instrumental to precisely represent strategies.

Axioms and executability. All our results are admit free, relying only on the Coq’s standard
library’s statement of axiom K.

We additionally point out that by working with coinductive representations of LTSs (as opposed
to more traditional relational specifications), we have the possibility to extract directly executable
strategies to OCaml. We believe it opens the perspective for developing new software artifacts
around OGS.

8 RELATEDWORK

OGS models that appear in the literature are built in two possible ways: (1) using an operational
semantics defined as an environment-based abstract machine that implements the synchronisation
process used to define composition of OGS states, as in [10, 18, 19]; (2) using an operational
semantics defined as a small-step reduction relation, that is then shown to be bisimilar with the
synchronisation process implemented as an abstract machine, as in [13, 16]. In our work, we have
chosen to extend the second approach, using an abstract notion of language machine with axioms
the operational semantics has to satisfy for the OGS model to be sound.

In the oldest proof of soundness of the OGS w.r.t. contextual equivalence, published in [18], the
adequacy result (Proposition 2 of that paper) is only sketched so that the chattering problem is
overlooked. The structure needed to collapse the composition of an active and a passive state into a
language machine configuration was studied in [16, 19]. In these works, an acyclicity condition on
the assignments of the two configurations is stated to prove that no infinite chattering is possible.
Acyclicity is enforced by the existence of an order on the variables forming the domain of the
assignments. Moreover, the preservation of this acyclicity condition during the interaction was
established in [19] using a typing system for the interaction. In our work, we rather choose to
give more structure to positions: using interleaved contexts, i.e., lists of typing contexts, provides a
direct way to enforce acyclicity.

Our notion of games and strategy is directly taken from [21]. In that work, a form of adequacy,
namely that composition computes the substitution, was established for a particular instance of
language machine. In future work, we would be interested in understanding if this proof can be
recast in our axiomatic approach.
The issue of infinite chattering was studied in game semantics [1, 6, 12] to provide winning

conditions enforcing the preservation of totality of strategies by composition. This infinite chattering
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is thus different from the one studied in our paper, where we allow programs to have infinite
reduction paths. In our setting, an infinite chattering would be an artifact of the composition
looping without even creating a reduction step.

9 CONCLUSION AND PERSPECTIVES

We have proposed an abstract notion of language with evaluator, for which we have constructed a
generic OGS interpretation, which we have proved sound, in Coq.

An important direction for future work is to incorporate more language features into the frame-
work. Notably, we plan to cover effectful evaluators by generalising from the delay monad to richer,
well-behaved monads. It would also be useful to handle more sophisticated type systems, including,
e.g., polymorphism or subtyping.
Another direction consists in investigating completeness in the abstract framework, be it by

restricting attention to sufficiently effectful languages, or by refining the OGS model to make it
fully abstract, by enforcing conditions like well-bracketing or visibility.

Finally, it might be fruitful to investigate the link between OGS and other models in the abstract
framework, including denotational game semantics and Lassen’s normal form bisimilarity.
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