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Abstract. Operational game semantics (OGS) is a method for inter-
preting programs as strategies in suitable games, or more precisely as
labelled transition systems over suitable games, in the sense of Levy
and Staton. Such an interpretation is called sound when, for any two
given programs, weak bisimilarity of associated strategies entails contex-
tual equivalence. OGS has been applied to a variety of languages, with
rather tedious soundness proofs.
In this paper, we contribute to the unification and mechanisation of
OGS. Indeed, we propose an abstract notion of language with evaluator,
for which we construct a generic OGS interpretation, which we prove
sound. Our framework covers a variety of simply-typed and untyped
lambda-calculi with various evaluation strategies. These calculi notably
feature recursive definitions, first-class continuations, and a wide variety
of datatypes. All constructions and proofs are entirely mechanised in the
Coq proof assistant.

1 Introduction

Normal form bisimulation is a technique for proving contextual equivalence of
programs in various 𝜆-calculi. Although it is generally finer than contextual
equivalence, its practical value resides in the fact that it is often easier to es-
tablish on concrete examples than other such techniques, such as applicative or
environmental bisimulation.

Let us briefly explain why. All three techniques proceed by defining a notion
of label, an interpretation of programs as labelled transition systems (LTSs), and
then comparing the interpretations of programs w.r.t. weak bisimilarity. How-
ever, the involved labels are very different. Indeed, applicative or environmental
labels may contain arbitrary values, while normal form labels are restricted to
so-called ultimate patterns. This means that they may be, e.g., tuples or ele-
ments of sum types, but cannot contain 𝜆-abstractions. In a typed setting, in
particular, all terms of functional type contained in any ultimate pattern must
be variables. Normal form labels thus contain a very limited class of terms.

In order for it to be useful, normal form bisimulation should be sound, i.e.,
at least as fine as contextual equivalence. One standard method for proving
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soundness goes through an intermediate LTS model, with labels similar to the
normal form ones, but a different interpretation, called operational game seman-
tics [19, 21] (OGS). This induces a different equivalence, say operational game
bisimulation. One then proves that normal form bisimulation is at least as fine
as operational game bisimulation, which is in turn at least as fine as contextual
equivalence. Although the first step is mostly straightforward, the second one is
difficult, notably because it involves

– extending the OGS interpretation to suitable contexts, and
– soundly reflecting the syntactic operation of context application at the level

of LTSs.

Because such soundness proofs are highly non-trivial, it seems useful to design
an abstract version, covering as many existing cases as possible, and hopefully
also future ones.

A few authors have started to explore this direction. Notably, Levy and
Staton [22] offer a high-level categorical framework. More recently, Laird [20]
proposes a unifying framework for OGS, in which he proves that operational
game bisimilarity is a congruence w.r.t. composition, a standard lemma towards
soundness.

Contribution In this work, we go further, and prove a generic soundness result
for OGS, mechanised in Coq. We thus contribute to both unification and mech-
anisation of normal form bisimulation. Our contributions to unification are as
follows.

– We introduce an abstract notion of language with evaluator, called a language
machine, which notably covers several variants of 𝜆𝜇𝜇-calculus [4, 5].

– For any language machine, we construct an OGS model.
– We prove that this model is sound w.r.t. some abstract analogue of contextual

equivalence called substitution equivalence, under suitable hypotheses.

We furthermore provide a complete Coq mechanisation of our results, to empha-
sise their computational aspects and firmly ground our model in a constructive
meta-theory. We favour a traditional, code-less exposition along the paper for
clarity. For the interested reader, we however systematically use hyperlinks repre-
sented by ( )4 to link definitions and theorems to their mechanised counterpart.
The Coq development is inspired by Levy and Staton’s transition systems over
games [22], and includes notably the following main contributions.

– We present OGS using the well-scoped approach ( ), in the sense that every-
thing is indexed by typing contexts, and variables are accessed as de Bruijn
indices. This contrasts with previous work, which uses nominal style.

– We instantiate our abstract notion of language on several concrete examples:
a simply-typed call-by-value 𝜆-calculus with recursion ( ), a pure untyped
call-by-value 𝜆-calculus ( ), the 𝜆𝜇𝜇𝑄-calculus [4] ( ) and the polarised
System D ( ) from Downen and Ariola [5].

4 To the anonymous reviewers: for the purpose of this submission, we link to an entirely
anonymous repository. They can be soundly followed without breaking anonymity.

https://github.com/ogs-artifact/ogs-artifact
https://ogs-artifact.github.io/ogs-artifact/Game.html
https://ogs-artifact.github.io/ogs-artifact/STLC_CBV.html
https://ogs-artifact.github.io/ogs-artifact/ULC_CBV.html
https://ogs-artifact.github.io/ogs-artifact/SystemL_CBV.html
https://ogs-artifact.github.io/ogs-artifact/SystemD.html
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– We implement ( ) an indexed variant of the interaction trees library [28],
which we use to define LTSs coinductively — as opposed to the more tra-
ditional, relational definition. However, in this extended abstract, we focus
more on the math than on the Coq implementation, so interaction trees do
not appear (see Remark 9).

– We introduce ( ) a new fixed-point combinator over a system of so-called
eventually guarded equations, whose solution is unique w.r.t. strong bisimi-
larity. We use this combinator to define composition of OGS LTSs, which is
a crucial ingredient to the soundness proof.

Plan Before diving into the details, let us provide a high-level overview of the
technical development in §2. In §3, we explain substitution equivalence, our ab-
stract approach to contextual equivalence, on a concrete example language. In §4,
we then introduce abstract language machines, construct the OGS model of any
language machine, and state our soundness result. Finally, we provide a compar-
ison with the existing literature in §5, and conclude and give some perspectives
in §6.

2 Overview

2.1 Axiomatising contextual equivalence as substitution equivalence

Soundness proofs for normal form bisimulation can be established by the follow-
ing chain of inclusions

normal form bisimulation ⊆ OGS bisimulation
⊆ CIU equivalence
= contextual equivalence.

Compared to contextual equivalence, CIU (Closed Instantiation of Use) equiva-
lence restricts the shape of contexts that are considered. This idea of restricting
contexts while keeping the same discriminating power was first explored by Mil-
ner [26]. This idea was then systematized by Mason and Talcott, who introduced
CIU equivalence and proved that it coincides with contextual equivalence [23].

In this work, we focus on the middle inclusion:

OGS bisimulation ⊆ CIU equivalence.

In order to propose an abstract version of it, we start by streamlining the
usual concrete presentation of languages and CIU equivalence.

Standard CIU equivalence checks that two programs, say 𝑝 and 𝑞, behave
the same under any closed instantiation 𝜎 of their free variables, in any closed
evaluation context 𝐸 of some fixed, basic type like the booleans5:

𝐸 [𝑝 [𝜎]] � 𝐸 [𝑞 [𝜎]],
5 It is a bit unfortunate that substitution 𝑝 [𝜎] and context application 𝐸 [𝑝] have the

same notation. It is, however, so common, that we stick to the usual notation.

https://ogs-artifact.github.io/ogs-artifact/ITree.html
https://ogs-artifact.github.io/ogs-artifact/Guarded.html#iterevguarded
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for some sensible notion of observation of closed boolean programs.
This involves both substitution and context application, which is a bit clumsy.

In order to avoid having two distinct operations in the abstract setting, we switch
to a presentation that unifies them. This presentation is based on abstract ma-
chines: one evaluates configurations rather than programs, where a configuration
consists of a pair ⟨𝑝 | 𝐸⟩ of a program 𝑝 and an evaluation context 𝐸 . In par-
ticular, instead of comparing programs 𝑝 and 𝑞 as before, we now compare
configurations ⟨𝑝 | 𝛼⟩ and ⟨𝑞 | 𝛼⟩, where 𝛼 denotes a fresh context variable.
And now CIU equivalence is merely a matter of substitution: combining any
substitution 𝜎 with 𝛼 ↦→ 𝐸 , we get

⟨𝑝 | 𝛼⟩[𝜎, 𝛼 ↦→ 𝐸] = ⟨𝑝 [𝜎] | 𝐸⟩,

and similarly for 𝑞.
This is presented in detail in §3, but, briefly, it involves a change of typing

paradigm: evaluation contexts are typed like continuations, with “negated” types.
E.g., if 𝑝 has type 𝐴, then 𝛼 has type ¬𝐴. And in a configuration ⟨𝑝 | 𝐸⟩, 𝑝 and
𝐸 have opposite types, e.g., 𝑝 : 𝐴 and 𝐸 : ¬𝐴. We tend to use 𝐴, 𝐵, . . . to range
over simple types, and 𝜏 to range over the disjoint union of simple types and
formally negated simple types.

In this presentation style, evaluation contexts are written inside-out in a
stack-like manner, and reduction rules “push” the evaluation context from 𝑝 to
𝐸 , and “pop” it when needed, e.g.,

⟨𝑒1 𝑒2 | 𝐸⟩ → ⟨𝑒1 | (•𝑒2); 𝐸⟩ (1)
⟨𝜆𝑥.𝑒 | (•𝑎); 𝐸⟩ → ⟨𝑒[𝑥 ↦→ 𝑎] | 𝐸⟩ (2)

. . . ,

Here, (•𝑒2); 𝐸 is the inside-out analogue of the evaluation context 𝐸 [□ 𝑒2]. Thus:

– the first rule is “searching” for the next redex in the function part of the
application 𝑒1 𝑒2, storing the argument part in the evaluation context, while

– in the second rule, the configuration ⟨𝜆𝑥.𝑒 | (•𝑎); 𝐸⟩ is analogous to 𝐸 [(𝜆𝑥.𝑒) 𝑎],
so the rule is like a 𝛽-reduction in context 𝐸 .

In conclusion: in the presentation based on abstract machines, CIU equivalence
becomes substitution equivalence, which equates configurations 𝑐 and 𝑑 when
𝑐[𝜎] � 𝑑 [𝜎] for all closed substitutions 𝜎, where � denotes some suitable, yet
straightforward notion of equivalence on closed configurations.

2.2 Axiomatising evaluation, a.k.a. normal forms as triples

Our next step is to analyse how OGS exploits evaluation, and then abstract
over it.

To start with, let us consider a configuration 𝑐 that gets stuck on a function
call 𝑓 𝑣, where 𝑓 is a variable and 𝑣 is some value, say of the shape 𝜆𝑥.𝑝. In the
abstract machine presentation, this means 𝑐 reduces to

⟨ 𝑓 | (•𝑣); 𝐸⟩, (3)
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for some evaluation context 𝐸 . The compound evaluation context (•𝑣); 𝐸 means
that, once 𝑓 is evaluated, it should be applied to 𝑣, the result of which should
be fed to 𝐸 .

In such a situation, OGS splits the stuck configuration (3) into

– a head variable, here 𝑓 ,
– a first-order approximation of the environment, which we will call the obser-

vation6, and
– a substitution called a filling.

In this case, assuming 𝑣 has some functional type 𝐴1 → 𝐴2, the observation,
say 𝑜, is ⟨□ | (•𝑥); 𝛽⟩, for fresh variables 𝑥 and 𝛽, and the filling, say 𝛾, is the
assignment

[𝑥 ↦→ 𝑣, 𝛽 ↦→ 𝐸] .

In particular, the stuck configuration ⟨ 𝑓 | (•𝑣); 𝐸⟩ may be recovered as ( 𝑓 .𝑜) [𝛾],
where

– 𝑓 .𝑜 denotes the result of filling the hole in 𝑜 with 𝑓 , i.e., ⟨ 𝑓 | (•𝑥); 𝛽⟩, and
– 𝑋 [𝛾] denotes capture-avoiding substitution of 𝛾 in 𝑋.

Terminology 1. For clarity, we will now explicitly distinguish between the two
meanings of “substitution”: we continue calling the operation substitution, while
we call the arguments assignments.

To fix intuition, here is a table displaying a few examples of normal forms,
including the one presented previously. They are given both using standard syn-
tax and in the abstract machine presentation. We also present how they may be
split into head variable, observation, and filling:

Standard presentation Abstract machine Head Observation Filling
𝑣 ⟨𝑣 | 𝛼⟩ 𝛼 ⟨𝑥 | □⟩ 𝑥 ↦→ 𝑣

𝐸 [ 𝑓 𝑣] ⟨ 𝑓 | (•𝑣); 𝐸⟩ 𝑓 ⟨□ | (•𝑥);𝛼⟩ 𝑥 ↦→ 𝑣, 𝛼 ↦→ 𝐸

𝐸 [proj𝑖 𝑥] ⟨𝑥 | proj𝑖; 𝐸⟩ 𝑥 ⟨□ | proj𝑖;𝛼⟩ 𝛼 ↦→ 𝐸

𝐸 [if 𝑥 then 𝑒1 else 𝑒2] ⟨𝑥 | (𝑒1, 𝑒2); 𝐸⟩ 𝑥 ⟨□ | (𝑥1, 𝑥2);𝛼⟩ 𝑥𝑖 ↦→ 𝑒𝑖 , 𝛼 ↦→ 𝐸

– A particular case of a normal form is indeed any value 𝑣. In the abstract ma-
chine presentation, 𝑣 must be fed to some context variable 𝛼, which we view
as the head variable. The observation, here denoted by ⟨𝑥 | □⟩, means that
the observed variable 𝛼 is fed with some value 𝑥, while the filling associates
𝑣 to 𝑥.

– The second row is the previous example.
– In the third row, proj𝑖; 𝐸 is an evaluation context that takes the 𝑖th com-

ponent of the running program and continues with 𝐸 . The corresponding
reduction rule is ⟨(𝑒1, 𝑒2) | proj𝑖; 𝐸⟩ → ⟨𝑒𝑖 | 𝐸⟩.

6 This is sometimes called an ultimate pattern.
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– In the fourth example, (𝑒1, 𝑒2); 𝐸 is an evaluation context that executes 𝑒1
or 𝑒2 according to whether the running (boolean) program evaluates to true
or false. The reduction rules are

⟨tt | (𝑒1, 𝑒2); 𝐸⟩ → ⟨𝑒1 | 𝐸⟩ ⟨ff | (𝑒1, 𝑒2); 𝐸⟩ → ⟨𝑒2 | 𝐸⟩. (4)

Since our axiomatisation of evaluation is devoted to OGS, it inlines this splitting
process. It goes in two steps:

– A language on a given, fixed set of types consists of suitably indexed sets of
values, configurations, and observations. Fillings are then defined as suitable
assignments from variables to values, and they are assumed to act on values,
configurations, and observations – this axiomatises substitution.

– An evaluator consists of a suitably indexed family of partial maps from con-
figurations to triples of a (head) variable, an observation, and a filling. In-
tuitively, any configuration either diverges (which is modelled by partiality),
or converges to some triple ( 𝑓 , 𝑜, 𝛾). In other words, we model normal forms
as triples ( 𝑓 , 𝑜, 𝛾).

– Conversely, a refolding is a map sending such normal forms back to configu-
rations. Intuitively, this merely maps ( 𝑓 , 𝑜, 𝛾) to 𝑓 .𝑜[𝛾].

A language machine is a language equipped with an evaluator and a refolding,
satisfying a few coherence axioms (Definition 13). Notably, in order to ensure
soundness of OGS, we need to require that evaluation respect substitution,
which roughly means that evaluating a substituted configuration 𝑐[𝛾] amounts
to evaluating 𝑐, and, if this converges to some normal form ( 𝑓 , 𝑜, 𝛿), evaluating
the substituted refolding of ( 𝑓 .𝑜[𝛿]) [𝛾].

Remark 1. Of course, this definition is informal, notably w.r.t. substitution.
In particular, Definition 13 relies on the well-known machinery of substitution
monoids and modules over them [8–10,13,14].

Remark 2. Indexing here refers to the fact that our axiomatisation is intrinsically
typed and scoped. Thus, e.g., configurations are indexed over lists of types, values
are indexed over sequents, i.e., pairs of a list of types and a type, and so on.

2.3 Substitution equivalence

The notion of language machine lets us define substitution equivalence, ab-
stractly. In the usual presentation of 𝜆-calculus, we were observing closed pro-
grams of some fixed, basic type like the booleans B. Transposed to the abstract
machine presentation, this amounts to observing configurations with a single free
variable of type ¬B, which models the final continuation to which the closed con-
text returns. There are only two observations at that type, namely ⟨tt | □⟩ and
⟨ff | □⟩, for true and false, which correspond to the two expected observations.

In the abstract setting, i.e., in any given language machine, we postulate a
fixed, “final” typing context Ω, and think of configurations with free variables
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in Ω as closed programs. The obvious way to observe them is to check whether
they diverge, and otherwise record which observation they perform on which free
variable of Ω.

Thus, two configurations 𝑐 and 𝑑 with free variables in Γ are substitution
equivalent iff, for all assignments 𝛾 : Γ → Ω from variables in Γ to values of the
same type over Ω, 𝑐[𝛾] and 𝑑 [𝛾] coterminate, and, if they do terminate, perform
the same observation on the same variable of Ω.

2.4 Games and strategies

We now would like to construct the OGS of any language machine, but before
that we need to define what we mean by games and strategies. For this, we follow
Levy and Staton [22], up to slight reformulation.

We first introduce half-games from 𝐼 to 𝐽, for any sets 𝐼 and 𝐽 of Player and
Opponent positions, respectively. Intuitively, a half-game describes the moves
available in each Player position, and the Opponent positions they lead to.

A game over 𝐼 and 𝐽 then consists of a Player half-game from 𝐼 to 𝐽, and an
Opponent half-game from 𝐽 to 𝐼.

A strategy then consists of

– an 𝐼-indexed family of active states, where Player is to play,
– a 𝐽-indexed family of waiting states, where Opponent is to play,
– an action partial map, which, to any active state over a position 𝑖 : 𝐼, either

diverges, or picks a move from 𝑖 and a “next” waiting state, and
– a reaction map, which, to any waiting state and Opponent move over a

position 𝑗 : 𝐽, associates a “next” active state.

2.5 Constructing the game

We saw that evaluators are viewed as either diverging, or splitting configurations
into a head variable 𝑥, an observation 𝑜, and a filling 𝛾. This splitting is used
to interpret the considered configuration 𝑐 as a strategy in a two-player game,
where the program plays as Player and the context plays as Opponent. Let us
briefly describe this game, which we call the OGS game.

As a first approximation, the game in question has the same Player and
Opponent positions, which consist of pairs (Γ,Δ) of typing contexts:

(i) variables in Γ are thought of as defined by the currently waiting player, say
𝑊 , hence unknown to the currently active player, say 𝐴,

(ii) conversely, variables in Δ are defined by 𝐴, hence unknown to 𝑊 .

Accordingly, a move (by 𝐴) consists of an observation on some variable in Γ.
Such an observation may introduce some fresh variables, which are modelled as
a typing context Θ that we call the context increment. Intuitively, 𝐴 holds the
definitions of variables in Θ, and the next position is

(Γ′,Δ′) := (Δ + Θ, Γ).

This is consistent with (i)–(ii) above:



8 P. Borthelle et al.

– the definition of variables in Γ′ are held by the now waiting player 𝐴, while
– those of variables in Δ′ are held by the now active player 𝑊 .

Example 1. If 𝑓 : 𝐴1 → 𝐴2 ∈ Γ, then a possible move is ( 𝑓 , ⟨□ | ( (•𝑥); 𝛽)⟩), with
context increment Θ = (𝑥 : 𝐴1, 𝛽 : ¬𝐴2).

Weak bisimilarity 𝑆 ≈ 𝑇 of strategies is then defined straightforwardly: either
both diverge, or they both converge, play the same move, and reach weakly
bisimilar strategies, coinductively.

2.6 Constructing the OGS

The crux of OGS is then to interpret the language machine as a strategy in
the OGS game. This strategy, which we call the machine strategy, is essentially
straightforward:

– an active state over (Γ,Δ) consists of a configuration 𝑐 with free variables in
Γ, and, for each 𝑥 : 𝜏 ∈ Δ, a value of type 𝜏 with free variables in Γ, which we
(continue to) call an assignment Δ→ Γ;

– waiting states over (Γ,Δ) are assignments Γ→ Δ;
– the action of any configuration 𝑐 and assignment 𝛿 : Δ→ Γ consists in eval-

uating 𝑐, and diverging if it does; otherwise, it evaluates to some normal
form ( 𝑓 , 𝑜, 𝜑), for some filling 𝜑 : Θ→ Γ of the context increment Θ of 𝑜; the
machine strategy then

• plays the move ( 𝑓 , 𝑜), and
• picks as its next waiting state the compound assignment [𝛿, 𝜑] : Δ+Θ→ Γ,

over the position (Δ + Θ, Γ);
– the reaction of an assignment 𝛾 : Γ → Δ to any move ( 𝑓 , 𝑜) with context

increment Θ is the configuration obtained by refolding ( 𝑓 , 𝑜, 𝛾), up to some
technicalities that we hide under the rug for the moment. In particular, vari-
ables in the context increment Θ remain fresh for this player.

At this point, we may state the soundness property: any two configurations
which give weakly bisimilar strategies are substitution equivalent.

In order to prove it, it remains to work around a few technical glitches, which
we briefly describe in the coming subsections. The first amounts to taking the
final typing context Ω into account at the level of games: this is easy. The second
is well known to the experts: it is the “infinite chattering” problem. We deal with
it in a novel way, by building acyclicity into the model. The final difficulty is
new and surprising. It has to do with the fact that, in all sensible languages,
repeated, non-trivial instantiation of the head variable eventually leads to some
redex. In the abstract setting, we need an additional hypothesis to ensure this
is indeed the case.
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2.7 Final moves

It might be tempting to treat the “final” typing context Ω normally, i.e., to make
it part of positions (Γ,Δ). But it would not work. Indeed, once a player makes
a final move, the game must stop, in order to reflect the notion of observation
that was fixed for substitution equivalence.

We thus tweak the naive definitions of games and strategies given above to
incorporate this idea:

(1) A game comes with a set of final moves.
(2) The action map of a strategy may either play a proper move as before, or
play a final move.
(3) The final moves of the OGS game are observations on variables in the final
typing context Ω.
(4) States of the machine strategy are modified similarly: active states over
(Γ,Δ) comprise a configuration with free variables in Ω + Γ and an assignment
Δ→ Ω + Γ, while waiting states are assignments Γ→ Ω + Δ.
(5) The action map of the machine strategy discriminates against the head
variable: if it is in Γ, then a proper move is played; if it is in Ω, a final move is
played.
(6) Finally, we adjust weak bisimilarity accordingly: if one strategy plays a final
move, then the other should play the same, and conversely.

At the cost of some moderate additional verbosity, this builds the protocol of
substitution equivalence into weak bisimilarity of OGS strategies.

2.8 Infinite chattering

Let us now deal with the second announced technical glitch: the infinite chat-
tering problem. A symptom of it is already visible in our description of OGS.
Indeed, from a pair of an active and a passive states on a given position (Γ,Δ), we
would like to be able to recover a corresponding configuration with free variables
in the final typing context Ω. Such a pair of states amounts to a configuration
with free variables in Γ, and assignments

Γ
𝛾
−→ Ω + Δ Δ

𝛿−→ Ω + Γ,

so one might hope that substituting 𝑐 with 𝛾 and 𝛿 in turn would converge to
some configuration with free variables in Ω. This in fact holds for pairs of states
arising from the game, but not for all pairs.

Example 2. For a silly example, consider a case where some free variable 𝑥 of 𝑐
is mapped by 𝛾 to some variable 𝑦 in Δ, which is in turn mapped to 𝑥 in Γ by 𝛿.

Such cyclic configurations do not arise during the game, though. Crucially, in
the above description, when we form the new waiting state [𝛿, 𝜑] : Δ+Θ→ Ω+Γ,
we know that the other assignment 𝛾 : Γ → Ω + Δ does not depend on the new
variables in Θ.
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This leads us to introduce a refined version of the game, in which positions
record the sequence of context increments, and states of the machine strategy
take them into account to build acyclicity into the model. Positions are thus
sequences Θ1, . . . ,Θ𝑛 of typing contexts.

The idea is that, if the current position is a sequence Θ1, . . . ,Θ𝑛 of context
increments, then Θ𝑛 was introduced by the previously active, now waiting player
𝑊 . Accordingly:

– A (non-final) move consists of a variable introduced by 𝑊 , i.e., one in . . . +
Θ𝑛−2+Θ𝑛, together with an observation 𝑜 on it – the first index in the sequence
depending on the parity of 𝑛. The next position is of course Θ1, . . . ,Θ𝑛,Θ,
where Θ denotes the context increment of 𝑜.

– An active state of the machine strategy is a configuration with free variables
in Ω + . . . +Θ𝑛−2 +Θ𝑛, equipped with assignments (. . . , 𝛿𝑛−3, 𝛿𝑛−1) as on the
left below.

Active assignments

Θ𝑛−1
𝛿𝑛−1−−−−→ Ω + . . . + Θ𝑛−4 + Θ𝑛−2,

Θ𝑛−3
𝛿𝑛−3−−−−→ Ω + . . . + Θ𝑛−6 + Θ𝑛−4,
...

Passive assignments
Θ𝑛

𝛾𝑛−−→ Ω + . . . + Θ𝑛−3 + Θ𝑛−1,
Θ𝑛−2

𝛾𝑛−2−−−−→ Ω + . . . + Θ𝑛−5 + Θ𝑛−3,
...

(5)

– A passive state consists of complementary assignments (. . . , 𝛾𝑛−2, 𝛾𝑛) as on
the right above.

This time, it is easy to recover a well-defined configuration with free variables
in Ω from an active-passive pair of states, as

𝑐 := 𝑐[𝛾𝑛] [𝛿𝑛−1] [𝛾𝑛−2] [𝛿𝑛−3] . . . (6)

2.9 Focused redexes and eventual guardedness

Let us now come to the last technical glitch that we had to face. It surprised us,
as it is rather theoretical: we know of no concrete, sensible language machine in
which it arises. It may be viewed as a form of infinite chattering. Let us briefly
explain it. A key lemma in virtually any OGS soundness proof roughly states the
following: given any compatible pair of an active state (𝑐, 𝛿) and a waiting state
𝛾, the configuration (6), obtained by iterated substitution, behaves the same as
letting the strategies associated to (𝑐, 𝛿) and 𝛾 play against one another. This
lemma is simply wrong in general, so we need an additional hypothesis.

A bit more formally, one defines a composition operation. The result of com-
position may either diverge or play a final move in Ω. And the key lemma states
that the refolded configuration (6) diverges iff the composition does, and, if not,
both play the same final move in Ω.

The difficulty lies in the definition of composition. In principle, it should work
as follows. An invariant is that one of the two given strategies is active while the
other is waiting. The composition, say (𝑐, 𝛿) ∥ 𝛾, is then computed like so:
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– If the active strategy diverges or performs a final move, then so does the
composition.

– If the active strategy performs a non-final move, then the waiting strategy
reacts to it, the roles are switched, and we start over.

As a first step towards making this precise, we must give a bit more detail on
how we handle partiality. For us, a partial map 𝐴→ 𝐵 is a map 𝐴→ D𝐵, where
D is Capretta’s delay monad [2], which we briefly recall in §4.2. This is a rather
intensional description of partiality, in the sense that an element of D𝐵 consists
of a sequence of “silent computation steps”, denoted by 𝜏, which is either infinite
or followed by some “result” in 𝐵.

This suggests interpreting the above description as a Coq cofixpoint defi-
nition. However, the second clause does not satisfy Coq’s guardedness criterion!
Let us illustrate this:

Example 3. Consider 𝑐 = ⟨𝑥 | (•𝑣);𝛼⟩ and 𝛾 = [𝑥 ↦→ 𝜆𝑧.𝑝, 𝛼 ↦→ 𝐸], for some
program 𝑝 and evaluation context 𝐸 . Since 𝑐 is a normal form, (𝑐, ∅) plays
without any computation step the non-final move (•𝑦);𝛼 on 𝑥, and the second
recursive clause above says that the composition (𝑐, ∅) ∥ 𝛾 equals the composition

( ⟨𝜆𝑧.𝑝 | (•𝑦); 𝐸⟩ , 𝛾 ) ∥ [𝑦 ↦→ 𝑣],

thus making an unguarded corecursive call.

Remark 3. At this point, it is tempting to insert a dummy computation step to
make the definition guarded. This does give the expected definition up to weak
bisimilarity, but makes the proof break later on, as explained in §4.7.

To justify further, in the above example, semantically, the unguarded call
seems right, because it matches the behaviour of 𝑐[𝛾] as a whole, our stated
goal for composition. Indeed, the second clause models communication between
(𝑐, ∅) and 𝛾, which is invisible in the behaviour of 𝑐[𝛾].

In order to solve the issue, we need to make sure that no two strategies get
stuck in a loop involving only the second clause. This is really subtle: if both
players keep on exchanging non-final moves, interleaved with computation steps,
then composition is well defined (and diverges); so the only problematic case is
when both players exchange non-final moves indefinitely without performing any
computation step.

How could this happen? In the machine strategy, when both players exchange
a non-final move, the head variable gets instantiated. So the question becomes:
in concrete cases, how could repeated instantiation of the head variable not
lead to a redex? A first possibility is if the head variable always gets replaced
by another variable. But this is ruled out by the refinement introduced in the
previous subsection to deal with infinite chattering. Indeed, if some non-final
move leads to a head variable 𝑥 being instantiated by another variable 𝑦, then
acyclicity tells us that 𝑦 must have been introduced before 𝑥. Since this is a
well-founded ordering, we are safe on this front.

However, this does not suffice in all languages!
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Example 4. Consider a language involving 𝜆-abstraction, with an exotic redex
of the form

⟨𝜆𝑥.𝑝 | 𝜆𝑦.𝑞⟩ → . . .

Then, starting from a situation with

– active state given by the configuration ⟨𝑥1 | 𝜆𝑦.𝑞⟩ and empty assignment,
– and passive state given by 𝑥1 ↦→ 𝜆𝑥.𝑝,

the first move consists of the observation ⟨□ | 𝑦1⟩ on 𝑥1, leading to

– as active state (⟨𝜆𝑥.𝑝 | 𝑦1⟩, [𝑥1 ↦→ 𝜆𝑥.𝑝]) and
– as passive state [𝑦1 ↦→ 𝜆𝑦.𝑞].

We are then stuck in a loop between situations of the following forms

(⟨𝑥𝑚 | 𝜆𝑦.𝑞⟩, [𝑦 𝑗 ↦→ 𝜆𝑦.𝑞] 𝑗=1,...,𝑛) ∥ [𝑥𝑖 ↦→ 𝜆𝑥.𝑝]𝑖=1,...,𝑚

(⟨𝜆𝑥.𝑝 | 𝑦𝑛⟩, [𝑥𝑖 ↦→ 𝜆𝑥.𝑝]𝑖=1,...,𝑚) ∥ [𝑦 𝑗 ↦→ 𝜆𝑦.𝑞] 𝑗=1,...,𝑛,

𝑥𝑚.⟨□ |𝑦𝑛+1 ⟩ 𝑦𝑛 .⟨𝑥𝑚+1 |□⟩

where we ignore the fine layering of assignments for readability.

In order to rule out languages in which this issue arises, we state our main
result under the hypothesis that a suitable binary relation ≻ on observations
should be well-founded. Explicitly, we have 𝑜 ≻ 𝑜′ iff there exist 𝑥, 𝑜, 𝛾, and a
non-variable 𝑣 such that substituting 𝑣 for 𝑥 in the refolding 𝑥.𝑜[𝛾] yields some
normal form (without evaluating!) of the shape (𝑥′, 𝑜′, 𝛾′), i.e.,

(𝑥.𝑜[𝛾]) [𝑥 ↦→ 𝑣] = 𝑥′.𝑜′ [𝛾′] .

When ≻ is well-founded, we say that the considered language machine has focused
redexes.

Assuming that the considered language machine has focused redexes, we
should be able to define composition. However, Coq does not readily accept
the definition sketched above, because it does not know that it is productive.
In order to proceed cleanly, we introduce a relaxed fixed point operator which
contents with a proof that, even though the given equations are not directly
guarded in the usual sense, unfolding the definition of each unknown will reach
a guard eventually. This enables us to define composition, and at last prove our
main result (Theorem 8), which states that any language machine with focused
redexes has a sound OGS.

3 ciu equivalence through substitution equivalence

In this section, we explain the idea of substitution equivalence, and the nec-
essary pre-processing step that comes with it, on a simple example, namely
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simply-typed, call-by-value 𝜆-calculus with a boolean type and recursive func-
tions. Terms are generated by the following grammar

values ∋ 𝑣, 𝑤 ::= 𝑥 | tt | ff | 𝜆rec 𝑓 , 𝑥. 𝑝
programs ∋ 𝑝, 𝑞 ::= 𝑣 | 𝑝 𝑞 | if (𝑝, 𝑞1, 𝑞2)

where 𝜆rec binds 𝑓 and 𝑥 in 𝑝, as usual. The language is typed. Types and typing
contexts are generated by the following grammar,

𝐴, 𝐵 ::= B | 𝐴→ 𝐵 Γ ::= 𝜀 | Γ, 𝑥 : 𝐴

with the following, standard typing rules.

𝑥 : 𝐴 ∈ Γ
Γ ⊢ 𝑥 : 𝐴 Γ ⊢ tt : B Γ ⊢ ff : B

Γ, 𝑓 : 𝐴→ 𝐵, 𝑥 : 𝐴 ⊢ 𝑝 : 𝐵
Γ ⊢ 𝜆rec 𝑓 , 𝑥. 𝑝 : 𝐴→ 𝐵

Γ ⊢ 𝑝 : 𝐴→ 𝐵 Γ ⊢ 𝑞 : 𝐴
Γ ⊢ 𝑝 𝑞 : 𝐵

From now on, all terms are implicitly considered as coming with a typing deriva-
tion. Capture-avoiding substitution is defined as usual, and evaluation contexts
are defined by the following grammar, with straightforward typing rules.

eval. contexts ∋ 𝐸 ::= □ | 𝑝 𝐸 | 𝐸 𝑣 | if (𝐸, 𝑝, 𝑞)

Context application is defined accordingly. Finally, evaluation is defined by the
following inference rules.

(𝜆rec 𝑓 , 𝑥. 𝑝) 𝑣 → 𝑝 [ 𝑓 ↦→ (𝜆rec 𝑓 , 𝑥. 𝑝), 𝑥 ↦→ 𝑣]
𝑝 → 𝑞

𝐸 [𝑝] → 𝐸 [𝑞]

if (tt, 𝑝, 𝑞) → 𝑝 if (ff , 𝑝, 𝑞) → 𝑞

As explained in the introduction, ciu equivalence of 𝑝 and 𝑞 is defined to
mean 𝐸 [𝑝 [𝜎]] � 𝐸 [𝑞 [𝜎]], for all closing substitutions 𝜎 and boolean contexts
𝐸 , for some fixed equivalence relation � between boolean closed programs. More
precisely,

Notation 2. We write Γ ⊢ 𝜎 : Δ for assignments to each variable 𝑥 : 𝐴 ∈ Δ of a
value of type 𝐴 in typing context Γ.

Definition 1. Two programs 𝜀 ⊢ 𝑝, 𝑞 of type B are deemed observably equiva-
lent whenever we have 𝑝 →∗ tt iff 𝑞 →∗ tt, and similarly with ff .

Definition 2. For any context Γ and type 𝐴, two programs Γ ⊢ 𝑝, 𝑞 : 𝐴 are
ciu-equivalent, which we denote by 𝑝 ≈ciu 𝑞, iff for all assignments 𝜀 ⊢ 𝜎 : Γ,
and closed evaluation contexts 𝐸 of type B with a hole of type 𝐴, 𝐸 [𝑝 [𝜎]] and
𝐸 [𝑞 [𝜎]] are observably equivalent.
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Γ ⊢ 𝑣 : 𝐴 Γ ⊢ 𝜋 : ¬𝐵
Γ ⊢ •𝑣; 𝜋 : ¬(𝐴→ 𝐵)

Γ ⊢ 𝑝 : 𝐴→ 𝐵 Γ ⊢ 𝜋 : ¬𝐵
Γ ⊢ 𝑝•; 𝜋 : ¬𝐴

Γ ⊢ 𝑝 : 𝐴 Γ ⊢ 𝑞 : 𝐴 Γ ⊢ 𝜋 : ¬𝐴
Γ ⊢ (𝑝, 𝑞); 𝜋 : ¬B

Γ ⊢ 𝑝 : 𝐴 Γ ⊢ 𝜋 : ¬𝐴
Γ ⊢ ⟨ 𝑝 | 𝜋 ⟩

⟨ 𝑝 𝑞 | 𝜋 ⟩ → ⟨ 𝑞 | 𝑝•; 𝜋 ⟩ ⟨ if (𝑝, 𝑞1, 𝑞2) | 𝜋 ⟩ → ⟨ 𝑝 | (𝑞1, 𝑞2); 𝜋 ⟩
⟨ 𝑣 | 𝑝•; 𝜋 ⟩ → ⟨ 𝑝 | •𝑣; 𝜋 ⟩ ⟨𝜆rec 𝑓 , 𝑥. 𝑝 | •𝑣; 𝜋 ⟩ → ⟨ 𝑝 [ 𝑓 ↦→ (𝜆rec 𝑓 , 𝑥. 𝑝), 𝑥 ↦→ 𝑣] | 𝜋 ⟩

⟨ tt | (𝑞1, 𝑞2); 𝜋 ⟩ → ⟨ 𝑞1 | 𝜋 ⟩ ⟨ff | (𝑞1, 𝑞2); 𝜋 ⟩ → ⟨ 𝑞2 | 𝜋 ⟩

Fig. 1. Typing and evaluation rules for the lower-level variant of call-by-value 𝜆-calculus

With the main purpose of unifying notions, and hence simplifying the ab-
stract framework, we want to put context application 𝐸 [−] and substitution
(−)[𝜎] on an equal footing in this definition. The overall idea is to compile our
simply-typed, call-by-value 𝜆-calculus down to a slightly lower-level language, as
explained in §2.1.

Let us now introduce the low-level language. Low-level types 𝜏 are either
simple types 𝐴, or negated simple types ¬𝐴. Programs have simple types 𝐴,
while evaluation contexts have negated types ¬𝐴. We have syntactic categories
for programs and evaluation contexts, and a configuration is a pair of a program
of some type 𝐴 and of an evaluation context of type ¬𝐴. Values and programs
are defined and typed exactly as before. Evaluation contexts and configurations
are specified by the following grammar.

values ∋ 𝑣, 𝑤 ::= 𝑥 | tt | ff | 𝜆rec 𝑓 , 𝑥. 𝑝
programs ∋ 𝑝, 𝑞 ::= 𝑣 | 𝑝 𝑞 | if (𝑝, 𝑞1, 𝑞2)

eval. contexts ∋ 𝜋, 𝜅 ::= 𝑥 | •𝑣; 𝜋 | 𝑝•; 𝜋 | (𝑝, 𝑞); 𝜋
configurations ∋ 𝑐, 𝑑 ::= ⟨ 𝑝 | 𝜋 ⟩

The typing rules for values and programs are again exactly as before (except
that typing contexts may now comprise evaluation context variables). Further-
more, the variable typing rule now covers the fact that any evaluation context
variable 𝛼 : ¬𝐴 is an evaluation context of type ¬𝐴. Additional typing rules, for
evaluation contexts and configurations, are shown in the first part of Figure 1.
Capture-avoiding substitution is defined straightforwardly, and evaluation rules
are displayed in the second part of Figure 1. We may now introduce substitution
equivalence.

Definition 3. For any typing context Γ, two configurations Γ ⊢ 𝑐, 𝑑 are substi-
tution equivalent, which we denote by 𝑐 ≈sub 𝑑, iff for all assignments (𝛼 : ¬B) ⊢
𝜎 : Γ, 𝑐[𝜎] and 𝑑 [𝜎] are observably equivalent, in the sense that we have
𝑐 →∗ ⟨ tt | 𝛼 ⟩ iff 𝑑 →∗ ⟨ tt | 𝛼 ⟩, and similarly with ff .
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The main point of this section is:

Proposition 1. For any typing context Γ and type 𝐴 of the source language,
two programs Γ ⊢ 𝑝, 𝑞 : 𝐴 are ciu-equivalent iff, in the typing context (Γ, 𝛽 : ¬𝐴)
(with 𝛽 fresh w.r.t. Γ), ⟨ 𝑝 | 𝛽 ⟩ and ⟨ 𝑞 | 𝛽 ⟩ are substitution equivalent.

Proof. There is a bijection between assignments (𝛼 : ¬B) ⊢ 𝜎 : (Γ, 𝛽 : ¬𝐴) in
the lower-level language and pairs of an assignment 𝜀 ⊢ 𝛾 : Γ and an evaluation
context 𝐸 of type B with a hole of type 𝐴 in the source language. Furthermore, for
such assignments and evaluation contexts, ⟨ 𝑝 | 𝛽 ⟩[𝜎] and 𝐸 [𝑝 [𝛾]] are observably
equivalent in the obvious sense, hence the result follows.

4 Abstract OGS

In this section, we fill the gaps left by the informal overview of §2.

4.1 An abstract account of substitution

Let us first recall (one presentation of) a standard way of abstracting over
capture-avoiding substitution.

Notation 3. We fix a set 𝑇 of types for the whole section, and let 𝑇∗ denote
the set of sequences of types.

The ambient setting for axiomatising substitution is that of families:

Definition 4. For any sequence 𝑋1, . . . , 𝑋𝑛 of sets, we extend the set�𝑋1, . . . , 𝑋𝑛 = (𝑋1 → . . .→ 𝑋𝑛 → Set)
to a category, by taking

∀𝑥1 : 𝑋1, . . . , 𝑥𝑛 : 𝑋𝑛, X 𝑥1 . . . 𝑥𝑛 → Y 𝑥1 . . . 𝑥𝑛

as hom-set �𝑋1, . . . , 𝑋𝑛 (X,Y), for any X,Y. In particular, we call the objects of
𝑇∗ and �𝑇,𝑇∗, unsorted and sorted families, respectively.

Example 5. A sorted family of particular interest is the one of variables ( ),
given by the proof-relevant ∈ predicate: (𝜏 ∈ Γ) denotes the set of indices at
which 𝜏 occurs in Γ.

Let us now explain what it means for sorted and unsorted families to be
equipped with substitution. As is standard in the well-scoped approach, we mean
substitution in the parallel sense. The basic ingredient for this is the following
standard notion, which we call assignment.

Definition 5 ( ). For any typing contexts Γ,Δ : 𝑇∗ and sorted family X, an
X-assignment 𝜎 : Γ→X Δ, or assignment when X is clear from context, consists
of an element of X 𝜏 Δ, for all 𝑥 : 𝜏 ∈ Γ. In other words, we have

− →− − : 𝑇∗ →�𝑇,𝑇∗ → 𝑇∗ → Set

Γ→X Δ := ∀𝜏 : 𝑇, 𝜏 ∈ Γ→ X 𝜏 Δ.

https://ogs-artifact.github.io/ogs-artifact/Ctx.html#concretevar
https://ogs-artifact.github.io/ogs-artifact/Assignment.html#asgn
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In order to axiomatise substitution for both kinds of families, we introduce the
following notion of power families:

Definition 6. Fixing a sorted family M, for any sorted family S and unsorted
family U, we define the power objects

⟦M,S⟧𝑠 : �𝑇,𝑇∗ ⟦M,U⟧ : 𝑇∗

by ⟦M,S⟧𝑠 𝜏 Γ := ∀Δ : 𝑇∗, (Γ→M Δ) → S 𝜏 Δ

⟦M,U⟧ Γ := ∀Δ : 𝑇∗, (Γ→M Δ) → U Δ.

We may now axiomatise substitution, for both kinds of families:

Definition 7 ( ). A substitution monoid is a sorted family M, equipped with
morphisms

var : −∈− →M sub : M → ⟦M,M⟧𝑠,

subject to associativity and unitality laws.

Definition 8 ( ). A substitution module over a substitution monoid (M, var, sub),
or substitution M-module for short, is an unsorted family U, equipped with a
morphism

sub : U → ⟦M,U⟧,

subject to assocativity and unitality laws.

In both cases, the substitution morphism takes elements over any context Γ (and
type 𝜏, if relevant) and assignments Γ→M Δ, to elements over Δ: this is indeed
the expected type for substitution.

4.2 Modelling divergence: the delay monad

Now that we have recalled the standard axiomatisation of substitution, let us
explain more precisely how we handle divergence in Coq, which is very simple
and standard: we use Capretta’s delay monad [2].

Definition 9 ( ). The delay endomap on Set is defined coinductively by the
following inference rules.

𝑥 : 𝑋

𝜂 𝑥 : D 𝑋

𝑎 : D 𝑋

𝜏; 𝑎 : D 𝑋
·

We also denote by D the pointwise liftings of delay to categories of families�𝑋1, . . . , 𝑋𝑛, e.g., �𝑇,𝑇∗ and 𝑇∗.

Remark 4. The notation 𝜏; 𝑎 is meant to suggest a silent computation step. Such
𝜏s should not be confused with types, which hopefully will be easy from context.

https://ogs-artifact.github.io/ogs-artifact/Subst.html#submonoid
https://ogs-artifact.github.io/ogs-artifact/Subst.html#submodule
https://ogs-artifact.github.io/ogs-artifact/Delay.html#delay
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Elements of D 𝑋 are thought of as potentially diverging computations of type
𝑋: divergence is modelled by the infinite chain of 𝜏s; converging computations
have the shape 𝜏; . . . ; 𝜏; 𝜂 𝑥.

Depending on context, we will consider elements of D 𝑋 equivalent up to
strong or weak bisimilarity, which we now recall.

Definition 10. For any relation 𝑅 ⊆ 𝑋 ×𝑌 between sets (or families) 𝑋 and 𝑌 ,
we let D 𝑅 ⊆ D 𝑋 ×D 𝑌 be such that (𝑐, 𝑑) : D 𝑅 iff 𝑐 and 𝑑 either both diverge,
or evaluate to some 𝑥 and 𝑦 with (𝑥, 𝑦) ∈ 𝑅. We write ≈𝒟 for weak bisimilarity
( ), which we define as D (=).

We write ≊𝒟 for strong bisimilarity ( ), the canonical lifting of 𝑅 to the delay
coinductive type: either both sides loop or both converge to the same element in
the same number of 𝜏 steps.

Notation 4. We write interchangeably (𝑥 ← 𝑢; 𝑣 𝑥) and 𝑢 >>= 𝑣 for the bind ( )
operator of D—evaluate 𝑢, and if it returns some 𝑥, then evaluate 𝑣 𝑥.

4.3 Language machines and substitution equivalence

Let us now introduce our axiomatisation of evaluation and observation more
formally than in the overview. We will then wrap this all up into the definition
of language machines, and define substitution equivalence.

Definition 11 ( ). An evaluation structure on any unsorted families C,N : 𝑇∗

consists of maps: eval : C → DN and refold : N → C such that eval◦refold≊𝒟𝜂.

Remark 5. By Definition 10, the equation says that evaluating the embedding
refold 𝑛 of some normal form 𝑛 yields 𝑛 in zero computation steps.

Definition 12 ( ). An observation structure O is a type-indexed set O : 𝑇 →
Set together with a map dom : ∀𝜏 : 𝑇, O 𝜏 → 𝑇∗.

For any observation structure O, we define the unsorted family O• of pointed
observations by O• Γ := ∃𝜏 : 𝑇, (𝜏 ∈ Γ) × O 𝜏. We extend the map dom to O•,
defining dom• : ∀Γ,O• Γ→ 𝑇∗ by dom• 𝜏 (𝑖, 𝑜) := dom 𝑜.

Thus, a pointed observation over Γ consists of a variable, together with an ob-
servation at its type.

Remark 6. In the literature, observations are sometimes called ultimate patterns
[21], continuation patterns [29], atomic values [19], or abstract values [17].

Definition 13. A language machine consists of

– a substitution monoid V of values,
– a substitution V-module C of configurations,
– an observation structure O,
– an evaluation structure on C and NO,V ,

https://ogs-artifact.github.io/ogs-artifact/Eq.html#wbisim
https://ogs-artifact.github.io/ogs-artifact/Eq.html#sbisim
https://ogs-artifact.github.io/ogs-artifact/Delay.html#delaybind
https://ogs-artifact.github.io/ogs-artifact/Machine.html#machine
https://ogs-artifact.github.io/ogs-artifact/Obs.html#obsstruct
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where NO,V Γ := ∃𝑜 : O• Γ, (dom• 𝑜 →V Γ).
Evaluation and refolding are furthermore required to respect substitution ( ),

in the sense that, for all 𝑢 : C Γ, 𝛾 : Γ →V Δ, (𝑥, 𝑜, 𝜃) : O• Γ, with 𝑥 : 𝜏 ∈ Γ and
𝛾(𝑥) = 𝑦 : 𝜏 ∈ Δ, the following hold

eval (𝑢[𝛾]) ≈𝒟 𝑛← eval 𝑢 ; eval ((refold 𝑛) [𝛾])
𝑥.𝑜(𝜃) [𝛾] = 𝑦.𝑜(𝜃 [𝛾]),

where we denote

– both substitution maps and pointwise substitution by 𝑋 [𝛾], and
– the refolding refold (𝑥, 𝑜, 𝜃) of any normal form (𝑥, 𝑜, 𝜃) : NO,V Γ by 𝑥.𝑜(𝜃).

Remark 7. By pointwise substitution, we mean that 𝜃 [𝛾] (𝑧) := 𝜃 (𝑧) [𝛾].

Notation 5. In the sequel, we often treat refolding refold : NO,V → C as an
implicit coercion. We also extend the notation 𝑥.𝑜(𝛾) to arbitrary values, writing
𝑣.𝑜(𝛾) for refold(𝑥, 𝑜, 𝛾) [𝑥 ↦→ 𝑣], for fresh 𝑥.

Example 6. The lower-level language of §3 forms a language machine. We take
𝑇 to consist of types 𝐴 and negated types ¬𝐴 (i.e., it is the disjoint union of
two copies of simple types); C Γ consists of configurations Γ ⊢ ⟨𝑝 | 𝜋⟩; V 𝐴 Γ

consists of values Γ ⊢ 𝑣 : 𝐴, and V ¬𝐴 Γ consists of all contexts Γ ⊢ 𝜋 : ¬𝐴.
Before defining O, we introduce the family U : �𝑇,𝑇∗ of ultimate values, which is
the subfamily U 𝜏 ⊆ ∃Γ, V 𝜏 Γ defined inductively by the following linear type
system,

𝑥 : 𝐴→ 𝐵 ⊢U 𝑥 : 𝐴→ 𝐵 ⊢U tt : B ⊢U ff : B

Γ ⊢U 𝑣 : 𝐴

Γ, 𝑥 : ¬𝐵 ⊢U (•𝑣); 𝑥 : ¬(𝐴→ 𝐵) 𝑥 : ¬B ⊢U 𝑥 : ¬B

where we write Γ ⊢U 𝑣 : 𝜏 for (Γ, 𝑣) : U 𝜏. In words, at each 𝜏 (a simple or negated
simple type), 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏 is an ultimate value; we have (⊢ tt), (⊢ ff ) : U B, and
so on. We then define O with similar notation:

Γ ⊢U 𝜋 : ¬𝐴
Γ ⊢O ⟨□ | 𝜋⟩ : 𝐴

Γ ⊢U 𝑣 : 𝐴

Γ ⊢O ⟨𝑣 | □⟩ : ¬𝐴
·

Let us now define substitution equivalence, for any language machine M =

(V, C,O, eval, refold).
Definition 14 ( ). We define evaloM : C → O• at any Γ to be the composite

C Γ eval−−−→ D(NO,V Γ) D 𝜋1−−−−→ D(O• Γ).

Definition 15 ( ). For any fixed final typing context Ω : 𝑇∗, two configurations
𝑢, 𝑣 : C Γ are substitution equivalent at Ω, written 𝑢 ≈sub 𝑤, iff:

∀𝛾 : Γ→V Ω, evalo (𝑢[𝛾]) ≈𝒟 evalo (𝑤 [𝛾]).

https://ogs-artifact.github.io/ogs-artifact/Machine.html#evalrespsub
https://ogs-artifact.github.io/ogs-artifact/Machine.html#evalobs
https://ogs-artifact.github.io/ogs-artifact/Soundness.html#substeq
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4.4 Games and strategies

We now turn to making precise the contents of §2.4. Levy and Staton’s notion of
game is parameterised by sets 𝐼 and 𝐽 of client and server positions, respectively.
The definition then proceeds to postulate families of client moves from 𝐼 to 𝐽,
and server moves from 𝐽 to 𝐼. As this is symmetric, we start by introducing a
notion of “half-game”, and then define games as pairs thereof.

Definition 16. A half-game ( ) over sets 𝐼 and 𝐽 consists of an 𝐼-indexed
family of moves move : 𝐼 → Set, and a next map in ∀𝑖 : 𝐼, move 𝑖 → 𝐽. We
denote by HGame 𝐼 𝐽 the set of half-games over 𝐼 and 𝐽.

A game ( ) over sets 𝐼 and 𝐽 consists of a client half-game in HGame 𝐼 𝐽, a
server half-game in HGame 𝐽 𝐼, and a set of final moves. We denote by Game 𝐼 𝐽
the set of games over 𝐼 and 𝐽.

Notation 6. We denote by moveH and nextH the components of any half-game
H , and by clientG, serverG, and finalG the components of any game G.

We will need the following notion of dual game.

Definition 17. The dual G⊥ : Game 𝐽 𝐼 of a game G : Game 𝐼 𝐽 is defined by swap-
ping the client and server: clientG⊥ := serverG, serverG⊥ := clientG and
finalG⊥ := finalG.

Now that games are defined, we turn to defining strategies in a game. We
proceed coalgebraically, for which we need the following “derived” functors.

Definition 18 ( ). Given any half-game H : HGame 𝐼 𝐽, we define two functors
𝐽 → �̂�, the action functor ⟦H⟧+ and the reaction functor ⟦H⟧−:

⟦H⟧+X 𝑖 := ∃𝑚 : moveH 𝑖, X (nextH 𝑖 𝑚)
⟦H⟧− X 𝑖 := ∀𝑚 : moveH 𝑖, X (nextH 𝑖 𝑚).

We may now define strategies.

Definition 19. Given a game G : Game 𝐼 𝐽, a strategy for G consists of families
S+ : �̂� and S− : 𝐽 of active and waiting states, respectively, together with

S+ → D (finalG + ⟦clientG⟧+ S−) S− → ⟦serverG⟧− S+,

which we respectively call the action and reaction morphisms.
We denote by StratG the set of strategies for G.

Notation 7. We denote by playS and coplayS the action and reaction mor-
phisms of any strategy S.

Remark 8. The occurrence of the (family lifting of the) delay monad in the action
morphism means that we allow Proponent to “think forever” and never actually
play. This is crucial for interpreting languages with general recursion.

https://ogs-artifact.github.io/ogs-artifact/Game.html#halfgame
https://ogs-artifact.github.io/ogs-artifact/Game.html#game
https://ogs-artifact.github.io/ogs-artifact/Game.html#actionreaction
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Remark 9. In the code, this is where indexed interaction trees come in. We define
strategies ( ) not as coalgebras, as here, but as interaction trees, i.e., elements
of the final coalgebra 𝜈𝐴.(finalG + 𝐴 + ⟦clientG⟧+ (⟦serverG⟧−𝐴)).

The main point of OGS consists in interpreting configurations as strategies
in some game, in the hope that weak bisimilarity between induced strategies
entails substitution equivalence. Let us define weak bisimilarity.

Definition 20. Given two strategies S,T : StratG, a weak bisimulation 𝛼 : S ≈G
T is a pair of an 𝐼-indexed relation 𝛼+ ⊆ S+ × T + between active states and a
𝐽-indexed relation 𝛼− ⊆ S− × T − between waiting states, such that

playS ≈[𝛼+ → D(EqfinalG + ⟦clientG⟧
+ 𝛼−)]≈ playT and

coplayS ≈[𝛼− → ⟦serverG⟧− 𝛼+]≈ coplayT ,

where 𝑢 ≈[𝑅 → 𝑆]≈ 𝑣 is shorthand for ∀𝑖 𝑥 𝑦, 𝑅 𝑖 𝑥 𝑦 → 𝑆 𝑖 (𝑢 𝑥) (𝑣 𝑦), and we lift
functors to relations in the straightforward way. Let weak bisimilarity, denoted
by ≈G, be the largest weak bisimulation.

4.5 The OGS game

Let us now define the OGS game corresponding to any language machine. For
§4.5–4.7, we fix a set 𝑇 of types, a language machineM = (V, C,O, eval, refold),
and a typing context Ω : 𝑇∗.

Definition 21 ( ). An interleaved context is a list of contexts. We denote by
𝑇∗∗ = (𝑇∗)∗ the set of interleaved contexts.

Of course, we may extract from any interleaved context the variables intro-
duced by the currently active, resp. waiting player:

Definition 22 ( ). We define two collapsing functions ↓+, ↓− : 𝑇∗∗ → 𝑇∗ as
follows: ↓+∅ := ∅

↓+(Φ, Γ) := ↓−Φ + Γ
↓−∅ := ∅
↓− (Φ, Γ) := ↓+Φ.

Remark 10. Intuitively, ↓+ retains from an interleaved context the variables that
are unknown to the currently active player, starting with the last introduced
context. Symmetrically, ↓− retains those that are unknown to the waiting player,
which does not include the last introduced context.

Let us now define the OGS game, as expected. This only depends on the fixed
context Ω and the observation structure of the considered language machine.

Definition 23 ( ). We define the OGS half-game HOGS : HGame𝑇∗∗ 𝑇∗∗ by:

moveHOGSΦ := O• ↓+Φ and nextHOGSΦ𝑚 := (Φ, dom• 𝑚).

Furthermore, the OGS game OGS is defined by

clientOGS := HOGS serverOGS := HOGS finalOGS := O•Ω.

https://ogs-artifact.github.io/ogs-artifact/Game.html
https://ogs-artifact.github.io/ogs-artifact/Game.html#ogsctx
https://ogs-artifact.github.io/ogs-artifact/Game.html#ctxcollapse
https://ogs-artifact.github.io/ogs-artifact/Game.html#ogsgame
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4.6 The machine strategy

Let us now define the machine strategy for the given language machine M and
final typing context Ω, fixed at the beginning of §4.5.

Definition 24 ( ). Let Env+ and Env− denote the 𝑇∗∗-indexed families of ac-
tive, resp. waiting, interleaved assignments defined inductively as follows.

𝜀 : Env+ ∅ 𝜀 : Env− ∅
𝑒 : Env− Φ

𝑒, · : Env+ (Φ, Γ)

𝑒 : Env+Φ
𝛾 : Γ→V (Ω + ↓+Φ)
𝑒, 𝛾 : Env− (Φ, Γ)

Remark 11. This is merely a formal version of (5). Beware, though, that the
active player in an even interleaved context is Proponent, while the active player
in an odd interleaved context is Opponent.

Like the interleaved contexts by which they are indexed, interleaved assign-
ments can be collapsed into basic assignments.
Definition 25 ( ). The collapsing functions for interleaved assignments are
defined by mutual induction as follows, for all Φ : 𝑇∗∗,

↓+ : Env+Φ→ ↓−Φ→V (Ω + ↓+Φ) ↓− : Env− Φ→ ↓+Φ→V (Ω + ↓−Φ)
↓+ 𝜀 := elim∅ ↓− 𝜀 := elim∅

↓+ (𝑒, ·) := (↓− 𝑒) [wkn] ↓− (𝑒, 𝛾) := [↓+ 𝑒, 𝛾],
where wkn denotes the obvious weakening: we have Φ = (Φ′, Γ) for some Φ′ and

Γ, and the result is ↓+Φ′
↓− 𝑒
−−−→V Ω + ↓−Φ′ wkn−−→V Ω + ↓−Φ′ + Γ.

We now have everything in place to define the machine strategy.
Definition 26 ( ). The machine strategy M̃ : StratOGS is defined as follows:

– the family of active states is M̃+Φ := C (Ω + ↓+Φ) × Env+Φ ;
– the family of waiting states is M̃− Φ := Env− Φ ;
– the action morphism is defined by

playM̃ : M̃+ → D (O•Ω + ⟦OGS⟧+ M̃−)

playM̃ Φ (𝑐, 𝑒) :=
(
𝑥.𝑜(𝛾) ← eval 𝑐 ;

{
𝜂 (inl (𝑥, 𝑜)) if 𝑥 ∈ Ω
𝜂 (inr ((𝑥, 𝑜), (𝑒, 𝛾))) if 𝑥 ∈ ↓+Φ

)
;

– the reaction morphism is defined by

coplayM̃ : M̃− → ⟦OGS⟧− M̃+
coplayM̃ Φ 𝑒 (𝑥, 𝑜) := (𝑥 [↓−𝑒] .𝑜(𝛿𝑜), (𝑒, ·)),

where 𝛿𝑜 denotes the obvious assignment dom 𝑜 →V Ω + ↓−Φ + dom 𝑜.
To finish up, we define two functions injecting configurations (resp. assign-

ments) into active (resp. waiting) machine strategy states ( ),

⟦−⟧+ : C Γ→ M̃+ (Γ, ) ⟦−⟧− : (Γ→V Ω) → M̃− (Γ, )
⟦𝑢⟧+ := (𝑢[𝑤], 𝜀) ⟦𝛾⟧− := (𝜀, 𝛾)

where 𝑤 is the obvious weakening Γ→V Ω+Γ, and (Γ, ) is the singleton sequence.

https://ogs-artifact.github.io/ogs-artifact/Strategy.html#ogsenv
https://ogs-artifact.github.io/ogs-artifact/Strategy.html#envcollapse
https://ogs-artifact.github.io/ogs-artifact/Strategy.html#machine-strategy-def-5-19
https://ogs-artifact.github.io/ogs-artifact/Strategy.html#initstate
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4.7 Soundness

We may now state the main result, recalling Notation 5. We introduce the fol-
lowing technical, yet mild conditions on the considered language machine:

Definition 27. A substitution monoid V is clear-cut iff its unit (−∈−) → V is
injective (where ∈ denotes the variables family of Example 5), and has decidable
image whose complement is furthermore stable under renaming. For a clear-cut
V, we let V\∈ denote the subfamily of non-variable elements.

Definition 28. Assuming V is clear-cut, we define the binary relation ≻ on
∃𝜏 : 𝑇, O 𝜏 by

(𝜏, 𝑜) ≻ (𝜏′, 𝑜′) iff ∃𝑣 : V\∈ , 𝛾, 𝑥, 𝛿, eval (𝑣.𝑜(𝛾)) = 𝜂 (𝑥.𝑜′ (𝛿)).

A language machine has focused redexes iff ≻ is well-founded.

Theorem 8 ( ). For any language machine with focused redexes and clear-cut
values, weak bisimilarity of induced OGS strategies is sound w.r.t. substitution
equivalence, i.e., for any pair of configurations 𝑢 and 𝑤, weak bisimilarity of
induced strategies entails substitution equivalence:

∀𝑐, 𝑑, ⟦𝑐⟧+ ≈+ogs ⟦𝑑⟧+ → 𝑐 ≈sub 𝑑.

Remark 12. Let us unfold notations a bit: ≈+ogs denotes the positive component
of weak bisimilarity between strategies (Definition 20) in the OGS game (Defi-
nition 23), and ≈sub denotes substitution equivalence (Definition 15).

The rest of this section is devoted to sketching the proof. We first describe the
overall structure, and then focus on the main difficulty.

We start by defining a composition operation

− ∥ − : ∀Φ, C (Ω + ↓+Φ) × Env+Φ → Env− Φ → D (O•Ω).

We expect this operation to satisfy the following properties.

Definition 29.

1. Composition is adequate ( ) iff, for all 𝑐 : C Γ and 𝛾 : Γ →M Ω, we have
evaloM (𝑐[𝛾]) ≈𝒟 ⟦𝑐⟧

+ ∥ ⟦𝛾⟧−.
2. Weak bisimilarity is a congruence ( ) for composition iff, for any 𝑠1 ≈+ogs 𝑠2

and 𝑡1 ≈−ogs 𝑡2, we have 𝑠1 ∥ 𝑡1 ≈𝒟 𝑠2 ∥ 𝑡2.

Remark 13. The adequacy equation lives in D (O•Ω) (recalling Definition 14).

Let us readily show that soundness follows from congruence and adequacy.

Proposition 2. If any adequate composition for which weak bisimilarity is a
congruence exists, then OGS is sound.

https://ogs-artifact.github.io/ogs-artifact/Soundness.html#soundness
https://ogs-artifact.github.io/ogs-artifact/Adequacy.html#adequacy
https://ogs-artifact.github.io/ogs-artifact/Congruence.html#congruence
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Proof. For any configurations 𝑐1, 𝑐2 : C Γ with weakly bisimilar interpretations
⟦𝑐1⟧+ and ⟦𝑐2⟧+, and any assignment 𝛾 : Γ→V Ω, we have

evaloM (𝑐1 [𝛾]) ≈𝒟 ⟦𝑐1⟧
+ ∥ ⟦𝛾⟧− (by adequacy)

≈𝒟 ⟦𝑐2⟧+ ∥ ⟦𝛾⟧− (by congruence of weak bisimilarity)
≈𝒟 evaloM (𝑐2 [𝛾]) (by adequacy again),

hence 𝑐1 ≈sub 𝑐2, as desired.

It thus remains to define a congruent and adequate composition. The plan
for this is to take the fixed point of an equation, in the following sense.

Definition 30 ( ). An equation consists of a set 𝑋 of variables, a set 𝑌 of
constants, and a definition function 𝑋 → D (𝑌 + 𝑋).

Since we are interested in weak bisimilarity, it seems easier to try and construct
weak fixed points of equations 𝑓 : 𝑋 → D (𝑌 + 𝑋), that is, maps 𝑝 : 𝑋 → D (𝑌 )
such that 𝑝 𝑥 ≈𝒟 𝑓 𝑥 >>=[𝜂, 𝑝] for all 𝑥 : 𝑋. This may be done by safely guarding
all occurrences of “variables” in 𝑋 by a 𝜏:

Definition 31 ( ). Given an equation 𝑓 : 𝑋 → D (𝑌 + 𝑋), the iteration of 𝑓 is
a map 𝑓 † : 𝑋 → D 𝑌 given coinductively by:

𝑓 † 𝑥 := 𝑓 𝑥 >>=

{
inl 𝑦 ↦→ 𝜂 𝑦

inr 𝑥′ ↦→ 𝜏; ( 𝑓 † 𝑥′).

Proposition 3. The iteration of any equation is a weak fixed point.

Using this technique, we may define a composition operation for which weak
bisimilarity is a congruence. We will see that adequacy is more problematic.

Definition 32 ( ). The composition equation is:

comp-eqn : ∃Φ, M̃+Φ × M̃− Φ→ D (O•Ω + ∃Φ, M̃+Φ × M̃− Φ)

comp-eqn(𝑢, 𝑤) :=
(
playM̃ 𝑢 >>=

{
inl 𝑟 ↦→ 𝜂 (inl 𝑟)
inr (𝑚, 𝑢′) ↦→ 𝜂 (inr ((coplayM̃ 𝑤 𝑚), 𝑢′))

)
.

Let naive composition be the iteration of comp-eqn.

Proposition 4. Weak bisimilarity is a congruence for naive composition.

Proof. By coinduction: the binary relation on D(O•Ω) given by all pairs (𝑠1 ∥
𝑡1, 𝑠2 ∥ 𝑡2) such that 𝑠1 ≈+ogs 𝑠2 and 𝑡1 ≈−ogs 𝑡2, is a weak bisimulation.

In order to prove adequacy, we have to give a weak bisimulation between
evaloM (𝑐[𝛾]) and ⟦𝑐⟧+ ∥ ⟦𝛾⟧−. When facing such an equational proof, where
one of the members is defined as a fixed point (here composition), the prime
reasoning scheme is uniqueness of fixed points. Indeed, assuming the composition
equation has a unique fixed point, and that substituting-then-evaluating-then-
observing is one, then both must agree. However, general equations do not have

https://ogs-artifact.github.io/ogs-artifact/Guarded.html#equation
https://ogs-artifact.github.io/ogs-artifact/Structure.html#iter
https://ogs-artifact.github.io/ogs-artifact/Strategy.html#compeqn
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unique weak fixed points, so we have to apply uniqueness of strong fixed points,
i.e., fixed points w.r.t. strong bisimilarity. But there is a further complication:
while all equations admit weak fixed points, given by iteration as we saw, this
is not the case for strong fixed points. Coq’s basic cofixpoint feature enables the
construction of strong fixed points for guarded equations, in the following sense.

Definition 33 ( ). An element 𝑢 : D (𝑌 + 𝑋) is guarded if it is not of the form
𝜂 (inr 𝑥). An equation 𝑒 : 𝑋 → D (𝑌 + 𝑋) is guarded if for all 𝑥, 𝑒 𝑥 is guarded.

However, comp-eqn is not guarded in general, as explained in Example 3, which
may lead the definition to be ill-founded in some languages, as sketched in Ex-
ample 4. This is where the focused redexes hypothesis comes in: it allows us to
show that comp-eqn is eventually guarded, in the following sense.

Definition 34. An equation 𝑒 : 𝑋 → D(𝑌 + 𝑋) is eventually guarded if for all
𝑥, there exists an 𝑛 : N such that 𝑒𝑛 𝑥 is guarded, where by definition

𝑒0 𝑥 := 𝜂 (inr 𝑥) 𝑒𝑛+1 𝑥 := 𝑒 𝑥 >>=

{
inl 𝑦 ↦→ 𝜂 (inl 𝑦)
inr 𝑥′ ↦→ 𝑒𝑛 𝑥′.

Proposition 5 ( , ). All eventually guarded equations admit a unique strong
fixed point, which is pointwise weakly bisimilar to any weak fixed point.

Proof (sketch). Since, for all 𝑥, an eventually guarded equation 𝑒 can be point-
wise unrolled a finite number 𝑛𝑥 of times into a guarded element, 𝑒𝑛𝑥 𝑥, we
construct the fixed point of 𝑒 as the guarded fixed point of 𝑒′ 𝑥 := 𝑒𝑛𝑥 𝑥.

Proposition 6 ( ). IfM has focused redexes and clear-cut values, then comp-eqn
is eventually guarded, and thus admits a strong fixed point, say − ∥𝑔 −.

We may now conclude our soundness proof.

Proposition 7 ( ). If the language machineM has focused redexes, then com-
position is adequate.

Proof (sketch). The idea is to show that the map (𝑐, 𝛾) ↦→ evalo (𝑐[𝛾]) is some-
thing like a strong fixed point of comp-eqn. This does not quite type check,
however, so we need to generalize the two arguments (𝑐, 𝛾) to pairs of active and
passive machine strategy states. Following (6), we define z-e-obs by:

∃Φ, M̃+Φ × M̃− Φ → D (O•Ω)
( (𝑐, (. . . , 𝛿𝑛−3, 𝛿𝑛−1)) , (. . . , 𝛾𝑛−2, 𝛾𝑛) ) ↦→ evalo (𝑐[𝛾𝑛] [𝛿𝑛−1] [𝛾𝑛−2] [𝛿𝑛−3] . . .).

We have z-e-obs ⟦𝑐⟧+ ⟦𝛾⟧− = evalo (𝑐[𝛾]), and, as desired, z-e-obs is a strong
fixed point of comp-eqn ( ). At last, we have, for any 𝑐 : C Γ and 𝛾 : Γ→ Δ:

⟦𝑐⟧+ ∥ ⟦𝛾⟧− ≈𝒟 ⟦𝑐⟧+ ∥𝑔 ⟦𝛾⟧− by Proposition 5
≊𝒟 z-e-obs ⟦𝑐⟧+ ⟦𝛾⟧− by Proposition 5 again
= evalo (𝑐[𝛾]) as we just saw.

https://ogs-artifact.github.io/ogs-artifact/Guarded.html#guarded
https://ogs-artifact.github.io/ogs-artifact/Guarded.html#iterevguardeduniq
https://ogs-artifact.github.io/ogs-artifact/Guarded.html#iterevguardedweak
https://ogs-artifact.github.io/ogs-artifact/CompGuarded.html#compoevguarded
https://ogs-artifact.github.io/ogs-artifact/Adequacy.html#adequacy
https://ogs-artifact.github.io/ogs-artifact/Adequacy.html#zeo-fix
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5 Related work

Beyond the already discussed, closely related work [20, 22, 28], let us mention
recent work on the structure needed to collapse the composition of an active and
a waiting state into a language machine configuration [18,20]. Unlike in our work
is that acyclicity is not built into the OGS game, but proved after the fact.

The issue of infinite chattering was also studied in game semantics [1, 3, 16]
for showing that total strategies are closed under composition. This notion of
infinite chattering thus differs from the one studied here, which allows programs
to have infinite reduction paths. In our setting, an infinite chattering would be
an artifact of the composition looping without even creating a reduction step.

Finally, there is a lot of work on unique solutions of (co)recursive equations.
Deducing bisimilarity of two LTSs from the fact that they satisfy the same re-
cursive equation, and that this equation admits a unique solution (up-to bisimi-
larity), is a standard technique in process calculi, introduced by Hoare [15] and
Milner [27], which is still explored today [6]. Let us also mention the category-
theoretic work on monads with iteration operators [7, 11, 24, 25], which recently
culminated in a widely unifying approach [12], that features an abstract notion
of guardedness. Links with the interaction trees library [28] have been estab-
lished, showing that the itree datatype, considered up to weak bisimilarity,
forms a coinductive resumption monad, i.e., it computes cofree coalgebras for
a functor of the form 𝐴 ↦→ 𝑇 (𝑋 + Σ(𝐴)). The resulting monad is furthermore
complete Elgot (i.e., it admits potentially non-unique solutions of all equations),
and iterative (i.e., it admits unique solutions of “guarded” equations).

6 Conclusion and perspectives

We have proposed an abstract notion of language with evaluator, for which we
have constructed a generic OGS interpretation, which we have proved sound, in
Coq. We have demonstrated the expressiveness of our framework by instantiating
it on a variety of simply-typed 𝜆-calculi with control effects – although only one
is treated here for lack of space.

An important direction for future work is to incorporate more language fea-
tures into the framework. Notably, we plan to cover effectful evaluators by gen-
eralising from the delay monad to richer, well-behaved monads. It would also be
useful to handle more sophisticated type systems, including, e.g., polymorphism
or subtyping.

Another direction consists in investigating completeness in the abstract frame-
work, be it by restricting attention to sufficiently effectful languages, or by re-
fining the OGS model to make it fully abstract, i.e., by enforcing conditions like
well-bracketing or visibility.

Finally, it might be fruitful to investigate the link between OGS and other
models in the abstract framework, including denotational game semantics and
Lassen’s normal form bisimilarity.
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