Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

L'ordinateur quantique à l'épreuve des erreurs

 ${\sf Christophe}~{\rm Vuillot}$

Inria

SIESTE - 23 octobre 2024

Christophe VUILLOT

L'ordinateur quantique à l'épreuve des erreurs 1/42

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

About Me

Current Position (Jan. 2021 - now)

Insia

Permanent, "Chargé de Recherche", at Inria Nancy, Mocqua team

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

About Me

Current Position (Jan. 2021 - now)

Permanent, "Chargé de Recherche", at Inria Nancy, Mocqua team

Christophe VUILLOT

L'ordinateur quantique à l'épreuve des erreurs

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion 00

Upcoming Update

Future Position

Will be on (temporary) leave from Inria to work at Alice&Bob on trying to build a quantum computer

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion 00

Computation

Computability

Church-Turing Thesis (20th): Computability = Turing machines

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Computation

Computability

Church-Turing Thesis (20th): Computability = Turing machines

What can be computed ?

- Complexity theory \rightarrow accounts for time-scale and resources
- "Reasonable" complexity classes: P, BPP, ...

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Computation

Computability

Church-Turing Thesis (20th): Computability = Turing machines

What can be computed ?

- Complexity theory \rightarrow accounts for time-scale and resources
- "Reasonable" complexity classes: P, BPP, ...

Physics of Computation Conference in 1981

Quantum processes $\notin BPP$, (although $\in PSPACE$).

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Quantum Computation

Some Striking Quantum Algorithms

- Shor (1994) factors in polynomial time (break RSA).
- Grover (1996) searches an unstructured list in \sqrt{N} queries.

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion 00

Quantum Computation

Some Striking Quantum Algorithms

- Shor (1994) factors in polynomial time (break RSA).
- Grover (1996) searches an unstructured list in \sqrt{N} queries.

Quantum Computer Model

Assume *idealized* perfect quantum computers!

Error Correction and Fault-Tolerance

Quantum Error Correction

- Encode quantum information redundantly
- Extract information about errors, process it and correct

Fault-Tolerant Quantum Computation

- Compute directly on encoded quantum information without weakening the protection
- Works when every quantum process is unreliable

Error Correction and Fault-Tolerance

Quantum Error Correction

- Encode quantum information redundantly
- Extract information about errors, process it and correct

Fault-Tolerant Quantum Computation

- Compute directly on encoded quantum information without weakening the protection
- Works when every quantum process is unreliable

Threshold Theorems (informal)

Given an error model there exist so-called fault-tolerant protocols and a threshold such that any computation can be simulated to any desired precision if the noise strength is below the threshold.

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

The Quantum Stack

FTQC Aware Compilation Specific gate sets

Fault-Tolerant Logic

Transversal gates, code deformation

Quantum Error Correction

Finite as well as infinite dimensional systems

Quantum 101 •00000000 Quantum Error Correction

Beyond Qubits

Conclusion

Quantum Bit

A physical system with two perfectly distinguishable states:

Examples

- Electron around an atom/ion
- Photon in one of two paths
- Spin of a particle
- Collective degree of freedom
- . . .

Notation

|0 angle |1 angle

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

Superposition

Qubit Hilbert Space

Quantum states live in a Hilbert space, $|\Psi\rangle \in \mathcal{H}$:

$$|\Psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle \,, \qquad |\alpha|^2 + |\beta|^2 = 1, \qquad \alpha, \beta \in \mathbb{C}.$$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

Superposition

Qubit Hilbert Space

Quantum states live in a Hilbert space, $|\Psi\rangle\in\mathcal{H}$:

$$|\Psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle \,, \qquad |\alpha|^2 + |\beta|^2 = 1, \qquad \alpha, \beta \in \mathbb{C}.$$

Standard Orthonormal Basis $\langle 0|0\rangle = \langle 1|1\rangle = 1, \qquad \langle 0|1\rangle = 0$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

9/42

Superposition

Qubit Hilbert Space

Quantum states live in a Hilbert space, $|\Psi\rangle\in\mathcal{H}$:

$$|\Psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle \,, \qquad |\alpha|^2 + |\beta|^2 = 1, \qquad \alpha, \beta \in \mathbb{C}.$$

Standard Orthonormal Basis $\langle 0|0\rangle = \langle 1|1\rangle = 1, \qquad \langle 0|1\rangle = 0$

Dual Basis

$$|+
angle=rac{|0
angle+|1
angle}{\sqrt{2}},\qquad |-
angle=rac{|0
angle-|1
angle}{\sqrt{2}},$$

defines a perfectly valid basis

$$\langle +|+\rangle = \langle -|-\rangle = 1, \qquad \langle +|-\rangle = 0.$$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

Standard Measurement

$$\begin{split} |\Psi\rangle &= \alpha \, |0\rangle + \beta \, |1\rangle \rightarrow \quad \{|0\rangle \,, |1\rangle\}? \\ &\searrow \\ &|1\rangle \text{ with proba } |\beta|^2 \end{split}$$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

Dual Measurement

$$\begin{split} |\Psi\rangle &= \alpha \left|0\right\rangle + \beta \left|1\right\rangle \rightarrow \quad \{|+\rangle\,, |-\rangle\}? \\ &\searrow \\ &|-\rangle \text{ with proba } \frac{|\alpha + \beta|^2}{2} \\ &\searrow \\ &|-\rangle \text{ with proba } \frac{|\alpha - \beta|^2}{2} \end{split}$$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion 00

Quantum Gates

Unitary Transformations

Quantum transformations are linear and *unitary* (consistent with probabilistic interpretation of measurements)

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion 00

Quantum Gates

Unitary Transformations

Quantum transformations are linear and *unitary* (consistent with probabilistic interpretation of measurements)

Examples: Pauli Operators

• Bit-flip: $X \ket{0} = \ket{1}$, $X \ket{1} = \ket{0}$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion 00

Quantum Gates

Unitary Transformations

Quantum transformations are linear and *unitary* (consistent with probabilistic interpretation of measurements)

Examples: Pauli Operators

- Bit-flip: $X |0\rangle = |1\rangle$, $X |1\rangle = |0\rangle$
- Phase-flip: $Z \ket{0} = \ket{0}$, $Z \ket{1} = -\ket{1}$,

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion 00

Quantum Gates

Unitary Transformations

Quantum transformations are linear and *unitary* (consistent with probabilistic interpretation of measurements)

Examples: Pauli Operators

- Bit-flip: $X \ket{0} = \ket{1}$, $X \ket{1} = \ket{0}$
- Phase-flip: $Z\left|0
 ight
 angle=\left|0
 ight
 angle,\ Z\left|1
 ight
 angle=-\left|1
 ight
 angle,$

• or
$$Z \mid + \rangle = \mid - \rangle$$
, $Z \mid - \rangle = \mid + \rangle$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

Quantum Gates

Unitary Transformations

Quantum transformations are linear and *unitary* (consistent with probabilistic interpretation of measurements)

Examples: Pauli Operators

- Bit-flip: $X \ket{0} = \ket{1}$, $X \ket{1} = \ket{0}$
- Phase-flip: $Z \left| 0 \right\rangle = \left| 0 \right\rangle$, $Z \left| 1 \right\rangle = \left| 1 \right\rangle$,

• or
$$Z \ket{+} = \ket{-}$$
, $Z \ket{-} = \ket{+}$

Pauli Operators form a basis

$$\forall M, \quad M = \alpha_1 \mathbb{1} + \alpha_X X + \alpha_Z Z + \alpha_{XZ} X Z$$

Quantum 101 000000000

Quantum Error Correction

Beyond Qubits

Conclusion

Several Quantum Systems

Tensor Product of Hilbert Spaces

The joint Hilbert space of two quantum systems described by $|\Psi\rangle\in \mathcal{H}_1$ and $|\Phi\rangle\in \mathcal{H}_2$ is given by the tensor product

 $\mathcal{H}_1\otimes \mathcal{H}_2.$

A basis for $\mathcal{H}_1\otimes\mathcal{H}_2$ can be obtained by the carthesian product of a basis of \mathcal{H}_1 and a basis of \mathcal{H}_2 .

Quantum 101 000000000

Quantum Error Correction

Beyond Qubits

Conclusion

Several Quantum Systems

Tensor Product of Hilbert Spaces

The joint Hilbert space of two quantum systems described by $|\Psi\rangle\in \mathcal{H}_1$ and $|\Phi\rangle\in \mathcal{H}_2$ is given by the tensor product

 $\mathcal{H}_1\otimes \mathcal{H}_2.$

A basis for $\mathcal{H}_1\otimes\mathcal{H}_2$ can be obtained by the carthesian product of a basis of \mathcal{H}_1 and a basis of \mathcal{H}_2 .

Entangled States

Entangled states are states that cannot be factorized as a single product state

$$\alpha \left| \Psi_{1} \right\rangle \otimes \left| \Phi_{1} \right\rangle + \beta \left| \Psi_{2} \right\rangle \otimes \left| \Phi_{2} \right\rangle \neq \left| \Psi \right\rangle \otimes \left| \Phi \right\rangle.$$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion 00

Many Qubits

We consider having $n \in \mathbb{N}^*$ qubits

Hilbert Space

This is a 2^n dimensional space with standard basis

$$\{ \ket{m{b}} \ket{orall m{b} \in \mathbb{F}_2^n} \,, \qquad \mathbb{F}_2 = \{0,1\}.$$

Quantum States

Quantum states are given by

$$|\Psi\rangle = \sum_{\pmb{b}\in\mathbb{F}_2^n} \alpha_{\pmb{b}} \, |\pmb{b}\rangle\,, \qquad \sum_{\pmb{b}\in\mathbb{F}_2^n} |\alpha_{\pmb{b}}|^2 = 1.$$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Multi-Qubit Pauli Operators

Single Qubit X and Z

$$\begin{aligned} X_j \left| \boldsymbol{b} \right\rangle &= \left| \boldsymbol{b} \oplus \boldsymbol{e}_j \right\rangle, \quad \boldsymbol{e}_j = \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \\ Z_j \left| \boldsymbol{b} \right\rangle &= (-1)^{b_j} \left| \boldsymbol{b} \right\rangle = (-1)^{\boldsymbol{b} \cdot \boldsymbol{e}_j} \left| \boldsymbol{b} \right\rangle. \end{aligned}$$

$\begin{array}{l} \text{Multi-Qubit } X \text{ and } Z \\ X(\textbf{\textit{x}}) = \prod_{j=1}^n X_j^{x_j}, \quad \textbf{\textit{x}} \in \mathbb{F}_2^n \qquad Z(\textbf{\textit{z}}) = \prod_{j=1}^n Z_j^{z_j}, \quad \textbf{\textit{z}} \in \mathbb{F}_2^n. \end{array}$

acting on states

$$egin{aligned} X(m{x}) egin{aligned} &m{b}
angle &= egin{aligned} &m{b} \oplus m{x}
angle \,, \ &Z(m{z}) egin{aligned} &m{b}
angle &= (-1)^{m{b}\cdotm{z}} egin{aligned} &m{b}
angle \,. \end{aligned}$$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Multi-Qubit Pauli Operators

Single Qubit X and Z

$$egin{aligned} X_j \left| oldsymbol{b}
ight
angle &= \left| oldsymbol{b} \oplus oldsymbol{e}_j
ight
angle, \qquad oldsymbol{e}_j &= \left(0 & \cdots & 0 & 1 & 0 & \cdots & 0
ight) \ Z_j \left| oldsymbol{b}
ight
angle &= (-1)^{b_j} \left| oldsymbol{b}
ight
angle &= (-1)^{b \cdot oldsymbol{e}_j} \left| oldsymbol{b}
ight
angle. \end{aligned}$$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Multi-Qubit Pauli Operators

Single Qubit X and Z

$$\begin{aligned} X_j \left| \boldsymbol{b} \right\rangle &= \left| \boldsymbol{b} \oplus \boldsymbol{e}_j \right\rangle, \quad \boldsymbol{e}_j = \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \\ Z_j \left| \boldsymbol{b} \right\rangle &= (-1)^{b_j} \left| \boldsymbol{b} \right\rangle = (-1)^{\boldsymbol{b} \cdot \boldsymbol{e}_j} \left| \boldsymbol{b} \right\rangle. \end{aligned}$$

$\begin{array}{l} \text{Multi-Qubit } X \text{ and } Z \\ X(\textbf{\textit{x}}) = \prod_{j=1}^n X_j^{x_j}, \quad \textbf{\textit{x}} \in \mathbb{F}_2^n \qquad Z(\textbf{\textit{z}}) = \prod_{j=1}^n Z_j^{z_j}, \quad \textbf{\textit{z}} \in \mathbb{F}_2^n. \end{array}$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Multi-Qubit Pauli Operators

Single Qubit X and Z

$$\begin{aligned} X_j \left| \boldsymbol{b} \right\rangle &= \left| \boldsymbol{b} \oplus \boldsymbol{e}_j \right\rangle, \quad \boldsymbol{e}_j = \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \\ Z_j \left| \boldsymbol{b} \right\rangle &= (-1)^{b_j} \left| \boldsymbol{b} \right\rangle = (-1)^{\boldsymbol{b} \cdot \boldsymbol{e}_j} \left| \boldsymbol{b} \right\rangle. \end{aligned}$$

$\begin{array}{l} \text{Multi-Qubit } X \text{ and } Z \\ X(\textbf{\textit{x}}) = \prod_{j=1}^n X_j^{x_j}, \quad \textbf{\textit{x}} \in \mathbb{F}_2^n \qquad Z(\textbf{\textit{z}}) = \prod_{j=1}^n Z_j^{z_j}, \quad \textbf{\textit{z}} \in \mathbb{F}_2^n. \end{array}$

acting on states

$$egin{aligned} X(m{x}) egin{aligned} &m{b}
angle &= egin{aligned} &m{b} \oplus m{x}
angle \,, \ &Z(m{z}) egin{aligned} &m{b}
angle &= (-1)^{m{b} \cdot m{z}} egin{aligned} &m{b}
angle \,. \end{aligned}$$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion 00

Pauli Measurements

Z Parity Measurement

Given $\boldsymbol{z} \in \mathbb{F}_2^n$, it splits in half $\boldsymbol{b} \in \mathbb{F}_2^n$ between:

•
$$(-1)^{\boldsymbol{b}\cdot\boldsymbol{z}} = 1$$

•
$$(-1)^{b \cdot z} = -1$$

There is a quantum measurement that measures the parity of $\boldsymbol{z}\cdot\boldsymbol{b}$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

Pauli Measurements

Z Parity Measurement

Given $\boldsymbol{z} \in \mathbb{F}_2^n$, it splits in half $\boldsymbol{b} \in \mathbb{F}_2^n$ between:

There is a quantum measurement that measures the parity of $\boldsymbol{z}\cdot\boldsymbol{b}$

$$\begin{split} |\Psi\rangle &= \sum_{\boldsymbol{b} \in \mathbb{F}_2^n} \alpha_{\boldsymbol{b}} |\boldsymbol{b}\rangle \xrightarrow[M_{\boldsymbol{z}}=m \in \{0,1\}]{} |\psi'_{\boldsymbol{m}}\rangle \propto \sum_{\boldsymbol{b}, \, \boldsymbol{z} \cdot \boldsymbol{b} = \boldsymbol{m}} \alpha_{\boldsymbol{b}} |\boldsymbol{b}\rangle \\ &\Rightarrow Z(\boldsymbol{z}) |\Psi'_{\boldsymbol{m}}\rangle = (-1)^{\boldsymbol{m}} |\Psi'_{\boldsymbol{m}}\rangle \end{split}$$

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion

Pauli Measurements

Z Parity Measurement

Given $\boldsymbol{z} \in \mathbb{F}_2^n$, it splits in half $\boldsymbol{b} \in \mathbb{F}_2^n$ between:

There is a quantum measurement that measures the parity of $\boldsymbol{z} \cdot \boldsymbol{b}$

$$\begin{split} |\Psi\rangle &= \sum_{\boldsymbol{b}\in\mathbb{F}_2^n} \alpha_{\boldsymbol{b}} |\boldsymbol{b}\rangle \xrightarrow[M_{\boldsymbol{z}}=m\in\{0,1\}]{} |\psi_m'\rangle \propto \sum_{\boldsymbol{b},\,\boldsymbol{z}\cdot\boldsymbol{b}=m} \alpha_{\boldsymbol{b}} |\boldsymbol{b}\rangle \\ &\Rightarrow Z(\boldsymbol{z}) |\Psi_m'\rangle = (-1)^m |\Psi_m'\rangle \end{split}$$

X Parity Measurement

Same but in the dual basis $\{\left|+\right\rangle,\left|-\right\rangle\}$ and after measurement:

$$X(\mathbf{x}) |\Psi'_m\rangle = (-1)^m |\Psi'_m\rangle.$$

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion 00

Classical Error Correction

3-bit Repetition Code Define the code $C = \{ \boldsymbol{b}_0, \boldsymbol{b}_1 \}$

$$\begin{array}{ll} 0 \rightarrow {\pmb b}_0 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \\ 1 \rightarrow {\pmb b}_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}. \end{array}$$

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion 00

Classical Error Correction

3-bit Repetition Code Define the code $C = \{\boldsymbol{b}_0, \boldsymbol{b}_1\}$

$$egin{array}{lll} 0
ightarrow oldsymbol{b}_0 &= egin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \ 1
ightarrow oldsymbol{b}_1 &= egin{pmatrix} 1 & 1 & 1 \end{pmatrix}. \end{array}$$

Parity-check matrix

$$\mathcal{H} = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix}, \qquad \mathcal{H} oldsymbol{b}_0^{\mathrm{T}} = \mathcal{H} oldsymbol{b}_1^{\mathrm{T}} = egin{pmatrix} 0 \ 0 \end{pmatrix}.$$

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion 00

Classical Error Correction

3-bit Repetition Code Define the code $C = \{\boldsymbol{b}_0, \boldsymbol{b}_1\}$

$$egin{array}{lll} 0
ightarrow oldsymbol{b}_0 &= egin{pmatrix} 0 & 0 & 0 \end{pmatrix}, \ 1
ightarrow oldsymbol{b}_1 &= egin{pmatrix} 1 & 1 & 1 \end{pmatrix}. \end{array}$$

Parity-check matrix

$$\mathcal{H} = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix}, \qquad \mathcal{H} oldsymbol{b}_0^{\mathrm{T}} = \mathcal{H} oldsymbol{b}_1^{\mathrm{T}} = egin{pmatrix} 0 \ 0 \end{pmatrix}.$$

Syndrome of bit-flip error e

The parity checks give information about errors only

$$H(\boldsymbol{b}_0+\boldsymbol{e})^{\mathrm{T}}=H(\boldsymbol{b}_1+\boldsymbol{e})^{\mathrm{T}}=H\boldsymbol{e}^{\mathrm{T}}$$
Beyond Qubits

Conclusion

Linear Error Correcting Code

Definition

A linear code $\mathcal{C} \subset \mathbb{F}_2^n$ can be defined by a parity check matrix $H \in \mathbb{F}_2^{r \times n}$ with

$$\mathcal{C} = \left\{ \boldsymbol{b} \in \mathbb{F}_2^n \middle| H \boldsymbol{b}^{\mathrm{T}} = \boldsymbol{0} \right\}.$$

Beyond Qubits

Conclusion 00

Linear Error Correcting Code

Definition

A linear code $\mathcal{C} \subset \mathbb{F}_2^n$ can be defined by a parity check matrix $H \in \mathbb{F}_2^{r \times n}$ with $\mathcal{C} = \{h \in \mathbb{F}_2^n \mid uh^T = 0\}$

$$\mathcal{C} = \left\{ \boldsymbol{b} \in \mathbb{F}_2^n \middle| H \boldsymbol{b}^{\mathrm{T}} = \boldsymbol{0} \right\}.$$

Syndrome and Decoding

$$\forall \boldsymbol{c} \in \mathcal{C}, \ \boldsymbol{H}(\boldsymbol{c} + \boldsymbol{e})^{\mathrm{T}} = \boldsymbol{H} \boldsymbol{e}^{\mathrm{T}}$$

Given **s** find the smallest **e** such that $He^{T} = s$.

Beyond Qubits

Conclusion 00

Linear Error Correcting Code

Definition

A linear code $C \subset \mathbb{F}_2^n$ can be defined by a parity check matrix $H \in \mathbb{F}_2^{r \times n}$ with $C = \{\mathbf{h} \in \mathbb{F}_2^n \mid U\mathbf{h}^T = \mathbf{0}\}$

$$\mathcal{C} = \left\{ \boldsymbol{b} \in \mathbb{F}_2^n \middle| H \boldsymbol{b}^{\mathrm{T}} = \boldsymbol{0} \right\}.$$

Syndrome and Decoding

$$\forall \boldsymbol{c} \in \mathcal{C}, \ \boldsymbol{H}(\boldsymbol{c} + \boldsymbol{e})^{\mathrm{T}} = \boldsymbol{H} \boldsymbol{e}^{\mathrm{T}}$$

Given **s** find the smallest **e** such that $He^{T} = s$.

Parameters [n, k, d]

The length of the codewords, n, the dimension of C, k, the minimum distance, d,

$$k = n - \operatorname{rank} H$$
, $d = \min_{c \in C, c \neq 0} |c|$.

Conclusion 00

Quantum Error Correcting Code

General Idea

- Correct for bit-flips and phase-flips separately with X and Z parity measurements
- Problem: not all X and Z parity measurements are compatible because XZ = -ZX

Quantum Error Correcting Code

General Idea

- Correct for bit-flips and phase-flips separately with X and Z parity measurements
- Problem: not all X and Z parity measurements are compatible because XZ = -ZX

Quantum Commutation Constraint

$$Z(z) |\Psi\rangle = |\Psi\rangle \quad \land \quad X(z) |\Psi\rangle = |\Psi\rangle$$

$$\Rightarrow X(x)Z(z) = Z(z)X(x)$$

$$\Rightarrow x \cdot z = 0$$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion 00

Quantum Error Correcting Code

Definition

Given two parity check matrices $H_Z \in \mathbb{F}_2^{r_X \times n}$ and $H_X \in \mathbb{F}_2^{r_X \times n}$ such that

$$H_Z H_X^{\mathrm{T}} = 0,$$

We define the quantum error correcting code $C(H_Z, H_X)$ on n qubits as the quantum states satisfying the Z and X parities defined by H_Z and H_X :

$$\mathcal{C} = \{ |\Psi\rangle | \, \forall \boldsymbol{s}_{Z} \in \mathbb{F}_{2}^{r_{Z}}, \forall \boldsymbol{s}_{X} \in \mathbb{F}_{2}^{r_{X}}, \, Z(\boldsymbol{s}_{Z}H_{Z}) \, |\Psi\rangle = X(\boldsymbol{s}_{X}H_{X}) \, |\Psi\rangle = |\Psi\rangle \}$$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Beyond Qubits

Conclusion

Properties of Quantum Codes

Logical operators

Pauli operators which are not detectable but not stabilizers act non-trivial on the codespace

$$\mathcal{L}_X = \ker H_Z / \operatorname{im} H_X, \qquad \mathcal{L}_Z = \ker H_X / \operatorname{im} H_Z$$

Beyond Qubits

Conclusion 00

Properties of Quantum Codes

Logical operators

Pauli operators which are not detectable but not stabilizers act non-trivial on the codespace

$$\mathcal{L}_X = \ker H_Z / \operatorname{im} H_X, \qquad \mathcal{L}_Z = \ker H_X / \operatorname{im} H_Z$$

Parameters [[n, k, d]]

The number of qubits, n, the number of logical qubits in C, k, the minimum distance, d,

$$k = n - \operatorname{rank} H_Z - \operatorname{rank} H_X, \qquad d = \min_{\boldsymbol{c} \in \mathcal{L}_X \cup \mathcal{L}_Z, \ \boldsymbol{c} \neq \boldsymbol{0}} |\boldsymbol{c}|.$$

Desirable Properties of Quantum Codes

Given a quantum code $\mathcal C$ with parameters [[n,k,d]] one might want it to have

- Large encoding rate: k/n
- Large distance: d
- Good and efficient syndrome decoding algorithm
- (Large) Threshold
- Easy implementation \rightarrow sparse/local matrices H_Z and H_X
- Fault-tolerant quantum gates...

Desirable Properties of Quantum Codes

Given a quantum code $\mathcal C$ with parameters [[n,k,d]] one might want it to have

- Large encoding rate: k/n
- Large distance: d
- Good and efficient syndrome decoding algorithm
- (Large) Threshold
- Easy implementation \rightarrow sparse/local matrices H_Z and H_X
- Fault-tolerant quantum gates...

Good quantum LDPC codes exists

The existence of good quantum LDPC codes with efficient decoders has been established first in 2022, i.e $[[n, k = \Theta(n), d = \Theta(n)]].$

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Fruitful Connection to Homology

Chain Complex

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Fruitful Connection to Homology

Chain Complex

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Fruitful Connection to Homology

Chain Complex

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

Fruitful Connection to Homology

Chain Complex

Homology Group = X Logical Operators

 $H_1(\mathcal{C},\mathbb{Z}) = \ker \sigma / \mathrm{im}\partial = \ker (H_Z) / \mathrm{im} (H_X)$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Fruitful Connection to Homology

Chain Complex

Homology Group = X Logical Operators $H_1(\mathcal{C}, \mathbb{Z}) = \ker \sigma / \operatorname{im} \partial = \ker (H_Z) / \operatorname{im} (H_X)$ $= \mathcal{L}_X$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Cohomology = Logical Z

Cochain Complex

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Cohomology = Logical Z

Cochain Complex

Cohomology Group = Z Logical Operators $H^1(\mathcal{C}, \mathbb{T}) = \ker \partial^* / \operatorname{im} \sigma^* = \ker (H_X) / \operatorname{im} (H_Z)$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Cohomology = Logical Z

Cochain Complex

Cohomology Group = Z Logical Operators $H^{1}(\mathcal{C}, \mathbb{T}) = \ker \partial^{*} / \operatorname{im} \sigma^{*} = \ker (H_{X}) / \operatorname{im} (H_{Z})$ $= \mathcal{L}_{Z}$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion 00

Codes from Cellular Homology in 2D

 $C: C_{2} \xrightarrow{\partial} C_{1} \xrightarrow{\sigma} C_{0} \text{ with } \sigma \circ \partial =$

Example: Projective Plane

 $\mathsf{Christophe}\ \mathsf{VullLOT}$

For a genus g surface, distance correspond to shortest non-trivial cycles and

$$H_1(\mathcal{C},\mathbb{F}_2)=H^1(\mathcal{C},\mathbb{F}_2)=\mathbb{F}_2^{2g}$$

Beyond Qubits

Conclusion

The Surface Code: The Volkswagen of Quantum Codes

Many Advantages

- 2D local connectivity with degree 4
- Good decoder with high threshold
- Fault-tolerant gates understood
- Experimentally demonstrated (2024)

One Weakness

Vanishing encoding rate!

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Google's 2024 Surface Code Experiment

Conclusion 00

Bravyi-Poulin-Terhal Bound

The surface code is optimal for 2D, for any [[n, k, d]] quantum code:

Constraints from 2D Locality

 $kd^2 = O(n)$

Conclusion 00

Bravyi-Poulin-Terhal Bound

The surface code is optimal for 2D, for any [[n, k, d]] quantum code:

Constraints from 2D Locality

$$kd^2 = O(n)$$

How to Improve

• Have to soften connectivity constraints

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion 00

In the Lab

Physical Systems

Physical systems are often richer than qubits, for instance bosonic modes are infinite dimensional quantum systems

- photons in a cavity
- motion of an ion

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

In the Lab

Physical Systems

Physical systems are often richer than qubits, for instance bosonic modes are infinite dimensional quantum systems

- photons in a cavity
- motion of an ion

Error Correction

Can be formulated more generally as $\mathcal{H}_{code} \subset \mathcal{H}$. Often just replacing \mathbb{F}_2 with the relevant G is enough

- $G = \mathbb{Z}/\mathbb{Z}_d \longrightarrow$ Qudit error correction
- $G = \mathbb{R} \longrightarrow$ Grid-state bosonic codes (GKP)
- $G = \mathbb{Z} \longrightarrow$ Quantum Rotor codes

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion 00

Bosonic Codes

- Uses bosonic modes, i.e. $\mathcal{H} = \ell_2(\mathbb{N})$
- Can encodes a qubit
- Can features extremely biased noise

Quantum 101

Quantum Error Correction

Beyond Qubits

Conclusion 00

Bosonic Codes

- Uses bosonic modes, i.e. $\mathcal{H} = \ell_2(\mathbb{N})$
- Can encodes a qubit
- Can features extremely biased noise

Cat Qubit

- $|\overline{\mathbf{0}}\rangle \simeq |\alpha\rangle$, $|\overline{\mathbf{1}}\rangle \simeq |-\alpha\rangle$
- X-errors $\sim e^{-2|\alpha|^2}$
- Z-errors $\sim c |\alpha|^2$

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion 00

Repetition Cat Qubit

Assuming we can get negligible X errors \rightarrow Classical code to correct remaining Z errors

Beyond Qubits

Conclusion 00

Repetition Cat Qubit

Assuming we can get negligible X errors \rightarrow Classical code to correct remaining Z errors

Repetition Cat

- use [n, 1, n] repetition code
- 1D layout
- Degree 2 tanner graph

Conclusion 00

Repetition Cat Qubit

Assuming we can get negligible X errors \rightarrow Classical code to correct remaining Z errors

Repetition Cat

- use [n, 1, n] repetition code
- 1D layout
- Degree 2 tanner graph

Classical Bravyi-Poulin-Terhal bound in 2D

 $k\sqrt{d} = O(n)$
Conclusion 00

Repetition Cat Qubit

Assuming we can get negligible X errors \rightarrow Classical code to correct remaining Z errors

Repetition Cat

- use [n, 1, n] repetition code
- 1D layout
- Degree 2 tanner graph

Classical Bravyi-Poulin-Terhal bound in 2D

$$k\sqrt{d}=O(n)$$

Repetition Code not Optimal

$$k\sqrt{d} = 1 \times \sqrt{n}$$

 $\mathsf{Christophe}\ \mathsf{VullLOT}$

7

Beyond Qubits 0000000000

Christophe VUILLOT

L'ordinateur quantique à l'épreuve des erreurs

34/42

Quantum 101 000000000

Quantum Error Correction

Beyond Qubits

Conclusion 00

Cellular Automaton Codes

Characteristics

- L × H Cylinder
- Translation invariant check with "pointed" shape
- k linear in L
- d increases with H
- fixed $H \rightarrow$ fixed kd/n

Christophe VUILLOT

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Cellular Automaton Codes Examples

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion 00

Relaxing Vertical Translation Invariance

[n, k, d]	kd / n	$(H, L = L^* + \ell)$	Stabilizer shapes (bottom to top)
$[20+4\ell, 10+2\ell, 5]$	2.5	(4, 5 + ℓ)	
$[55+5\ell, 22+2\ell, 9]$	3.6	$(5, 11 + \ell)$	
$[78+6\ell, 26+2\ell, 12]$	4	<pre>(6, 13 + ℓ)</pre>	
$[119+7\ell, 34+2\ell, 16]$	4.6	$(7, 17 + \ell)$	
$[136+8\ell, 34+2\ell, 22]$	5.5	$(8, 17 + \ell)$	

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion 00

The Chosen One

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Numerical Simulations

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

LDPC-Cat Code

LDPC-Cat Code

- $[136 + 8\ell, 34 + 2\ell, 22]$ code
- 2D local
- Degree 4 tanner graph

Improvement over Surface code

In an intermediate regime (logical error rate $\sim 10^{-8}$) can get 44-fold reduction in resource cost.

Quantum 101 00000000

Quantum Error Correction

Beyond Qubits

Conclusion

- Concepts works in theory
- First experimental proofs are emerging
- Demonstrating that it scales in practice is still daunting
- Active area of research with lot to understand

Quantum 101 000000000 Quantum Error Correction

Beyond Qubits

Conclusion

Quantum in France

Quantum Programming Languages Inria Nancy, Inria Saclay

Quantum Algorithms Irif Paris

Quantum Info and Error Correction Inria Paris, Lyon, Bordeaux, CEA Grenoble

