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Résumé Abstract

Les compilateurs modernes constituent des pro-
grammes complexes, réalisant de nombreuses optimisa-
tions afin d’améliorer la performance du code généré. Du
fait de cette complexité, des bugs y sont régulièrement dé-
tecté, conduisant à l’introduction de nouveau comporte-
ment dans le programme compilé.

En réaction, il est aujourd’hui possible de prouver cor-
rect, dans des assistants de preuve tels que Coq, des
compilateurs optimisants pour des langages tels que le
C ou ML. Transporter un tel résultat pour des langages
haut-niveau tels que Java est néanmoins encore hors de
portée de l’état de l’art. Ceux-ci possèdent en effet deux
caractéristiques essentielles: la concurrence et un environ-
nement d’exécution particulièrement complexe.

Nous proposons dans cette thèse de réduire la distance
vers la conception d’un tel compilateur vérifié en nous
concentrant plus spécifiquement sur la preuve de correc-
tion d’un glaneur de cellules concurrent performant. Ce
composant de l’environnement d’exécution prend soin
de collecter de manière automatique la mémoire, en lieu
et place du programmeur. Afin de ne pas générer un
ralentissement trop élevé à l’exécution, le glaneur de
cellules doit être extrêmement performant. Plus spéci-
fiquement, l’algorithme considéré est dit «au vol»: grâce
à l’usage de concurrence très fine, il ne cause jamais
d’attente active au sein d’un fil utilisateur. La preuve de
correction établit par conséquent que malgré l’intrication
complexe des fils utilisateurs et du collecteur, ce dernier
ne collecte jamais une cellule encore accessible par les
premiers.

Nous présentons dans un premier temps l’algorithme
considéré et sa formalisation en Coq dans une représen-
tation intermédiaire conçue pour l’occasion. Nous intro-
duisons le système de preuve que nous avons employé,
une variante issue de la logique «Rely-Guarantee», et
prouvons l’algorithme correct.

Raisonner simultanément sur l’algorithme de collec-
tion et sur l’implantation des structures de données
concurrentes manipulées générerait une complexité ad-
ditionnelle indésirable. Nous considérons donc durant
la preuve des opérations abstraites: elles ont lieu in-
stantanément. Pour légitimer cette simplification, nous
introduisons une méthode inspirée par les travaux de
Vafeiadis et permettant la preuve de raffinement de struc-
tures de données concurrentes dites «linéarisables». Nous
formalisons l’approche en Coq et la dotons de solides
fondations sémantiques. Cette méthode est finalement in-
stanciée sur la principale structure de données utilisée
par le glaneur de cellules.

Modern compilers are complex programs, performing
several heuristic-based optimisations. As such, and de-
spite extensive testing, they may contain bugs leading to
the introduction of new behaviours in the compiled pro-
gram.

To address this issue, we are nowadays able to prove
correct, in proof assistants such as Coq, optimising com-
pilers for languages such as C or ML. To date, a similar
result for high- level languages such as Java nonetheless
remain out of reach. Such languages indeed possess two
essential characteristics: concurrency and a particularly
complex runtime.

This thesis aims at reducing the gap toward the im-
plementation of such a verified compiler. To do so, we
focus more specifically on a state-of-the-art concurrent
garbage collector. This component of the runtime takes
care of automatically reclaiming memory during the ex-
ecution to remove this burden from the developer side.
In order to keep the induced overhead as low as possi-
ble, the garbage collector needs to be extremely efficient.
More specifically, the algorithm considered is said to be
“on the fly”: by relying on fine-grained concurrency, the
user-threads are never caused to actively wait. The key
property we establish is the functional correctness of this
garbage collector, i.e. that a cell that a user thread may
still access is never reclaimed.

We present in a first phase the algorithm considered
and its formalisation in Coq by implementing it in a
dedicated intermediate representation. We introduce the
proof system we used to conduct the proof, a variant
based on the well- established Rely-Guarantee logic, and
prove the algorithm correct. Reasoning simultaneously
over both the garbage collection algorithm itself and the
implementation of the concurrent data-structures it uses
would entail an undesired additional complexity. The
proof is therefore conducted with respect to abstract op-
erations: they take place instantaneously. To justify this
simplification, we introduce in a second phase a method-
ology inspired by the work of Vafeiadis and dedicated to
the proof of observational refinement for so-called “lin-
earisable” concurrent data-structures. We provide the ap-
proach with solid semantic foundations, formalised in
Coq. This methodology is instantiated to soundly imple-
ment the main data-structure used in our garbage collec-
tor.
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2 introduction

As years pass by, a recurrent assessment becomes ever strikingly
more undeniable: software is pervasive. It spread over the decades
through all aspects of our life, until reaching a new symbolic bastion:
even our fridges (!) nowadays contain software. This evolution has
brought numerous enhancements to our quality of life, from recre-
ational activities to medical advances, as well as to scientific progress.
But it should not be pondered without keeping in mind another re-
ality: software systems are extremely complex objects. As a conse-
quence, bugs are no less pervasive: programs occasionally exhibit un-
expected behaviours. A bug can embody itself in different kinds. It
can result in a functional error, for which the program outputs an in-
correct result, failing to fulfil its specification. The program can also
simply fail to output a result, suffering from a runtime error, i. e. a
crash. Finally, a bug can also more subtly be functionally correct, but
produce intermediate states that allow a malicious user to temper
with the system’s integrity.

Much like in any industry, the consequences of such defects in the
products depend on the context of use. They might be essentially
harmless, a mere annoyance, in benign contexts; they may trigger
a restart of a phone application for instance. In contexts identified
as safety-critical however, bugs can be the cause of significant costs,
including human losses. This category of software includes most fa-
mously aircraft flight controllers, automated driverless subways, med-
ical software and soon driverless cars. Both the manufacturers of
these applications and the public institutions controlling the quality
of such life-threatening software are well aware of the need for a high
level of confidence in their execution. Any kind of bug would result in
a potential accident, or a vulnerability allowing for a criminal attack.

Despite this awareness, bugs in critical systems do occur, some-
times preemptively detected by experts, most of the time following
an accident. In 2008, a vulnerability allowing for denial-of-service at-
tacks is found in pacemakers by Halperin et al. [49]: one could the-
oretically remotely stop someone’s pacemaker. Spacecraft suffered
along the years particularly costly losses due to software. In 1996,
thoughtless reuse of a module from Ariane 4 in a different environ-
ment led the European rocket Ariane 5 to blow up [37]. In 2016, the
Japanese satellite Hitomi is lost as a consequence of a glitch in its
star tracker [144]. Gloomier, multiple fatal accidents between 2002

and 2009 have been directly linked to uncontrollable accelerations of
Toyota vehicles [124].

formal methods

Scientists have acknowledged and sought to address the challenge
since the early days of computer science, leading to many approaches.
The most natural reflex is to mirror other disciplines: programs are
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rigorously tested. While irreplaceable, the art of testing proves itself
insufficient. Indeed, the set of inputs and contexts with which a pro-
gram can be executed is usually infinite, preventing testing on its own
to ever rule out the existence of a bug in program. In contrast, formal

methods are a set of scientific techniques aiming at proving, in the
traditional mathematical sense, that a software system indeed fulfils
its specification. The approach consists in choosing a mathematical
model to abstract the system, expressing its specification in a formal
language, and proving the adequacy of both components through
mathematical techniques. Crucially, the process does not require the
actual execution of the program, and is able to prove the absence of
bug for any run of the program. Depending on the theoretical tools
used to model the system and verify it, such static techniques can no-
tably rest upon model-checking, abstract interpretation or program
logics.

While some of the ideas from formal methods have continuously
percolated towards industry, it was unclear for a long time whether
these techniques could ever scale to real-life challenges. Formal soft-
ware verification has nonetheless become increasingly popular, no-
tably following major successes in safety-critical embedded software
for the avionic. Astrée [14], one of the most influential abstract inter-
preters, was able in 2003 to prove the absence of a certain class of bugs
in the primary flight control software of the Airbus A340 fly-by-wire
system, a program of 132,000 lines of C code. Caveat [12], another
static analyser developed by the French nuclear agency (CEA), has
been similarly used at Airbus. Nowadays, companies such as Face-
book [39] or Amazon [102] have integrated formal methods as part of
their production cycle.

managed languages

These different formal methods share a common pattern: they tackle
the problem by considering the end product, the program itself. A
complementary approach is to change the tools used to make these
programs by improving the design of programming languages them-
selves. An emblematic case is the use of automatic memory manage-

ment [65], nowadays featured by a majority of modern languages.
A entire class of memory-management related bugs, namely double-
free and use after free errors, are ruled out by construction from any
program written in a language supporting this feature. High-level
languages such as Java additionally rely on typing disciplines to rule
out additional classes of bugs either statically – such as the use of an
operator on an inadequate data-structure – or dynamically, substitut-
ing dangerous behaviours by interruptions of the execution – such as
an access to an array out of its bound.
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In order to enforce such safety properties, the compiler of those
languages injects a runtime system, or simply runtime, into the client
code. This notion is usually loosely defined as any behaviour of the
execution of a program which is not directly attributable to the pro-
gram itself. The term may therefore encompass a wild range of no-
tions, from the execution model of parallel executions to runtime
checks enforcing safety properties at execution time, most notably
in dynamically typed languages. In the limit, the runtime may de-
sign the virtual machine upon which the bytecode is executed, such
as is the case in Java for instance. In this work, we refer specifically
to as runtime the pieces of code that the compiler injects in order to
provide services to programs during their execution. Examples may
include the injection of array bounds checks, of type checking asser-
tions or of a garbage collector.

Contrary to static analyses, the use of a runtime naturally entails
a cost over the code size, execution time or memory footprint. In or-
der to mitigate this issue, implementations of runtime are therefore
strongly optimised, resulting in subtle code, likely to be written in
a low-level language for efficiency. This assessment is even strength-
ened when one wants to use these techniques in safety-critical con-
texts, where real-time constraints intervene. We are hence pulled a
step back: implementations of runtime, and compilers as a whole,
are extremely complex programs, hence likely to be bugged. Worse,
their bugs may contaminate any program written in the compiled
language. Indeed, whether the source program satisfies its specifica-
tion is not the endgame, the relevant question is truly whether the
compiled, executable machine code.

Compilers are therefore in this sense the most important software
systems to statically verify in order to obtain a complete confidence
chain from the specification of the source program to the executable
effectively run.

verified compilation

Modern compilers may be among the most complex entities humans
have built to date. The most widely used C compiler, gcc, currently
amounts for more than seven million lines of code, spread across
more than seventy thousands file. Such compilers perform complex
static analyses in order to optimise the compiled code, and the cor-
rectness of these analyses is extremely difficult to ensure, especially
when combined together. They sometimes even openly accept incor-
rectness over corner cases to enable aggressive optimisations, such
as with the -Ofast option from the gcc compiler. For a long time, the
impossibility to combine safety and optimising compilers has been ac-
cepted as inescapable. Empirical studies – such as the NULLSTONE
tool [100] or Eide and Regehr’s study on volatiles [38] – kept finding
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miscompilation issues in state-of-the-art compilers. This situation led
engineers working with critical systems, such as in avionics, to simply
give up on optimisation altogether.

For a long time, researchers have sought to address the situation by
designing a formally verified compiler. All approaches share a com-
mon goal. First, to provide a rigorous meaning to the behaviour of
the source and target languages manipulated by the compiler, namely
their semantics. Second, to establish that the various transformations
the compiler performs over the program preserve this semantics. In
the sixties, McCarthy and Painter initiated the field by proving the
correctness of a compiler for arithmetic expressions [93]. In 1973,
Morris [98] refined the approach by introducing a simulation-based
methodology for proving the correctness of real-sized compilers: one
shows that steps of computations at the target language can always
be mimicked at the source language.

machine-checked verified compilation

Entering the eighties, we had the essential theoretical tools – seman-
tics of languages and simulations – to prove a real-size compiler. How-
ever, manual proofs can not completely fit the bill. First, programs are
complicated objects, whose semantics can interact in various ways
with the compiler’s transformations. A proof of correctness of a com-
piler therefore contains both subtle algorithmic arguments, as well as
a significant amount of details. The task is therefore extremely error
prone, and difficult to review. Second, manual proofs are much too
likely to abstract away from concrete details. Indeed, there is always
a gap between an algorithm and its implementation. The use of proof
assistants, such as Coq [23] or Isabelle [61], addresses both issues. A
program takes the responsibility for reviewing the proof, granting
complete trust to the proof of correctness. This trust naturally relies
on the confidence we have in the proof assistant itself. However, these
programs are usually built in such a way that they include a small,
trusted kernel whose size and complexity remains manageable. If the
kernel is correct, then the bugs in the other parts of the program
are harmless to the validity of the proofs. Second, these proof assis-
tants provide a unified logical framework to write programs and their
specification, as well as to prove these specifications. They addition-
ally provide an extraction mechanism which generates from the formal
development the fragment responsible for processing the data: the
mechanism erases all specifications and proofs, and leaves the user
with the resulting verified program. We therefore have the possibility
to prove the code we run, and not only the algorithm we implement.

Following this insight, the first machine-assisted proof of a com-
piler for a high-level assembly language was performed in the nineties
by Moore [96, 97]. Since then, steady progress has been made to
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both verify increasingly more realistic compilers, and to scale towards
high-level languages. On the first front, the C language has been the
main object of study. The Verisoft project [80] tackled in 2005 the com-
pilation of C0, a type-safe subset of C. Four years later, the CompCert
C compiler by Leroy et al. [22, 71, 82] has been the first to reach in-
dustrial standards. CompCert is a fully verified, optimising compiler
for a very large subset of the ISO C 99 standard, down to the assem-
bly language for the x86, PowerPC and ARM architectures. While it
only allows for carefully chosen optimisations, the produced code is
at least twice as fast as the one produced by gcc with no optimisation
(gcc -O0). The additional trust in the compiler brought by the veri-
fication has been empirically confirmed. In particular did CompCert
manage to resist recent empirical attempts to find miscompilation
bugs in compilers, as described by Yang et al. [147]. This unprece-
dented trust in an optimising compiler led Airbus to integrate its use
into their development process.

Since then, the field has been extremely active. CompCert has been
adapted by Ševčík et al. [130] to extend the supported C language
with concurrency primitives for thread management and synchroni-
sation. In 2010, Chlipala [17] formalised in Coq a compiler from a
small, untyped functional language with mutable references and ex-
ceptions to an idealised assembly language. The proofs are designed
in a highly modular and automated way, allowing for proofs to with-
stand extensions of the language. The Vellvm project [150] tackles,
also in Coq, the proof of correctness of components of the LLVM com-
piler [78, 133]. On recent years, the CertiCoq [8] project aims to build a
proven-correct compiler for dependently-typed, functional languages
– such as Gallina, the core language of the Coq proof assistant – rising
new foundational questions about compilation of dependently typed
languages. Finally, the CakeML compiler [74, 132] is an optimising,
verified in HOL4, compiler for the ML language. In particular, the
compiler therefore includes a verified runtime containing a sequen-
tial garbage collector.

machine-checked verified compilation for concurrent,
managed languages

Despite all these striking achievements, verified compilation is not
yet mature enough to handle the compilation of a high-level language
such as Java. Beyond the sheer complexity of the language, two ma-
jor features raise a challenge: concurrency and runtime management.
Figure 1 underlines the gap in complexity these additional feature
represent. The source code of the OpenJDK Hotspot Java Virtual

Machine [112] is represented by blocks scaled proportionally to the
size of the corresponding files. We observe that the runtime, and in
particular the memory and multi-threading management, constitutes
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OS and CPU 
specifics

CPU desc

InterpreterUtils

Classfiles 
High-
level 
abstract 
syntax

Optimizing compilers

Runtime 
Memory management 
Multi-threading

Figure 1: Tree map of Java’s HotSpot source code (~900 kloc). Each file is
represented by a block whose size is scaled with the length of the
file, and colour determined by its nature.

roughly a quarter of the total source code. Once again, being perfor-
mance critical, it contains subtle, highly concurrent pieces of code.

Handling this multi-threaded runtime is a complex task. Indeed,
semantics for concurrent programs are much more complex to rea-
son about than their sequential counterpart. First, a concurrent lan-
guage is inherently non-deterministic, leading to an exponentially
more complex set of reachable states. Additionally, we lose the benefit
of determinism when building simulations, which CompCert takes a
special care to exploit. In such a context1, to build the desired back-

ward simulation, where the source mirrors the behaviours of the tar-
get, it suffices to build a forward simulation, where the roles are re-
versed. Second, local reasoning is a lot harder to conduct in a con-
current setting. The central problem is that a property established at
a program point of a thread’s code could always be invalidated by
another thread’s interference. Developing adequate reasoning prin-
ciples and program logic to reason about concurrent programs has
been a major topic of research during the last thirty years [113, 123].

CompCertTSO [130] offered a first foundational contribution to the
problem by managing to adapt CompCert to a realistic concurrent
execution model, the so-called Total Store Ordering (TSO) memory
model, and verify some fence-elimination optimisations. While a ma-
jor step, their compiler is carefully and cleverly designed as to i) re-
trieve locally some notions of determinism to get away with forward
simulations, ii) avoid having to perform fine-grained reasoning about
concurrent programs. In order to support a high-level managed lan-
guage, we however cannot rest on those luxuries. The compiler does

1 The semantics is additionally required to satisfy a notion of receptiveness. If a state
can step by emitting an event corresponding to a read or write to the outside world,
then it can also step for any other value similarly read or written.
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not only transform the client code, but also injects concurrently run-
ning services, such as garbage collectors, monitors, or schedulers. A
verified compiler for a language such as Java therefore requires to
prove correct the complex, highly concurrent, runtime implementa-
tions.

contributions and structure of the document

In this thesis, we show how to progress one step closer towards a ver-
ified compiler for a high level, managed, concurrent programming
language such as Java. In particular, we consider the emblematic chal-
lenge of an on-the-fly garbage collector and demonstrate how to for-
mally verify its implementation in the Coq proof assistant. In agree-
ment with the verified compilation tradition, this work puts a strong
emphasis on proofs performed with respect to an operational seman-
tics, and results expressed in terms of simulations.

We argue that a methodological approach to this task is manda-
tory. Proving such a concurrent service is indeed a complex puzzle.
Extremely subtle invariants must be designed in harmony with se-
quential proof annotations such that no interference can perturb the
validity of any of the assertions. Due to this interdependence, separa-
tion of concerns is crucial. To this end, we introduce several solutions.

• We design a dedicated intermediate representation RtIR. The
language is at the right level of abstraction to both be sufficiently
concrete to allow subsequent compilation to executable code,
while being sufficiently high-level to allow for a tractable proof
of the garbage collector. To this end, abstract concurrent data-
structures are embedded in the semantics of the language.

• We formalise a Rely-Guarantee logic tuned to ease mechanisation
of proofs. Our proof system indeed offers a better separation
of concerns between sequential proofs and stability obligations
than traditional ones, and supports partial automation.

• We introduce an iterative development process to the construc-
tion of rely-guarantee proofs, and follow this process to prove
the garbage collector.

• We formalise a rely-guarantee-based methodology for atomic
refinement of linearisable data-structures. Our approach does
not require the introduction of a new program logic and is
equipped with strong semantic foundations compatible with
the framework of verified compilation.

Leveraging these principles, our first major contribution is the for-
malisation and proof of correctness, in Coq, of a realistic on-the-fly
garbage collector inspired from the algorithm for Java by Domani et
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al. [35]. We prove that the collector never reclaims an object reachable
by a client thread, ruling out dangling pointers, a result whose core
description is contained in Chapter 5. This work is published in the
proceedings of the 8th International Conference on Interactive Proving

(ITP’17) [148] and its formal development is available online2.
To support the claim that RtIR is designed at the right level of

abstraction, we show how to soundly implement the abstract data-
structures the language supports. This work constitutes our second
major contribution, described in Chapter 6. We formalise, in Coq,
a light-weight methodology to refine linearisable fine-grained data-
structures, an instrumental step for the compilation of RtIR towards
an executable language. The approach reduces the problem to proof
obligations expressed in a rely-guarantee logic, and provides strong
semantic foundations compatible with the framework of verified com-
pilation. This work is published in the proceedings of the 33rd Sym-
posium on Applied Computing, in the Software Verification and Test-
ing track (SAC-SVT’18) [149], and its formal development is available
online3.

The remainder of this thesis is organised as follows. Chapter 2

provides general background on memory management, giving an
overview of the ecosystem into which the particular garbage collec-
tion algorithm we consider fits. Chapter 3 describes the formal tech-
niques we use and formalise. After a brief presentation of the Coq
proof assistant, we describe RtIR, the programming language we use
to implement the garbage collector, and conclude by presenting rely-
guarantee reasoning and the specific proof system we define. Chap-
ter 4 and Chapter 5 respectively describe the algorithm and its formal
proof. Finally, Chapter 6 provides context on linearisability and ex-
poses the meta-theorem we proved, as well as its application to refine
the abstract mark buffers manipulated by RtIR, solving the core chal-
lenge towards its compilation down to a fully executable language.

note

This thesis work is tied to a project to which have contributed, in
alphabetical order: David Cachera, Delphine Demange, Suresh Jagan-
nathan, Vincent Laporte, Gustavo Petri, David Pichardie, Jan Vitek
and Yannick Zakowski.

My personal technical contributions are:

• the design of the incremental approach, the proof of the underlying
meta-theory over the rely-guarantee system and its mechanisation;

• the complete mechanised proof of the garbage collector;

2 http://www.irisa.fr/celtique/ext/cgc/
3 http://www.irisa.fr/celtique/ext/simulin/
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• the formulation of the methodology for refinement of linearisable
data-structures, its mechanisation and its proof of soundness.
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Figure 2: An abstraction of the view of the memory commonly used garbage
collectors. The underlying array of bites, or single-linked list of
cells, is abstracted away by accessing the memory through an allo-
cator and a free primitive.

Computer science is intrinsically concerned with encoding and ma-
nipulating data. A programming language is therefore meant in par-
ticular to specify how and when those data should be allocated in
memory. This memory being finite in practice, someone has to also in-
herit the burden of specifying when a chunk of memory dedicated to
encode a piece of data can be safely reclaimed, and therefore reused.

This concern, known as memory management, is essentially orthog-
onal to the logic of the program one can write. Nonetheless, it turns
out to be often subtle to handle. We review in this chapter some of
the existing approaches used to tackle memory management, setting
the stage for the specific algorithm of garbage collection we formalised
during our thesis, whose description and formalisation are covered
respectively in Chapters 4 and 5.

2.1 allocation

In essence, memory is a mere enormous array of bytes. The low level
abstraction that is usually built upon is to interpret this array as a
sequence of cells. A cell is characterised by its location, the address of
its beginning in the underlying array, the value stored in the cell, and
sometimes the size of the cell.

Whether we strive for manual or automatic memory management,
we do not want the programmer to have to worry about which con-
crete location is used to store a piece of data. An allocator is a primitive
taking up this responsibility: upon a request to allocate some data, the
allocator takes care of organising concretely the memory, and return
to the user an address at which he can access its data. Similarly, a free

primitive takes care of reclaiming a chunk of memory. This mecha-
nism allows for higher level abstractions of the memory.
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0 512256

(a) Initial empty 512 bytes of memory.

0 512256

(b) Ongoing run, the memory is full.

0 512256

(c) After naïve reclamation, the memory is frag-
mented: we cannot allocate a new block of 128

bytes.

5120 256

(d) The same memory, defragmented.

Figure 3: Illustration of the problem of fragmentation over a 512 bytes mem-
ory. We assume a program allocating objects of 64 and 128 bytes.

Notably, we shall see that a garbage collector for a language with
objects typically interpret the memory as a graph such as the one
depicted on Figure 2. Round nodes represent addresses stored in
variables, the roots of the program, while square nodes represent the
cells. The object held in the cell points to other cells through its fields,
which are represented as the arrows in the graph. We shall come back
in greater detail to this model in Chapter 4, in the specific context of
RtIR, a language we introduce in Chapter 3.

Being able to abstract away from the details of the memory when
reasoning about the correctness of a garbage collector’s implementa-
tion is crucial. However it should be underlined that for performance
considerations, we can never completely decorrelate the allocator and
the collector choices of algorithms. In particular, the memory is likely
to suffer from a problem known as fragmentation. Figure 3 depicts an
imaginary run of a program equipped with a 512 bytes of memory,
initially empty (Fig. 3a), and allocating objects of respectively 64 or
128 bytes. After some time, the program tries to allocate a new 128

bytes objects, but finds that the memory is full (Fig. 3b): a cycle of
collection is performed. If neither the allocator nor the collector is
clever about the structure of the memory, we may end up in a situa-
tion where allocated blocks of memory are scattered (Fig. 3c). Despite
admitting more than 128 bytes of free memory, no contiguous such
block can be found: the allocation still fails, where its defragmented
equivalent would allow it (Fig. 3d). We tend to put the responsibility
of avoiding fragmentation of the memory over the allocator, but an
efficient strategy may depend on the behaviour of the collector.
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2.2 manual memory management

Memory management is crucially concerned with one property: the
lifetime of a piece of memory the programmer wishes to allocate. This
lifetime refers to the instant, at runtime, during which memory is first
allocated, and then reclaimed. Languages supporting manual mem-
ory management, such as C or C++, usually allow for three kinds of
allocation.

Under its simplest form, the lifetime of the allocated memory is
the whole program: memory is said to be statically allocated. The pro-
grammer knows exactly at compile time the objects that may be used
by the program at runtime. Under such an assumption, memory man-
agement is straightforward: we simply map, at runtime and once and
for all, each object to a memory region of appropriate size. Naturally,
static allocation puts such constraints on the programmer that its use
is quite rare in modern programming languages. Global variables in
C are nonetheless one example of statically allocated resources.

The second form of allocation is automatic memory allocation. The
programmer does not have control over the lifetime of the data: the
lifetime is bound to a syntactic program point. Typically, this happens
in C in the case of a non-static variable declared inside a function
body: the variable is stored on the stack, and reclaimed when the
function returns.

The last form of allocation is dynamic memory allocation. The life-
time of the object is this time entirely handled by the programmer.
An allocating primitive allows for a chunk of memory of the desired
size to be allocated. Symmetrically, a freeing primitive allows for a
specified piece of memory to be reclaimed. This mechanism brings
two crucial conveniences to the programmer: both the lifetime and
the size of the allocated object can be dynamically controlled. In par-
ticular does it allow for closures and recursive data-structures to be
manipulated. While crucial, dynamic memory allocation in manually
managed programming languages dooms us with two plagues. First,
one could fail to free some dynamically allocated memory beyond
the bounds of its use. Such a phenomenon, referred to as a memory

leak, can lead the program to failure by running out of memory. Sec-
ond, the inverse phenomenon may happen: a chunk of the memory
could be reclaimed despite being still accessible to through a pointer.
Such a pointer is said to be dangling, and dereferencing it is no less
disastrous, leading to a crash in the best case, a nonsensical value in
the worse.

Note that both problems are inherently difficult in the sense that
checking their absence is a non-computable problem [142]. The prac-
tical difficulty to manage memory manually is up to (sometimes
heated) debate. Nonetheless, a significant portion of the program-
ming community has deemed this art as unsafe and error-prone,
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and hence except for cases of utmost necessity, such as system pro-
gramming. In order to retain the benefits of dynamic memory allo-
cation while circumventing its dangers, most modern programming
languages have therefore turned to automatic memory management.

2.3 garbage collection

The most popular approach for automatic management is probably
garbage collection. The programmer does not have to worry about
managing the memory: a runtime is injected, usually by the com-
piler, whose sole purpose is to monitor the memory and automati-
cally reclaim data once it is safe to do so. The invention of garbage
collection is attributed to John McCarthy, around 1959, for the Lisp
language [90].

Garbage collection has been an extremely active domain of research
ever since. We provide in this section a concise overview of the field,
and refer the interested reader to The Garbage Collection Handbook [65]
for a more thorough exposition.

All approaches essentially reduce to one of four different collecting
schemes: Mark and Sweep, Mark and Compact, Copying and Ref-
erence Counting. In practice, realistic programming languages often
combine several of these approaches. They may typically treat two re-
gions of the heap differently. We stay at a more schematic level in this
presentation, reviewing the different approaches in their purest form.
Orthogonal to the choice of an approach, garbage collection can be
optimised via notably two enhancements: use of generations and use
of concurrency.

2.3.1 Fundamental collecting schemes

While refined implementations are legions, all garbage collector algo-
rithms can be summed up as following one of four collecting schemes.
The simplest setup for their implementation naturally takes place in a
mono-threaded environment: the program client is purely sequential,
and the collector is injected inside this very same thread. We assume
this context to expose the principles behind the different approaches,
but all of those can be adapted to handle concurrency.

2.3.1.1 Mark-and-Sweep garbage collection

Garbage collectors usually trigger a collecting cycle when a call to
the allocator detects an exhaustion of available memory. This cycle is
a routine which typically inspects the memory, consequently reclaims
objects detected as safe to do so, and potentially reorganise the mem-
ory.
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To this end, garbage collectors of the Mark and Sweep family, whose
seminal McCarthy’s algorithm [90] is an example, maintain at any
given moment a view of the memory as split in two sets O and F

which do not intersect. The objects in F are known to be free, and
hence ready to be allocated if needed, while the objects in O are be-
lieved to be live, i. e. reachable by the program.

Periodically, the collector stops the user program and initiates a
cycle to update its knowledge of the current state of the memory,
allowing him to refine its set O. To do so, the collector needs to de-
termine which objects are live. First, the objects whose addresses are
directly hold in local variables, i. e. the roots, are marked. Second, the
collector scans the memory: following the graph memory abstraction,
a breadth-first exploration is performed to mark all reachable objects
as live. Finally, the remaining objects are reclaimed, being transferred
from the set O to the set F.

The GC we formalise and prove correct in this document is a so-
phisticated, concurrent, implementation of an algorithm of the Mark
and Sweep family. We come back to its description in detail in Chap-
ter 4, and describe its verification in Chapter 5.

2.3.1.2 Mark-and-Compact garbage collection

The Mark and Sweep scheme does not attempt to reorganise the mem-
ory. While the underlying allocator may try to handle the burden
itself, the heap is likely to end up fragmented when used in long
running applications. Finding free chunks of memory can therefore
become slow, leading up to slower allocation.

The Mark and Compact scheme, whose early introduction includes
Edward’s two fingers algorithm [127] and Jonkers’s threaded compaction

algorithm [67], is a strategy aiming at addressing this difficulty. Sim-
ilarly to the Mark and Sweep approach, a collecting cycle, organised
in phases, is periodically triggered. The first step remains the same:
the accessible memory subgraph is marked. Subsequently, the con-
crete layout of the heap is reorganised, following one of three politics.
The reorganisation can be simply arbitrary, aiming only at compaction
without regards for neither the previous relative positioning of ob-
jects, nor the high level representation of the memory in terms of a
graph. Compaction can also be linearising1, trying to pack together re-
lated objects in the memory graph. Finally, sliding collectors compact
the memory while maintaining the relative order of objects.

The sliding strategy is the most commonly used. While more costly
than arbitrary compaction, it offers several advantages. First and fore-
most, locality is preserved as objects allocated by the same user thread
at around the same period of time remains close to each others, which

1 The term of linearising is used here with a completely different meaning than the
one we consider in Chapter 6. This is purely coincidental.
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tends to prove experimentally crucial for performance. Sliding also al-
lows for easy reclamation of all data allocated after a certain point in
time. With all strategies, compaction, by removing fragmentation, al-
lows for very fast allocation: a pointer can simply be maintained at
the beginning of the free part of the heap.

Determining whether the benefits of compaction overweight its
cost is a delicate task, strongly depending on the targeted system.
An overview of existing techniques and their analysis can be found
in [66].

2.3.1.3 Copying garbage collection

Mark and Compact collectors offer a solution to the fragmentation of
the heap, but at a cost: the live part of the heap needs to be scanned
several times. Copying algorithms [16, 42] address this issue by com-
pacting the memory while requiring only one pass. They however
perform this at the significant cost of dividing the amount of mem-
ory available to the program by two.

Copying collectors split the memory in two regions of equal size,
typically referred to as tospace and fromspace. As long as possible, allo-
cation is performed at the top of tospace, which always remains com-
pacted. Would this allocation be impossible for lack of place, collec-
tion is triggered. Memory in tospace is traversed, and live objects are
contiguously copied in the fresh memory fromspace. Finally, tospace is
entirely reclaimed, and the roles of both spaces are swapped.

Benefits and drawbacks of such a scheme are straightforward. Ex-
tremely efficient allocation is attained without the need for extra head-
ers in objects, and using only one pass over the memory. Obviously,
the space cost is however significant. Additionally, depending on the
environment, the cost of copying can be too high, and locality can be
delicate to maintain during the copy.

2.3.1.4 Reference counting

Reference counting is a garbage collection technique2 where the user
program directly handles creation and destruction of objects as it
operates over them. The basic idea, dating back from the early six-
ties [21], consists in assigning to every object a counter, typically
stored in the object’s header. This counter is incremented, respectively
decremented, every time a new reference to the object is created, re-
spectively destroyed.

Detecting live objects therefore does not need any scan of the mem-
ory: at any given moment, an object is considered live if and only
if its reference counter is strictly positive. An object whose counter

2 Whether reference counting deserves the name of garbage collection is debated. The
quite legitimate rationale against this nomenclature is essentially due to the absence
of a collector in the algorithm.
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is set to zero can therefore immediately be reclaimed. Note that this
operation leads to the decrement of all the object’s children counter,
which can in turn trigger new reclaims.

Reference counting has several potential benefits. First, the over-
head is distributed along the computation rather than concentrated
over a collecting cycle. Additionally, reclaim of memory tends to take
place as soon as possible, without the need for waiting for a subse-
quent cycle. Finally, the algorithm remains viable when part of the
system, and hence part of the memory graph, is unavailable. Its dis-
advantages include the need for an extra-header to objects, an over-
head directly stressed upon the user threads and an impossibility to
reclaim unreachable cycles. These issues can however be strongly mit-
igated with advanced improvements to the basic algorithm.

2.3.2 Generational garbage collection

Tracing collectors, i. e. all schemes introduced but reference count-
ing, perform work proportional to the number of objects they process.
Long live objects are therefore needlessly processed during numerous
collection cycles, which is especially costly in the case of a copying
scheme.

Generational collectors [88, 136] introduce a very practical optimi-
sation in reaction to this phenomenon. Empirically, objects allocated
long time ago are likely to still remain reachable for a long time. Con-
versely, many objects die very quickly. The idea behind generational
garbage collection is therefore to organise the heap in generations: old
objects, typically objects which have witnessed more than a collection
cycle for instance, are tagged as such. Most collecting cycles then only
trace the memory subgraph of young objects. Now and then, a special
cycle scans the whole memory to find the few old dinosaurs which
eventually died.

Choosing the amount of generations, the rhythm at which they are
scanned and rate of decay is naturally a fine art, which once again
depends heavily on the targeted environment.

2.3.3 Multi-threaded garbage collection

Comparing the various approaches to garbage collection is an ex-
tremely complex task, whose conclusion is sensitive to the context
of execution. Some modern languages, such as Java, actually ship in
several garbage collectors and provide flags for the programmer to
choose which to use depending on its use case.

Nonetheless, the three tracing approaches share a common pitfall:
they impose a significant overhead to the user program by stopping
it completely while a full cycle is performed. Figure 4a illustrates
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(a) Sequential garbage collection

(b) Multi-threaded Stop-The-World garbage collection

(c) Parallel garbage collection

(d) Mostly concurrent garbage collection

(e) On-The-Fly garbage collection

Figure 4: Garbage collection: comparison of the user threads pause time
with various approaches.

the situation over a timeline of an execution. A quite natural idea is
therefore to exploit multi-threading in order to reduce this burden.
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The starting point is to host the collector in a dedicated, separated
thread. Coincidentally, we may now have several user threads. We
easily understand that manipulating the memory while the collector
tries to analyse and reclaim it might be dangerous. A first approach
is therefore to keep asking to all user threads to interrupt their work
during the collecting cycle. This approach, illustrated on Figure 4b, is
referred to as Stop-The-World.

Naturally we immediately see that we do not benefit much from
multi-threading with a simple Stop-The-World approach. One way to
improve the situation is to parallelise the collection itself. Figure 4c
shows three threads hosting the collector, speeding up the cycle and
therefore reducing the waiting time of user threads despite maintain-
ing a Stop-The-World policy.

An orthogonal idea to reduce the waiting time of user threads is
to allow them to keep attending to their duties while the collector
acts. A first, still conservative, approach continues to stop the user
threads when the cycle begins. The collector can therefore easily setup
things nicely, and allow the other threads to start over once it is ready,
finishing its cycle as they are already back to work. This scenario is
the one of Figure 4d.

The step towards the most sophisticated approach is now quite
natural: so-called On-The-Fly garbage collectors, such as the one rep-
resented on Figure 4e, never interrupt the user threads. Naturally, this
means that the user threads are able to modify the memory dynami-
cally as the collector tries to perform its duty. In such a context, and
in the remainder of this manuscript, user threads are hence referred
to as mutators. These algorithms are infamous for being extremely
hard to program without bugs, as well as to prove correct. Indeed,
they require a subtle synchronisation between threads and uttermost
care as to which operations over the memory are safe in order to take
into account all interferences that may occur. We come back in de-
tail to these considerations in Chapters 4 and 5, as the algorithm we
formalise and verify is indeed such an On-The-Fly garbage collector.
The underlying scheme is a Mark and Sweep algorithm, its relative
simplicity making it particularly suitable to support a complex con-
current optimisation.

A last recent sophistication is the adaptation to real-time systems.
Such systems must enforce strong notions of progress: essentially, at
no cost should the user program ever be delayed for more than a
hard real-time limit. Examples of such systems include software man-
aging pacemakers, or the brakes of a car. Even On-The-Fly garbage
collectors may fail to comply with these constrains. Meeting these
requirements is therefore a challenge of its own, notably tackled by
Pizlo during his PhD [119].
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2.4 conclusion

Garbage collection is a rich discipline, which is nowadays a crucial
part of most modern languages. Their formal verification is therefore
a key challenge to bring verified compilation to managed languages,
especially in a concurrent setup.

We tackle this challenge in this manuscript. Most specifically, we
will describe in detail in Chapter 4 an implementation of a Mark
and Sweep, On-The-Fly garbage collector, one of the most challeng-
ing kind of algorithm the discipline offers. This type of algorithm is
realistic for industry-oriented programming languages. In particular,
the specific implementation we consider is a realistic excerpt from an
algorithm for Java introduced by Domani et al. in 2000 [35], and con-
stituting one of the four garbage collector provided by the OpenJDK

Hotspot Java Virtual Machine [112]. The verification of the algo-
rithm is covered in Chapter 5.
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Before giving concrete expression to the overview of garbage col-
lection we gave in Chapter 2 through the description of the algorithm
we consider in this thesis, we introduce in this chapter the technical
tools upon which we build.

We first describe the language, i. e. the logic, used to formalise and
verify the algorithm: we use the Coq proof assistant. In order to get as
close as possible to reasoning about actual code, we then introduce
the programming language we formalise in Coq and in which we im-
plement the algorithm: the intermediate representation RtIR. Finally,
the proof of the garbage collector itself is conducted in a particular
proof system: a so-called Rely-Guarantee logic.

3.1 the coq proof assistant

The second half of the twentieth century witnessed the appearance
of a new interesting set of tools: proof assistants. A proof assistant is
a computer program which fulfils two complementary tasks: on one
hand it interactively helps the user to build a mathematical proof of
a statement, on the other it checks the provided proof and gives guar-
antees about its validity. For this interaction with the computer to be
possible, the proof assistant ships with a formal language represent-
ing a logic in which mathematics can be formalised.

3.1.1 Proof assistants

Three major motivations progressively raised the need for such tools.
First, mathematicians were starting to come up with proofs so com-
plex that very few experts could review them, at the cost of major
efforts. This situation led to incorrect proofs, written up by renown
scientists of good faith, standing up for years before being identi-
fied as wrong. Examples of such include the Yamabe theorem, claimed
solved in 1960 by mathematician Yamabe, whose proof has been dis-
covered critically incorrect in 1968. It was only another 16 years later,
in 1984, that the problem was finally once again considered solved.

In the Yamabe case, the traditional mathematics eventually suc-
ceeded on their own. But even more shocking is the case of the four

colour theorem, whose statement is extremely intuitive: can a planar
map always be coloured such that no two contiguous regions share
the same colour by using only four different colours? A quite convinc-
ing proof was given by Alfred Kempe in 1879, but found incorrect
in 1891. This was however no small mistake: it would take nearly a
century to finally witness a withstanding demonstration, in 1976 by
Kenneth Appel and Wolfgang Haken. This definitive proof of the four
colour theorem is of interest for an additional reason: it is arguably
the historic first computer-aided proof of a significant theorem. In-
deed, the proof consists in managing to reduce the colouring of any
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map to the colouring of only 1936 (later reduced to 1476) particular
elementary configurations. Checking each of these cases manually
would be absurdly time-consuming, error-prone and therefore mean-
ingless. Such a repetitive task is however perfectly fit for a computer:
proof assistants grant us access to new proofs of statements of interest.
The Appel-Haken still left a small room for doubts: the software used
being both non-trivial and developed specifically for the task, it could
be bugged. Georges Gonthier dispelled those doubts in 2002 [47] by
proving once again the theorem, but this time inside of the widely-
used, accepted as sound, general purpose proof assistant Coq.

Finally, the development of computer science created another use
case for proof assistants, encompassing both a need for trust and au-
tomation. Wishing to reason about programs, we need to conduct rea-
soning which includes repetitive subtasks over objects of significant
size. An emblematic use case is the one of compilers, whose behe-
mothic size and complexity render manual guarantees of correctness
extremely hard to build, and to trust.

The development of this need for a mechanisation of mathematics
coincides with the apparition of the necessary tools to do so. A proof
assistant indeed first and foremost relies on a theory, a logic in which
mathematics can be formalised. Most modern proof assistants either
rely on Higher Order Logic – such as HOL4 [48] or Isabelle [61] – or
variants of dependently-typed theories – such as Agda [2], PVS [111],
Lean [79] or our contestant of interest, Coq [23] – with rare apparition
of set theory – with Mizar [95] and Rodin [1] notably.

3.1.2 Coq

The developments1 accompanying this manuscript are developed in
the Coq proof assistant2. This manuscript is intended to be readable
with very little knowledge of Coq, we only provide to the reader a
broad overview of the assistant.

Coq is based on a rich dependently typed theory: programs and
proofs are formalised in the same language, the Calculus of Inductive

constructions. Formalising mathematics in a type theory builds upon
the so-called Curry-Howard correspondence: a type can be interpreted
as a property, and a term, i. e. a program, of this type is a proof of the
property. The property is therefore certified as true by a type check-
ing algorithm attesting that the candidate proof term admits the prop-
erty as its type. Behind this seemingly anecdotal fact hides a power-
ful advantage. Inconsistencies in a proof assistant would render null
and void any proof it hosts. Such an inconsistency could come from
the underlying mathematical theory itself: we have to trust mathe-

1 http://www.irisa.fr/celtique/ext/cgc/
http://www.irisa.fr/celtique/ext/simulin/

2 More specifically the 8.4pl6 version of Coq.
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maticians on this side. But as any software, the implementation itself
could also be buggy. The piece of code a proof assistant rely on for
its soundness is referred to as the trusted code base: a proof verified
in a proof assistant is certified correct granted that this core is correct.
By relying on a type checking algorithm to validate a proof, Coq is
able to have a reasonably small trusted code base: it does not matter
how the proof-term is constructed as long as no bug lies in the type
checker. The facilities around the checker need not be trusted.

For instance, the following type expresses the commutativity of the
logical conjunction, where Prop is the type of propositions3.

∀ A B : Prop, A ∧ B → B ∧ A

Correspondingly, a proof of this statement is for instance the func-
tional program which takes as argument a pair of terms of types A

and B, i. e. a pair of proofs of A and B, and returns the pair whose
arguments have been swapped:

fun (A B: Prop) (p: A * B) ⇒ (snd p, fst p)

Naturally, building proof terms manually soon becomes intractable.
To overcome this difficulty, Coq provides a set of tactics. A tactic is
an instruction which manipulates the current proof term at a higher
level, and builds the underlying concrete proof term, the program,
under the scene. For instance, the proof of the previous statement of
commutativity can be interactively done as follows.

Lemma and_commut: ∀ A B: Prop, A ∧ B → B ∧ A.

Proof.

intro A B p. (* We introduce our hypotheses *)

destruct p as [HA HB]. (* We destruct the pair p *)

split. (* The goal being a product, we prove each goal separately *)

apply HB. (* To prove B, we apply our hypothesis HB of type B *)

apply HA. (* To prove A, we apply our hypothesis HA of type A *)

Qed.

On top of the rich set of predefined tactics, Coq provides a language
Ltac for the user to define its own tactics. This facility is instrumental
for automation. In particular, we rely heavily on Ltac in our devel-
opments to lighten the proof burden of the Rely-Guarantee proofs
exposed in Chapters 5 and 6. The specifics of such tactics being quite
technical and tied to Coq, we shall however not linger on their defini-
tion in this manuscript, and refer the interested reader to the formal
developments.

The last feature of Coq we wish to introduce are inductive defi-
nitions. A type, be it a datatype in Type or a property in Prop, can
be defined by providing a set of rules to construct its terms, the so-

3 Coq separates propositions, living in Prop, from data, living in Type. While this
separation would not be necessarily in general to formalise and prove properties, it
most notably allows for an automatic extraction mechanism into OCaml or Haskell
of the purely computational part of a development.
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called constructors. Intuitively, the resulting type admits as the set of
its inhabitants the smallest fixpoint of these constructors.

For instance, natural numbers in the standard library are defined
following Peanos’s definition: a natural is either zero or the succes-
sor of a natural. This translates straightforwardly into an inductive
definition.

Inductive nat : Type :=

| O : nat

| S : nat→ nat.

In addition to being a convenient way to define datatypes, an in-
ductive definition automatically generates an induction principle to
reason about the resulting type. For nat, this inductive principle co-
incides with the usual recursion principle of natural numbers: prove
the property holds on 0 and that assuming it holds for a number, then
it holds for its successor.

nat_ind : ∀ (P : nat→ Prop) (H0: P 0)

(IH: ∀ n : nat, P n → P (S n)) (n: nat),

P n

This example gives us the opportunity to underline two peculiar
stylistic habits of Coq users that may puzzle at first scientists more
familiar with set theory. First, due to the tight relationship that the
mathematical language we use to write down properties shares with
functional programming, it is a common pattern to replace a conjunc-
tion on the left hand-side of an implication by an implication: the
property A ∧ B → C can be written equivalently A → B → C. From
a functional standpoint, the rationale of this process corresponds to
the well known currying process, taking a function admitting a pair
for argument to an higher order function of one argument. In Coq,
expressing properties in this style is more convenient to interact with
the system, and became a folkloric habit of the community. This style
therefore naturally crept into this manuscript. Second, the underly-
ing logic of Coq is sufficiently expressive to allow quantification over
any type. Implication is therefore simply a particular case of univer-
sal quantification upon which the name of the variable is not referred
to in the right handside of the implication. Since it notably allows the
user to enforce the way the system will name the hypothesis once
introduced, universal quantification in place of implication is com-
monly used.

This very simple example uses an inductive construct to define a
datatype. Inductive types are however far more general. In particular
shall they be used to define our semantics: each constructor corre-
sponds to a way a term may reduce.
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The interested reader wishing to know more about the Coq proof
assistant may want to consider the Software Foundations book by Pierce
et al. [118] which offers a gentle yet thorough introduction to the sys-
tem. Alternative resources include Bertot and Casteran’s Coq’Art [13],
as well as Chlipala’s Certified Programming with Dependent Types [18].

This section set the world we live in: all our work is formalised in
Coq, and available online. Most contributions are however agnostic
from the specific choice of a proof assistant. We therefore accordingly
try to expose those contributions with as few Coq notations as possi-
ble in the remainder of the document. In the remainder of the chapter,
we describe two other technical tools we need: a dedicated language
to implement our garbage collector and a dedicated program logic to
reason about this implementation.

3.2 a dedicated intermediate representation for con-
current runtime implementations

Implementations of runtime for a concurrent high-level language such
as Java is a complex task. The algorithms at stake, and first and fore-
most the garbage collector, are both inherently extremely subtle, as
well as concerned with numerous low level details. Formally verify-
ing such systems in a proof assistant with the intent to embed them
in a verified compiler naturally adds an additional significant layer of
difficulty.

For the task to remain tractable, it therefore is crucial to identify
the right level of abstraction at which the runtime should be designed
and proved. A common approach is to completely abstract away from
code, approximating the algorithm as a transition system. However,
doing so leaves a significant gap towards verified compilation since
the refinement of a transition system by an implementation with re-
spect to an operational semantics is a far from trivial task. We there-
fore want to stick to operational semantics, and argue that while this
rises more challenges, it leads us closer to our end goal. We hence
need to design a language capable of expressing the constructs over
the memory the runtime shall handle, but nonetheless amenable to
formal reasoning principles and tractable proof methodologies. Three
characteristics can be identified to guide this design.

First, the runtime is a piece of code meant to be injected by the
compiler into the client’s code. Hence although the runtime and its
proof of correctness are to be defined in isolation, they need to be
able to communicate with clients.

Second, runtime implementations hold an intrinsic need for intro-
spection. A garbage collector has to be able to traverse the heap, iter-
ate over fields of objects or inspect the content of local variables. The
sought language should therefore natively support the inspection and
manipulation of objects.
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X, Y ∈ gvar x,y ∈ lvar

t,m,C ∈ tid f ∈ fid rn ∈ list fid

cmd ∋ c := skip | assume e | x = e

| x = Y | X = e | x = y.f

| x.f = e | atomic c

| x = alloc(rn) | free x | x = isFree?(y)

| c1 ; c2 | c1 ⊕ c2 | loop(c)

| x.push(y) | x = y.empty?() | x = y.top()

| x.pop() | X = y.copy()

| foreachRef x ∈ l when P(x) do c od | x←ref r

| foreach (x in l) do c od

| foreachField (f of x) do c od

| foreachObject x do c od

| foreachRoot (x of t) do c od

Figure 5: Simplified Syntax of RtIR. Proof annotations are elided.

Third, runtime services are elaborate concurrent services. Proving
them correct implies being able to express and reason about coordi-
nation between threads, as well as manipulation of concurrent data
structures. In addition, the language must be shipped with a proof
methodology suitable for conducting such a reasoning.

With these rationale in mind, we introduce the intermediate repre-
sentation RtIR. Our verified GC, presented in Chapter 4, is coded in
RtIR, and fully proved correct with respect to its operational seman-
tics.

3.2.1 Syntax

Figure 5 shows the syntax of our RunTime Intermediate Representa-
tion (RtIR). It provides two kinds of variables: global or shared vari-
ables, in gvar, that can be accessed by all threads, and local vari-

ables, in lvar, used for thread-local computations. Side-effect-free ex-
pressions (e) are built from constants and local variables with the
usual arithmetic and boolean operators. Commands include standard
instructions, such as skip, assume e, local variable update x = e,
and classic combinators: sequencing, non-deterministic choice (c1 ⊕
c2), and loops. Macros are used to define higher level constructs as
needed. The usual conditional (if e then c1 else c2) can be defined
as (assume e; c1)⊕ (assume !e; c2), where we write !e for the boolean
negation of e. While loops and repeat-until loops can be encoded
similarly: while b do c , loop(assume b; c);assume!b.

RtIR also provides atomic blocks (atomic c). In our GC, we use
atomic blocks only to add ghost-code – code only used for the proof,
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not taking part in the computation – and to model linearizable data
structures. While this is naturally not possible in general, we take spe-
cial care in our developments to only use atomic constructs which can
be refined into low-level, fine-grained implementations using tech-
niques like [63], or the one we develop in Chapter 6. In the refinement
methodology for linearisable data-structure exposed in Chapter 6, we
also make use of an atomic block to define a Compare-And-Swap (CAS)
instruction as a macro. A CAS is an instruction, natively supported by
processors such as Intel’s X86, which allows to perform atomically, in
a single computational step, both a read and write to the shared mem-
ory. More specifically, the instruction CAS(X, eo, en) reads the value
in X, compares it to the value of the expression eo, and if both values
are equal, write into X the value of the expression en. The notion of
atomicity of an instruction being dependent of of targeted environ-
ment of execution, using atomic blocks to define macros allows the
language to be flexible and reused in different contexts.

Instruction alloc(rn) allocates a new object in the heap by extract-
ing a fresh reference from the freelist – a pool of unused references
– and initialising all of its fields in the record name rn to their de-
fault value. Conversely, free puts a reference back into the freelist.
Instruction isFree? looks up the freelist to test whether a reference is
in it. We use these memory management primitives to implement the
garbage collector in Chapter 4.

In RtIR, basic instructions related to shared-memory accesses are
fine-grained, i.e. they perform exactly one global operation (either
read or write). These include loads and stores to global variables and
field loads and updates. Apart from these basic memory accesses,
RtIR provides abstract concurrent queues which implement the mark

buffers of [35], accessible through standard operations y = x.top(),
x.pop(), x.push(y), x = y.empty?(). The use of these buffers, necessary
for the implementation of the GC, will be made clear in Chapter 4.
While we could implement these data structures directly in RtIR, we
argue that to carry out the proof of the GC, it is better to reason about
them at a higher level, and hence to assume that they behave atom-
ically. Implementing these data structures in a correct and lineariz-
able [56] fashion is an orthogonal problem. Chapter 6 is dedicated to
this concern. Mark buffers also provide an operation X = y.copy(),
to perform a deep copy of a whole buffer at once: we only use this
operation in ghost code.

A salient ingredient of RtIR is its native support for iterators, allow-
ing to easily express many bookkeeping tasks of the GC. The iterator
foreachRef x ∈ l when P(x) do c od and its accompanying instruction
x ←ref r do not belong to the language per se: they are only used in
the semantics. We therefore delay their description to the presenta-
tion of the semantics. The iterator foreach (x in l) do c oditerates c

through all elements x of the static list l. The binder x is represented
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here in the syntax for sake of clarity, but is actually a metavariable
bound at the Coq level: command c has type A → cmd where A is
the type of the elements over which we iterate. We come back to this
technicality when describing the semantics. This iterator is used in
our implementation of a GC in order to iterate over all threads. Some
more sophisticated bookkeeping tasks include the visiting of all the
fields of a given object, the marking of each of the roots – references
bound to local variables – of mutators, or the visiting of every object
in the heap (performed during the sweeping phase). In those cases,
the lists of elements to be iterated upon is not known statically, so we
provide dedicated iterators. The iterator foreachField (f of x) do c od
iterates c on all the fields f of the object stored in x. Command
foreachRoot (r of t) do c od iterates over the roots of mutator thread
t, while foreachObject x do c od iterates over all objects. We stress the
fact that iterators have a fine-grained behaviour: the body command
c executes in a small-step fashion.

3.2.2 Operational semantics

We now turn to the description of the execution state and semantics
of RtIR. The soundness of our logic, and hence the correctness of
the garbage collector we prove, is phrased directly in terms of this
operational semantics.

3.2.2.1 Typing information

The semantics of RtIR is enriched with typing information. Basic
types in typ include TNum for numeric constants, TRef for references
to regular objects, and TRefSet for non-null references to abstract
mark-buffers: typ , { TNum, TRef, TRefSet }.

Local variables, global variables, and field identifiers are declared
to have exactly one of these types. Additionally, local variables are
flagged as belonging to the GC, i. e. used in the injected code, or to
the client, i. e. any other variable. To do so, they are defined in Coq
as records with three fields. The types are retrieved through the cor-
responding accessor, respectively lvar_typ, gvar_typ and fid_typ,
while the accessor user indicates if the variable belongs to the client.

Record lvar := { lvar_name: varId ; lvar_typ: typ ; user: bool }.

Record gvar := { gvar_name: varId ; gvar_typ: typ }.

Record fid := { fid_name : fieldId ; fid_typ : typ }.

RtIR manipulates two kinds of values: numeric values in the Coq
type Z and references in ref. Types are mapped to values with the
function value of type typ → Type.

Definition value (t:typ):Type :=

match t with

| TNum⇒ Z
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| TRef TRefSet => ref end.

3.2.2.2 Execution states

Local (resp. global) environments map local (resp. global) variables to
values of their declared type. To do so, we make use of the powerful
type system of Coq: these maps are dependently types functions.

Definition lenv := ∀ x:lvar, value (lvar_typ x).

Definition genv := ∀ X:gvar, value (gvar_typ X).

As you can see, the nature, i. e. the type, of the value returned when
applying the function lenv to an argument depends on the value of
this argument. Dependent types are well known to be trodden lightly
with, for they may be delicate to manipulate. However, they allow
to express powerful invariants directly in the type of objects. Here,
by virtue of typing, the lenv and genv maps cannot return a value
whose nature mismatches the type of the looked up variable: a TNum

variable can only be bound in lenv to integers, and so on. Using those
dependent types frees us from proving the well-formedness property,
and perhaps most importantly spares us from manually invoking this
property when needed.

A thread-local state is then defined by a local environment and a
command to execute. A global state includes a global environment ge
and a heap hp – a partial map from references to objects. We consider
two distinct kinds of objects: regular objects, mapping fields to values,
and abstract mark-buffers. Global states also include two components
essential to the implementation of a GC: roots and a freelist. The
freelist is indeed a shared data structure, while roots are considered
to be thread-local – mutators are responsible for handling their own
roots with thread-local counters. Here, we model roots as part of the
global state only to ease proof annotations – our final theorem is an
invariant of the program global state.

Definition thread_state := (cmd * lenv).

Record gstate := { ge: genv;

hp: ref→ option object;

freelist: ref→ bool;

roots: tid→ ref→ nat }.

Finally, execution states include the states of all threads and a
global state.

Definition state := ((tid→ option thread_state) * gstate).

3.2.2.3 Semantics of atomic instructions

RtIR is equipped with two kinds of operational semantics: a big-step

semantics, and a small-step interleaving semantics. The big-step se-
mantics, purely sequential, has two essential uses. First, it defines the
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((ρ,σ) | skip)→1
t (ρ,σ)

JbKρ = true

((ρ,σ) | assume b)→1
t (ρ,σ)

x.(user) = false JeKρ = ve

((ρ,σ) | x = e)→1
t (ρ[x← v]e,σ)

x.(user) = true JeKρ = ve ρ(x) = vx

((ρ,σ) | x = e)→1
t (ρ[x← ve], rts[x−, v+x ]ve)

x.(user) = false ge(Y) = v

((ρ,σ) | x = Y)→1
t (ρ[x← v],σ)

x.(user) = true ge(Y) = vn ρ(x) = vo

((ρ,σ) | x = Y)→1
t (ρ[x← vn],σ{rts[x−, v+o ]vn})

JeKρ = v

((ρ,σ) | X = e)→1
t (ρ,σ{ge[X← v]})

JeKρ = v ρ(x) = rx hp(rx)
.
= ob

((ρ,σ) | x.f = e)→1
t (ρ,σ{hp[rx ← [ob[f← v]]]})

hp(ρ(y))
.
= ob ob(f)

.
= vn ρ(x) = vo

((ρ,σ) | x = y.f)→1
t (ρ[x← vn],σ{rts[v−o , v+n ]})

r ∈ F hp ′ = hp[r← initobj(rn)] F ′ = Fr {r}

((ρ, (ge,hp,F, rts)) | x = alloc(rn))→1
t (ρ[x← r], (ge,hp ′,F ′, rts))

((ρ, (ge,hp,F, rts)) | free x)→1
t (ρ, (ge,hp[r← None],F ∪ {r}, rts))

ρ(y) = r b = (r ∈ F)

((ρ,σ) | x = isFree?(y))→1
t (ρ[x← b],σ)

ρ(x) = rx ρ(y) = ry hp(rx)
.
= s

((ρ,σ) | x.push(y))→1
t (ρ,σ{hp[rx ← ry :: s]})

ρ(x) = rx hp(rx) = Some(v :: s)

((ρ,σ) | x.pop())→1
t (ρ,σ{hp[rx ← s]})

ρ(y) = ry hp(ry) = Some(v :: s)

((ρ,σ) | x = y.top())→1
t (ρ[x← v],σ)

ρ(y) = ry hp(ry)
.
= s b = (s = nil)

((ρ,σ) | x = y.empty?())→1
t (ρ[x← b],σ)

ge(X) = rx ρ(y) = ry hp(ry)
.
= s

((ρ,σ) | X = y.copy())→1
t (ρ,σ{hp[rx ← s]})

hp(r)
.
= ob

((ρ, (ge,hp,F, rts)) | x←ref r)→1
t (ρ[x← r], (ge,hp,F, rts))

Figure 6: Semantics of atomic instructions.
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semantic validity of Hoare-like tuples for basic instructions in our
proof system (see Section 3.3.2). Second, it is used by the small-step
semantics to define the meaning of commands in atomic blocks. The
small-step semantics on the other hand is interleaving, and used to
prove our final soundness results.

Both semantics share the reduction rules for elementary instruc-
tions, those which are inherently atomic4. Figure 6 gives the corre-
sponding rules for the reduction relation of a thread t: given a pair of
a local state and a global state, a command produces a new such pair.
We do not have a new resulting command since we define here only
the semantics of commands which fully execute in one single step.

Inductive (· | ·)→1
t · : (lenv*gstate) → cmd→ (lenv*gstate) → Prop.

We introduce a few notations to lighten the presentation of the
rules. We use meta-variables ρ ∈ lenv for local maps and σ ∈ gstate

for global states, and respectively ge, hp, F and rts for the compo-
nents of a global state. The map resulting from the update of m with
a new binding of v to x is written m[x ← v]. Updates of the roots

mapping are handled particularly. Operation roots[t, x, vo, vn] checks
the type of variable x: if it is TRef, then it decrements, for thread t,
the counter of reference vo and increment the one of reference vn;
otherwise it does nothing. To keep rules compact, we also use ensem-
blist notations to manipulate the freelist. When a map is partial, such
as is the case with the heap, we write hp(x)

.
= v as a shorthand to

h(x) = Some v. We write r.(f) to access the field f of the Coq record r,
and r{f[x← v]} to denote the record r in which the field f is updated.
Finally, we assume a trivial semantics J·K for effect-less expressions.

The semantics is mostly standard, but for the management of roots.
We briefly comment the rules, following Figure 6 from top to bottom.
Both skip and assume behave as the identity, but assume is naturally
blocking until its condition is satisfied. Interestingly, local computa-
tions x = e admit two different rules, depending on whether x is
a client variable or not. Indeed, if the variable belongs to the client,
we need to additionally manage the roots. If the type of x is TRef,
the counter of the previously hold reference is decremented, while
the new one is incremented. Note that we need here the semantics
to depend on the thread’s identifier. The case of loads of global vari-
ables x = Y is similar. Global stores X = e behave as expected. Loads
and stores to the heap are similar to their global counterparts, except
the semantics is blocking if we try to access references outside of the
domain of the heap, or fields outside of the domain of the object.

Allocation x = alloc(rn) picks non-deterministically a reference
r from the freelist F. A fresh object is bound to r in the heap: the
domain of the object is the set of fields provided in rn, and each

4 Since inductive constructs with return type in Prop define relations and not functions,
we do not need to explicitly define in Coq the subset of instructions which are
atomic.
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field is bound to either 0 or the Null reference depending on its type.
Finally, r is removed from the freelist. Freeing a reference r simply
removes it both from the domain of the heap and the freelist. Testing
the freedom of a reference is a simple membership test to the freelist.

Next come the abstract operations over the buffers. Note once again
that they are atomic, a fact instrumental to keep the proof of the
garbage collector tractable, and whose formal rationalisation is cov-
ered in Chapter 6. As a result, the instruction are very simple. The
push and pop operations update the buffer in the heap correspond-
ingly, the semantics of pop being blocking if the buffer is empty. The
top and empty? operations raise no surprise. Finally, the copy instruc-
tion performs the deep-copy of the buffer and stores it in the heap.
Naturally, contrary to the other four, this operation cannot be refined
in such an atomic way: it is only used to implement ghost code used
to reason, most specifically in Section 5.5.3. The interested reader may
have noticed that the semantics of buffers is a bit more complex in the
formal development. Indeed, although we present them here for clar-
ity as a simple list, enforcing a First-In-First-Out discipline, they are
in reality less specified so that they can be refined by various imple-
mentations.

Lastly, the ←ref instruction is simply used to bind a reference to a
variable at runtime. We shall explicit its use in the description of the
semantics of the iterators, in the following section.

3.2.2.4 Big-step semantics

We build a sequential big-step semantics on top of the semantics of
elementary commands. It has the same signature as the previous one,
but now reduces any term from RtIR.

Inductive (· | ·) ⇓ ·: (lenv*gstate) → comm→ (lenv*gstate) → Prop.

The rules are presented on Figure 7. A reduction of an atomic in-
struction also reduces in the big-step semantics. The control flow is
completely traditional, the non-deterministic loop being expressed
recursively in terms of a non-deterministic choice with skip. The se-
mantics of an atomic block is simply the semantics of its innards.

Iterators are more interesting. First, foreach (x in S) do c od iter-
ates a command c through all the elements of a list of elements of
type A. Its intuitive semantics goes as expected for a traditional loop.
However, as alluded to when describing the syntax, we make use of
so-called higher-order abstract syntax [117] when defining iterators: x
is not a program variable, but rather bound at the Coq level by pa-
rameterising c by an element of type A, giving it the type A → cmd.
Intuitively, we would rather write the iterator as foreach l do (fun

x ⇒ ... x ...), and, the iterator would execute the sequence (c

a1) ;; ... ;; (c an), where each ai corresponds to one element in
the list l. This way of relying on a higher-order command has several
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(s1 | c)→1
t s2

(s1 | c) ⇓ s2

(s1 | c1) ⇓ s2
(s2 | c2) ⇓ s3

(s1 | c1; c2) ⇓ s3

(s1 | c1) ⇓ s2

(s1 | c1 ⊕ c2) ⇓ s2

(s1 | c2) ⇓ s2

(s1 | c1 ⊕ c2) ⇓ s2

(s1 | skip⊕ (c; loop(c))) ⇓ s2

(s1 | loop(c)) ⇓ s2

(s1 | c) ⇓ s2

(s1 | atomic c) ⇓ s2

(s | foreach (x in nil) do c od) ⇓ s

(s1 | (c(a); foreach (x in S) do c od)) ⇓ s2

(s1 | foreach (x in (a :: S)) do c od) ⇓ s2

ref_fields(ob) = S (s1 | foreach (f in S) do c od)) ⇓ s2

(s1 | foreachField (f of ob) do c od) ⇓ s2

(s | foreachRef x ∈ nil when P(x) do c od) ⇓ s

P(a) = false (s1 | foreachRef x ∈ S when P(x) do c od) ⇓ s2

(s1 | foreachRef x ∈ a :: S when P(x) do c od) ⇓ s2

P(a) = true (s1 | (x←ref a; c(a); foreachRef x ∈ S when )(x) do c od) ⇓ s2

(s1 | foreachRef x ∈ (a :: S) when P(x) do c od) ⇓ s2

AllObjects(O)

(σ1 | foreachRef o ∈ O when in_heap(o) do c od) ⇓ σ2

(σ1 | foreachObject o do c od) ⇓ σ2

AllRootst(R)

(σ1 | foreachRef r ∈ R when True(r) do c od) ⇓ σ2

(σ1 | foreachRoot (r of t) do c od) ⇓ σ2

Figure 7: Big-step semantics.
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benefits. First, it avoids over-constraining the type A of the elements
of the list. Indeed, if the binding were implicitly done via a regular lo-
cal variable, this would restrict type A to the type of semantic values
of our language, so that the local update of x can effectively be done
at the start of each iteration of the loop. Second, it allows us to iterate
over introspective values, like thread identifiers, while keeping the se-
mantics simple: we do not need to introduce values of such types in
the language. We use in our development this iterator to iterate over
all thread identifiers, as well as to define a dedicated iterator over the
fields of an object, foreachField (f of ob) do c od. The value of the set
over which we iterate is computed at runtime through the predicate
ref_fields(ob) which returns the list of fields of object ob holding a
value of type TRef. The iterator will just execute the command (c f)

for all the fields of type reference of the object stored in ob.
With more sophisticated examples of bookkeeping tasks, such as

visiting all fields of an object or all roots of a thread, the list of el-
ements to be iterated upon is not known statically. To provide ded-
icated iterators for these cases, we use a generic iterator over a list
of reference, foreachRef x ∈ S when P(x) do c od. It iterates over a
fix list of references, but also take as a parameter a predicate P rul-
ing out dynamically references: if P is not satisfied, the reference is
directly discarded. In contrast to foreach (· in ·) do · od, this iter-
ator binds concretely at each iteration the value iterated upon to a
local variable through the dedicated instruction ←ref. We then de-
fine on top of it the iteration over all objects foreachObject do od :

predicate AllObjects characterises the list of all objects allocated in
the heap initially; during each iteration, predicate in_heap rules out
objects which would have been freed in the mean time. Finally, the
command foreachRoot (r of t) do c od iterates over all roots of a
thread t, set which is once again determined at runtime by the predi-
cate AllRootst.

3.2.2.5 Small-step semantics

Equipped with our big-step semantics, we can now define the inter-
leaving, small-step semantics. First, we define the thread-local rela-
tion.

Inductive (· | ·)→ (· | ·): (lenv*gstate) → comm→

(lenv*gstate) → comm→ Prop.

We omit the details of the rules: they simply mimic the big-step
semantics in a small-step style. The only detail worth noting is the
reduction step for the atomic block: we make use of the big-step se-
mantics.

(σ1 | c) ⇓ σ2

(σ1 | atomic c)→ (σ2 | skip)
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Since no interleaving can happen inside of such a block, we execute
it all at once. Finally, the interleaving semantics  can be defined as
a relation over state:

tss(t) = (c1, ρ1)
((ρ1,σ1) | c1)→ ((ρ2,σ2) | c2)

(tss,σ1) (tss[t← (c2, ρ2)],σ2)

3.2.2.6 Well-typedness invariants

A number of invariants are guaranteed by typing: (i) each variable in
the local or global environment contains a value of the appropriate
type, (ii) any reference of type TRef is either null, in the domain of the
heap, or in the freelist, and (iii) each abstract mark-buffer is accessible
from a unique global variable, indexed by a thread identifier. This
mechanism enforces separation of mark-buffers by typing.

3.3 reasoning about concurrent programs

In 1969, Tony Hoare introduced his eponymous logic to reason about
sequential programs [58]. While the approach kept spanning research
projects for decades to scale to complex constructs, such as higher or-
der recursion or stores, the fundamental intuition was already present
in this seminal paper. This intuition is embodied in the aspect of the
judgement the logic introduces.

Indeed, the semantic interpretation of a triplet |= {P} c {Q} expresses
that if the execution of the program c from any initial state satisfying
the predicate P terminates in a state σ, then σ is guaranteed to satisfy
the predicate Q. Note that only partial correctness is ensured: c might
not terminate. Alternate systems handling total correctness exist, but
we do not consider them here.

On top of the semantic interpretation of a triplet, one defines a
proof system, or deductive system, whose judgements are denoted as
⊢ {P} c {Q}. While the interpretation of the triplets are purely semantic
based, a deductive system is meant to be governed by the syntax of
the program. Proofs can therefore be performed modularly over the
program. To ensure that these deductive proofs are meaningful, one
proves the soundness of the system – that the deductive judgement
entails the corresponding semantic judgement, i. e.:

∀P, Q, c, ⊢ {P} c {Q} =⇒ |= {P} c {Q}.

The original system is also complete: the implication is an equiva-
lence.5

5 The relevant notion of completeness is a bit subtle in that the system is only complete
“in the sense of Cook”, i. e. relative to its underlying assertion language. We refer the
interested reader to Glynn Winskel’s wonderful book [143] for a detailed account.
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We describe in this section how Hoare’s idea has been adapted
to handle concurrent programs, and describe our formalisation of a
particular deductive system.

3.3.1 The Owicki-Gries approach

Reasoning about concurrent programs with shared memory brings
up a major question: how can we soundly combine (sequential) proofs
of different threads? Indeed one cannot reason locally without any
concern for the environment: the steps another thread may take could
invalidate the reasoning. This problem, referred to as interference, has
probably been explicitly formulated for the first time by Ashcroft and
Manna [10]. Their approach to soundly combine concurrent systems
consists in reducing two interfering processes into an equivalent sin-
gle one.

Owicki and Gries [109, 110] were the first authors to embed the
difficulty into a program logic in the spirit of Hoare. They introduced
the following rule for parallel composition (specialised here to the
particular case of two threads for clarity):

{P1} c1 {Q1} and {P2} c2 {Q2} are interference-free
{P1 ∧ P2} c1||c2 {Q1 ∧Q2}

Their rule requires to prove correct both threads independently, and
additionally to check that proofs are so-called interference-free. Intu-
itively, this condition is a sufficient condition for the operational se-
mantics of a thread to not break the sequential proof of another one.
Naturally, one such sufficient condition would be for threads to not
share any variables, but this would be too restrictive for any practical
use. Their condition is therefore more complex.

Essentially, they state the following. Consider any assignment x := e

in c1, and take its associated precondition pre1 in the sequential proof
{P1} c1 {Q1}. Then this assignment must not disturb any part of the
sequential proof of c2. To ensure this fact, if you consider, for any state-

ment contained in c2, the associated precondition pre2 extracted from
the proof {P2} c2 {Q2}, then the following stability property holds:
{pre1 ∧ pre2} x := e {pre2}. Symmetrically, the same must naturally
hold by inverting the indexes.

While the approach is sound, it is quite impractical. First, the paral-
lel composition rule is not compositional in that the proof of a thread
depends on the code of the other threads it shall be composed with.
The methodology therefore can only applied to closed system, for
which all components are known when performing the proof. Second,
the number of proof obligations grows exponentially in the number
of threads involved.
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3.3.2 Rely-Guarantee reasoning

To improve the situation, Jones introduced in 1981 the Rely-Guarantee

(RG) logic [64]. The intuition is very similar to the Owicki-Gries ap-
proach, but offers thread compositionality.

The key idea is to prove each thread t in complete isolation, by mak-
ing it write down a contract expressed as relations over the shared
memory. On the one hand, t makes a promise: its execution will only
modify the shared memory in ways which are described in its guaran-

tee Gt. In return, t assumes something about the kind of environment
it tolerates: for the proof to remain valid, t should only be subjected
to interferences over the shared states contained in its rely Rt. A judge-
ment has therefore now the following form: Rt,Gt |= {P} c {Q}.

In order to compose threads, one therefore only needs to check the
compatibility of the contracts: the rely Rt should contain the guaran-
tee of all other threads. The idea is synthesised by the composition
rule, once again expressed here with only two threads for simplicity.
We use set notations for operators over relations.

G1 ⊆ R2 G2 ⊆ R1

R1,G1 |= {P1} c1 {Q1} R2,G2 |= {P2} c2 {Q2}

R1 ∩ R2,G1 ∪G2 |= {P1 ∧ P2} c1||c2 {Q1 ∧Q2}

If both contracts are compatible, the proofs of both threads may
be combined. The resulting guarantee is the union of both thread’s
guarantees: indeed, their parallel composition can generate any effect
either component could have caused. Reciprocally, the only interfer-
ence they now can tolerate are interferences they both accept: the
resulting rely is the intersection of both relies.

Naturally, the notion of stability of assertions remains crucial: es-
tablishing a predicate at a program point still makes no sense if an
interference may invalidate it. However, while the Owicki-Gries ap-
proach need to establish such stability when composing threads, with
respect to the concrete code, a RG logic has a convenient abstraction
of all possible interferences a thread may endure: its rely. The rele-
vant notion of stability of a proof annotation in a thread t is therefore
the stability of this annotation under the rely relation of t. Naturally,
global invariants have to be proved stable under all relies.

Definition 1 (Stability under interference). Given a domain of states S,
a predicate P ⊆ S is said to be stable under a relation R ∈ (S× S) if

∀σ σ ′ ∈ S, (σ ∈ P∧ (σ,σ ′) ∈ R)→ σ ′ ∈ P

Since stability is no longer explicitly dependent on the code of
other threads, stability proofs can be deferred out of the parallel
composition rule. Traditionally, such as in Coleman and Jones [19],
any proof rule implicitly carries a side condition stating the stabil-
ity of all predicates involved. This requirement, convenient to prove
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meta-theorems over the logic such as its completeness, is however im-
practical and overly conservative. Prensa [120] lightened the burden
by checking stability only in the atomic block rule, enclosing all el-
ementary instructions considered as atomic inside an atomic block.
Vafeiadis [137] inquired several alternative strategies. While the ques-
tion of stability may seem rather mundane at first glance, it turns out
to be the bottleneck for a practical use of the logic, and especially
so in a mechanised context. We hence introduce our own variation
of a mechanised rely-guarantee logic for RtIR, carefully designed to
lighten the development process of a significant RG proof, such as
the proof of a GC we describe in Chapter 5.

3.3.3 A refined Rely-Guarantee proof system for RtIR

On top of RtIR, we formalise a RG program logic. We however de-
sign the logic with two major goals in sight: partial automation and
separation of concerns.

3.3.3.1 High-level design choices of proof rules

In our approach, we first annotate a program, as is usually done on
paper, and then prove the annotated program using syntax-directed
proof rules. To this end, the syntax of commands is extended to
include annotations. This sequential proof, and all proof rules, do
not deal with stability concerns. Combined with the use of syntax-
directed proof rules, this design allow for partial automation of se-
quential proofs. From a very pragmatic perspective, it is also relevant
to remember that mechanised, sequential proofs of programs are far
from easy to perform. Being able to focus on them in isolation is
therefore a huge productive benefit.

Naturally, we do not claim that a RG proof should be conducted
without concern for interferences. All predicates should indeed be
stated with the right rely in mind. However, the proof system aims
at decoupling sequential and concurrent reasoning. Its first layer is
therefore a Hoare-like system, with no use of relies or guarantees.
A second layer handles interferences: proof obligations about relies,
guarantees and stability checks of annotations, as illustrated in Sec-
tion 3.3.3.7.

Finally, to avoid polluting programs with routine annotations, typi-
cally the case for global invariants, the first layer of the system assumes

that such invariants hold, and the second layer requires to separately
prove their invariance as a stability check. Once again, this separates
proof concerns. We shall see in Chapter 5 that it is instrumental in
designing a tractable workflow: thanks to this separation, complex
invariants can be progressively refined as understanding of the algo-
rithm goes.
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Guarantees

Correct abstraction
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correct

Annotated code
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Figure 8: Structure of a RG proof in our proof system. The dependence be-
tween the components are made explicit, and proof obligations are
isolated.

Before covering the presentation of the system itself, we sum up
the objective by describing the resulting general structure of a rely-
guarantee proof. Thanks to the separation of concerns we enforce, a
RG proof in our system can be schematically represented as three
interdependent components requiring proof obligations. A wrap-up
of the situation is depicted on Figure 8.

First, the code of each thread is modelled through its guarantees,
and global invariants shall be proved stable under any of those guar-
antees. The code of each thread is annotated, and those annotations
shall (i) be proved to hold sequentially and (ii) be stable under the
other threads guarantees, assuming the invariant6. Finally, for each
thread, we need to prove that its guarantee is indeed an abstraction
of its operational semantics.

This structure of the development is to put in contrast with tradi-
tional rely-guarantee systems. As described in Section 3.3.2, stability
assertions are usually entangled with sequential reasoning by baking
them directly into the proof rules. We in constrast move this concern
away from the rule, as is described in Section 3.3.3.5.

3.3.3.2 Annotations

Two approaches can be taken when formalising a language of predi-
cates in a proof assistant such as Coq. In a deep embedding, one defines
the syntax of the language, and provide a semantics to this syntax by
defining the interpretation of the terms. This approach gives great
control over the resulting language, in particular in the sense that
introspection is extremely easy. However, by defining a clean new
world into which the predicates live, all reasoning facilities provided
by Coq are lost. In contrast, a shallow embedding aims at leveraging
the expressivity of Coq’s logic. To do so, the language of assertions

6 In other words, the rely condition is implicitly taken as the union of the guarantee
conditions of the other threads.
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we define is given no syntax: a predicate in our language is directly
encoded as a Coq predicate. Wildmoser and Nipkow investigated in
depth the benefits of both approaches in 2004 [141].

We use this second solution, the one of a shallow embedding into
Coq, for our language of assertions. The type of an annotation is ei-
ther pred, gstate→lenv→Prop for a predicate over the whole state,
or gpred, gstate→Prop when they express global predicate, over the
global state only. Typically, the global invariant of the GC is of type
gpred. We also define the usual logical connectives on pred and gpred

with the expected meaning. Conjunction is written A∧∧B and implica-
tion is written A−→B. Annotations of type gpred are automatically
cast into pred when needed.

The syntax presented in Section 3.2 is extended to take precondi-
tion annotations into account. While elementary commands that do
not make use of the global state do not need to be extended, ba-
sic commands accessing memory (e.g. field loads and updates, global
loads and stores, and mark-buffer operations) have to take an extra ar-
gument of type pred, representing the pre-condition of the command.
This is also the case for loops, annotated with a loop-invariant, and
atomic blocks, whose body may affect the global state. The semantics
of RtIR completely ignores annotations which are only relevant for
proofs.

In the sequel, we use the notation P@c to designate a command c

whose annotation argument is set to P.

3.3.3.3 Sequential Layer

First, we define the validity of a sequential Hoare tuple, with respect
to the big-step operational semantics of commands. The predicate,
written I � t: 〈P〉 c 〈Q〉, is straightforward to define:

Definition bhoare (t:tid) (I:gpred) (P Q:pred) (c:cmd) :=

∀ gs1 le1 gs2 le2

(PRE : P gs1 le1) (SEM : opsem t (gs1,le1) c (gs2,le2))

(INV1: I gs1) (INV2: I gs2),

Q gs2 le2.

This semantic judgement asserts that, for thread t, if command c runs
in a state satisfying precondition P, and if the execution terminates,
the final state must satisfy post-condition Q under the assumption that
the global predicate I is an invariant. Establishing that I is indeed
invariant is done separately.

This semantic tuple being defined, we turn to the proof system.
Logic judgements for commands in this first layer are of the Hoare
style form I ⊢ t: 〈P〉 c 〈Q〉. To ease mechanical automation of rea-
soning, we combine two styles when defining the proof system. For
basic commands which do not require annotations and simple com-
mand compositions (sequence, non-deterministic choice and loops),
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proof rules follow the traditional weakest-precondition style. A sim-
ple systematic inversion of the rules therefore permits to easily break
a proof of a program into elementary proof obligations by propagat-
ing the annotations. This style can be seen in the following rules:

I ⊢ t: 〈P〉 skip 〈P〉

I ⊢ t: 〈P〉 c1 〈R〉

I ⊢ t: 〈R〉 c2 〈Q〉

I ⊢ t: 〈P〉 c1;c2 〈Q〉

I ⊢ t: 〈P1〉 c1〈Q〉

I ⊢ t: 〈P2〉 c2〈Q〉

I ⊢ t: 〈P1 ∧∧ P2〉 c1 ⊕ c2 〈Q〉

On the other hand, commands that require annotations directly em-
bed the semantic judgement I � t: 〈P〉 c 〈Q〉 as a proof obligation.
For instance:

I ⊢ t: 〈fun gs le ⇒JbKle=true → P gs le〉 assume b 〈P〉

I � t: 〈P〉 c 〈Q〉

I ⊢ t: 〈P〉 P@atomic c 〈Q〉

I � t: 〈P〉 P@X = e 〈Q〉

I ⊢ t: 〈P〉 P@X = e 〈Q〉

P1 → P2

I ⊢ t: 〈P2〉 c 〈Q〉

I ⊢ t: 〈P1〉 c 〈Q〉

I ⊢ t: 〈P’〉 c 〈P〉

P ∧∧ I −→ Q P ∧∧ I −→ P’

I ⊢ t: 〈P〉 P@loop(c) 〈Q〉

This design has similar motivations and is closely related to the
choice of a shallow embedding for our logic. First, by relying di-
rectly on the semantics, we can benefit from Coq facilities to inverse
inductive constructs to automatically unfold the semantics of basic
programs. Second, since annotations can be any Coq predicate, a fea-
ture we exploit heavily to express easily complex graph reachability
predicates, handling base cases in a syntactic way would rise difficult
issues such as the definition of a substitution into our predicates.

By combining both styles, we benefit both from a syntax directed
propagation of annotations and a flexible semantics-oriented resolu-
tion of proof obligations.

3.3.3.4 Interference Layer

This layer takes into account threads interference with a given com-
mand, handling the validity of guarantees and the stability of pro-
gram annotations w.r.t. the context. This can be seen in the definition
of a valid RG tuple:

Record RGt (t:tid) (R:rg) (G:list rg) (I:gpred) (P Q:pred) (c:cmd) := {

RGt_hoare: I ⊢ t: 〈P〉 c 〈Q〉

; RGt_stable: stable I P R ∧ stable I Q R ∧ AllStable I c R

; RGt_guarantee: AllRespectGuarantee t I c G }.

Here, the type rg, gstate→gstate→Prop defines relies and guar-
antees as binary relations between global states. In our development,



3.3 reasoning about concurrent programs 45

we build them from annotated commands. For a command P@c, the
associated rg is defined by running the (big-step) operational seman-
tics of c from a pre-state satisfying P to a post-state. More precisely,
we refer to the interference an atomic command guarded by an anno-
tation may cause to the environment as its action.

Definition action (rg:pred*comm) : gstate→ gstate→ Prop :=

let ’(P,c) := rg in

fun g1 g2⇒ ∃ l1 l2,

P g1 l1 ∧ opsem rt t (g1,l1) c (g2,l2).

Predicate stable defines the stability of a predicate in pred w.r.t. a
rely R, given some invariant I:

Definition stable (I:gpred) (H:pred) (R:rg) : Prop :=

∀ gs1 gs2 l,

(I gs1 ∧ H gs1 l ∧ R gs1 gs2 ∧ I gs2) → H gs2 l.

Predicate AllStable then builds the conjunction of the stability con-
ditions for all assertions syntactically appearing therein. It is formally
defined as a fixpoint constructing a Coq predicate. We write P@c as
a short hand to any basic command annotated with predicate P and
omit the case of iterators.

Fixpoint AllStable (I:gpred) (c:cmd) (R:rg) (S: Prop) : Prop :=

match c with

| P@c ⇒ stable I P R

| P@loop(c) ⇒ stable I P R ∧ AllStable I c R S

| c1; c2 | c1 ⊕ c2 ⇒ AllStable I c1 R (AllStable I c2 R S)

end.

The validity of the guarantee of a command (embodied in the pred-
icate AllRespectGuarantee) follows the same principle, this time ac-
cumulating proof obligations that all elementary effects of the com-
mand are reflected by an elementary guarantee in list G. We use the
notion of action to express what it means for an annotated command
to respect a guarantee, expressed as a list of possible interferences.

Definition RespectGuarantee (I:gpred) (P:pred) (c: cmd) (G: list rg) :

Prop :=

∃ g,

In g G ∧ action (P∧∧castP I,c)⊆ clos_refl_trans g.

Where clos_refl_trans g denotes the reflexive, transitive closure of
g and castP I a simple casting of the gpred I to a pred by leaving the
local environment unconstrained. Finally, AllRespectGuarantee col-
lects all elementary obligations to RespectGuarantee in a command
in a similar way to AllStable.
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3.3.3.5 Program RG specification

The RG specification of a program p is defined as a record collecting
guarantees G and pre- and post-conditions P and Q for all threads.
Formally, we have the following definition:

Record RGt_prog (G:tid→ rg) (I:gpred) (P Q:tid→ pred) (p:program) :=

{ RGp_t:∀ t, RGt t (Rely G t) (G t) I (P t) (Q t) (cmd t p)

; RGp_I:∀ t, stable TTrue I (G t) }.

The predicate RGp_t requires that the command of each thread is
proved valid. It is worth noting here that only guarantees need to
be considered: for each thread, its rely is extracted from the other
thread’s guarantees by (Rely G t), which significantly reduces the re-
dundancies of specifications. Second, RGp_I requires that I is indeed
an invariant. This is encoded as a stability condition under the guar-
antees of each of the threads, and under the trivial invariant TTrue,
(fun _ _ ⇒ True). In a nutshell, since all threads’ code satisfy their
guarantees, this is sufficient to prove that the global invariant I is
preserved after any number of steps of the program.

3.3.3.6 Reasoning about Iterators

As expected, the case of iterators is more involved. We illustrate their
treatment on foreach. Recall that foreach iterates on a list of data of
type A, morally representing a loop. Hence, its proof involves a loop
invariant, parameterised by the sublist of elements that have been
already visited. Predicates annotating foreach loops are thus indexed
by a list of visited elements. Moreover, the loop body often includes
annotations mentioning visited elements, so we also index it by a list
of visited elements and a current element. Summing up, the syntax of
foreach extended with annotations is P@foreach (x in l) do c od

where annotation P has type list A → pred, and c has type
list A → A → cmd. The associated proof rule is:

∀ a seen, prefix (seen++[a]) l →

I ⊢ t: 〈P seen〉 (c seen a) 〈P (seen++[a])〉

P l ∧∧ I −→ Q

I ⊢ t: 〈P nil〉 P@foreach (x in l) do c od 〈Q〉

The first premise amounts to proving a valid tuple whose pre- and
post-conditions are adjusted to the list of already visited elements
seen. The second premise requires the pre-condition P applied to the
whole list of elements to entail the post-condition of the iterator itself.

3.3.3.7 Soundness of the logic

Soundness states that invariant I holds in every state reachable from
a well-formed initial state – which must satisfy I by construction –
through the small-step semantics presented in Section 3.2. Formally:
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Hypothesis init_wf : ∀ tsi gsi, init_state p (tsi,gsi) →

RGt_prog G I P p Q (* program RG spec *)

∧ (∀ t c le, tsi(t) = Some(c, le) → P t gsi le) (* pre-cond hold *)

∧ I gsi. (* I holds initially *)

Theorem soundness : ∀ ts gs, reachable init_state p (ts,gs) → I gs.

The proof of this theorem relies on an auxiliary proof system, proved
equivalent to the one presented earlier. The auxiliary system reuses
the same basic components, but proof rules now require to prove
everything in place: the invariant, the pre- and post-conditions, the
stability of annotations, and the validity of guarantees. For instance,
compare the rule for instruction X = e in the previous system with
the proof rule of the auxiliary system.

I � t: 〈P〉 P@X = e 〈Q〉

I ⊢ t: 〈P〉 P@X = e 〈Q〉

TTrue � t: 〈P ∧∧ I〉 P@X = e 〈Q ∧∧ I〉

stable TTrue (P ∧∧ I) G stable TTrue (Q ∧∧ I) G

RespectGuarantee t I G (P@X = e)

R, G, I ⊢ t: 〈P〉 P@X = e 〈Q〉

This auxiliary system is very close to the classic RG logic [64, 138]. Its
verbosity makes it easier to reason about the soundness proof.

The soundness proof itself consists in a subject-reduction lemma
in the style of Wright and Felleisen [145]. We establish that, starting
from an execution state satisfying RGt_prog, if a thread t takes a small-
step, then t’s resulting code admits a new precondition such that
the resulting new execution state still satisfies RGt_prog. Naturally,
we also reestablish that the global invariant I holds. Invariance of I
follows from the fact that, in each rule of the auxiliary system, the
invariant is part of the pre- and post-conditions, which are stable
against any step of the rely and the guarantee of the stepping thread.

3.4 related work

The search for adequate reasoning principles for concurrent systems
has been a major research area for decades. In 2012, a monograph by
de Roever et al. [123] inventories and unifies more than 100 original
publications on concurrency verification. Amidst this zoo, we chose
for our work the well-established rely-guarantee logic. We judged
and found confirmation that by tweaking its proof system to fit our
needs, it strikes an adequate balance between ease of mechanisation
and sufficient expressiveness to conduct the proofs we have at hand.

Nipkow and Nieto [105] formalised in Isabelle/HOL the Owicki-
Gries approach. Following this work, Nieto [104] introduced in 2003

a formalisation of the rely-guarantee method. This work focuses on
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the meta-theory, establishing soundness and completeness of the sys-
tem, but only applies the logic to toy examples. To our knowledge,
this is the only other approach for mechanising pure rely-guarantee
reasoning in a proof assistant. Recently, Amani et al. [7] formalised
in Isabelle/HOL a framework to formally reason on concurrent C
programs based on the Owicki-Gries methodology.

However, an alternate major trend in concurrent reasoning has
grown in popularity since the beginning of the millennium. Reynolds,
Ishtiaq and O’Hearn introduced separation logic [62, 121], a twist on
Hoare logic initially designed to ease sequential reasoning of mutable
data structures. The gist of the approach is to reverse the interpreta-
tion of assertions. Traditionally, sharing is the default: the precon-
dition preceding a function call constraints the accepted states, but
it leaves the function the possibility to act upon any resource. Sep-
aration logic takes the reverse approach by enforcing assertions to
characterise the memory much more precisely: if a resource is not
mentioned in the specification of a function, then the function cannot

modify this resource. This mechanism is enforced by introducing in
the syntax of the logic dedicated operators. Predicate x 7→ v is exclu-
sively satisfied by the heap which not only holds value v at location x,
but whose domain is reduced to the singleton {x}. Assertions over big-
ger heaps are constructed through the separating conjunction: P1 ∗P2
holds over heaps which can be be split in two disjoint sub-heaps h1

and h2 satisfying respectively P1 and P2.
Brookes and O’Hearn independently observed that this new inter-

pretation of assertions is particularly suitable to concurrent reasoning,
introducing a concurrent separation logic [15, 106]. Assertions in sep-
aration logic can be interpreted as ownership of a resource, ensuring
that a variable left unmentioned in the specification of a function can
be safely manipulated by the environment. This results in a strong
compositionality embodied by the much celebrated frame rule: a sep-
aration proof can have its post and pre-conditions extended with a
frame through the separating conjunction.

⊢ {P} c {Q}

⊢ {P ∗ R} c {Q ∗ R}

The Program Logics for Certified Compilers monograph by Appel et
al. [9] notably describes a formalisation in Coq of separation logic.

However, while separation logic allows for more concise arguments
and better modularity than rely-guarantee approaches, it cannot be
applied to our problem at hand. By enforcing separation of resources,
the logic is unable to express the kind of fine-grained synchronisa-
tion the runtime implementations of compilers perform. The logic can
only apply a protocol following strict use of critical sections, while we
need concurrent accesses to shared data-structures.

The last decade has witnessed major efforts to recover the ability
to express general synchronisation protocols while retaining the ben-
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efits from separation logic. The two independent precursors to this
reconciliation of rely-guarantee and concurrent separation logic are
Vafeiadis and Parkinson’s RGSep [138] and Feng et al.’s SAGL [41].
Overseeing technical details, both solutions are essentially equivalent.
The heap is split in two parts: a shared one and a private one. The
private part is handled in separation logic style, they are strictly sepa-
rated between threads. The shared part is handled in a rely-guarantee
style. These first lightweight approaches still did not manage to ex-
tend separation logic’s compositionality over shared resources. Suc-
cessive incremental improvements have therefore been designed over
the years. Feng introduced with LRG [40] in 2009 a notion of sep-

aration of actions, essentially granting interferences with their own
separating conjunction. As resources, protocols can hence be locally
reasoned about. Another major contribution comes from concurrent

abstract predicates, introduced in 2010 by Dinsdale-Young et al. [30].
Client programs using libraries can be certified with respect to ab-
stract specifications of those libraries. Any concrete implementation
of the abstract predicate can then be soundly used.

While this trend has been for a long time seemingly too unstable
and evolving for mechanisation, recent impressive formalisation ef-
forts suggest that it arrived to maturity. Liang et al. [84] proved in
Coq the meta-theory for an extension of LRG equipped with an addi-
tional deductive system to prove program transformations. Nanevski
et al. [101, 129] formalised in Coq a very expressive logic, FCSL, able
to conduct subtle fine-grained reasoning. Resource protocols are en-
coded through so-called concurroids, transition systems describing the
effects of a piece of code at a higher level than a traditional inter-
ference. Finally, Iris [73] is a similar higher-order logic synthesising
most progress made during the last decade. It most notably has been
recently used to formalise Rust’s meta-theory as part of the RustBelt
project [69].

Investigation on how the use of one of those modern logics would
be beneficial to lighten the proof effort we needed in our development
is a much desired further line of work.

3.5 conclusion

Mechanised verification of programs in a proof assistant such as Coq
makes for a subtle craft. Jumping head first into a task such as veri-
fying a realistic concurrent garbage collector is bound to quickly be-
come intractable. We therefore introduced in this chapter the techni-
cal tools we need to proceed with methodology.

First, we argued that in order to remain close to the goal of an em-
bedding of the garbage collector into a verified compiler while allow-
ing for a tractable proof effort, an intermediate representation should
be carefully designed. To answer this concern, we introduced RtIR,
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which notably supports natively introspection and iteration over ob-
jects, fields and roots. Additionally, abstract concurrent buffers can be
atomically manipulated in the language.

Second, the logic in which to prove our implementation should
be both sufficiently expressive to conduct the proof, while tractable
enough to scale with a mechanised proof of significant complexity.
We chose to this end a rely-guarantee approach, and tweaked the
usual approach to this logic in order to separate proof concerns as
much as possible, while easing automation.

We are now ready to jump to our main topic: we describe in Chap-
ter 4 the garbage collector algorithm we considered, and explain its
formal verification in Chapter 5.



4
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We covered in Chapter 2 a bird-view of the various existing garbage
collection techniques. We emphasised that On-The-Fly garbage collec-
tion makes for a striking challenge in concurrent verification, leading
to our interest.

The particular line of work we considered to formalise takes its
roots in 1978, in a paper by Dijkstra et al. [29]. In this work, they
design a concurrent Mark and Sweep algorithm in which synchroni-
sation is reduced to a minimum so that the mutators never wait.

Fifteen years later, as part of Doligez’s PhD [32–34], Doligez, Leroy
and Gonthier have investigated the porting of Dijkstra’s algorithm to
the ML language. Among numerous optimisations and subtle imple-
mentation considerations to adapt to ML’s memory model, they most
notably discovered that a bug in the original algorithm had been left
unnoticed during all those years, and they fixed it. Stressing more
than ever the subtlety of these concurrent algorithms, the bug only
arises when at least two mutators interact in an intricate way with
the collector. The resulting algorithm is referred to as the DLG algo-
rithm.

In 2000, Domani et al. [35] adapted in turn the DLG algorithm, this
time with the intend to port it to Java. This final algorithm is the one
upon which we build our work. While we do not model the sordid
details related to Java they had to tackle, the On-The-Fly garbage col-
lector we consider is a subset of Domani’s algorithm, tackling the full

concurrency complexity. We describe in this chapter our implementa-
tion of the GC in RtIR, the intermediate representation introduced in
Chapter 3, as well as its associated correctness theorem. The verifica-
tion of the algorithm is covered in Chapter 5.

4.1 soundness of a garbage collector

Before diving into the algorithm itself, we specify what we expect a
GC to satisfy, and therefore which theorem we aim to prove.

4.1.1 Informal statement

Fundamentally, we want to show that the collector never reclaims
memory that is later accessed by a mutator. This statement is how-
ever a bit too precise: detecting that a reference will not be accessed
anymore by a mutator is undecidable in general. The GC therefore
satisfies a stronger property stating that the collector never reclaims
memory that is still reachable from a mutator. The latter property,
which we make precise further down, naturally entails the former.

Invariant 1 (Correctness invariant (informal)).
If a reference can be reached through a sequence of loads and updates by a

mutator, then this reference is indeed allocated in the heap.
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In practice, we expect a GC not only to be harmless, but also to
actually perform efficiently its collecting job. Proving such notions
of liveness, asserting for instance that an unreachable reference will
eventually be collected, is outside the scope of this work.

4.1.2 Formal statement

In order to formally prove the correctness of the GC we consider,
we program the collector and the mutators in RtIR, and prove that
their parallel composition preserves the correctness as an invariant
on global execution states. The proof is conducted in the mechanised
rely-guarantee logic described in Chapter 3, and its soundness theo-
rem used to obtain a correctness result over the operational semantics
of the code. The formalisation of this correctness statement already
raises an interesting question of design. We define in this section an
abstract client, so-called Most General Client, and phrase our correct-
ness theorem with respect to this entity.

4.1.2.1 Injection of the GC seen as a program transformation

The mutators collaborate with the collector by participating in the
bookkeeping required for the collection to be correct. In practice, such
bookkeeping code is injected into the client code by the compiler.
Sticking to the viewpoint of verified compilation, this injection can
be seen as a program transformation.

Considering a program client c ∈ RtIR going through the compil-
ing process, the injection consists in performing two main transfor-
mations over c. First, each atomic memory operation from RtIR– i. e.
alloc, update, load and mov – are substituted for their instrumented,
non-necessarily atomic counterparts. This elementary transformation,
denoted by T , naturally depends on the algorithm implemented.

Note that beyond the direct instrumentation of the operations re-
quired for the GC to be correct, two additional mechanisms may have
to be injected. First, for obvious performance concerns, the collec-
tor should probably not collect continuously, but rather periodically.
A mechanism triggering a new collection cycle is therefore needed.
This mechanism is likely to be injected in the instrumentation of
alloc. Second, as will be described in detail in Section 4.2.2, muta-
tors may have to run a collaboration routine periodically. How often
these mechanism are triggered are fine-tuning considerations, crucial
to the efficiency of the GC but irrelevant to its correctness. We there-
fore abstract away from these considerations by considering that a
new cycle can be initiated by the collector at any time, and that any
mutator may run the collaboration routine at any point.

The transformation T is lifted by structural induction to transform
all mutators of client c into a program T(c), and applying the transfor-
mation piece-wise for parallel composition of mutators. The second
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step consists in composing T(c) in parallel with the code of the col-
lector GC.

Proving a GC correct therefore can be seen as proving, for any
client c∈RtIR, that the injected code GC‖T(c) satisfies the correctness
invariant. In order to avoid both manipulating explicitly an arbitrary
client, and committing to a specific policy to trigger collaboration
from mutators, we consider an equivalent approach based on a Most

General Client (MGC).

4.1.2.2 Most General Client

Rather than explicitly reasoning over an arbitrary program, we use
a most general client to prove the functional correctness of the GC.
The MGC is an abstraction of an unknown client through a transi-
tion system representing a collector thread composed with an arbi-
trary number of mutators – with identifiers in Mut – each running
the injected pieces of code resulting from the transformation T in a
non-deterministic loop. In the following, we refer to these elementary
pieces of code as follows:

T(alloc(rn)) , Alloc(rn) T(x.f=e) , Update(x.f,e)

T(x=e.f) , Load(x,e.f) T(x=e) , ChangeRoots(x,e).
We delay the precise definition and explanation of these operations

to Section 4.2. As explained previously, mutators may run at any time
a collaboration routine Cooperate(). The MGC can therefore be de-
fined as:

Definition 2 (MGC).
mutator , loop

(
Update(x.f, v)

⊕ Load(x, e.f)⊕ Alloc(rn)

⊕ Cooperate()⊕ ChangeRoots()
)

mgc , mutator ‖ ... ‖ mutator

Open variables in the definition of the MGC should be understood
as universally quantified. We present here the MGC entirely in terms
of pseudo-code for the sake of clarity, but the actual Coq definition
is an operational characterisation of this thread system appending
the code in a non-deterministic way rather than an actual loop. Note
that for convenience, we restricted in the formal development and
therefore the previous definition the Update operation to variables as
opposed to expressions. However since expressions are purely local,
this is always equivalent to storing first the result of the evaluation of
e into a fresh local variable and calling the Update operation on this
variable, a behaviour that our MGC indeed enables.

We can now rephrase our goal: the MGC composed with the collec-
tor, GC‖MGC should satisfy the correctness invariant. As the MGC encom-
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passes by its non-deterministic choices anything an injected program
could do, both approaches are therefore equivalent1:

(∀ c, (GC ‖T(c)) correct) if and only if ((GC ‖MGC)correct).

4.1.2.3 Formal notion of correctness

We can now formalise the notion of correctness of a garbage collector
sketched in Invariant 1. We begin by defining the reachability of a
reference by a mutator.

We first define a notion of path between two references. Given a
heap hp, a reference r1 holding a cell c in hp is said to point to any
reference r2 contained in c. Two references are said reachable if they
are related by the reflexive and transitive closure, denoted star, of
the pointsto relation for a fixed heap.

Definition pointsto gs r1 r2 := ∃ f c,

gs.(hp) r1 = Some c ∧ c f = r2.

Definition reachable gs r1 r2 := star (pointsto gs.(hp)) r1 r2.

In order to define what it means for a reference to be reachable
from a mutator, we need to make the entry points through which a
mutator can access the memory explicit. Since the language prohibits
to forge a pointer, the only way for a mutator to have access to a
reference is through one of its local variables. We qualify these entry
points as roots2.

Definition 3 (Roots of a mutator).
Given a local environment ρ, a root of a mutator m is a reference r bound in

ρ to a local variable of m.

As will be explained in Section 4.2.2, identifying the roots of all
mutators is crucial to the GC. Remember that this bookkeeping is
reflected in our RtIR in the roots field of a global state.

Given a global state gs, a reference r is therefore said to be reachable

from a mutator m if r is reachable from a root of m.

Definition reachable_from gs m r2 :=

∃ r1, gs.(roots) m r1 > 0 ∧ reachable gs r1 r2

Finally, remember that the freelist field of a global state contains
the non-allocated part of the memory. We qualify a reference belong-
ing to the freelist as Blue.

1 The formal development does not prove this statement.
2 Global variables also contain roots. These global variables being however always

accessible to the collector, they add no difficulty to the correctness of the GC. For
this reason, RtIR uses global variables only for the injected code and assumes that
the client itself does not manipulate global variables.
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Definition Blue (gs:gstate) (r:ref) : Prop :=

In r gs.(freelist).

With these ingredients, we can finally give the formal definition of
Invariant 1:

Invariant 2 (Correctness invariant).

Definition I_correct: gpred := fun gs⇒

∀ m r, In m Mut ∧ reachable_from gs m r → ¬ Blue gs r.

The initial states we consider are meant to be obtained by a startup
phase of the runtime. This phase carefully initialises the intrinsic fea-
tures of the runtime, such as the freelist, such that all invariants hold.
In the formal development, we abstract away from the construction
of this state and manipulate an axiomatic initial state. The main the-
orem we prove relies on the predicate reachable_mgc. This predicate
asserts that a global state can be reached from a predefined implicit
initial state through a series of steps performed by the MGC in parallel
with the collector. Its formal definition relying on the exact definition
of the MGC, we omit it here. The theorem hence is:

Theorem gc_sound: ∀ gs, reachable_mgc gs→ I_correct gs.

4.2 description of the algorithm

The GC we consider is of the Mark and Sweep family. The collec-
tor periodically performs a cycle during which the heap is traversed,
marking cells that are suspected to be alive, i. e.reachable from muta-
tors’ roots. Once the marking procedure finishes, the sweeping proce-
dure reclaims cells detected as unreachable by putting them back in
the freelist.

Thanks to the underlying allocator, the algorithm has an abstract
view of the memory depicted in Figure 9. The memory is seen as a
graph containing two main kinds of nodes: references held in muta-
tors’ variables, the roots, are represented as circles and memory cells
are represented as squares. Arrows between cells embody the points

to relation introduced in the previous section, while a root simply
points to the cell it holds in the heap.

In order to reason about the memory, we use the tricolour abstrac-
tion popularised by Dijkstra [29]. During a collection cycle, all cells
are initially White: those cells have not yet been visited, they are po-
tentially dead. Cells identified as potentially live are first marked Grey

when visited. Once all successors of a Grey cell have themselves been
explored, the cell is finally marked Black. Additionally, as introduced
in the definition of Invariant 2, the Blue colour is used to designate
cells which belong to the freelist. Two notions of colours must not
be confused. A field colour is reserved to hold two potential values –
denoted WHITE and BLACK –, and implemented as numerical constants.
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Figure 9: Abstract view of the memory as manipulated by the garbage col-
lector.

However, and although we depict graphically the colour of the cell for
representation purpose, the White, Black and Grey colours are more
precisely an attribute of the reference which holds the cell in the heap.
The White and Black colours are directly implemented in terms of the
colour field of the cell pointed to.

Definition White gs r := ∃ c, gs.(hp) r = c ∧ c.colour = WHITE.

Definition Black gs r := ∃ c, gs.(hp) r = c ∧ c.colour = BLACK.

On the contrary, Grey is a logical property relying on the shared
buffers that RtIR natively supports. Each thread t is granted a buffer
buffer[t] and a reference is said to be Grey if its colour is WHITE
and it is currently stored in at least one shared buffer.

Definition Grey gs r :=

∃ c t, gs.(hp) r = c ∧ c.colour = WHITE ∧ In r buffer[t].

In the sequel, when the context is non-ambiguous, we identify the
colour of a cell with the colour of the reference holding the cell in the
heap. Similarly, we represent in diagrams the local variable holding
the root in place of the reference itself, and refer abusively to this
variable as a root.

4.2.1 Behaviour in a Stop-The-World context

We first describe the execution of a collection cycle for a purely se-
quential Mark and Sweep algorithm, a.k.a. Stop-The-World. When a cy-
cle is triggered, all mutators stop their execution to collaborate with
the collector. This cycle is composed of three logical stages, resulting
in a timeline depicted on Figure 10.

Figure 11 represents graphically a collection cycle. Initially, the
memory is cleaned up by setting the colour of all cells to White

(Fig. 11a) during the CLEARING stage. The TRACING stage then embod-
ies two actions. First, the mutators publish their roots: they iterate
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over the references stored in their local variables and mark them as
Grey (Fig. 11b). The roots are naturally reachable, hence shall not be
collected, and constitute the starting points to explore the accessibil-
ity graph. The collector then begins the traversal of the memory: a
breadth first exploration of the graph is performed, taking each root
as an entry point (Fig. 11c). During this traversal, a cell is marked
as Black once all its successors have been marked Grey. At the end
of this process, no Grey cells are left. All remaining White cells can
be safely collected, therefore becoming Blue: the SWEEPING stage is
dedicated to this reclamation (Fig. 11d).

Figure 10: Timeline of a sequential execution of a collition cycle for a Mark
and Sweep garbage collector.

Since all mutators stop their activity during the collection’s process,
the correctness of such a collector living in a sequential world is quite
simple to establish: it reduces to proving correct a breadth first search
in a graph. Intuitively, the key invariant to ensure is that during the
trace procedure, any remaining White cell reachable by a mutator is
guarded by a Grey cell.

Invariant 3 (First path invariant (preliminary definition)).

Definition I_black_or_guarded: gpred := fun gs⇒

∀ m r, stage[C] = TRACING ∧ reachable_from gs m r →

Black gs r ∨ (∃ r’, Grey gs r’ ∧ reachable gs r r’).

By establishing at the end of the procedure that no Grey cells are
left, we obtain that no cell reachable by a mutator remains White.
However, setting a cell to Black during the procedure could break
Invariant 3 by removing the guard of a White cell. This issue is pre-
vented by making sure we mark a cell Black only after having visited
all its successors. A second invariant is therefore required to express
this property. The path predicate is defined similarly to the reachable

predicate, while additionally collecting the encountered references in
a list. We establish that any path from a Black cell to a White cell
contains a Grey cell.

Invariant 4 (Second path invariant (preliminary definition)).
Definition I_black_to_white: gpred := fun gs⇒

∀ r1 p r2, stage[C] = TRACING ∧ path gs r1 p r2 ∧
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(a) Initial memory. (b) Publication of the roots.

(c) Ongoing tracing by the
collector.

(d) Remaining white cells
have been safely col-
lected.

Figure 11: Cycle of a sequential execution for a Mark and Sweep garbage
collector.

Black gs r1 ∧ White gs r2→

∃ r, In r p ∧ Grey gs p.

In the absence of any interference, those invariants do not require
any particular care for the trace procedure to preserve them. While
simple, such a Stop-The-World algorithm however naturally exhibits
unacceptable overheads, hence the need for concurrent alternatives
such as the one we consider and describe hereafter.

4.2.2 The On-The-Fly garbage collector

We now explain the proper concurrent GC we formalised and proved
correct, and introduce more specifically its RtIR code. As opposed
to the Stop-The-World discipline, an On-The-Fly collector never inter-
rupts the mutators.
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Figure 12: Timeline of an On-The-Fly collection cycle. All mutators are co-
alesced into the bottom line, and the collector is shown in the
top line. Dotted lines represent the GC start of a new stage, and
dashed lines represent the end of a phase change (handshake).

4.2.2.1 Structure of a collection cycle

Sticking to the Mark and Sweep scheme, the collection cycle is still di-
vided into the three stages described in Section 4.2.1. The collector is
however now hosted by a dedicated thread. Listing 1 introduces the
main loop of a cycle. The stages are no longer only reasoning abstrac-
tions, but explicitly stored in a global variable stage and manipulated
by the program.

Delaying explanations about the handshake procedures, the remain-
der of the structure is unsurprising: the collector sets successively
stage to CLEARING, TRACING and SWEEPING, and calls their eponymous
routines. Before dwelling into them in detail, we switch our attention
towards the mutators.

As announced, the core objective is to reduce as much as possible
the overhead weighing over the mutators. To this end, the mutators
therefore keep running concurrently with the collector during its cy-
cle, and should never wait. The difficulty arises naturally: mutators
may modify the memory graph at any time, and thus might in partic-
ular invalidate the colouring invariants (Inv. 3 and Inv. 4). To prevent
this, collaboration from the mutators is needed. Depending on the
current situation of the collection cycle, they may need to change the
colour of their allocation, go through write barriers before performing
an update, whose purpose is detailed in Section 4.2.2.4, or publish
themselves their roots. We therefore also need a synchronisation pro-
tocol between the collector and the mutators.

This synchronisation relies on two devices. First, the global variable
stage allows mutators to cooperate with the collector at a coarse level.
Naturally, since the collector may have kept running concurrently,
this mechanism is of little value by itself. At a finer level, a handshake
mechanism allows each thread to track and synchronise their status.
To this end, each thread t is equipped with a global variable phase[t]

whose value ranges over ASYNCH, SYNCH1 and SYNCH2, encoded using
integers (see Listing 3).
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1 while (true) do

2 stage[C] = CLEARING

3 clear()

4 handshake() // SYNCH1

5 handshake() // SYNCH2

6 stage[C] = TRACING

7 handshake() // ASYNCH

8 trace()

9 stage[C] = SWEEPING

10 sweep()

11 od

Listing 1: Collector

1 phaseC = phase[C]

2 phase[C] = phaseC + 1 mod 3

3 foreach (m in Mut) do

4 repeat phasem = phase[m]

5 until phasem == phaseC

6 od

Listing 2: Handshake

Figure 13: The collection cycle.

A diagrammatic representation of a cycle is shown on Figure 12,
gathering all mentioned elements. We cover them in more detail in
the remainder of this section.

4.2.2.2 Mark buffers

The Grey colour identifies cells visited by the collector which have a
direct successor not yet visited. Accordingly, Dijkstra et al. noted in
their seminal paper on On-The-Fly garbage collection [29] the need
for the tracing of the memory to continue until no Grey cells are left.
Detecting efficiently the absence of Grey cells has been the subject
of several improvements from Dijkstra’s original scans to the use of a
double-ended queue [75], a scan-pointer, dirty flag and collector mark
stack [32, 33] and finally the multiple mark buffers we consider [35].

In order to keep track of the remaining Grey cells without having
to scan the memory, the algorithm makes use of shared buffers. Each
mutator m owns a buffer[m] to which it can push, without synchro-
nisation, references which as a consequence will be marked as Grey.
The collector has its own buffer[C] to gather the cells awaiting its
visit.

As explained in Chapter 3, RtIR natively supports such shared
buffers. The buffer[t] variables therefore contain instances of these
abstract data-structures and their operations – push, pop, top, empty –
are atomic. We explain and prove this abstraction legitimate in Chap-
ter 6.

Following the definition in Section 4.2 of the Grey colour, a refer-
ence is Grey if it points to a cell whose colour field is WHITE, and
belongs to at least one buffer. The MarkGrey operation (Listing 6),
allowing a mutator for marking a cell as Grey, is therefore straight-
forward: if the cell’s colour is WHITE, its address is pushed onto the
mutator’s buffer.
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1 // tid m : cooperate ::=

2 phasem = phase[m]

3 phaseC = phase[C]

4 if phasem != phaseC then

5 if phaseC == ASYNCH then

6 bufferm = buffer[m]

7 foreachRoot (r of m) do

8 markGrey(bufferm, r)

9 od

10 phase[m] = phaseC

Listing 3: Cooperate

1 //tid m: x := Alloc(typ)

2 atomic

3 x’ = alloc(typ)

4 phasem = phase[m]

5 stageC = stage[C]

6 if (phasem != ASYNCH ‖ stageC == CLEARING)

7 then x’.colour = WHITE

8 else x’.colour = BLACK

9 x = x’

Listing 4: Allocation

1 // tid m : update(x,f,v) ::=

2 phasem = phase[m]

3 stageC = stage[C]

4 if (phasem != ASYNCH

5 ‖ stageC == TRACING) then

6 old = x.f

7 bufferm = buffer[m]

8 markGrey(bufferm,old)

9 markGrey(bufferm,v)

10 x.f = v

Listing 5: Write Barrier

1 // markGrey(buffer,x) ::=

2 if x != NULL then

3 xcol = x.colour

4 if xcol != BLACK then

5 buffer.push(x)

Listing 6: MarkGrey

Figure 14: The mutators’ operations instrumented by the GC.

4.2.2.3 Publication of the roots

A key element of the cycle explained in Section 4.2.1 was the pub-
lication of the roots of the memory graph, from which the traversal
is performed. Now that the collector is hosted inside its own thread,
it cannot perform this publication by itself since it has no access to
the mutators’ local variables. This work is therefore put in the hands
of the mutators themselves, which are expected to periodically check
that the collector is waiting to start a new cycle and publish their
current roots.

As explained in Section 4.2.2.1, the stage global variable can be
used as a weak means of synchronisation between the collector and
the mutators. However, the stage variable does not provide a recip-
rocal mechanism for the mutators to indicate to the collector, nor to
each other, that they indeed performed this publication. This synchro-
nisation is thus performed through the additional phase[t] variables.

Roots publication is handled thanks to this mechanism: before call-
ing the trace procedure, the collector initiates a handshake (Listing 2).
It then changes its own phase to the ASYNCH value (line 7) in order to
signal to mutators it is ready to scan the memory, and is waiting for
them to publish their roots. In the meantime, the collector enters a
waiting loop until all the mutators are synchronised. Remember that
our golden rule is to never stop a mutator, but that it is fine for the
collector to wait for them.

On the mutators’ side, the cooperate procedure (Listing 3), period-
ically run, performs the synchronisation. If a mutator detects that it
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is not in phase with the collector, it adjusts its own phase. If addition-
ally the mutator remarks that the collector’s phase is set to ASYNCH,
the mutator also publishes its roots by marking them as Grey.

Naturally, to avoid publishing several times their roots, a second
handshake is needed by mutators to synchronise with the collector
switching back to SYNCH, on line 4. We delay to Section 4.2.2.6 the
justification for the presence of a third handshake.

4.2.2.4 Write Barriers

x y

c1

c2

f1 f2

x y

c1

c2

f1
f2

Figure 15: Dangerous concurrent update during TRACING.

Any invariant over the memory graph may naturally be broken
by a rash update. Figure 15 depicts a scenario highlighting the issue.
The collector is in the middle of the trace procedure, having already
marked a cell c1 as Black. A mutator may concurrently perform two
operations. First, a load(y,y.f2) gives local access to a White cell c2
to the mutator. Second, an update(x.f1,y) leads the reference hold-
ing the Black cell c1 to point to the one holding the White cell c2:
Invariant 4 is broken.

In order to prevent this dire situation, mutators pass in a so-called
write barrier before performing an update3, whose full code is detailed
in Listing 5. Every time an update is performed, instead of simply
updating the value of the field with the atomic x.f = v operation,
the mutator first evaluates which stage the collection cycle currently
is in. If it detects the update might indeed occur concurrently with the
trace procedure, it marks as Grey the cell to which the reference will
now point to (line 9). The situation described in Figure 15 is therefore
avoided and Invariant 4 is ensured.

Surprisingly, the write barrier, on line 8, also marks as Grey the
cell which used to be pointed at before the update. This can how-
ever not be avoided, as is illustrated in Figure 16. The cornerstone is
once again that although the mutators publish their roots, they may
perform afterwards a load creating a new White root. Figure 16 ex-
hibits the operation load(y, x.f) giving local access to the White cell c.

3 The reader may argue that we blamed the update operation for a heist it performed
jointly with a load. Indeed, alternative algorithms choose to use load barriers. How-
ever, a typical program performing more loads than updates, this solution tends to
be more costly.
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Figure 16: Updates need to also mark the cell previously pointed at.

This is not a problem in general, since the load operation could not
be performed if c was not reachable from another entry point of the
graph, x in this example. However this now vital path could be cut by
a subsequent update: Figure 16 performs the operation update(x.f, z),
removing all accesses to c but for local variable y.

By ensuring during an update that the old value is also marked
as Grey, we guarantee that a new starting point is created to explore
this potentially cut branch of the memory graph. By doing so, we
therefore preserve Invariant 3. Note that Domani et al. [35] avoid
marking old in some cases. We drop this optimisation.

4.2.2.5 Allocation

x y

c1 c2

x y

c1 c2
f

Figure 17: Dangerous Black allocation.

A second preoccupation when considering an On-The-Fly garbage
collector is the colour of the allocation. Obviously, one does not want
to allocate a White cell after the roots have been published: the cell
would never be visited, and would immediately be reclaimed.

However, it turns out we cannot simply allocate using the colour
Black systematically neither! Figure 17 shows a simple situation with
a cell c2 addressed by a root, and a non-allocated cell c1. We consider
a sequence of three operations.

Suppose first that c1 is allocated Black during the CLEARING stage,
and stored in x. The operation update(x.f,y) would then lead c1 to
point to c2. We already broke Invariant 4. Even worse, the local link
to c2, through y, can be broken via a load to null. We end up in a
situation where c2 remains reachable, but is not protected anymore
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by neither a Grey cell nor a White root which could be published later.
The colour of allocation must therefore change along the cycle, as
shown in Listing 4 and summed up in Figure 12.

4.2.2.6 The need for a third handshake
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(b) m1 start to store null in
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(c) m2 stores y2 in x2.f and
goes through the fast
path. It then writes null

in y2.
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(d) m2 publishes its roots
and loads x2.f in y2. m1
finishes its pending up-
date.

Figure 18: In presence of several mutators, a third handshake required.

The last mystery we promised to unveil before considering the col-
lector’s routines is the presence of a third handshake on Listing 1,
and accordingly of two distinct phases SYNCH1 and SYNCH2 rather than
simply one SYNCH phase. As a matter of fact, the original algorithm
by Doligez and Leroy [33] only used two phases, a synchronisation
policy that Doligez and Gonthier later discovered incorrect [32]. In-
deed, the bug is quite tricky as it only occurs when considering the
presence of several mutators.

Consider the situation depicted on Figure 18 where we only as-
sume two handshakes. On Figure 18a, we are at the beginning of a
cycle and three characters are at play: the collector is looping in its
first handshake, waiting in the SYNCH phase for all the mutators to join
him; mutator m1 already collaborated, its phase is also SYNCH; muta-
tor m2 however still is in ASYNCH. We subscript local variables by the
index of the mutator’s owning them. Mutator m1 is about to perform
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a single operation: update(x1.f,null). Mutator m2 on the other hand
has the following code scheduled.

update(x2.f,y2); y2 = null; cooperate(); cooperate(); y2 = x2.f

Mutator m1 initiates the operation update(x1.f,null). Being SYNCH,
the write barrier triggers, the current value of x.f is loaded in old

and marked grey (line 6 on Listing 5). This way, when the update
itself will be performed, the loosing branch it could create will be
safely protected, which we have seen in Section 4.2.2.3 is mandatory.
The update remains pending until m1 is rescheduled, we are in the
situation shown on Figure 18b.

Now m2 gets scheduled and performs its own store, update(x2.f,y2),
but goes through the fast path since it still is in ASYNCH. Once this is
done, it loads null into y2 and finally performs its own first cooperate,
setting its phase to SYNCH. The collector can therefore end its loop, get
into the TRACING stage, set its phase to ASYNCH and initiate the second
handshake. The current state of the heap is represented on Figure 18c.

Mutator m2 is now ready to jump straight into the trap. First, it
cooperates a second time, therefore publishing its roots. Since it
erased y2 beforehand, c will not be marked grey by this publica-
tion. However right after, it executes load(y2, x2.f) to get back its
local store to c. Mutator m1 is finally rescheduled and able to finish
its pending update. This has for effect to render c unreachable from
mutator m1. It now cooperates and publish its roots, but those roots
do not protect c: we are in Figure 18d’s situation. The collector can
now trace the memory and reclaim c, despite being reachable from
mutator m2.

Adding an intermediate synchronisation phase, and therefore a sec-
ond handshake, is sufficient to solve this issue4. Intuitively, a hand-
shake flushes any pending update. By adding an intermediate phase
ASYNCH 1, we therefore guarantee that everyone gets through write
barriers before anyone can publish its roots.

We therefore obtain the full synchronisation protocol depicted on
Figure 12. It is important to understand that although during this
section we hand-waved quite liberally about the synchronisation pro-
tocols for didactic purpose, they are extremely subtle to ensure and
prove. Indeed, imagine a mutator loads the value of the stage vari-
able to decide whether it should go through a write barrier. The con-
currency being fine-grained, the collector may change its stage right
after this load. More generally, synchronisation knowledge about other
threads is always approximate, leading to complex reasoning.

4 Doligez and Gonthier identified two alternatives to solve this issues, but both im-
posed an additional overhead to the update operation.
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1 // trace() ::=

2 buffC = buffer[C]

3 all_empty = false

4 while (!all_empty) do

5 all_empty = true

6 foreach (m in Mut) do

7 buffm = buffer[m]

8 is_empty = buffm.isEmpty()

9 while (!is_empty) do

10 all_empty = false

11 x = buffm.top()

12 col = x.colour

13 if (col == WHITE)

14 then

15 buffC.push(x)

16 buffm.pop()

17 else

18 buffm.pop()

19 is_empty = buffm.isEmpty()

20 od

21 od

22 is_empty = buffC.isEmpty()

23 while !is_empty do

24 all_empty = false

25 ob = buffC.top()

26 col = ob.colour

27 if (col == WHITE) then

28 foreachField (f of ob) do

29 obf = ob.f

30 if obf != NULL

31 colf = obf.colour

32 then if colf == WHITE

33 buffC.push(obf)

34 od

35 ob.colour = BLACK

36 buffC.pop()

37 is_empty = buffC.isEmpty()

38 od

39 od

41 // sweep() ::=

42 foreachObject o do

43 isfree = isFree?(o)

44 if !isfree then

45 col = o.colour

46 if col == WHITE then

47 free(o)

48 od

50 // clear() ::=

51 atomic

52 foreachObject o do

53 isfree = isFree?(o)

54 if !isfree then

55 o.colour = WHITE

56 od

Listing 7: Clear, Trace and Sweep (Collector)

4.2.2.7 The clear procedure

We now turn our attention towards the three routines called by the
collector, depicted on Listing 7.

During the CLEARING stage, the collector has to set all cells to the
White colour. Traversing the whole memory is naturally costly. Do-
mani et al. [35] have therefore introduced a radical optimisation: know-
ing that no White cells are left at the end of a cycle, since those cells
have been reclaimed, they simply switch a bit inverting the encoding
of the White and Black colours. This way, the traversal of the memory
is replaced by a single atomic bitflip. We chose to model this optimi-
sation as an atomic block (line 51) setting the colour of all currently
allocated cells to White.

4.2.2.8 The trace procedure

The trace procedure, spelled out from line 2 to line 39 on Listing 7,
performs the marking of all accessible cells. The traversal remains
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similar in spirit to a breadth first traversal, but gets more complicated
to account for the dynamic evolution of the graph.

The procedure iterates a main loop, at line 4, until the all_empty

boolean is found true. During each iteration of this loop, two succes-
sive internal loops are performed.

First, the collector scans successively each mutator’s buffer, starting
from line 6. As long as the buffers are found to be empty, all_empty
remains true and the collector does not modify anything. However,
if it finds any non-empty buffer, the collector sets all_empty to false
for the remainder of the current external iteration. In such a case, the
procedure will necessarily go through a new iteration of the loop. In-
deed, any non-empty buffer found means that an accessible branch
of the memory graph may remain to be explored. The collector there-
fore acknowledges this burden of work to be treated by pouring the
mutator’s buffer into its own buffer through the loop on line 9. Since
a cell may be shared between several mutators, a mutator’s buffer
might contain a cell which has already been handled, and hence is
already Black. In this case, the reference is simply removed from the
buffer, without transferring it into the collector’s buffer.

Once all buffers have been scanned, the collector checks whether it
has found any new work to process, on line 22. If not, the iteration
ends. Otherwise, we enter in the second internal loop until the collec-
tor’s buffer has been emptied once again. We consider the cell c at the
top of the collector’s buffer: if c is Black, we can dismiss it; otherwise,
it is the starting point of an unexplored path. In this case, any non
Black direct successor of c is pushed up into the collector’s buffer
to be dealt with later. Once all successors have been considered, c is
itself marked Black. At the end of this loop, the collector has handled
all the work the mutators had handed to it. However, similarly to a
modern danaïde, the mutators may have filled back their buffers in
the mean time. The collector therefore initiates a new iteration, until
all buckets are witnessed empty during a single iteration.

4.2.2.9 The sweep procedure

Once the marking is over, the sweep procedure, on Figure 7, is straight-
forward: any remaining allocated White cell is reclaimed. This opera-
tion is conveniently expressed in RtIR with the built-in iterator over
objects.

4.3 conclusion

We described in this chapter the On-The-Fly garbage collector we
formalise and verify. The algorithm is complex: numerous concurrent
accesses to the memory are involved, and a subtle synchronisation
protocol is needed to ensure that the memory retains its integrity. In
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addition, the correctness of the tracing of the memory is highly non-
trivial.

In the following chapter, we describe how the arguments scattered
in this presentation are formalised in Coq to prove the correctness
of the implementation in RtIR of the garbage collector. The proof
is conducted in the rely-guarantee proof system we introduced in
Chapter 3.
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We turn to the formal proof in Coq of the GC described in Chap-
ter 4, using the proof system introduced in Chapter 3.

Remember that a proof in RG is composed of three main inter-
twined components:

• a set of invariants proved stable under all guarantees;

• a set of guarantees proved to be satisfied by the annotated code;

• an annotated code, both proved to be sequentially correct and
containing only annotations stable under all guarantees.

While the proof system has already been carefully designed to en-
able separation of proof concerns between sequential reasoning and
stability checks, mechanising such a sizeable proof still raises addi-
tional methodological concerns related both to the intrinsic complex-
ity of the algorithm, as well as to the scalability of the approach.

A first observation is that stating upfront the right set of invariants,
guarantees, and assertions is unrealistic for such a proof. In practice,
one rather adjusts and refines their definitions through the develop-
ment, and in particular seeks for solid intermediate results. To tackle
this problem, we group invariants related to different aspects, e.g. the
phase protocol or the colouring procedure. Those groups are ordered
such that a given group of invariants is provable assuming only the
underlying groups. To reflect this architecture in our development,
and to avoid constant refactoring of proof scripts, we designed an
incremental workflow.

A second observation concerns the stability of the global invariant
of the GC, embedded in proof obligation RGp_I introduced in Sec-
tion 3.3.3.5. Foreseeing the whole development, this proof obligation
involves 18 invariants, which must be proved stable under 17 guar-
antees, thus requiring 306 stability proof obligations. On top of this,
proof obligation RGt_stable adds more than 60 annotated lines of
code, each bearing several predicates, that must be proved stable un-
der significant subsets of the 17 guarantees. This becomes quickly
intractable without a disciplined methodology and automation.

We expose in this chapter the methodology we developed to cope
with these issues and provide an overview of the formal proof of the
GC.

5.1 ghost variables

The code we verify is precisely the one we introduced in Chapter 4.
One detail has nonetheless been hidden during the description of the
algorithm: the use of so-called ghost variables.

The intuition behind the notion of ghost variable is to deeply em-
bed in the language logical variables used for reasoning. While they
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facilitate the specification and verification of the program, its seman-
tics should be independent of their presence. A typical example is the
use of a boolean ghost variable to capture program points: we set the
variable to true when entering a program block, and to false when
exiting the block. Referring to this variable in the specification allows
for a convenient way to capture whether the execution is currently
inside the block.

In order to ensure that ghost variables introduced do not alter the
semantics of the program, we follow for their use a strong politic: they
should only be written to, and never read. Proving that functional
correctness still holds over the program once the ghost code has been
cleaned up is therefore an easy, administrative task.1

Two ghost variables are introduced to identify portions of code.
The first one, ghost_hs, holds the value 1 while the collector is in-
side an handshake, and 0 otherwise. To this end, the code on List-
ing 2 actually begins with the instruction ghost_hs = 1 and ends
with ghost_hs = 0. The second one, ghost_flip, is used to identify
one single line of code from the collector: the instant in between the
setting of the stage to CLEARING and the bitflip, at lines 2 and 3 in
Listing 1. To this end, line 2 becomes atomic <stage[C] = CLEARING;

ghost_flip = 0> and the assignment ghost_flip = 1 is introduced
in between lines 3 and 4.

Additionally, each mutator m is equipped with a ghost variable
ghost_buff[m]. These variables are used in the trace operation to per-
form a snapshot of all mutator’s buffers. The snapshot is performed
at line 5 on Figure 7, at the beginning of each loop iteration, with the
following atomic code:

atomic // ghost code

foreach (m in Mut) do

ghost_buffer[m].copy(buffer[m])

od.

This snapshot is crucial to prove the correctness of the trace proce-
dure, as we detail in Section 5.5.3.

5.2 modelling the code as guarantees

Before getting into proving the invariants, we first need to introduce
the guarantees. Instructions which do not impact the shared memory
cannot compromise the stability of an assertion. The guarantees are
therefore only required to over-approximate the effectful instructions.

While the logic itself allows the guarantees to be expressed as any
relation over states as long as they over-approximate the semantics
of the program, we argue that expressing them directly through their

1 This cleaning operation has however not been formalised in our work. Inspiration
could be drawn from the work of Hofmann and Pavlova [60] who have proposed a
formal model in Coq of ghost variables allowing for their automatic elimination.



74 verification of the garbage collector

PhaseG := phase[m] = pc phase[m]

Update_fieldG := x.f = v path

Mut_pushG := buffer.push(x) White

AllocG := (...) path

RootsG := axiomatised Reachable_from

(a) Effects issued by a mutator m.

ClearG := < stage[C] = CLEARING;

ghost_flip = 0 > stage[C], flipped

BitflipG := axiomatised Black, flipped

StageG p := stage[C] = p stage[C]

Hs_enterG := ghost_hs = 1 hs

HsG := phase[C] = phaseC + 1 mod 3 phase[C]

Hs_exitG := ghost_hs = 0 hs

FreeG r := free(r) colours, path

Ghost_CopyG := axiomatised ghost_buffer

Col_pushG := buffC.push(x) White

Col_popG := bufferC.pop() Grey

Col_pushG := bufferC.push(x) White

Upd_colourG := x’.colour = BLACK Grey, White

(b) Effects issued by the collector.

Figure 19: The injected code abstracted as guarantees. Annotations on the
right are indications as to which properties of interest may be
compromised by the operational effect of the guarantee.

operational semantics whenever possible is beneficial to the mecha-
nisation. Indeed, as introduced in Chapter 3, Coq heavily relies on
inductive definitions: a type can be defined by its constructors and
the set of its inhabitants is the smallest fixpoint of these constructors.

Inductive types can be used both to define datatypes, such as the
syntax of our programming language, as well as arbitrarily complex
predicates. In particular, we use them to define our semantics: each
constructor corresponds to a way a construction may reduce. Con-
sider for instance the big step relation which, for a given thread iden-
tifier and command, relates an initial state to the resulting state after
executing the command. The signature of this relation reads as fol-
lows:

Inductive opsem : tid→ (gstate*lenv) → comm→ (gstate*lenv) → Prop

In addition to the induction principle already mentionned in Chap-
ter 3, inductive definitions automatically generate a mechanism named
inversion. Since the only way to build a value of an inductive type is
through its constructors, one can inspect its structure to deduce infor-
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mation about it. For instance, the constructor of opsem corresponding
to the sequence is a straightforward translation of the usual rule.

| opCSeq : ∀ t s1 s2 s3 c1 c2,

opsem t s1 c1 s2→

opsem t s2 c2 s3→

opsem t s1 (CSeq c1 c2) s3

If we know that Cseq c1 c2 reduces a state s1 into a state s3, in-
verting this hypothesis introduces a new state s2 and two hypotheses
opsem t s1 c1 s2 and opsem t s2 c2 s3. Iterating this process of
inversion yields a very convenient way to automatically compute the
relation between two states related by opsem, granted the program un-
der consideration does not contain loops. We make the most of this
trick by using the notion of action introduced in Chapter 3. When
possible, interferences are directly expressed in terms of a command
in RtIR, whose context of execution is constrained by a precondition.
By defining them in terms of the operational semantics, interferences
can hence be systematically inverted. We then refine the context in
which they may occur along the development by strengthening incre-
mentally the precondition.

Figure 19 sums up the operational components of the guarantees
over-approximating the effect of the injected code. Since we express
guarantees directly in terms of the operational semantics, most of
them straightforwardly correspond to the atomic operations from the
GC affecting the shared memory. We nonetheless benefit from some
factorisation: StageG encompasses two occurrences of update to the
stage variable during the main loop, the third one requiring extra
care due to the ghost variable ghost_flip; Col_pushG subsumes both
popping operations performed by the collector during the TRACING

procedure. This kind of minor trick will require more care in refining
the precondition of the actions, but allows for some factorisation in
arguments, especially stability ones.

One guarantee is particular: RootsG does not map to any actual
code but rather directly to the MGC. This effect models a load per-
formed by the client. Indeed, the GC instruments most of the effectful
operations that could be performed: updates, allocations and freeing
the memory. The loads are however left untouched, hence were not
introduced as instrumented code, but must nonetheless not be forgot-
ten in the model.

As we explained, we try to stick to the operational semantics so
that its systematic inversion may automatically compute the relation
between states. This however cannot work when the code contains
loops, as is the case in the guarantees Ghost_CopyG, modelling the
snapshot of the buffers in the trace procedure, and in the guarantee
BitflipG, modelling the bitflip. In those cases, annotated as axioma-

tised in Figure 19, we axiomatise their effect as a Coq inductive, and
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prove once and for all the correctness of this axiomatisation. This
breaks the uniformity of automation, but is restrained to sufficiently
few cases to remain manageable.

Foreseeing the arguments we will develop during this section, an-
notations in red hint at which properties may be compromised by the
corresponding guarantees. Those properties are: colours of cells, all
of which are in particular denied by the free operations since they
assume liveness of the cell; reachability of a cell from the roots of a
mutator; existence of a path between two cells; values of global vari-
ables.

5.3 the synchronisation protocol

The GC algorithm being fine-grained, the synchronisation between
threads is entirely based on the global variables phase and stage.
The involved colouring invariants which lie at the crux of the proof
hence rely on the correctness of this synchronisation protocol. A first
major step in the development is therefore to identify a provable sub-
set of invariants entailing the main synchronisation invariant which
states that a mutator is never ahead of the collector, and at most one
step behind. Intuitively, this invariant holds since all threads are al-
ways perfectly synchronised, except while a handshake is in progress.
Handshakes being initiated by the collector, the collector is indeed
one step ahead in the mean time. As usual, this invariant cannot be
formally proved by itself but needs to be associated with several oth-
ers, detailed on Figure 20.

Two minor invariants, phase_typ and ghost_hs_typ, simply con-
strain the potential values of the phase variables and the ghost_hs

ghost variable. While those very mundane facts quite clearly hold,
they immediately highlight one of the challenges of mechanisation:
they both need to be proved stable under all seventeen guarantees.
While this is intuitively trivial in all cases but for the few which mod-
ify those variables, we need to engineer a way to reflect this triviality
in the formal development. We will come back to this issue shortly.
More interesting, the invariant handshake_out locally strengthens
handshake_correct using the ghost variables: when the collector is
not inside the handshake procedure, all threads are perfectly syn-
chronised. Finally, two invariants relate the stage of the collector to
the phases of the threads: everyone is ASYNCH during the SWEEPING

stage, and witnessing a mutator lagging behind in SYNCH 2 is suffi-
cient to affirm that we are inside the TRACING stage.

We want to prove that the conjunction of these five predicates, re-
ferred to as synch_protocol, is invariant. The natural way to pro-
ceed is to first consider the stability of synch_protocol under Gs,
the union of all guarantees of both the mutators and the collector.
Having initialised the actions defining the guarantees with an uncon-
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Definition handshake_correct: gpred :=

fun gs⇒ ∀ t, In t M → (phase[C] gs = phase[t] gs ∨

phase[C] gs = phase[t] gs ⊕ 1).

Definition phase_typ: gpred :=

fun gs⇒ ∀ t, In t M → phase[t] gs = SYNCH1 ∨

phase[t] gs = SYNCH2 ∨

phase[t] gs = ASYNCH.

Definition ghost_hs_typ: gpred :=

fun gs⇒ ghost_hs gs = 0 ∨ ghost_hs gs = 1.

Definition handshake_out: gpred :=

fun gs⇒ ∀ t, In t M → phase[C] gs = phase[t] gs.

Definition sweeping_asynch : gpred :=

fun gs⇒ stage[C] gs = SWEEPING→

∀ t, In t (C::M) → phase[t] gs = ASYNCH.

Definition asynch_tracing : gpred :=

fun gs⇒ ∀ t t’,

In t M → In t’ (C::M) →

phase[t] gs = SYNCH2→

phase[t’] gs = ASYNCH→

stage[C] gs = TRACING.

Figure 20: The set of invariants characterising the synchronisation protocol.
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strained precondition, this cannot hold straightforwardly: guarantee
HsG would break the invariant through the increment made to the
phase of a collector which could already be in advance. We there-
fore carefully refine the guarantees for the stability to hold, while
keeping in mind that we need to be conservative enough to manage
afterwards to sequentially derive this precondition by annotating the
code. Note however that while all code annotations need to be stable,
this concern does not hold over the preconditions of guarantees.

Looking back at Figure 19, six guarantees are liable to impact the
validity of synch_protocol by acting upon either the stage, the phase

of a thread or the value of ghost_hs. Their preconditions are there-
fore reinforced to prevent this. During a mutator’s collaboration, the
new value assigned to its phase is always the current collector’s one:
indeed, the collector is necessarily stuck in the handshake’s wait-
ing loop when this program point is reached, and therefore cannot
have updated its phase concurrently. HsG can be heavily annotated,
we know quite precisely the state of things at this line. Namely all
threads are synchronised before the increment to phase[C], and the
value of this phase defines the current stage. Similarly, during the
updates to stage, the value of the phase is precisely known.

We subsequently establish the stability of synch_protocol under
this new definition of Gs. By annotating the code, mainly to track the
value of the stage and ghost variables during the collector’s cycle,
we can prove that we soundly refined our guarantees: they indeed
embed the operational semantics of the code.

5.4 proof methodology

At this stage of our development, we have established the validity
of synch_protocol, an invariant describing the synchronisation pro-
tocol holding about a code partially annotated, modelled by a set of
guarantees whose preconditions are weakly constrained. Armed with
this first step, we naturally want to build upon synch_protocol and
prove additional invariants.

However acting upfront turns out to be highly impractical: for the
new invariants to hold, the guarantees will have to be further refined
to take into account new subtleties about the code. But synch_protocol
having been proved stable with respect to the previous definition
of Gs, all proofs of stability might break. Intuitively, all lemmas of
stability we established should still hold since we only gather more
information about the execution, hence restrict the possible interfer-
ences. In practice however, mechanised proof scripts are extremely
fragile objects, and constant refactoring of proofs is a daunting and
time consuming task. We therefore formalise the intuition to build a
methodology allowing us to actually work incrementally upon this
first step.



5.4 proof methodology 79
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Figure 21: Main Invariants of the GC. Numbers are timestamps in the incre-
mental proof methodology. Dependencies are shown with boxes
(inter-dependency) and arrows.

5.4.1 Workflow

In order to work incrementally, we organise the invariants in groups,
as illustrated on Figure 21. In each boxed group, invariants are inter-
dependent, while arrows indicate a dependency of the target group
on the source group.

While RG proofs are thread-modular, using RG does not solve the
inter-dependency problem, since invariants, guarantees and code an-
notations all interact in proofs. To maximise proof reuse, we use a
simple mechanism: in our Coq development, the invariants I and
guarantees G are indexed by a natural number – morally a timestamp
of their introduction into the development (see Figure 21). The first es-
tablished set of invariants, synch_protocol, is hence defined as(I 0) .
When introducing a new increment to I, all invariants with a lower
timestamp are therefore not modified. Since the same mechanism
goes for the guarantees and code annotation, the previous proofs
of stability are not modified, resulting in an incremental and non-
destructive methodology. More concretely, at each level:

1. we enrich the invariant, refine the guarantees and code annota-
tions;

2. we prove the new stability proof obligations, for which we can
reuse prior stability proofs, and we use automation to discharge
as many obligations as possible;

3. we adapt sequential Hoare proofs, and prove that enriched guar-
antees are still valid.

This workflow proved robust during our development, allowing
for an incremental and manageable proof effort. We detail below the
first two items of this methodology.

5.4.2 Incremental proofs

Let us focus on proof obligation RGp_I from Chapter 3, which requires
establishing that the invariant is stable under all threads’ guarantees.
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Let us index both the invariant and guarantee by n. The obligation we
consider is thus (stable TTrue (I n) (G n)). Let us now see how
we establish (stable TTrue (I n+1) (G n+1)) by using the already
proved (stable TTrue (I n) (G n)) obligation.

5.4.2.1 Monotonicity of I and G.

We build (I n+1) as a conjunction of the prior established invariant
(I n) , and the increment at the current level:(I n+1) , (I n) ∧∧ (Ic n+1) .
Hence, we have that ∀n,(I n+1) −→ (I n).

Recall that in our proof system, guarantees are expressed through
the effect of a command, under certain hypotheses on the pre-state.
At each level, the command will not change – it is effectively exe-
cuted by the code. Levels are rather used to refine the hypotheses on
the pre-state. Therefore, guarantees are monotonic in the sense that
∀n,(G n+1) ⊆ (G n) : they are made more precise as the level index
increases.

In order to reuse the existing proof of the prior set of invariants,
we start by proving that prior invariant (I n) is stable under refined
guarantee (G n+1), i.e. (stableTTrue (I n) (G n+1)) holds. To this
end, we reuse our previous proofs at level n and conclude with the
following lemma using guarantee monotonicity.

Lemma stable_refineG: ∀ C I G1 G2,

G2⊆ G1 ∧ stable C I G1→ stable C I G2.

5.4.2.2 New Invariant Stability.

It remains to prove the stability of increment (Ic n+1) under refined
guarantee (G n+1).

In the simplest case, we can prove(stable TTrue (Ic n+1) (G n+1))

independently from prior invariants. In this situation, by a simple
lemma, we combine the stability of (Ic n+1) and (I n) into the one
of (I n+1):

Lemma stable_and: ∀ C I1 I2 G,

stable C I1 G ∧ stable C I2 G → stable C (I1∧∧I2) G.

However, the situation is often more involved, requiring prior invari-
ants to prove the stability of (Ic n+1). Formally, we have (stable

(I n) ((Ic n+1)) (G n+1)). We can then combine the stability of
(I n) and (Ic n+1) under (G n+1) using this stronger lemma:

Lemma stable_with: ∀ C I1 I2 G,

stable C I1 G ∧ stable I1 I2 G → stable C (I1∧∧I2) G.

Finally, code annotations go through the same indexing treatment
in order to preserve their previous proof of stability. We introduce
an indexed conjunctive operator and_at, denoted by •step ∧ iter•,



5.4 proof methodology 81

which only adds the annotation when the code is considered at an
iteration iter greater than its step of introduction:

Definition and_at_iter (step iter: nat) (A B: pred): pred :=

if leb step iter

then fun gs le⇒ A gs le ∧ B gs le

else A.

We then define a fixpoint comm_impl computing the minimal set
of proof obligations required to leverage a proof of stability of the
code from one iteration index to the next. The proper definition of
comm_impl is quite technical, but the intuition behind it is simple.
When considering two commands c1 and c2, with the intend to be
provided with two versions of a piece of code, it inductively tra-
verses both commands simultaneously. If any operational difference
is found, it generates an impossible proof obligation, False. Other-
wise, it compares the annotated proof annotations P1 and P2 and
generates a proof obligation expressing both (i) that P2 is a strength-
ening of P1, i. e. we indeed added annotations to the code, and (ii) that
P2 is stable under the current guarantees, assuming the stability of P1
that we are meant to have previously established.

These generated proof obligations are proved to be correct in the
sense that they are sufficient to lift a previous proof of stability of a
piece of code:

Lemma AllStable_strengthenC: ∀ rt I c1 c2 G S,

comm_impl rt I c1 c2 G →

AllStable rt I c1 G S →

AllStable rt I c2 G S.

Assisted with dedicated tactics, we obtain at annotated code level
the same benefits we obtained for invariants’ stability.

5.4.3 Proof Scalability

To tackle the blowup of stability checks alluded to earlier, we built a
toolkit of structural stability lemmas, and develop some tactic-based
partial automation. This allowed us to discharge automatically 186

obligations among the 306 obligations induced by RGp_I. The remain-
ing obligations are also partially reduced by the automation.

Structural lemmas serve three purposes. First, they are critical to
enable the incremental methodology delineated above. Second, they
allow for complex stability proof obligations to be simplified: both
annotations, invariants, and interferences can be structurally split
up. Thus, intrinsically complex arguments are isolated from trivial
ones, that are automatically discharged. Finally, to reuse as much
proofs as possible, we rely on a custom notion of stability under
extra-hypotheses: we reestablish after interference a predicate P (for
instance, the invariant of a new layer) by assuming that another pred-
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icate H holds before and after the interference (for instance, the invari-
ants established at previous layers).

Definition stable_hyps (I: gpred) (H P: pred) (R: rg): Prop :=

∀ gs1 gs2 l,

I gs1 ∧ H gs1 l ∧ P gs1 l ∧ R gs1 gs2 ∧ I gs2 ∧ H gs2 l → P gs2

l.

Typically, this notion allows to leverage stability results from previous
levels, notably in the following lemmas:

Lemma stable_weakI: ∀ I1 I2 P G, I2⊆ I1→ stable I1 P G → stable I2 P

G.

Lemma stable_weakH : ∀ I (H P: pred) R,

stable I H R → stable_hyps I H P R → stable I (H∧∧P) R.

By decomposing annotations and relaxing interferences, we can factor
out the proof of stability of annotations that reappear in the code.

5.4.3.1 Automation.

We developed a set of tactics that decomposes stability goals into el-
ementary ones before attempting to solve them. This leads to clearer
goals and more tractable proof contexts. The tactics combine our
structural lemmas with two additional ideas: systematic inversion on
guarantee actions – defined operationally using commands –, and
rewriting in predicates.

5.5 proof of correctness

We now turn to the full proof of correctness. The complete set of in-
variants, organised in successive groups, has been alluded to on Fig-
ure 21. Our core target of interest is the final batch of inter-dependent
invariants containing the correctness invariant, that we will refer to
as colouring_correct. Using the incremental methodology described
previously, we have been able to insert on the fly additional auxiliary
invariants, indexed from 1 to 5 in Figure 21. The methodology al-
lowed us to establish them once and for all in a proof context free
of any consideration related to colouring and path invariants, and
recover them in the ongoing effort to prove colouring_correct.

5.5.1 The correctness set of invariants

Figure 22 defines the main colouring invariants whose correctness is
inter-dependent with the final correctness invariant of the GC.

The correct invariant itself is no surprise: as introduced in Chap-
ter 4, no reference reachable by a mutator is Blue, i. e. in the freelist.

Two invariants, also introduced in Chapter 4, specify paths along
the memory graph. First, the black_to_white invariant specifies that
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Definition sweep_no_grey: gpred :=

fun gs⇒

stage[C] gs = SWEEPING→

∀ r, ¬ Grey TID gs r.

Definition trace_grey_reach_white : gpred :=

fun gs⇒

stage[C] gs 6= CLEARING→

∀ t,

In t TID→

phase[t] gs = ASYNCH→

∀ r, reachable_from t gs r →

(∃ r0, Grey TID gs r0 ∧ reachable gs r0 r) ∨ Black gs r.

Definition black_to_white : gpred :=

fun gs⇒

ge gs ghost_flipped = 1 →

∀ r1 r3 p, path gs r1 r3 p →

Black gs r1→

White TID gs r3→

(∃ r2, Grey TID gs r2 ∧ In r2 p).

Definition pointsto_freelist: gpred :=

fun gs⇒ ∀ r1 r2,

reach_single gs r1 r2→

in_freelist gs r2→

(White TID gs r1 ∨ Grey TID gs r1).

Definition correct: gpred :=

fun gs⇒

∀ t gs r,

In t TID→

reachable_from t gs r →

¬ Blue gs r.

Figure 22: The set of invariants characterising the functional correctness of
the garbage collector.
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a path from a Black reference to a White one necessarily passes through
a Grey reference. We only add one restriction: this invariant is broken
at one of the collector’s point of program, that we rule out using the
ghost_flipped variable. This small technicality arises from our model
of bitflip and allocation. Indeed, switching to the CLEARING stage, on
line 2 in Listing 1, atomically changes the colour of allocation to White.
This operation is separated from the bitflip itself, occurring right af-
ter. In the algorithm from Domani et al. however, the bitflip takes
care of both side effects at the same time, switching the significance
of the Black and White colours, and thus changing simultaneously
the allocating colour and the current colour of the heap. To handle
this difference, we therefore relax the black_to_white invariant in
between the change of stage and the bitflip.

Second, the trace_grey_reach_white makes things precise once
the trace procedure has started: a reference reachable by a mutator
is either Black or guarded by a Grey reference. We capture the part
of the timeline following the start of the trace procedure by checking
that we are no longer in the CLEARING stage, and that the mutator
from which we can reach the reference has already collaborated for
the trace procedure to start, i. e. is ASYNCH.

The sweep_no_grey invariant asserts that during the trace proce-
dure, the collector indeed completed its work, and its result is not in-
validated by further interferences by the mutators: during the TRACING
stage, no Grey cells remain. Combined with trace_grey_reach_white,
we immediately obtain that no reachable reference is White, hence
such references can be safely reclaimed.

Finally, the pointsto_freelist asserts that if a reference r points
to another reference which is contained in the freelist, then r cannot
be Black. This invariant is a convenient way to establish that alloca-
tion will not create ill-formed paths. Indeed, when allocating a new
reference r2, this reference could still be pointed at by another refer-
ence r1. This is indeed prohibited if r1 was reachable by a mutator,
since r2 was in the freelist, but is not ruled out for unreachable parts
of the memory. Proving that r1 cannot be Black is sufficient to ensure
stability of our invariants, and can be established.

We now focus on two major elements of the formal proof: the cor-
rectness of the write barriers and of the trace procedure.

5.5.2 Write barriers

Despite being a quite short piece of code, write barriers are extremely
subtle: we exhibit their fully annotated implementation on Figure 23.
The update_pre annotation simply expresses the fact that x and v are
roots of mutator m. We introduce the other predicates in the following.
Two main properties of the write barriers need to be established.
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First, if a reference r undergoes the markGrey procedure during the
SWEEPING stage, then r has to be Black. Indeed, that would otherwise
make r a Grey reference, and contradict invariant sweeping_no_grey.

The second concern naturally occurs when the update is performed.
Special care is required when the invariant trace_grey_reach_white
is active to prevent breaking it. First, the new reference v should

be either Grey or Black since it is a new reference reachable from a
mutator. The situation of the erased value, x.f, is more subtle. Note
that in general this reference is not the same as the one stored in
old, since interferences may have changed this fact. As explained
in Section 4.2.2.4, there are cases where we need to have marked it
Grey, but as shown in Section 4.2.2.6, that is not always true. What
does hold is that this reference is necessarily Grey or Black once any
potential concurrent update from another mutator necessarily also
goes through the write barrier, i. e. once they have all undergone at
least one handshake. We consequently need to establish the following
property when the proper update occurs:

(stage[C] gs = TRACING→ ∃ old,

pointsto gs (le x) f old ∧ Grey_or_Black TID gs old) ∧

((stage[C] gs = TRACING ∨ phase[t] gs 6= ASYNCH) →

Grey_or_Black TID gs (le v)).

Once again, note however that synchronisation is quite loose: a mu-
tator might enter the write barrier due to the collector being in the
TRACING stage, but only actually perform the update once the collector
is back in the CLEARING stage. In particular, a property such as

(stage[C] gs = TRACING ∨ phase[t] gs 6= ASYNCH) →

Grey_or_Black TID gs (le v)

is unstable: we need to strengthen annotations to ensure their stabil-
ity.

We thus have to consider the two reasons for which the mutator
m might have entered the write barrier. First, if m was not ASYNCH we
do not have much to do: we know in that case that we cannot be in
the SWEEPING stage, as enforced by invariant sweeping_asynch. And
since no one can change m’s phase but itself, this situation is stable.
Now if m was ASYNCH and the collector in the TRACING stage when
the mutator entered the write barrier, we know in particular that the
invariant trace_grey_reach_white was valid at this time. Hence ref-
erences held in v and x, naturally reachable by m, are either Black or
guarded as long as the stage remains TRACING, and necessarily Black

if it is SWEEPING. We embody this intuition in the following wb_annot

annotation.

Definition wb_annot (t: tid) (r:ref) : pred :=

fun gs le⇒

le tmp_stageC = TRACING→

le tmp_phase = ASYNCH→
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(stage[C] gs = TRACING→ Black gs r ∨ ∃ r0, Grey TID gs r0 ∧

reachable gs r0 r)

∧ (stage[C] gs = SWEEPING→ Black gs r).

We crucially propagate inside the write barrier the knowledge that
references x, v, and hence old once loaded, all satisfy this predicate.
We therefore establish in particular that references marked grey dur-
ing the SWEEPING stage are Black. However, the resulting assertion
is still not stable for the old variable. The reference the old variable
contains could be tempered with by another mutator, and hence not
be reachable anymore by m. Indeed, contrary to v, old is not a client
variable, and hence does not behave as a root. We therefore introduce
wb_annot_old and annot_old specifying the situation of this particu-
lar variable:

Definition wb_annot_old (t: tid) (r:ref) : pred :=

fun gs le⇒

(stage[C] gs = TRACING ∨ phase[t] gs = SYNCH2) →

(∃ o, pointsto gs r f o ∧

(le old = o ∨ Grey_or_Black TID gs o)).

Definition annot_old (t: tid) (r:ref) : pred :=

fun gs le⇒

(stage[C] gs = TRACING ∨ phase[t] gs = SYNCH2) →

(∃ o, pointsto gs r f o ∧ Grey_or_Black TID gs o).

If we were in SYNCH 1, old could indeed end pointing to a White

reference: this is the bug described in Section 4.2.2.6. However, the
introduction of a third handshake as prescribed by Doligez fixed this
issue: as soon as the mutator is in SYNCH 2, any concurrent update
also necessarily goes through the write barrier. As a consequence, the
reference to old points through f may indeed have been changed,
but the mutator having made this changed necessarily enforced the
desired properties, i. e. this new reference is still either Grey or Black.
Once old has been marked, we are hence certain that it points to a
Grey or Black reference, as stated by annot_old.

5.5.3 Verifying the trace procedure

As stated in Chapter 4, the code of the trace routine is the most chal-
lenging to verify. While describing the behaviour of the procedure, we
stated that it is safe to exit the loop once all mutators’ buffers have
been witnessed empty during a simultaneous iteration. We explicit
here the rationale behind this statement.

Crucially, at the exit of the external loop constituting trace, we
are able to prove that: (i) there are no more GREY objects, (ii) all ob-
jects reachable from the mutators roots are BLACK, and consequently
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{update_pre m}

phasem = phase[m]

{update_pre m •6∧ iter• (fun gs le⇒ phase[m]gs = le tmp_phase)}

stageC = stage[C]

if (phasem != ASYNCH stageC == TRACING) then

{update_pre m •6∧ iter• (fun gs le⇒

phase[m]gs = le tmp_phase

∧ (le tmp_phase 6= ASYNCH ∨ le tmp_stageC = TRACING)

∧ wb_annot m (le v) gs le

∧ wb_annot m (le x) gs le)}

old = x.f

{update_pre m •6∧ iter• (fun gs le⇒

phase[m]gs = le tmp_phase

∧ (le tmp_phase 6= ASYNCH ∨ le tmp_stageC = TRACING)

∧ wb_annot m (le v) gs le

∧ wb_annot m (le x) gs le

∧ wb_annot m (le old) gs le

∧ wb_annot_old m (le x) gs le)}

bufferm = buffer[m]

{update_pre m

•2∧ iter• (fun gs le⇒ le old 6= NULL)

•6∧ iter• (fun gs le⇒

phase[m]gs = le tmp_phase

∧ (le tmp_phase 6= ASYNCH ∨ le tmp_stageC = TRACING)

∧ buffer[m]gs = le tmp_buffer

∧ wb_annot m (le v) gs le

∧ wb_annot m (le x) gs le

∧ wb_annot m (le old) gs le

∧ wb_annot_old m (le x) gs le)}

markGrey(bufferm,old)

{update_pre m

•2∧ iter• (fun gs le⇒ le v 6= NULL)

•6∧ iter• (fun gs le⇒

phase[m]gs = le tmp_phase

∧ (le tmp_phase 6= ASYNCH ∨ le tmp_stageC = TRACING)

∧ buffer[m]gs = le tmp_buffer

∧ wb_annot m (le v) gs le

∧ annot_old m (le x) gs le

∧ wb_annot m (le x) gs le )}

markGrey(bufferm,v)

{update_pre m •6∧ iter• (fun gs le⇒

phase[m]gs = le tmp_phase

∧ annot_old m (le x) gs le

∧ ((phase[t] gs 6= ASYNCH ∨ stage[C] gs = TRACING) →

Grey_or_Black TID gs (le v)))}

x.f = v

Figure 23: Annotated code for a write barrier performed by a mutator m.
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(iii) there are no WHITE objects reachable from any of the mutators
roots.

Property (i), namely that all buffers are simultaneously empty at the
end of tracing (Listing 7, line 39), is particularly difficult to estab-
lish, given that mutators may concurrently execute write barriers. We
prove that this property is valid at line 4 of the last iteration of the
enclosing while loop. We proceed as follows. We first prove that, at
line 4, buffer[C] is always empty. As for mutators’ buffers, we use
ghost variables ghost_buffer[m] to take their snapshot at line 4. Mu-
tators can only push on their buffers, so, in a given iteration of the
enclosing while loop, if a mutator buffer is empty, so was its ghost
counterpart during the same iteration. In the last iteration of the while
loop, all buffers are witnessed empty, one at a time. But this implies
that all ghost buffers are simultaneously empty at line 8. This, in
turn, implies that all buffers are, this time simultaneously, empty at
line 4. This property remains true until line 39: it is both stable un-
der mutators’ guarantees, and preserved by the while loop. Finally, if
all buffers are empty (there are no GREY objects), the above invariant
trace_grey_reach_white implies that both the old and new objects
that markGrey could push on a buffer are in fact BLACK, and thus not
pushed on any buffer (Listing 6). As a consequence, no reference is
pushed on the collector’s buffer (line 15).

5.6 related work

Garbage collectors have always been an emblematic verification chal-
lenge. Many prior efforts have tackled various instances of the se-
quential case. A similar copying collector algorithm has been proved
correct both in the CakeML compiler [99] and the Milawa prover [25].
Some impressive projects providing end-to-end verified specialised
operating systems include a verified garbage collector, such as Iron-
clad Apps [54] and Verve [146].

Ericsson et al. [125] have recently equipped the CakeML compiler
with the first verified generational copying garbage collector. They
managed to quite elegantly structure the proof such that a partial
collection of the heap over a generation is proved correct by being
simply interpreted as a collection over a smallest heap from which
exiting pointers are ignored. The CertiCoq project [8] also reports on
the verification of a similar algorithm.

Hawblitzel and Petrank [53] introduced an interesting different line
of work in 2009. They rely on the Boogie verification condition gen-
erator [81] in combination with the Z3 SAT/SMT solver [26] to verify
down to assembly two sequential garbage collectors, an elementary
Mark and Sweep algorithm and a Cheney copying algorithm. The ap-
proach consists in implementing the algorithms in x86 assembly, and
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heavily annotating the code. Boogie and Z3 then take care of generat-
ing and discharging the corresponding proof obligations.

Garbage collectors have also been a playground for separation logic
in recent years. Torp-Smith et al. [134] use it to verify a copying
garbage collector. McCreight et al. [92] extend CompCert with a new
intermediate language, GCminor, equipped with memory manage-
ment primitives and providing a target of compilation for managed
languages. Using separation logic, they subsequently partially prove
a Cheney copying collector. In 2010, McCreight et al. [91] prove a
machine-level implementation of a variety of standard garbage col-
lector implementations.

All the previously cited works only deal with sequential garbage
collectors. The first arguments of correctness of a concurrent garbage
collector were already introduced by Dijkstra et al. [29] with notably
the three colours abstraction. The proof is however not fully formal.
The first mechanised proof was presented by Gonthier [46], and con-
ducted in the TLP system. Unlike ours, Gonthier’s proof rests on an
abstract encoding of the algorithm. The work of Havelund [52] in
PVS follows the same pitfall. Pavlovic et al. [114] propose a different
approach, synthesising a more realistic concurrent garbage collector
from a simpler, abstract, initial implementation proved correct. While
the approach is certainly appealing, they do not manage to reach al-
gorithms as fine-grained as the one we consider.

Gammie et al. [45] verified in 2015 an On-The-Fly algorithm close
to ours. Similarly to Gonthier’s work, they do not perform the proof
over the code itself, but over an abstract model of their algorithm.
They also design a more monolithic proof, following an Owicki-Gries
approach to the problem. However they take into account a more re-
alistic memory model than we do. Indeed, they account for the fact
that processors are not sequentially consistent: they may exhibit be-
haviours which do not match any interleaving of the atomic instruc-
tions. More specifically, Gammie et al. support the Total Store Order

(TSO) memory model, well known to be the one exhibited by x86

processors. It is however worth mentioning that they restrained Do-
mani et al.’s algorithm by enforcing additional synchronisations to
ease their reasoning. Extending our own work to TSO is one of our
major perspectives.

Separation logic [121] having been democratised in the sequen-
tial case, the application of its concurrent extension [15, 106] to the
proof of garbage concurrent collectors is a promising line of research.
However, to the best of our knowledge, the only successful attempt
to date is the work by Liang et al. [84, 85]. They introduce a Rely-
Guarantee-based Simulation (RGSim), embarking separation logic as-
sertions, for compositional verification of concurrent transformations.
It can be thought of as a syntactic proof system to build simula-
tions between concurrent programs. They use this system to prove
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a mostly-concurrent garbage collector in a seemingly pleasantly con-
cise way. While the garbage collector they handle is still simpler than
ours and its proof is not mechanised (only the meta-theory of the
proof system is), they offer here a very promising line of research.

By sidestepping any modelling in our formal development by prov-
ing directly the implementation in RtIR, we argue that our work
constitutes the closest-to-be-executable verified On-The-Fly garbage
collector to date.

5.7 conclusion

We gave in this chapter a description of the formal proof of the GC
we introduced in Chapter 4, using the program logic presented in
Chapter 3, conducted inside the Coq proof assistant.

The proof turned out to be challenging from a conceptual perspec-
tive, notably through the interaction of fine-grained synchronisation
with subtle colouring invariants, as well as from a mechanisation
standpoint. To handle the complexity, we combined a methodological
contribution – from the design of RtIR and our logic, to the develop-
ment of an incremental methodology – with pragmatic engineering –
through handcrafted partial automation. The complete development
ends up weighing a little over 20kloc.

In this manuscript, we put a special emphasis towards operational
aspects: for the long term goal to be the construction of a verified com-
piler for a Java like language, the midterm goal must be to verify an
executable implementation of the runtime. In the following chapter,
we tackle the main obstacle separating us from this objective: refining
the abstract data-structures natively embedded in RtIR.
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We introduced in Chapter 4 an On-The-Fly realistic garbage col-
lector inspired by the work of Domani et al. [35]. We presented its
implementation in RtIR, our dedicated intermediate representation,
and discussed the formal proof of its functional correctness in the
Coq proof assistant in Chapter 5. Additionally to methodological im-
provements, among which the use of a Rely-Guarantee logic, we ar-
gued that our intermediate representation allowed us to be closer
than other existing approaches to an actual executable formally ver-
ified GC– and hence to be able to embed it into a verified compiler.
Indeed, as underlined in Chapter 5, a common practice consists in ab-
stracting the algorithm of interest as a transition system. This simpler
object is then proved correct. While this approach has several benefits,
simplifying the reasoning and helping to focus on the logics of the al-
gorithm, it pulls us away from a verified embedding into a compiler.
In contrast, our approach strives for proving the code itself.

Using the Most General Client, one can build a refinement proof
between an IR with implicit memory management and RtIR. We
would then need to perform three kinds of refinements over the GC
to make it executable: cleaning ghost code, coding iterators as low-
level macros, and implementing abstract concurrent data structures
natively supported by RtIR. While the two first tasks are essentially
administrative, the third encompasses an inherently non executable
layer of the intermediate representation.

This is however not some hazardous design flaw: the intermedi-
ate representation has naturally been designed with this aspect in
mind. We explain in this chapter how RtIR can be soundly com-
piled towards an executable language by implementing its native
data-structures with so-called linearisable operations. To do so, we first
take a detour to lay out the two core notions we need. First, we go
back in Section 6.1 to the context of this work, verified compilation,
in order to introduce the notion of correctness we need: semantic
refinement. We then consider in Section 6.2 the very reason those
data-structures can be refined by reviewing the coherence criterion of
linearisability. We finally get in Section 6.3 to the crux of our contri-
bution by providing a formalised, sound, semantic foundation to a
proof methodology introduced by Vafeiadis in his thesis [137]. In par-
ticular do we show how to instantiate the resulting meta-theorem on
the core challenge we are concerned with the mark buffers. Finally,
we discuss in Section 6.4 potential improvements to our results, as
well as some related work.

6.1 verified compilation : a chain of simulations

We introduced in Chapter 1 the notion of verified compilation. Veri-
fied compilers are a mean to achieve end-to-end verification of soft-
ware, as well as to address the empirical observation that modern
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compilers are buggy [147]. To this day, great success has been achieved
with respect to realistic, sequential, low-level languages such as C,
through most notably the CompCert compiler [82].

The work described in this chapter fits within the long term goal of
extending verified compilation to concurrent, managed program lan-
guages. The question asked really is: “how far are we from a verified
compiler for a concurrent programming language embarking a rich
runtime?” The specificity of this context influences the nature of the
correctness guarantees we are concerned with, and the way we need
to formulate them. In order to illustrate this specificity, we introduce
in this section some terminology and tools related to verified compila-
tion: first the general structure of a verified compiler, then the notion
of correctness it carries on, and finally the proof tool of simulations.

6.1.1 Optimisations and changes of IR: a chain of program transformations

Compilers are often organised as a succession of transformations. The
program under compilation undergoes successive optimisations, and
may be transformed into different intermediate representations un-
til reaching the target language. These intermediate representations
are carefully chosen to ease specific optimisations and static analyses.
Famous such intermediate representations include SSA (Single Static
Assignment) and its variants [20, 24], whose LLVM’s IR [78, 150] is a
typed instance, as well as Haskell’s core [115, 116].

While this methodology is general, it is even more salient when
it comes to verified compilation. Indeed, planning on proving the
whole compiler in a monolithic way would be ludicrous. Not only
would handling all transformations at once be realistically impossi-
ble, but the resulting development would be impossible to maintain.
Crucially, each transformation has to be carefully isolated and proved
in a compositional manner. In the context of verified compilation, in-
termediate representations need therefore to be carefully chosen not
only to enable optimisations, but also to ease their proof of correct-
ness, as has been emphasised by Demange in her PhD thesis [27].

This fundamental design choice is immediately apparent in both
major existing verified compilers. Figure 24 depicts the CompCert
chain of transformations, while Figure 25 depicts the one of CakeML.

6.1.2 Correct transformations: traces and semantic refinements

A compiler is built as a chain of program transformations. A verified
compiler is therefore built as a chain of composable proofs of correct-
ness for each transformation.

Intuitively, a correct transformation should not modify the seman-
tics of the program. Making this statement precise is however non-
trivial. First, the transformation may go from one language to another,
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Figure 24: The CompCert chain of compilation, taken from [82].
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Figure 25: The CakeML chain of compilation, taken from [132].
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hence changing the nature of a semantic state: we need to express
how these different notions of states relate, and in particular what it
means for them to embody the same semantics. Second, the relevant
notion of semantics we are concerned with depends on the intent. We
naturally at least want to terminate in states having the same seman-
tics, but might or not want to be termination sensitive, or to preserve
intermediate events such as prints.

In order to make things precise, we therefore need to fix which
parts of an execution we choose to preserve, i. e. which set events

of events the external world may observe. We refer to a list of such
events as a behaviour. The choice of these events is naturally crucial
to the notion of correctness we want to establish.

The behaviour of a program, or its set of behaviours in the case of
a non-deterministic program, constitutes the crux of its operational
semantics with respect with which the correctness of a transformation
should be phrased. We therefore consider languages whose semantics
collect traces of events.

Definition 4 (Language). A language is given by a type of states state,

two subsets I and F of initial and terminal such states and a stepping re-

lation
beh
−−−→ between states emits a list (potentially empty, denoted τ) beh

of events. We write
beh
−−−→

∗
for its finite reflexive transitive closure append-

ing behaviours to collect them and
beh
−−−→

ω

for its infinite transitive closure

collecting events, where beh can be infinite.

A transformation may in all generality impact a program in two
ways: by introducing new behaviours, or by removing some.

From a safety standpoint, removing behaviours is always safe: if all
behaviours of the original program were deemed safe, so will be the
behaviours of the transformed program. On the contrary, adding an
unforeseen behaviour can be harmful. The correctness of a program
transformation is hence defined as an inclusion of behaviours, that
we refer to as a semantic refinement:

Definition 5 (Semantic refinement). A transformation T from a language

L1 to a language L2 is correct if it does not add any observable behaviour:

∀c ∈ L1, behL2
(T(c)) ⊆ behL1

(c).

Assuming we fixed the same notion of events all along the compila-
tion chain, we can compose the correctness of the successive program
transformations to obtain the correctness of the compiler. Any safety
property of programs which can be expressed in terms of their traces
is guaranteed to be preserved by compilation.

6.1.3 The bread and butter of semantic refinement: simulations

While we strive for semantic refinement as an endgame result, we
naturally need a stronger, inductive result to obtain it. The traditional



6.1 verified compilation : a chain of simulations 97

elementary brick used to prove a semantic refinement is a so-called
simulation. We provide in this section a short reminder of this well-
established technique, tailored to our specific needs.

6.1.3.1 Behaviours

Before introducing the notion of simulation, we need to formally de-
fine the behaviours. To do so, we consider languages whose semantics
collect traces of events.

A language is then equipped with two kinds of potential behaviours.

Definition 6 (Behaviours). Assuming a language L, and taking beh (re-

spectively behinf) for a list (respectively stream) of events, two kinds of

behaviours are considered:

• finite, correct execution: Term(beh);

• infinite, noisy execution: React(behinf).

Their intuitive semantics is made precise by defining admissible
behaviours of a state.

Definition 7 (Reactive behaviours of states). The set React(s) of reac-

tive behaviours of a state s is co-inductively defined as:

∀beh 6= τ, behinf, s ′,

s
beh
−−−→

∗
s ′ =⇒ React(behinf) ∈ React(s ′)

=⇒ React(beh++behinf) ∈ React(s)

Definition 8 (Admissible behaviours of states). The set BehS(s) of ad-

missible behaviours of a state s is inductively defined as:

• ∀sf, s
beh
−−−→

∗
sf =⇒ sf ∈ F =⇒ Term(beh) ∈ BehS(s)

• React(behinf) ∈ React(s) =⇒ React(behinf) ∈ BehS(s)

Finally, the behaviours of a language are simply the collection of
behaviours of the initial states.

Definition 9 (Admissible behaviours). The set Beh(L) of admissible

behaviours of a language L is inductively defined as:

∀si, si ∈ I =⇒ beh ∈ BehS(si) =⇒ beh ∈ Beh(L)

6.1.3.2 Simulations

A semantic refinement of a program transformation T expresses that
events are preserved all along the execution of a program transformed
by T. In order to prove this result, we need an elementary lemma
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about one step of execution which is strong enough to hold induc-
tively. This lemma is expressed with a simulation, and more specifi-
cally a backward simulation1.

The idea behind a simulation is to exhibit a relation between the
source state and the target state which is strong enough to entail the
preservation of the behaviour by an elementary step, as well as to
be itself stable by this step. Any step of the target program must be
matched at the source level. This matching may take different forms
depending on how close both programs are. In the simplest case, they
might match one-to-one in the sense that any step by the target is
directly matched by a single step in the source. We will consider a
slightly more complex situation where the source might wait without
stepping during some steps by the target. The motivation for this
choice will be made clear in Section 6.3.

Formally, a backward simulation is defined by a relation satisfying
three properties:

Definition 10 (Backward simulation). Given two languages L1, L2, a

backward simulation is given by:

• a relation ∼ ⊆ state1 × state2

• an initialisation condition:

∀s2 ∈ I2,

∃s1 ∈ I1 such that s1 ∼ s2

• a finalisation condition:

∀s2 ∈ F2, ∀s1 such that s1 ∼ s2,

∃s ′1 ∈ F1, s1
τ
−→

∗
s ′1 ∧ s ′1 ∼ s2

• a matching condition:

∀s1, s2, s ′2, s1 ∼ s2 ∧ s2
e
−→ s ′2 ⇒

∃s ′1, s ′1 ∼ s ′2 ∧ s1
e
−→

∗
s ′1

The matching condition expresses the expected preservation of match-
ing when the target state steps. The other two properties relate respec-
tively initial and final states. The initialisation condition enforces that
any target initial state should be matched to a source initial state.
The finalisation condition expresses that any target final state is only
related to source states able to silently reduce to a final state.

1 Various terminologies exist across different communities to refer to simulations. We
follow here the compiler verification community [82]’s school of conventions.
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6.1.3.3 From simulations to preservation of behaviours

By co-induction, one can derive the desired result of preservation of
behaviours from the existence of a backward simulation. Intuitively,
the finite case is easy since it perfectly admits the simulation as its
inductive case. The reactive case is made possible since a non-silent
step cannot be matched by the source without stepping. It therefore
guarantees the co-inductive production condition.

Lemma 1. If two languages L1,L2 admit a backward simulation, we have

the following iteration of the matching condition:

∀s1, s ′1, s2, s1 ∼ s2 ∧ s1
e
−→

∗
s ′1,

∃s ′2, s ′1 ∼ s ′2 ∧ s2
e
−→

∗
s ′2

Proof. By straightforward induction over .
−→∗

We then show by co-induction the preservation of reactive behaviours.

Lemma 2. ∀s1 s2 behinf, s1 ∼ s2 =⇒ React(behinf) ∈ React(s2) =⇒

React(behinf) ∈ React(s1)

Proof. We proceed by co-induction.
There exists s ′2,

s2
beh
−−−→

∗
s ′2 ∧ behinf = beh++beh ′

inf ∧ React(beh ′
inf) ∈ React(s ′2)

By Lemma 1,

s1
beh
−−−→

∗
s ′1 ∧ s ′1 ∼ s ′2

Hence by coIH, React(beh ′
inf) ∈ React(s ′1)

And by definition of React, we can conclude by wrapping a construc-
tor on top of our inductive call.

It remains only to take care of the initial and final states.

Theorem 1 (Preservation of behaviours). If two languages L1,L2 admit

a backward simulation, then we have

Beh(L2) ⊆ Beh(L1)

Proof. We have two cases to prove.

• First, assume s2 ∈ I2, s2
beh
−−−→

∗
sf2 ∈ F2.

By virtue of the initialisation condition, there exists s1 ∈ I1 such that
s1 ∼ s2.
Using Lemma 1, we therefore get s ′1 such that s1

beh
−−−→

∗
s ′1 and s ′1 ∼

sf2 .
Finally by the termination condition, we get sf1 ∈ F1 such that s ′1

τ
−→

∗

sf1 , hence
Term(beh) ∈ Beh(L1)
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• Suppose now that s2 ∈ I2, s2
behinf−−−−→

ω

By virtue of the initialisation condition, there exists s1 ∈ I1 such that
s1 ∼ s2.
We can conclude by Lemma 2.

6.2 linearisability

Abstraction is at the hearth of any reasoning about software, be it
formal or informal. In order to be able to build increasingly sizeable
pieces of code, one needs to be able to abstract away from the op-
erational semantics of a function. In a sequential world, this notion
is well-known and defined since the earliest days of computer sci-
ence. Things are however not as easy when it comes to concurrent
programming.

6.2.1 Traditional definition

We briefly review in this section a few notions of coherence of con-
current objects the concurrent programming community historically
introduced. In particular, Leslie Lamport introduced the notion of se-
quential consistency at the end of seventies [77], ten years before Her-
lihy and Wing defined linearisability [56]. A more detailed introduc-
tion to these notions may be found notably in The Art of Multiprocessor

Programming monography by Herlihy and Shavit [57].
The crux of the problem lies in methods being non-atomic, hence

stretching in time, and therefore happening concurrently. This phe-
nomenon of overlapping methods immediately rises the subtle ques-
tion of precedence of one method over the other. However before get-
ting into this problem, one should not forget a fundamental principle:
both methods should not corrupt each other.

Indeed, imagine an architecture where writing a signed integer
takes two atomic methods: first the processor writes the bit encod-
ing the sign of the integer, then it writes at once its absolute value.
Now consider two threads trying to write concurrently at the same
address respectively the values +7 and −3. While as expected the ad-
dress could end up containing either intended values, two of the four
possible executions could also lead up to incoherent results: −7 or
+3.

This dire situation is excluded by enforcing a sanity principle stat-
ing that any execution should at least correspond to some execution
where each method happened faithfully, one at a time.

Principle 1. Any method call should appear to happen in a one-at-a-time

order.
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With such a sanity ensured, one can actually reason about methods
by thinking about their functional effect on the state. This baseline
however tells us nothing about the order in which these operations
should occur. In particular, a natural question is to wonder if in the
case of a single thread, our definition coincides with what we are
used to in a sequential context. To do so, we consider the notion of
program order, i. e. the sequential order defined over operations of a
given thread by the order in which they appear.

6.2.1.1 A natural notion of coherence: sequential consistency

While trying to order executions of methods across threads, a quite
natural coherence constraint we might desire is to respect the pro-
gram order. This intuitive principle is referred to as sequential consis-

tency [77].

Principle 2 (Sequential consistency). Any method calls should appear to

respect program order.

The proper notion of sequential consistency as a whole consists in
the pairing of Principles 1 and 2.

Sequential consistency is particularly appealing in that purely se-
quential executions are enforced to behave as they traditionally do.
This principle however suffers from a major drawback: it is not com-
positional. Composing multiple sequentially consistent objects is not
necessarily sequentially consistent. For instance, assume a data-structure
implementing First In First Out (FIFO) queues equipped with two
methods push and pop. Consider the following execution of threads
t1 and t2 manipulating two queues p and q, where x and y are the
values pushed or popped from the data structures. We assume that
both queues are initially empty, and that x and y hold distinct values.

t1 : p.push(x) q.push(x) p.pop(y)

t2 : q.push(y) p.push(y) q.pop(x)

Although p and q are both individually sequentially consistent, this
execution resulting of the use of both queues is not. Indeed, suppose
by absurd that there is a sequentially consistent ordering for this ex-
ecution. Then for t1 to return y when popping p and to respect the
FIFO discipline, t2’s operation p.push(y) would have to happen be-
fore t1’s p.push(x). Similarly, t1’s operation q.push(x) would have
to happen before t2’s q.push(y). But both those constraints cannot
be combined with the program order enforced by principle 1 without
creating a cycle: the scenario is absurd. Intuitively, the issue is that
each object constraints the program order in non compatible ways.

6.2.1.2 A compositional coherence criterion: linearisability

Compositionality being crucial to build up complex concurrent sys-
tems, Herlihy and Wing introduced a new notion of coherence: lin-
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t1

t2

p.push(x)

p.push(y)

q.pop(y)

Figure 26: Example of a sequentially consistent, but non-linearisable, execu-
tion of two threads manipulating a FIFO queue.

earisability [56]. Linearisability is a compositional strengthening of
the notion of sequential consistency. Intuitively, the principle goes as
follows.

Principle 3 (Linearisability). Any method call should appear to take effect

instantaneously at some moment between its call and return.

Note that sequential consistency cares little for real-time order. Fig-
ure 26 depicts an example of a sequentially consistent execution of a
FIFO queue manipulated by two threads, where the horizontal lines
depicts real-time. The FIFO discipline is indeed respected if we con-
sider the execution to amount for instance to the following sequence
of operations: p.push(y); q.pop(y); p.push(x). Hence the execution
is sequentially consistent, although it contradicts real-time: the oper-
ation pushing the value y logically happens before the one pushing
the value x, although the real timeline establishes the converse.

In contrast, linearisability puts tighter constraints over executions.
As with sequential consistency, method calls should respect their
thread’s program order. But additionally, two operations whose exe-
cution do not overlap cannot be reordered. Intuitively, linearisable op-
erations are operations which appear to take place atomically some-
where in between their call and their return. The execution on Fig-
ure 26 is therefore not linearisable.

Making this notion formal is however more complex. The origi-
nal definition is built over the notion of histories, i. e. sequences of
method calls and returns. Such a history abstracts a concurrent exe-
cution. In particular, if every call to a method is immediately followed
by its return in the history, methods’ executions do not overlap: we
say that the history is sequential. Histories fix a total order over all
threads’ calls and returns. Two histories are then said equivalent if for
any thread t, their restrictions to the events issued by t are the same.

Among those histories, some may not make any sense with respect
to the specification of our concurrent object. For instance, in the case
of the FIFO queue considered in the previous section, we rejected exe-
cutions resulting in a sequence of push and pop operations that does
not respect the FIFO discipline. To generalise this idea, linearisability
assumes we have a specification deciding if a sequence of operations
over an object is legal. A history H is then said legal if for any object,
any sub-sequence of H made by restricting H to this object’s opera-
tions is legal.
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Proving that a history H is linearisable therefore essentially consists
in finding an equivalent, legal, sequential history S by reordering H:
being sequential encodes the fact that all methods appear atomically.
To ensure that we did not allow method calls to be reordered out of
their frame of call and return, we enforce an additional constraint:
method calls take place in the same order both in H and S.

The last technical detail to consider is that an execution may in-
clude pending calls, i. e. ongoing executions of methods which did
not return yet. The definition of linearisability therefore imposes S to
be equivalent to some alternate version of H where pending calls may
have been either removed, or completed.

Wrapping everything together, linearisability is defined as follows.

Definition 11 (Linearisability). A history H is linearisable if its pending

invocations can be completed and/or removed into a history H ′ admitting a

legal sequential history S such that:

• H ′ is equivalent to S;

• method calls admit the same order in H and S.

A concurrent object is then said to be linearisable if all its histories are lin-

earisable.

Linearisability clearly entails sequential consistency, and can be
shown to be compositional. For these reasons, it has been the golden
standard in concurrent programming.

This definition is however unsatisfactory for formal reasoning, and
in particular for our case of use. First, establishing linearisability un-
der this form is non-local since we have to handle global traces of
executions. Rely-Guarantee logic having provided us with thread lo-
cal reasoning, we would like to recover this when establishing that
a concurrent data structure is linearisable. Second, histories are non-
operational abstractions. We need to close the gap to our operational
semantics. Third, the refinement of RtIR through the implementation
of its native abstract data-structure is meant to take place among a
verified compiler. We therefore need to link the linearisability of the
data-structure to a notion of semantic refinement.

In order to address these three issues, we argue that the defini-
tion of linearisability in terms of history is unnecessary. Instead, we
directly rephrase linearisability in terms of semantic refinement and
reduce it to proof obligations phrased in terms of Rely-Guarantee
reasoning, providing strong semantic foundations to a methodology
introduced by Vafeiadis in his PhD thesis [137]. We present our ap-
proach and our main result in the remainder of this section.

6.2.2 Linearisability as semantic refinement

We laid out in Section 6.1 the context where our work takes place: we
seek to embed our results in a verified compiler, where the correct-
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ness standard is the one of semantic refinement, built upon simula-
tions. While this refinement exists because the data-structure is lin-
earisable, the theorem we want is the so-called atomicity refinement:
the implementation may be soundly replaced by an atomic, abstract
data-structure.

The first authors who formally addressed the distance between
the notion of history-based linearisability, golden standard in the dis-
tributed community, and the one of observational refinement, more
common in the programming language community, were Filipović et
al. [43] in 2009. Under assumption of freedom interference [57, p.198],
i. e. that data-structures can only be modified via their methods, they
prove that history-based linearisability is indeed equivalent to the ex-
istence of an atomic refinement.

Still, their work suffers from some limitations: the approach is nei-
ther operational, since the semantics considered is an action trace
model [15], nor mechanised, and only observe the initial and finite
values of the program. However, this work builds a strong case to
free ourselves from Herlihy and Wing’s definition and directly target
atomic refinement.

Following this intuition, we explicitly rephrase linearisability in
terms of atomic refinement. To this end, we consider a concurrent lan-
guage L as our target language, whose syntax and semantics will be
made precise in Section 6.3.2. Our source language is L♯, a language
identical to L but extended with so-called abstract data structures, ad-
mitting a set I of atomic methods. We unwind the methodology all
along this chapter through two examples: a toy example illustrating
the principle, and the main data-structure we need for our garbage
collector.

Example 1 (Spinlock – Abstract data-structure, operations). A common

way to work with coarse-grain concurrency is to rely on locks. When a thread

wants to access a shared data, it first tries to acquire a lock that only one

thread can hold at once. By restraining threads from accessing the data until

they hold the lock, we ensure that no interference will disturb the thread.

Once a thread is done interacting with the shared data, it releases the lock

for others to be able to take their turn.

A client manipulating carelessly such locks could face two issues. First,

a thread could access the shared data without holding the lock, and more

generally two concurrent accesses could still occur, negating the utility of

the lock. Second, two or more threads could wait for each other to release the

lock, preventing any progress to be made: we say a deadlock has been reached.

Being able to abstract away from the concrete implementation of the lock

may simplify reasoning to prove for instance that a program is indeed deadlock-

free. We can achieve this through our methodology, proving that the lock is

linearisable, i. e. can be atomically refined.
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Suppose therefore that L♯ offers abstract locks, each providing two meth-

ods: I = {acquire, release}. At the level of L♯, an abstract lock can be seen

as a simple two valued data-type:

Lock := Locked | Unlocked.

The abstract semantics of both lock’s methods are straightforward:

JacquireK♯(Unlocked, v) = (Locked,Null)

JreleaseK♯(L, v) = (Unlocked,Null)

In both cases, the input value is discarded, and the return value is set to Null,

being irrelevant for those methods. In order to acquire the lock, we check

that the lock was unlocked: if so we switch its value to Locked, otherwise

the semantics is blocking. Releasing the lock is similar, but never blocking.

Indeed since the client should only call the release method after it acquired

the lock, no test over its value should be needed.

Example 2 (Buffers – Abstract data-structure, operations). The second

case study we consider is the one of buffers, which RtIR took for granted.

The compiler allocates a part of the heap to the collector for the buffers it

needs. The notion of abstract buffer we consider here is therefore a queue of

bounded size SIZE, that we model by a simple mathematical list of values.

Buffer := Nil | v :: Buffer.

A buffer is pushed on one end of the list, and popped off from the other end.

As expected, buffers provide the four methods used in the code of the GC:

I = {isEmpty, top,pop,push}. Their respective abstract semantics are:

JisEmptyK♯(ab, v) = (ab, 1) if ab = Nil

= (ab, 0) otherwise

JtopK♯(x ::ab, v) = (x ::ab, x)

JpopK♯(x ::b, v) = (b, Null)

JpushK♯(b, v) = (b++[v], Null) if |b|<SIZE − 1.

Those semantics are mostly straightforward. Once again, isEmpty, top
and pop discard their input, while pop and push return the default value

Null. The method isEmpty returns the value 0 or 1 to indicate whether the

abstract buffer is equal to Nil, and leaves it untouched. Both the methods top

and pop have the peculiarity to be blocking if the buffer is empty. Buffers

being of bounded size, the push method may also block, if the size of the

abstract buffer is greater or equal than SIZE.

Given an implementation for each atomic method in L, we consider
a program transformation, meant to be embedded in a verified com-
piler. This transformation, compile〈I〉 ∈ L♯ → L, replaces the abstract
data structures with their fine-grained concurrent implementation in
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L. Our goal is to prove for linearisable implementations of the ab-
stract data-structure that this compiling pass is correct, in the sense
that it preserves the observable behaviours of source programs. The
sought theorem is therefore of the form

∀p ∈ L♯, beh(compile〈I〉(p)) ⊆ beh(p). (1)

Example 3 (Spinlock – Concrete implementation). The abstract spin-

lock can be implemented using a single boolean field flag. The value of the

flag denotes the state of the lock. The implementation of the acquire and

release methods are given on Figure 27.

Releasing the lock simply consists in setting the flag to 0. Indeed, the corre-

sponding abstract semantics was also straightforward. The abstract acquire

method however was blocking when the lock was Locked. This behaviour is

matched by the use of a waiting loop. Acquiring the lock requires the use of

a compare-and-swap instruction. If the lock was indeed available, we simply

set the flag to 1. Otherwise, we loop and retry until the lock is available.

def acquire() ::=

ok = 0

do {

ok=cas(this.flag,0,1)

} while (ok == 0)

return

def release() ::=

this.flag = 0

return

Figure 27: Spinlock in L.

Example 4 (Buffers – Concrete implementation). We turn to the con-

crete implementation of the buffers. The fine-grained implementation we

prove is similar to that of Domani et al. [35], except that we use bounded-

sized buffers. Buffers are objects with three fields (see Figure 28). Field

data contains a reference to an array of fixed size SIZE, containing the

elements of the buffer. Two other fields, next_read and next_write, indi-

cate the bounds, within the array, of the effective content of the buffer. Field

next_read contains the array index from which to read, while next_write

contains the index of the first free slot in the array.

A buffer is empty if and only if next_read and next_write are equal.

Pushing a value on a buffer consists in writing this value in the array, at

position next_write, and then incrementing next_write. Conversely, pop-

ping a value from a buffer is done by incrementing next_read. To consult

its top value, one reads the array element at position next_read. In fact, the

data array can be populated in a modulo fashion (see right example in Fig-

ure 28). The code for implementing buffers is given in Figure 29, and follows

the above principles. Our core language does not include proper arrays, but

we encode them with appropriate macros. The code is blocking when trying

to pop on an empty buffer, or trying to push on a full buffer, as is the case
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next_read

next_write

data

nr

nw
…

nr

nw

0

1

SIZE-1

next_read

next_write

data

nr

nw
…

nw

0

SIZE-1

nr

Figure 28: Concrete buffers layout (examples). Elements contained in the
buffer are coloured in grey. Example on the right shows how the
array is populated circularly.

def top() ::=

nr = this.next_read

nw = this.next_write

assume(nr6=nw) // buffer 6= Nil

d = this.data

res = d[nr]

return res

def pop() ::=

nr = this.next_read

nw = this.next_write

assume (nr6=nw) // buffer 6= Nil

nr = (nr+1) mod SIZE

this.next_read = nr

return

def isEmpty() ::=

nr = this.next_read

nw = this.next_write

return (nw==nr)

def push(v) ::=

nw = this.next_write

nr = this.next_read

d = this.data

d[nw] = v

nw = (nw+1) mod SIZE

assume (nr6=nw) // no overflow

this.next_write = nw

return

Figure 29: Buffers in L.

for the abstract version. This is no limitation in practice: the size of buffers

is chosen at initialisation time, and can be upgraded at will.

Note that the implementation avoids the use of any synchronisation mecha-

nism. This would naturally be unsound in general, but relies on the client re-

specting a protocol: the queues are assumed to be single-writer, single-reader.

This protocol matches the one followed by the garbage collector: every shared

buffer is only read by the collector, and only written to by its associated mu-

tator. Crucially, our methodology is indeed able to encode such protocols, as

described in Section 6.3.8.

As we explained in Section 6.1, proving a theorem like (1) is done
with a simulation: for any execution of the target program, we must
exhibit a matching execution of the source program. Between L and
L♯, the simulation is however particularly difficult to establish.

We illustrate the general situation with Figure 30. Execution steps
labelled with  are those where the effect of a method in I becomes
visible to other threads, and thus determines the behaviour of other
methods in I executed concurrently.
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Figure 30: Intra and inter-thread matching step relations.

At the intra-thread level (Figure 30, left), we need to relate sev-
eral steps of a thread in the target program to a single step in the
source. The situation is even more difficult at the inter-thread level
(Figure 30, right): the interleaving of threads at the target level (first
u, then t in the example) must sometimes be matched at the source
level by another interleaving (first t then u in the example). Indeed, it
all depends on which thread will be the first to execute its  step in
the concrete execution. The matching step for a given thread hence
depends on the execution of its environment.

Our main result, that we present in Section 6.3.9, removes this dif-
ficulty by establishing, under some hypotheses, a generic simulation
that entails semantic refinement. This is a meta-theorem that we es-
tablish once and for all, independently of the abstract data-structures
available in L♯.

6.3 proving linearisability through rely-guarantee rea-
soning

As argued in Section 6.2, we would like to avoid having to use the
history-based definition of linearisability. This definition is indeed
intrinsically non-local and hardly operational. Moreover, we argued
that the notion we actually seek is atomicity refinement, a notion that
has been proved equivalent to linearisability in the past.

Proving directly atomicity refinement is however not much more
appealing. Following Section 6.1.3, refinements are consequences of
simulations. But building simulations is a complex and tedious task,
especially in our particular setup, as highlighted in Figure 30.

The solution we developed has therefore been to rephrase, for-
malise and provide with strong semantic foundations a methodology
first introduced by Vafeiadis in his PhD [137]: proving linearisability
through Rely-Guarantee reasoning.

6.3.1 Intuitive idea

Linearisable operations appear to take place atomically, somewhere
between their invocation and their return. The atomic operation at
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which this happens corresponds to a program point that we refer
to as a linearisation point. Identifying these linearisation points in the
implementations is the first key towards proving linearisability.

Indeed, while Rely-Guarantee reasoning embodies no native sup-
port to capture linearisability, Vafeiadis devised the idea to work
upon hybrid methods, explicitly annotated with their linearisation
points. These hybrid methods are the concrete, implemented ones,
except that they proceed upon a hybrid state. Additionally to the
concrete, expected, component of the state, we also store the value
of the abstract data-structure. The method being annotated with lin-
earisation points, we can give them semantics: since they characterise
the moment when the effect becomes visible, they should trigger the
abstract semantics of the method at the same instant.

Example 5 (Spinlock – Linearisation annotation). Figure 31 shows once

again the code for the spinlock implementation, but annotated with explicit

linearisation points.

The effect of releasing a lock is no mystery: the concrete implementation is

already atomic, its instruction is therefore obviously the linearisation point.

We encode this annotation by adjoining to the instruction another instruc-

tion, Lin(true). The boolean true simply states that this instruction uncon-

ditionally linearises the method when executed.

On the contrary, the acquire method will only perform its visible effect

once the compare-and-swap operation has succeeded. This operation is thus

the linearisation point, but only acts as such when the variable ok, holding

the result of the compare-and-swap, contains the value 1.

def acquire() ::=

ok = 0 ;

do {

atomic 〈

ok=cas(this.flag,0,1)

Lin(ok==1) 〉

} while (ok == 0)

return

def release() ::=

atomic 〈

this.flag = 0

Lin(true) 〉

return

Figure 31: Spinlock in L♭.

Example 6 (Buffers – Linearisation annotations). Spinlock’s operations

in the previous example demonstrate the fact a linearisation point may only

act as such during an execution granted a condition is satisfied. However

their identification was straightforward in the sense that they happened at

the only time we wrote in the shared memory.

Buffers’ annotations, as given on Figure 32 show more interesting con-

cerns.

The top operation does not perform any modification of the shared data-

structure. One could therefore think that any program point would fit as a
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def top() ::=

nr = this.next_read

nr = this.next_write

assume(nr6=nw) // buffer 6= Nil

d = this.data

res = d[nr]

Lin(true)

return res

def pop() ::=

nr = this.next_read

nw = this.next_write

assume (nr6=nw) // buffer 6= Nil

nr = (nr+1) mod SIZE

atomic 〈 this.next_read=nr ;

Lin(true) 〉

return

def isEmpty() ::=

nr = this.next_read

nr = this.next_write

Lin(true)

return (nw==nr)

def push(v) ::=

nw = this.next_write

nr = this.next_read

d = this.data

d[nw] = v

nw=(nw+1) mod SIZE

assume (nr6=nw) // no overflow

atomic 〈 this.next_write=nw ;

Lin(true) 〉

return

Figure 32: Buffers in L♭.

linearisation point. If we stick to the only argument that linearisation occurs

when the effect of the method takes place, this reasoning would be sound.

However, the same way the linearisation point characterises the point in time

at which the effect of the method over the environment takes place, it also

determines the point in time where the environment can no longer influence

the result of the operation. Linearisation in the top operation therefore only

takes place after the value of d[nr] has been read. Note also that if we had

decided to return a default value if the buffer is empty, i. e. replaced the

assume operation by a test returning if succeeding, we would have had two

linearisation points: one when the test is performed, linearising the method

if the test succeeds, and the current one. The isEmpty operation is similar.

Both the pop and push operations perform their linearisation point at the

end of their executions, when they move the relevant pointer indicating ei-

ther the beginning or the end of the buffer in the linked list. Note that they

do manipulate the shared data-structure beforehand. However, the interpre-

tation of the structure is to consider only the elements held between the

this.next_write and this.next_read pointers as being part of the buffer.

The changes they may perform to the remainder of the structure therefore

cannot be observed by the environment before the pointer is moved.

Vafeiadis has introduced a hybrid entity that can be reasoned about
using Rely-Guarantee in order to prove linearisability. Intuitively, by
expressing a coherence invariant relating an abstract data-structure
to its implementation, one can use Rely-Guarantee reasoning to en-
sure that any execution of a method will trigger exactly one linearisa-
tion point, and that the coherence between the abstract and concrete
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views of the structure will remain. While the approach is elegant, it is
not formally linked neither to the history-based definition of linearis-
ability, nor to the one we are interested in, semantic refinement. We
propose here such a formalised semantic foundation to the method-
ology by automatically deriving an atomicity refinement from proof
obligations expressed in RG.

6.3.2 Languages

As explained, we consider in this work a target language L, as well
as a source language L♯ including L, as well as an abstract data-
structure equipped with atomic operations. However, as already hinted,
we need to introduce a third, hybrid, language L♭ in order to apply
Rely-Guarantee reasoning. This new language contains all features of
L, but also linearisation annotations, and a state enhanced with ghost
elements used to conduct the proof of linearisability. While programs
in L♭ cannot explicitly call abstract methods, their semantics is implic-
itly embedded in the linearisation annotations.

To lighten the presentation, we will focus on one language when
the underlying concept is common to all three languages. This lan-
guage is L♭ enhanced with abstract methods, that includes all fea-
tures. We shall keep in mind that source programs in L♯ do not in-
clude any linearisation instrumentation, while target programs in L

do not contain abstract method calls nor linearisation instrumenta-
tion.
L♭ is quite similar to RtIR but for a few enhancements. First, ab-

stract data-structures are made explicit: the language is parameterised
by one such structure2 and its operations, including a constructor. Ad-
ditionally, L♭ has explicit support for method calls to smoothen the
definition of the transformation, substituting an abstract method call
by a concrete one. Finally, as argued, it supports linearisation instru-
mentation.

To sum up the language, L♭ is a concurrent imperative language,
with no dynamic creation of threads. It is dynamically typed, and fea-
tures a simplified object model: objects in the heap are just records,
and rather than virtual method calls, the current object – the object
whose method is being called – is an extra function argument, passed
in the reserved variable this. In the sequel, Var is a set of variables
identifiers, method names range over m ∈ Methods, and fields identi-
fiers range over f ∈ Fields.

2 The current development does not support several different data-structures, but the
process of refinement could be chained with very little adaptation.
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<expr> e ::= n | null | x | e + e | - e | e mod n | . . .

<bexpr> b ::= true | e == e | e <> e | b && b | b || b | !b

<comm> c ::= • | assume(b) | print(e)

| x = e | x = y.f | x.f = y

| x = new(f,. . . ,f) | return(e) | x = y.m(z)

| c ; c | c + c | loop(c) | atomic 〈c〉

<comm>♯ c♯ ::= c | x ∗= #y.m(z)

<comm>♭ c♭ ::= c | Lin (b)

Figure 33: Language syntax.

6.3.2.1 Values and Abstract Data Structures

We use the domain of values Val = Z + Ref + Null, where Ref is a
countable set of references. A central notion in the language is the
one of abstract data structure, which are specified with an atomic
specification. All our development and our proofs are parameterised
by an abstract data structure specification. It could naturally be in
particular either of the examples introduced, abstract locks or buffers.

Definition 12 (Abstract data structure specification). An abstract data

structure is specified by a tuple (A♯, I, J.K♯,P) where A♯ is a set of abstract

objects; I ⊆ Methods is a set of abstract methods identifiers, whose atomic

semantics is given by the partial map J.K♯ ∈ I → (A♯ × Val) →֒ (A♯ ×

Val), taking as inputs an object and a value, and optionally returning an

updated object and a value; P ⊆ Fields reserves private field identifiers for

the concrete implementation of abstract methods in I.

Abstract objects in A♯ are the possible values that an instance of a
data structure can take. We use private fields to express the property
of interference freedom from Herlihy and Shavit [57]. Namely, client
code can only use public fields in Fields \ P, and concrete implemen-
tations of abstract methods in I use private fields only. Note that
allowing the abstract semantics to be a partial map is crucial to al-
low refinement of implementations which loops until a condition is
satisfied. For instance, a pop method over a queue which would not
return a default value when the queue is empty, but rather wait until
another thread pushes a value would be simulated by an abstract se-
mantics for the pop method which is blocking over the empty queue.

Example 7 (Spinlock – Abstract data structure specification). In the

spinlock example, we therefore have the previously introduced objects: A♯ :=

Locked | Unlocked, and abstract methods I = {acquire, release}. Lock

implementations use the single private field P = {flag}.
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6.3.2.2 Language Syntax

In the sequel, we fix an abstract data structure specification (A♯, I, J.K♯,P).
The syntax of the language L♭ is detailed on Figure 33. The lan-
guage provides constants (n, null, true), local variables (x,y,z . . . ),
and arithmetic and boolean expressions (e, b). Regular commands (c)
are standard, and common to the three languages. They include •
(skip), an assume(e) statement, a print(e) instruction that emits the
observable value of e, variable assignment of an expression, fields
reads and updates, record allocation, non-deterministic choice (+),
loops, and atomic blocks atomic 〈c〉. Concrete method calls are writ-
ten x = y.m(z).

Some instructions are specific to a language level. In L♯, abstract
method calls on an abstract object are written x ∗= #y.m(z). For any
m ∈ I, such a call in a L♯ program is compiled to a concrete call
x = y.m(z) in the L program. In L♭, the Lin(b) instruction is used to
annotate a linearisation point.

Finally, a client program is defined by a map from method names
in Methods \ I to their command, and a map from thread identifiers
to their initial command. In the sequel, we will write m.comm for
getting the command of method m, leaving the underlying program
implicit.

6.3.3 Semantics

We present here the essential elements of our semantics, and refer the
reader to the formal development3 for full details4.

We assume a standard semantics J·K for expressions, omitted here.
Abstract objects are stored in an abstract heap, ranged over by h♯ ∈

H♯ = Ref → A♯. At the concrete level, abstract objects are imple-
mented by regular, concrete objects, living in a concrete heap h ∈ H =

(Ref × Fields)→ Val. A shared memory, ranged over by σ ∈ H♯ ×H is
made of an abstract heap and a concrete heap.

An intra-thread state ts = 〈m, c, l, ls〉 includes the name of the cur-
rent method m, a current command c, a local environment l ∈ Lenv =

Var → Val, and a linearisation state ls ∈ LinState, that we explain be-
low. The intra-thread operational semantics, partially shown in the
top four rules of Figure 34, is a transition relation · ·

−→ · on intra-
thread states. It is labelled with observable events ranged over by o.
An observable event is either a numeric value or the silent event τ.

The print instruction (rule Print) is the only one that emits an
observable value, namely the value of the expression that is printed.

3 http://www.irisa.fr/celtique/ext/simulin/
4 In our formal development, we use a continuation-based semantics to handle atomic

blocks and method calls. This has proven to lighten the mechanisation of many
proofs, by removing any recursion from the small step semantics. It also allowed for
reasoning of intermediate states of atomic executions.
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JeKl = v m6∈ I

(〈m,print(e), l, ls〉,σ) v
−→ (〈m, •, l, ls〉,σ)

Print

l(y) = r h♯(r) = a l(z) = v

m’∈ I Jm’K♯(a, v) = (a ′, v ′)
ts ′ = 〈m, •, l[x7→ v ′], ls〉 σ ′ = (h♯[r 7→ a ′],h)

(〈m,x∗= # y.m’(z), l, ls〉, (h♯,h)) τ
−→ (ts ′,σ ′)

Acall

ls ′ = if m’∈ I then Before(r, v) else Nolin

l(y) = r l(z) = v l ′ = [m’.this7→ r, m’.arg 7→ v]

(〈m,x=y.m’(z), l, Nolin〉,σ) τ
−→ (〈m’,m’.comm, l ′, ls ′〉,σ)

Ccall

JbKl = true m∈ I

h♯(r) = a JmK♯(a, v) = (a ′, v ′)
ts ′ = 〈m, •, l[x7→ v ′], After(r, v, v ′)〉 σ ′ = (h♯[r 7→ a ′],h)

(〈m,Lin(b), l, Before(r, v)〉, (h♯,h)) τ
−→ (ts ′,σ ′)

LinTrue

JbKl = false

(〈m, Lin(b), l, Before(r, v)〉,σ) τ
−→ (〈m, •, l, Before(r, v)〉,σ)

LinFalse

γ(t) = ts (ts,σ) o
−→ (ts ′,σ ′) ∀t ′ 6= t, ¬inAtomic(γ(t ′))

(γ,σ) o
−→ (γ[t 7→ ts ′],σ ′)

Intl

Figure 34: Semantics (excerpt).

Neither the local state nor the shared memory are modified by this
instruction. Print instructions are only allowed outside abstract meth-
ods implementations.

An abstract method call (rule Acall) x∗= #y.m(z) is executed ac-
cording to the abstract semantics JmK♯, and modifies only the abstract
heap.

Concrete method calls (rule Ccall) behave as expected, but addi-
tionally manage the local linearisation state. This linearisation state
notably keeps track of whether the execution of the current method
is before its linearisation point (Before) or not (After). It also keeps
track of the reference to the abstract object on which the method is
called, the value of the call argument, and the value returned by its
abstract semantics. This information is instrumental in proving that
the method execution may be faithfully simulated by its abstract al-
ternative when the linearisation point is reached.

Initially when executing an concrete method call, the linearisation
state is set to Nolin. When control transfers to a method in I through
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a concrete method call, the linearisation state changes from Nolin to
Before (see rule Ccall). It switches to After when executing a Lin

instruction (rule Lin), and then back to Nolin on method return. Lin-
earisation states are used in the simulation proof, and instrument L♭

only.
At the L♭ level, the Lin instruction also accounts for the effect on

the abstract heap of concrete methods in I: it performs the abstract
atomic call JmK♯ to the enclosing method m, updating the local envi-
ronment and abstract heap.

The interleaving of threads is handled in rule Intl,with relation
(γ,σ) o

−→ (γ ′,σ ′) between global states (γ,σ), where γ maps thread
identifiers to thread local states and σ is a shared memory. Mutual
exclusion between atomic blocks is ensured by the ¬inAtomic side
condition.

Finally, we need to introduce our program behaviours. Following
Section 6.1.3, they are generated by the values printed by the program
taken for events. They therefore are defined on top of the interleaving
semantics, as expressed by the following definition.

Definition 13 (Program behaviour). The observable behaviour of a pro-

gram p from an initial shared memory σi, written beh(p,σi), is a set of

either finite traces of values emitted by a finite sequence of transitions or an

infinite trace of values emitted by an infinite sequence of transitions.

6.3.4 Definition of the transformation

We introduced in Section 6.2.2 the transformation compile, for which
we want a refinement. This transformation should take any client in
L♯ and compile it into L by substituting its abstract method calls
for their concrete counterpart. However, due to the intermediate lan-
guage L♭ we need to reason about, we actually split the compile func-
tion into two successive transformations: compile = clean◦concretize.

First, a client p ∈ L♯ is transformed into concretize〈I〉(p)∈ L♭

where abstract methods are implemented by hybrid, annotated code.
This annotated code is naturally supplied by the programmer of the
library. Then a second compilation phase clean〈I〉 ∈ L♭ → L takes
care of removing Lin instructions in the target program.

We prove in Coq that the compiler is correct, providing that hy-
brid methods in I are proved correct w.r.t. a RG specification, RGspec,
that we carefully define, in terms of L♭ semantics, to prove, via the
aforementioned simulation:

RGspec (I) =⇒ ∀p ∈ L♯, beh(compile〈I〉(p)) ⊆ beh(p)

RGspec is a set of proof obligations under the form of RG proofs
of the instrumented methods, as well as constraints over their compo-
nents: its precise definition is exposed in section 6.3.9. The judgement
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embeds the requirements sufficient to simulate the hybrid method by
its abstract counterpart, as well as to show that Lin instructions can
be safely removed by the clean phase. This ensures that, despite their
operational nature, Lin instructions are only passively instrumenting
the program and its semantics.

6.3.5 Using our result

Before laying down our result, we recapitulate its aim, and detail how
it can be used from a client’s perspective. The intent is to provide
atomic refinement, a strong notion of correctness easily embedded in
particular into a compiler, for linearisable, fine-grained, concurrent
data-structures. This refinement is not to be built by hand but au-
tomatically derived from proof obligations expressed in RG. This is
made possible by a meta-theorem proved in Coq, and parameterised
by any abstract data-structure, its implementation and its proof obli-
gations.

The typical workflow for using our generic result is therefore to

(i) define the abstract data structures specification, i.e. their type,
and the atomic semantics of methods in I,

(ii) provide a concrete implementation, i.e. the representation in the
heap of the instances of the data-structure, and a fine-grained
hybrid implementation of methods,

(iii) define a coherence invariant between abstract and concrete data
structures that formalises the link between a concrete data struc-
ture and its abstract view,

(iv) define the rely and guarantee of each method,

(v) prove the RG specification of each method using a dedicated
program logic and

(vi) apply our meta-theorem to get the global correctness result.

We have successfully used this workflow to prove the correctness
of the above illustrative spinlock example, as well as the concurrent
buffers we presented in this chapter, solving the need initiated by the
garbage collector formalisation.

6.3.6 Notations

In the following, we use the following notations and vocabulary. For
a set A, an A predicate P is a subset of A. An element a ∈ A satis-
fies the A predicate P, written a |= P, when a ∈ P. Given two sets A

and B, a relation R is an A× B predicate. We use infix notations for
relations. State predicates are (H♯ ×H× Lenv× LinState) predicates,
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specifying shared memories and intra-thread states. A shared mem-
ory interference is a binary relation on H♯ ×H, and is used for relies
and guarantees. We refer to both state predicates and shared mem-
ory interferences as assertions. It is important to note in the following
that the rely-guarantee reasoning is done at the intermediate level L♭,
on instrumented programs, more precisely on the hybrid code of ab-
stract methods implementations. Hence, assertions specify properties
about the concrete and abstract heaps simultaneously.

6.3.7 An enriched semantic judgement for RG triples

We shall express RG proof obligations over hybrid methods entailing
a semantic refinement. To do so, we need to take a moment to refine
our semantic judgement of a RG triple. a hybrid method m, whose
body is c, must indeed be specified with a semantic RG judgement
of the form R,G, I |=m {P} c {Q}, in the exact same fashion introduced
in Chapter 3, and heavily used to prove the GC. A couple of twists
are however needed. First, state predicate I takes here a particular
meaning: it is in particular meant to specify the coherence invariant
between abstract objects and their representation in the concrete heap.
It is asked to be proved invariant separately (see Definition 17).

More importantly, the RG judgement is now made of three items.
The already introduced intuition, typical of RG reasoning, is still
soundly grounded in conditions (1) and (2) below.

Definition 14. Judgement R,G, I |=m {P} c {Q} holds whenever:

1. The post-condition is established from pre-condition and invariant:

(〈m, c, l, ls〉,σ)→∗
R (〈m, •, l ′, ls ′〉,σ ′)

and (l, ls,σ) |= P ∩ I

implies (l ′, ls ′,σ ′) |= Q

2. Instructions comply with the guarantee:

(〈m, c, l, ls〉,σ)→∗
R (〈m, c ′, l ′, ls ′〉,σ ′)→ (〈m, c ′′, l ′′, ls ′′〉,σ ′′)

and (l, ls,σ) |= P ∩ I

implies σ ′ G σ ′′

3. Linearisation points are unique and non-blocking:

(〈m, c, l, ls〉,σ)→∗
R (〈m,Lin(b), l ′, ls ′〉, (h♯,h))

and (l, ls,σ) |= P ∩ I

and JbKl ′ = true

implies ∃r,a,a ′, v, v ′, such that h♯(r) = a

and JmK♯(a, v) = (a ′, v ′)

and ls ′ = Before(r, v)
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Condition (3) in Definition 14 is however novel, and more subtle. It
captures a necessary requirement to ensure that Lin instructions do
not block programs (JmK♯ is defined), and are unique (the linearisa-
tion state is Before). This condition is essential to ensure that we can
clean up the Lin instrumentation of hybrid programs, and that our
semantic refinement is not vacuously true. We come back to condition
(3) in Section 6.3.10.

6.3.8 Specifying hybrid methods: A RG Specification Entailing Semantic

Refinement

We now explain the precise RG specification we require for hybrid
methods.

single object assertions . The above RG judgement involves
state predicates and shared memory interferences. In fact, we build
them from elementary bricks, object predicates and object interferences,
that consider one object — one instance of a data structure — at a
time, pointed to by a given reference.

Definition 15 (Object predicate, object interference). Let r ∈ Ref . An

object predicate Pr is a predicate on pairs of an abstract object and a con-

crete heap: Pr ⊆ A♯ ×H. An object interference Rr is a relation on pairs

of an abstract object and a concrete heap: Rr ⊆ (A♯ ×H)× (A♯ ×H).

Example 8 (Lock – Object invariant, object guarantees, and object
relies). The coherence invariant specifies that an abstract Locked (resp.

Unlocked) lock is implemented in the concrete heap as an object whose

field flag is set to 1 (resp. 0). It is formalised as the following object predi-

cate, parameterised by a reference r:

ILockr , {(Locked,h) | h(r, flag) = 1}

∪ {(Unlocked,h) | h(r, flag) = 0}

Object guarantees for acquire and release express the effect of the meth-

ods on the shared memory when called on a reference r. They are defined as

the following object interferences.

Grel
r , {((a,h1), (Unlocked,h2)) | h2 = h1[r, flag← 0]}

Gacq
r ,{((Unlocked,h1), (Locked,h2)) | h1(r, flag) = 0

∧ h2 = h1[r, flag← 1]}

In G
acq
r , the assignment to flag is performed only if the cas succeeds.

Finally, both acquire and release have the same object rely, when called

on a reference r: indeed, another thread could call both methods on the same

reference. So we define the following object interference: for m ∈ {rel,acq},
Rm
r , Grel

r ∪Gacq
r .
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Example 9 (Buffers – Object invariant, object guarantees, and object
relies). The coherence invariant between an abstract buffer and its concrete

implementation essentially consists in that every cell in the data array be-

tween next_read and next_write matches, in order, the elements of the

list representing the abstract buffer – in particular, the number of valid cells

in the array must be equal to the length of the abstract buffer.

We express it as the following object predicate, where function range(s, e)
computes the list of successive indices between two integers s and e, modulo

SIZE.

IBuckr ⊆(list value)×H

IBuckr ,{(b,h) | b = b1 :: . . . ::bs ∧ s<SIZE ∧ Separation(h,data)

∧ h(r,next_write) = nw∧ h(r,next_read) = nr

∧nw<SIZE ∧nr<SIZE ∧ range(nr,nw) = i1 :: . . . :: is

∧ ∀j ∈ {1, ..s}, h(h(r,data), ij) = bj}

The property Separation(h, f) states that all values of f fields in concrete

heap h are unique. In the definition of IBuckr, this encodes the separation of

arrays (all data field are distinct references), thus reflecting the ownership

of buffers by each thread.

Methods guarantees reflect each basic shared memory effect of the methods.

First, methods top and isEmpty have no effect over the shared memory.

Their object guarantee is therefore the identity, i. e.

Gtop
r = GisEmpty

r = {((a,h), (a,h))}.

Methods pop and push have been explained informally previously. Their

guarantee Gpop
r and G

push
r reflect both their effect on the concrete heap, as

well as the effect on the abstract buffer. The later is specified to occur atomi-

cally with the instruction annotated by the Lin instruction (see Figure 29).

More precisely, the guarantee are defined as follows:

Gpop
r , {((ab,h), (ab ′,h ′)) |

JpopK♯(ab, Null) = (ab ′, Null) ∧

h(r,next_read) = nr ∧ h(r,next_write) = nw ∧ nr 6= nw

∧ h ′ = h[r,next_read← (nr+ 1) mod SIZE] }

The method pop has only one observable effect, which occurs at the linearisa-

tion point. Its guarantee therefore relates abstract buffers which are related

by JpopK♯. Assuming that the buffer is initially not empty, i. e. that the field

next_read and next_write do not contain the same value, the concrete

heap is see its next_read value incremented, modulo SIZE.
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The push method on the other hand has two distinct observable effects,

reflected in its guarantee.

Gpush
r , {((ab,h), (ab,h ′)) |

h(r,data) = d ∧ h(r,next_write) = nw ∧

h ′ = h[d, inw ← v]}

∪ {((ab,h), (ab,h ′)) |

JpushK♯(ab, v) = (ab ′, Null) ∧

h(r,next_read) = nr ∧ h(r,next_write) = nw ∧

nr 6= (nw+ 1) mod SIZE ∧

h(r,data) = d ∧ h(d, inw) = v ∧

h ′ = h[r,next_write← (nw+ 1) mod SIZE] }

The first effect describes the storing of a pushed value v into the concrete

buffer. Since the value will only be visible once the value of next_write is

updated, the operation is non-linearising, and hence the abstract buffer is left

untouched. The second effect corresponds to the linearisation point. Once

again, the abstract buffers are related by the abstract semantics JpushK♯,
while the value of next_write is updated, granted the buffer is not full.

Finally, we express the usage protocol of single-writer, single-reader by

defining the respective rely of methods. A thread should tolerate at least any

interference that a method the thread calls describes in its rely. We therefore

state that the rely of method push is reduced to the effect of the method pop,

G
pop
r . In particular, since it does not contain G

push
r , it encodes the fact

that a thread calling the method push over a buffer will not be composed

with another doing the same, it is the only pusher allowed over this buffer.

RisEmpty
r , Gpush

r Rpop
r , Gpush

r Rtop
r , Gpush

r Rpush
r , Gpop

r

lifting single object assertions . Object predicates and ob-
ject interferences allow to specifically describe predicates and rela-
tions over a sub-part of the concrete and abstract heap, describing
one single instance of the abstract data-structure. They are very con-
venient to describe finely the effect a method called over an object r
has, and expect from the environment. Indeed, it should not have to
explicitely consider effects of methods over objects, as well as effects
from the client code.

However, this means that in order to enunciate the RG specifica-
tions of hybrid implementations, state predicates and shared-memory
interferences need to be lifted, cast into state predicates and shared-
memory which describe the memory as a whole. The challenge here
is twofold: make the specification effort relatively light for the user,
and, more importantly, sufficiently control the specifications so that
we can derive our generic result.
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An object predicate Pr is lifted to a state predicate P̂r by further
specifying that, in the abstract heap, r points to an abstract object
satisfying Pr:

P̂r = {(h♯,h, l, ls) | ∃a,h♯(r) = a∧ (a,h) |= Pr}

Similarly, for an object guarantee Gr, reference r should point to an
abstract object in the abstract heap. Moreover, its effect on this object
should be reflected in the resulting abstract heap. Formally:

⌢

Gr = {((h♯,h1), (h♯[r 7→ a2],h2)) | ∃a1, h♯(r) = a1

∧ (a1,h1) Gr (a2,h2)}

Lifting relies is a bit more subtle. When executing a hybrid imple-
mentation m, one should account for two kinds of concurrent effects:
the client code, and the rely of the method itself. To model the client
code effect, we introduce a public shared memory interference, writ-
ten Rpub, that models any possible effect on the concrete heap, except
modifying private fields in P:

Rpub = {((h♯,h1), (h♯,h2)) | ∀r, f, f ∈ P⇒ h1(r, f) = h2(r, f)}

As for the method’s rely Rr, we should consider that it could occur
on any abstract object present in the abstract heap. Hence, a lifted rely
R̃ includes (i) the client public interference, and (ii) the method’s rely
Rr quantified over all r:

R̃ = Rpub ∪ {((h♯
1,h1),(h

♯
2,h2)) | ∃r,a1,a2,h♯

1(r) = a1

∧ (a1,h1) Rr (a2,h2)∧ h
♯
2 = h

♯
1[r 7→ a2]}

the rg specification. Before we define the RG proof obliga-
tion asked of hybrid method implementations, let us first recall the
definition of stability.

Definition 16 (Stability). State predicate P is stable w.r.t. shared mem-

ory interference R if ∀l, ls,σ1,σ2, (σ1, l, ls) |= P and (σ1R σ2) implies

(σ2, l, ls) |= P.

Now, we fix an invariant Ir. For a method m ∈ I, let Gm
r and Rm

r be
the object guarantee and rely of m, as illustrated in Example 8 above.
A RG specification for m includes an RG semantic judgement, and
stability obligations:

Definition 17 (RG method specification). The RG specification for method

m ∈ I includes the three following conditions:

• For all r ∈ Ref , R̃m,
⌢

G
m

r , Îr |=m {Pr}m.comm {Qr}

• For all r ∈ Ref , predicate Îr is stable w.r.t. R̃m
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• For all r, r ′ ∈ Ref , predicate Îr is stable w.r.t.
⌢

G
m

r ′

In the above judgement, we impose the pre- and post-condition
Pr and Qr. Pr expresses that (i) r points to an abstract object in the
abstract heap, (ii) the linearisation state is set to Before and (iii) the
reserved local variable this of method m is set to r. Qr expresses that
(i) the linearisation state is set to After, and (ii) the value virtually
returned by the abstract method (when encountering the Lin instruc-
tion) matches the value returned by the concrete code. Finally, the
stability requirements in the specification intuitively ensure that Îr is
indeed an invariant of the whole program.

6.3.9 Main theorem

So far, we have expressed requirements on hybrid methods, each
taken in isolation. The last requirement we formulate is the consis-
tency between relies and guarantees of methods. For a method m,
to ensure that Rm is indeed a correct over-approximation of its envi-
ronment, we ask that Rm includes any guarantee Gm ′

, where m ′ is
a method that may be called concurrently to m. This requirement is
formalised by the following definition.

Definition 18 (RG consistency). For all threads t, t ′ such that t 6= t ′, all

methods m,m ′ ∈ I and all r ∈ Ref , is_called(t,m)∧ is_called(t ′,m ′) ⇒

Gm ′

r ⊆ Rm
r where is_called(t,m) indicates that m syntactically appears in

the code of t.

Relying on predicate is_called allows for accounting for data struc-
tures used according to an elementary protocol (such as single-writer,
single-reader buffers).

We finally package the formal requirements on hybrid implementa-
tions into the RGspec specification and use it to state our main result,
establishing that the target program semantically refines the source
program.

Definition 19 (RGspec specification). Let I = {m1 . . . ,mn}. I satisfies

RGspec, written RGspec(I), if ∀ i ∈ [1,n], a RG method specification is

provided for mi, and RG consistency holds.

Theorem 2 (Compiler correctness). Let σi an initial shared memory sat-

isfying the invariant Ir for all r ∈ Ref allocated in it. If RGspec(I), then

∀p ∈ L♯, wf(p)→ beh(compile〈I〉(p),σi) ⊆ beh(p,σi).

We emphasise the fact that the client program p is arbitrary, mod-
ulo some basic syntactical well-formedness conditions defined in the
predicate wf. This predicate checks that the client code only accesses
public fields, and does not contain linearisability annotations. The im-
plementations of methods in I on the other hand are assured to only
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access private fields, and are not allowed to neither contain abstract
calls nor printing instructions.

Theorem 2 is phrased and proved w.r.t. an RG semantic judgement.
In our formal development, we have equipped the language L♭ with
a sound, syntax-directed proof system similar to the one introduced
for RtIR and described in Chapter 3. This system is used to discharge
the RG semantic judgement, and have successfully been applied to
prove the implementation of the spinlock, as well as the buffer data
structure.

6.3.10 Establishing the Generic Simulation from RGspec

Theorem 2 is proved by establishing, from the RGspec(I) hypothesis,
a simulation between the source program and its transformation by
compile. As exposed in Section 6.1, we do so through the use of a
backward simulation. Having two successive transformations, we ac-
tually establish accordingly two backward simulations, from L to L♭

and from L♭ to L♯, which we compose.

6.3.10.1 Leveraging RGspec(I)

A key point is to carry, within the simulation, enough information
to leverage RGspec(I). Indeed, the RGspec(I) hypothesis contains in
particular RG assertions. Such judgements gives us information about
states resulting from a partial, or complete, execution of a method in
I, starting from suitable initial states, with respect to an abstractly
interleaved semantics. However during the proof of a simulation, we
typically consider a given state, and inquiry the resulting state after a
step of the concrete semantics. We therefore first have to make a link
between these two contexts in order to be able to use our hypothesis.

Since this is necessary for both simulations, we factorise the work
by expressing a rich semantic invariant I over the execution of the L♭

program. To simplify its definition and its proof, I is built as a combi-
nation of thread-local invariants. Indeed, as rely-guarantee reasoning
suggests, one always wants to avoid reasoning about all threads si-
multaneously. We therefore retrieve a notion of thread modularity by
proving a family of invariants, one for each thread, and combine them
afterwards to build a global invariant of the program.

thread local invariant. For a thread t, the invariant It in-
cludes three kinds of information. Its formal definition is laid down
on Figure 35, we now go over it. As can be expected, few things are
enforced when we are not inside a method in I, the left handside
of the figure, while the right handside describes the situation when
inside a method.

First, the invariant ensures various well-formedness properties of
intra-thread states. Those very boring predicates, wfout and wfin are
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ls = Nolin

wfout(i)

m 6∈ I

∀r, (σ, ls, l) |= Îr

(〈m, i, l, ls〉,σ) ∈ IRt

ls = Before(this, arg)∨ ls = After(this, arg, res)

wfin(i)∧m ∈ I ∧ ∃ab, σ.h♯(this) = ab

∀r, (σ, ls, l) |= Îr

(m,m.instr, l0,σ0)→Rt
(〈m, i, l, ls〉,σ))

σ0 |= Pr ∩ Îthis

(〈m, i, l, ls〉,σ) ∈ IRt

Figure 35: Major invariant for L♭.

simply there to carry over the execution the well-formed assumptions
wf our main theorem take for hypothesis.

Second, Îr, the coherence invariant, holds for all objects r.
The third information is more subtle. When executing a hybrid

method m called on a reference r, in order to leverage its specification

R̃m,
⌢

G
m

r , Îr |=m {Pr}m.comm {Qr}, we keep track, in It, that the state
is reachable from a state satisfying Îr and Pr. Indeed, as previously
stated, recall that Definition 14 uses the abstract semantics →

R̃m . In
order to retrieve from this RG statement any information about the
state at the end of the execution of the method, we therefore need to
exhibit a trace of this execution, with respect to→

R̃m .
To do so, we first need to find a suitable rely. Indeed, the thread

may call several different methods in I during its execution, and they
might all have different R̃m. We hence generalise all relies →

R̃m of
methods that the thread may call, i. e. whose call appear syntactically
in its initial code, into a relation →Rt

. This relation is defined as the
intersection of these relies: Rt ,

⋂
m∈is_called(t) R̃

m. Intuitively, each
method m puts an hard constraint on the table: it shall not tolerate
any more interferences than described in R̃m. If a thread wants to call
several methods, hence putting them into a common environment, it
shall accommodate everyone: the best we can do is therefore the in-
tersection. Rely Rt hence over-approximates interferences of threads
concurrent to t, while being precise enough to deal with any method
m called by t, since Rt ⊆ R̃m.

Now equipped with our new rely, we can keep track of the on-
going execution of a method. When making the call, we record the
state σ0 from which the execution has started. This state satisfied the
preconditions P and Îthis needed. Finally, we build the abstract exe-
cution of the method, starting from σ0 and an initially empty local
environment l0 with respect to→Rt

.

global invariant. We define the global invariant as I , {(γ,σ) |
∀t, (γ(t),σ) |= It} expressing that all thread-local invariants simulta-
neously hold. We now want to prove that I is stable under the inter-
leaving semantics.



6.3 proving linearisability through rely-guarantee reasoning 125

To do so, we perform two steps. First, we prove that all thread local
invariants deserve their name: It is preserved by the intra-thread se-
mantics. Each thread’s invariant being stable under the thread’s own
steps is naturally insufficient in general for I to be invariant: a step
performed by a thread t ′ could break It. We therefore additionally
prove their preservation by other threads’ steps:

Lemma 3. Let γ, σ and t 6= t ′ be such that (γ(t),σ) |= It and (γ(t ′),σ) |=
It ′ . If (γ(t ′),σ) o

−→ (ts ′, σ ′), then (γ(t),σ ′) |= It.

6.3.10.2 Simulation Relations

Mimicking the approach we took to build the invariant, we try to keep
as much work as possible local within a thread. Therefore, for both
compilation phases, we build an intra-thread, or local, simulation that
we then lift at the inter-thread level. Both relations are defined using
the same pattern: in a pair of related states, the L♭ state satisfies It.
It remains to encode in the relation the matching between execution
states.

local high simulation. For the first compilation phase, a whole
execution of a hybrid method is simulated by a single abstract step,
occurring at the linearisation point. We therefore build a 1-to-0/1 back-
ward simulation.

Relation ≀♯
♭

states that shared memories are equal on the heaps do-
mains in L♯. Local environments are trickier to relate. In client code,
they simply are equal. During a hybrid method call x = y.m(z), be-
fore the Lin point, the abstract environment is equal to the environ-
ment of the L♭ caller. After the Lin point, the only mismatch is on
variable x, which has been updated in L♯, but not yet in L♭.

Proving that ≀♯
♭

is a simulation follows the above three phases. Steps
by client code are matched 1-to-1; inside a hybrid method, steps match
1-to-0 until the Lin point; the Lin step is matched 1-to-1; after the Lin

point, steps match 1-to-0 until the return instruction. At method call
return, we use RGspec(I) via It, and in particular Qr, to prove that
environments coincide again on x.

local low simulation. When simulating from L to L♭, Lin in-
structions have been replaced by a •. It is therefore a 1-to-1 backward
simulation. Recall that L semantics contains no LinState nor abstract
heap. Relation ≀♭ therefore only states the equality of local environ-
ments and concrete heaps.

Proving this simulation is what makes the third item in Defini-
tion 14 necessary. Indeed, we can match the • step in the L program
only if the Lin instruction in the L♭ program is non-blocking.

global simulations . Once again, establishing a family of thread-
local simulations define a natural global simulation relation by assert-
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t 6= t ′

(st2 t,σ2) →
{0,1} (ts2,σ ′

2) (st2 t ′,σ2) (st2 t ′,σ ′
2)

≀t ≀t
∧

≀t ′ ⇒ ≀t ′

(st1 t,σ1) →
{0,1} (ts1,σ ′

1) (st1 t ′,σ1) (st1 t ′,σ ′
1)

Figure 36: Sufficient condition to lift a family of thread-local simulations.
The relation of a thread t ′ should be stable under a matching
diagram performed by another thread t.

ing that all thread-local relations simultaneously hold. A sufficient
condition for this relation to define a global simulation is described
in Figure 36. Given two distinct threads t and t ′, consider two global
states, source and target, whose respective projections are related
by their thread-local relations. The stability condition states that the
effect on the shared memory a thread-local matching diagram per-
formed by t has should not break the relation of thread t ′.

In our case, having proved independently the invariant simplifies
this stability condition. Indeed, except for the part about It, that is
already proved invariant by other threads’ steps, relations keep track
of the same information for all threads. Hence, their preservation by
the interleaving essentially comes for free.

6.4 related work

The literature on linearisability verification is vast. Dongol et al. [36]
provide a comprehensive survey of techniques for verifying linearis-
ability w.r.t. the seminal definition of Herlihy [56].

The closest approach to ours is probably the work by Derrick et
al. [28]. Their work, formalised in the proof assistant KIV, follows
a similar structure to ours. They also derive systematically a simu-
lation from higher level proof obligations over the implementation.
The core difference between our contributions is in the nature of the
proof obligations. They reason thread locally and decouple a notion
of sequential refinement from a notion of stability, but their proof
obligations are semantic. In contrast, we express them directly with
respect to our proof system.

Notably, a number of works use combinations of rely-guarantee
and concurrent separation logics. One of the first approaches of this
nature is the PhD of Vafeiadis from which our own work is inspired.
Using RGSep [138], he introduced the idea of reasoning over hybrid
implementations annotated with linearisation points and proved lin-
earisable several algorithms [137, Chapter 5]. This aspect of his work
was however not formalised, and most importantly had no rigorous
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semantic ground. Vafeiadis also developed a non-verified tool written
in OCaml based on this approach to automatically prove the linearis-
ability of concurrent data-structures [139].

Our approach is sufficient to tackle the refinement of the mark
buffers used in Domani et al.’s algorithm [35]. We would also be
able to handle Treiber’s stack [135] in order to implement the freel-
ist. However, some more complex data-structures are currently out
of our reach. Indeed, through the use of the Lin(b) instruction, we
can capture linearisation points occurring inside the method’s body
when a condition is satisfied. However, two kinds of more involved
situations can occur.

First, linearisation can be external, i. e. the linearisation of a method
executed by a thread may occur during a computation step performed
by another thread. An example of this kind is the HSY elimination-
based stack [55]. This algorithm implements a fine-grained concur-
rent stack, much like our own implementation of buffers. However,
the key idea behind the algorithm is to let a push and pop occurring
simultaneously cancel each other. If both methods occur concurrently,
we can indeed always allow the push to resolve before the pop. But
if we do so, then the data-structure, being pushed and then popped,
will end up in the same state as it was initially. We therefore might as
well simply leave the data-structure untouched, and directly return
in the pop method the pushed value. To do so, when a thread starts a
method, it writes its identity and the description of the operation in
a shared array. When a thread tries to push a value, it first checks if
there is a pending pop. If so, it uses the shared array to directly com-
municate the desired value, linearising in the process the popping
thread.

Second, linearisation can be future dependent. The linearisation of an
operation happens at a fixed program point inside the method. In our
instruction Lin(b), whether or not an execution actually linearises or
not the method is conditioned by b. At future dependent linearisation
points, whether the instruction indeed linearises the method depends
on the validity of a condition at another program point, further in the
code. Intuitively, the second program point decides whether the effect
of the operation has indeed been propagated, but the structure is al-
ready in a different state such that the effect cannot be interpreted as
occurring at this point. An example a future dependent linearisable
algorithm is Harris et al. [51] multi-word compare-and-swap opera-
tion.

Liang and Feng [83], building upon their work on RGSim [84], have
developed a proof system able to handle both cases. To tackle external
linearisation, their approach extends the state with a pending thread
pool. This pool is essentially similar to our Before/After annotations,
but describes all threads simultaneously. Their Lin annotation is pa-
rameterised by a thread identifier, allowing one thread’s concrete step
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to trigger the abstract semantics of another thread’s method regis-
tered in the thread pool. To handle helping, they introduce two new
annotations. A TryLin instruction signals that the method might lin-
earise at this point, but that it shall be confirmed later. The semantics
is therefore simply to duplicate the state, and simulate both possibil-
ities in parallel. Then the Commit(b) instruction only keeps the sce-
nario which turns out to be correct based on the value of b.

Numerous program logics [30, 40, 41, 68, 128, 138] have sought to
develop general principles to reason about concurrent programs, be-
yond the particular case of linearisability. While they introduce count-
less principles that can be leveraged, they usually cannot be used off

the shelf to address our problem at hand. Indeed, they typically per-
mit to prove that a concurrent data-structure satisfies specifications
of various complexity. However they cannot prove a refinement of a
data-structure, such as the one we have established. An interesting
exception is to be noted. Krebbers et al. [72, Section 6] use their gen-
eral purpose logic Iris to embed logical relations which do entail a
refinement.

6.5 conclusion

The mechanised verification of the garbage collector we described
in Chapter 5 has left a significant gap towards an executable cer-
tified runtime: RtIR embarks atomic concurrent data-structures. In
this chapter, we filled this gap by designing and mechanising an ap-
proach to reduce the observational atomicity refinement of a linearis-
able data-structure to rely-guarantee proof obligations. We illustrated
the viability of the process by instantiating it to implement the mark
buffers used in RtIR.
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7.1 summary

With software percolating in every aspects of our life, formal methods
have become mandatory in an attempt to retain trust in safety-critical
software. A fundamental link in the chain of trust of a system is the
compiler. If it were to modify the admissible behaviours of the com-
piled program, any reasoning performed at the source level could be
invalidated. However, modern optimising compilers are so complex
that it is extremely hard to trust them, and for good reason. In 2011,
Yang et al. [147] thoroughly tested state-of-the-art industrial compil-
ers and reported the following.

“We created a tool that generates random C programs,
and then spent two and a half years using it to find com-
piler bugs. So far, we have reported more than 325 pre-
viously unknown bugs to compiler developers. Moreover,
every compiler that we tested has been found to crash and
also to silently generate wrong code when presented with
valid inputs.”

Verified compilation, whose most influential proponent is proba-
bly the C compiler CompCert [22, 82], aims at addressing the issue.
A formal semantics of both the source and the target languages is in-
troduced, and the compiler is proved to introduce no new behaviours
during the process of compilation. There is however still a significant
gap to fill before being able to achieve such a result for a managed,
concurrent, high-level language such as Java. In particular, handling
the sophisticated concurrent reasoning to verify the runtime is a ma-
jor challenge.

In this thesis, we have contributed to shorten this gap. We have ver-
ified in the Coq proof assistant a state-of-the-art On-The-Fly garbage
collector inspired by the work of Domani et al. [35]. Achieving such
a result is a combined challenge from the theoretical, methodological
and proof engineering standpoints. To this end, we put all along our
work a peculiar emphasis on three key aspects.

• Proofs must be conducted with respect to the operational se-
mantics of the program. Verified compilation crucially requires
to be able to prove the executable code itself and not the under-
lying algorithm. To this end, we make sure to only introduce
abstractions that we realistically know how to refine.

• Proofs must be conducted in a methodological way. Formal
proofs of programs are always complex, formal proofs of con-
current programs are significantly harder. We argued that sepa-
ration of concerns must be sought at all cost.

• Correctness results must be expressed in terms of observational
refinement, the standard in verified compilation.
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In accord with these principles, we have grounded our formal de-
velopment in the design of a dedicated intermediate representation,
RtIR. This language strives to embed the right abstractions instru-
mental to ease the formalisation and proof of concurrent runtime
implementations, while being amenable to be refined into a fully exe-
cutable language. These abstractions aim at two essential goals. First,
they provide facilities for introspection, most notably through native
support for roots and freelist, as well as dedicated iterators. Second,
they provide abstract specifications of concurrent data-structures, and
more specifically of the mark buffers which are used by the garbage
collector to implement the pending queue of cells to be explored.

After the design of RtIR, the second methodological step has been
the choice of a reasoning framework. We decided to strike a balance
between expressiveness and ease of mechanisation by having our
heart set on the well established rely-guarantee methodology. The de-
sign of our specific proof system is novel, putting significant empha-
sis on mechanisation and separation of concerns. First, we combine
syntax guided rules over annotated code with base rules expressed
in terms of operational interpretation of the logic to ease automation
of the sequential proofs of programs. Second, we unravel the inter-
lacing between sequential reasoning and stability obligations to defer
them in two distinct places. The resulting logic is proved sound with
respect to the operational semantics of RtIR, fitting our goal towards
the proof of executable code.

Even so, proofs of programs as complex as the garbage collector
we consider remain a major challenge to get through. To ease further
the process, we identified a need for an incremental workflow. This
extremely natural idea is easily compromised in a concurrent setup,
due to the interdependence between the predicates we proved over
a thread and the abstraction we make of the environment. Naively
refining the invariants requires to refine the guarantees, which in-
validates the previous proof of validity of the invariant. To tackle
this issue, we designed an incremental methodology based on meta-
theorems of our logic allowing to refine in a monotonic way our de-
velopment, without breaking previously established proof scripts. We
successfully followed this strategy, allowing us to split the develop-
ment in seven layers. Most crucially, we managed to reason about the
synchronisation protocol as a preliminary step, independently from
reachablity and colouring considerations.

Coming back to our core design principles, we promised to only in-
troduce abstractions that we deem possible to formally refine. How-
ever, this task is far from trivial when it comes to fine-grained con-
current data-structures such as the mark buffers supported abstractly
by RtIR. To address this concern, we devised a light weight method-
ology, based on our rely-guarantee proof system, to refine linearis-
able data-structures. The approach is inspired by the seminal work of
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Vafeiadis [137]. In order to fit our context, we however provide strong
semantic, operational, foundations to the technique. For any abstract
data-structure D, we derive from rely-guarantee proof obligations an
observational refinement from a source language equipped with an
abstract version of D, such as RtIR, to one implementing concretely
D. We proceed so by deriving complex backward simulations from
the semantic proof obligations. As opposed to alternate characterisa-
tions of linearisability, our formulation of the problem allows for a
straightforward embedding in a verified compilation context. Finally,
we successfully applied our method to implement the mark buffers,
the central concurrent data-structure manipulated abstractly by RtIR,
justifying the original choice of design.

The contributions of this thesis have led to two formal Coq de-
velopments. First, i) the design of RtIR, ii) the design of our proof
system, iii) the conception of an incremental methodology, iv) the im-
plementation of the garbage collector in RtIR and v) its verification
are wrapped up in a first development available online1.

Second, i) the formalisation of our rely-guarantee-based method-
ology for atomic refinement of linearisable data-structures, ii) its se-
mantic proof of soundness with respect to observational refinement
and iii) the instantiation of the technique to prove the refinement of
marked buffers is handled in a second Coq development, also avail-
able online2.

7.2 perspectives

7.2.1 A verified garbage collector on an executable RtIR

The first middle-term perspective would be to follow to the end the
lead we started by transporting the correctness result of the garbage
collector towards a more operational version of RtIR.

The major conceptual work has been done through the formali-
sation of a verified methodology for atomic refinements of linearis-
able data-structures, as described in Chapter 6. A first step would
therefore be to plug both developments together. While conceptually
straightforward, this might represent quite a refactoring effort.

Beyond this administrative aspect, two essential improvements are
needed. First, we demonstrated how to refine the challenging feature
of RtIR, the mark buffers. Yet, other aspects of the language need
to undergo a similar process. The management of roots should be
implemented as a data structure. However, although for convenience
we tracked them in our development in the shared state, the data-
structure is purely thread-local. This refinement would therefore rise
very little challenges. The implementation of the freelist is signifi-

1 http://www.irisa.fr/celtique/ext/cgc/
2 http://www.irisa.fr/celtique/ext/simulin/
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cantly harder, and would likely constitute a contribution of its own.
At its core, the data-structure is a shared list, typically implemented
as a Treiber’s stack [135] or a Michael-Scott queue [94]. On top of
it, fragmentation of the memory need to be taken into account. To
simplify things, it should be possible to handle the management of
the fragmentation at a thread local level in order to restrict the use of
the shared data-structure to its simplest. Refining the freelist would
therefore be an interesting work involving both a careful design of
the algorithm, and some non-trivial fine-grained reasoning.

The second improvement has to do with blocking behaviours. In-
deed, the semantics of RtIR has several blocking behaviours, such as
trying to dereference a non-allocated cell. Naturally, we took special
care to code our garbage collector in such a way that we do not end
up in those cases. A necessary step would nonetheless be to equip
the language with a simple type system entailing that well-typed pro-
grams never block.

7.2.2 A modular proof of a concurrent generational garbage collector

From the perspective of concurrency, the algorithm we verified is a
state-of-the-art On-The-Fly garbage collector. Yet, we dismissed or-
thogonal optimisations and refinements that a modern compiler must
handle.

Some of those refinements relate to the precise memory model con-
sidered. By adapting DLG’s algorithm [32, 33] to Java, Domani et
al. [35] covered features such as finalisation and weak references. These
extensions would eventually have to be tackled, but strongly depend
on the language whose compilation is targeted.

A higher level consideration is the question of combining optimi-
sations. How should a proof of a concurrent, generational garbage
collector be conducted? Ericsson et al. [125] have recently verified
a sequential, generational garbage collector as part of the CakeML
compiler. To tackle a garbage collector combining both On-The-Fly
concurrency and generations, we could naturally start the proof from
scratch, and conceive a new monolithic one. However, the arguments
related to the correctness of both aspects should intuitively be inde-
pendent. Being able to design the proof in such a modular way that
we could essentially plug the arguments we developed with the ones
from Ericsson could result in an elegant contribution.

7.2.3 A verified synchronised monitor

Through this work, we focused our attention towards the emblematic
challenge of verifying an On-The-Fly garbage collector. However, we
designed RtIR as a more general purpose intermediate representa-
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tion for the implementation and verification of concurrent runtime
implementations.

A fruitful follow work would therefore be to audit the legitimacy
of this claim of generality by proving other concurrent runtime im-
plementations in the same framework. In particular, an interesting
use case would be the verification of synchronised monitors, such
as the ones provided by Java [3]. Monitors, invented by Hansen and
Hoare [50, 59] in the seventies, are a service destined to ease con-
current programming. A monitor provides thread safe accesses to
shared data-structures by taking care of ensuring mutual exclusion.
Their rigorous use is therefore a convenient way for the programmer
to manipulate a shared data-structure while ensuring that no data-
race occurs. Naturally, this comes at the cost of a significant loss of
performance when compared to the kind of fine-grained concurrency
manipulated by the garbage collector or the implementation of mark
buffers we tackled. Yet, the trade-off for simplicity is worthy for many
applications.

The verification of such monitors could lead to two interesting lines
of investigation. First, they offer yet another verification challenge in
concurrent programming to test the expressiveness of RtIR and our
proof system. In particular, it might be the case that RtIR needs to be
extended to manipulate thread identifiers at the value level. Second,
monitors make for a great use case to investigate the verification of
progress properties. Indeed, a major risk of mutual exclusion is to
lead to dead lock situations: all threads are waiting for one another,
preventing further progress.

Reasoning principles for progress properties have been developed
in recent years, most notably by Liang et al. [86, 87]. Yet, the topic
has received to date significantly little interest compared to the one
of correctness.

7.2.4 Weak memory models

Our work assumes a sequentially consistent (SC) memory model. The
set of admissible executions of a program is the set of possible in-
terleavings of the atomic instructions of the program’s threads. In
particular, the operations of a given thread may not be executed con-
secutively, but their order will always remain the same.

Unfortunately, in order to enable aggressive optimisations, neither
processors nor higher level concurrent programming languages sat-
isfy this hypothesis. They allow for more executions than the SC ones,
supporting so-called weak memory models. Depending on the architec-
ture or the language, various weak memory models exist, and defin-
ing faithful formal models for all architecture is an active topic of
research. A first major trend to address this problematic is embodied
in the work of Alglave et al. [4, 6] which defines an axiomatisation of
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a wide variety of models in a unified framework. For each model, a
set of dependency relations between instructions is defined. The set
of admissible instructions is then the set of instructions which do not
entail a cycle among these relations.

These axiomatic models are a precious tool to conduct formal rea-
soning upon these models, notably allowing for model checking [5].
In some contexts, and notably in verified compilation, operational
characterisations are however arguably necessary, both for informal
and formal reasoning. Such operational models have been introduced
for all mainstream architectures during the last decade. Notable such
works include an abstract machine for x86 [108], an abstract ma-
chine for POWER [126], and a more involved operational model for
ARMv8 [44]. In addition to memory models for processor architec-
tures, the C/C++11 memory model has been the subject of much
attention on recent years. Providing it with an operation model is es-
pecially challenging in that it is defined inherently in an axiomatic
way, aiming to be sound with respect to various compiler and archi-
tecture optimisations. Nonetheless, Nienhuis et al. [103] managed to
provide a model, sound with respect to this axiomatic specification,
and operational in the sense that its allowed behaviours can be com-
puted incrementally by starting from an initial state, as opposed to
being global properties as may be the case with axiomatic models.

These major works therefore lay the ground required for sound, for-
mal, reasoning with respect to these weak memory models. However,
most of those models are complex entities to apprehend and manipu-
late, and each bring their own subtle reasoning principles. Being able
to conduct complex formal reasoning on programs, such as the ones
involved in this thesis, with respect to each of these memory models
is therefore a significantly ambitious perspective.

A first significant step would however be to first tackle the arguably
simpler, relative to the others, Total Store Order (TSO) weak memory
model. This model is of significant practical interest since it is the one
exhibited by x86 processors. Yet, it both remains quite intuitive to rea-
son about, and admits an appealing operational characterisation. The
following minimal two-threaded program is commonly used to illus-
trate a non-SC behaviour admissible under TSO. Upper case (resp.
lower case) variables are global (resp. local), and we assume an initial
shared state in which X = Y = 0.

// Thread t

X = 1

x = Y

// Thread t’

Y = 1

y = X

Under SC assumptions, only three possible resulting pairs of final
values for (x,y) are admissible: {(1, 1); (1, 0); (0, 1)}. However one can
actually experimentally observe (0, 0). Indeed, in TSO, writes can be
reordered after reads. Said differently, it is possible to read an out-
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Figure 37: Simplified TSO abstract machine.

dated value. The corresponding abstract machine, whom a simplified
version is depicted on Figure 37, clarifies the situation. As usual, each
thread is equipped with a local memory, and they share a global
memory. However, they now additionally own a write buffer3.

These buffers model the processor’s caches, while the shared mem-
ory models the RAM. Since accesses to the RAM are much more
costly, we try to lower their amount. When a thread tries to write
a value into the global memory, this value is first written to its buffer.
Reciprocally when it tries to read a variable, it first checks its own
buffer. If the buffer contains a write to the variable, then the thread
directly reads this value; only otherwise does the thread read the
value stored in shared memory. Periodically, or through dedicated
instructions, the buffers are flushed into the memory.

Since buffers are not shared, we now understand how (0, 0) can
be observed in the previous example. Both threads have immediately
written 1 to respectively X and Y, but those writes are pended in their
buffers. When they then read the global variables, they cannot see
each other writes, since those have not been flushed yet, and therefore
both read 0.

Reasoning formally about TSO remains extremely hard to date,
but constitutes a necessary stepping stone towards a verified com-
piler for a concurrent language. On the compilation side, the only at-
tempt to the best of our knowledge is the work by Sevcik et al. [130]
around CompCertTSO. While the project left open a vast amount of
problems to investigate, through notably more complex optimisations

3 In practice, buffers are associated to processors. We assume here for simplicity a
single thread per processor.
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than fence-elimination, it lays a precious foundation for future work.
The work by Jagannathan et al. [63] could also be instrumental by
proposing an atomicity refinement methodology sound under TSO
memory model. The approach is however not powerful enough to
handle linearisable implementations such as the ones we tackled is
Chapter 6.

On the verification of runtime implementation side, the impressive
work by Gammie et al. [45] is the staple. Their approach nonethe-
less leaves for improvements. First, Domani et al.’s algorithm [35]
has been designed and is strongly believed to remain correct under a
TSO memory model. On the contrary, Gammie et al. introduced addi-
tional synchronisation points to reduce the amount of races involved,
source of complex reasoning in TSO. Second, and once again, they
abstracted the code of the algorithm and proved the resulting tran-
sition system. Through this abstraction and a significant effort, they
managed to conduct the proof with a straightforward Owicki-Gries
approach. We would rather be interested in using more local reason-
ing, at least to the level we achieved through the use of rely-guarantee
reasoning.

Developing program logic for TSO memory model is however far
from trivial. Ridge [122] proposed in 2010 a straightforward exten-
sion of rely-guarantee logic for TSO memory models. The approach
is however quite crude: predicates explicitly characterise the state of
the buffers, and extend all relies with flushes. Proofs in this system
therefore appear to be extremely verbose to conduct, and in particu-
lar fail to retain conciseness in the case of sufficiently synchronised
code. Sieczkowski et al. [131] introduced a more principled approach
in 2015. Their logic, iCAP-TSO, is based on separation logic and struc-
tured in two levels. At the low level, the logic allows for explicit rea-
soning about the buffers. However, their logic also provides an fiction

of sequential consistency, allowing to switch to SC reasoning when the
data structure manipulated provides enough synchronisation.

In complement to program logics, alternate approaches have also
been developed in order to reduce reasoning in presence of a relaxed
memory model to SC reasoning. A commonly used class of well-
behaved programs are the so-called data-race free (DRF) programs,
i. e. programs such that no two threads can simultaneously attempt
to access to the same memory address, one of them trying to write. It
is well-known that under a TSO memory model, any execution of a
DRF program admits an equivalent SC execution. Hence, if one can
prove that a program is DRF, one can fall back on SC reasoning to
prove it. Consequently, a rich line of work has flourished to enforce
data-race freedom, notably statically through type systems such as in
Mezzo [11] or Rust [69], as well as dynamically [89]. DRF principle
is however too restrictive of a principle for high performance needs.
Owens [107] introduced in 2010 a weaker trace-based property, so-



138 conclusion

called triangular-race free, which exactly captures in a TSO context
the programs for which a SC reasoning can be soundly performed.
This approach, while appealing, is once again restricted to a subclass
of programs, and suffers from a lack of compositionality.

Finally, a significant line of logics for the C/C++11 memory model
have been developed. Lahav and Vafeiadis [76] proved that the clas-
sical Owicki-Gries proof system is unsound with respect to the C11

memory model, and strengthened the approach to handle the Release-
Acquire fragment of this model. In parallel, significant effort has
been invested to bring the most recent separation logics progress to
C11 memory model [31, 140], culminating with a framework to rea-
son about Release-Acquire consistency embedded in the Iris frame-
work [70].
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