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Dynamic allocation of memory (in the heap)
In C:      int * array = malloc(10 * sizeof(int))
In Java:    Point originOne = new Point(23, 94)
In OCaml:  let u = ‘c’::’a’::’m’::’l’::[] 

Manual memory management
Programmer responsible for deallocation (C, C++…) 
Risks: premature/double free, memory leak

Automatic memory management
Memory reclaimed automatically: Garbage Collector (Lisp, OCaml, Java…)

‘a’ ‘l’‘m’‘c’u

Automatic memory 
management
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Garbage Collection

3 September, 26th, 2017

x y z

Sequential Mark-Sweep Collectors (McCarthy, 1960)
On allocation, if few memory available: 
1. Stop the user program 
2. Perform full cycle: unreachable memory is reclaimed 

cycle 1 cycle 2

Stop-the-world 
Single thread

time

With concurrency

Multithread 
user code

Collector

{
{

On-the-fly!
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On-the-fly garbage collection

4 September, 26th, 2017

CACM ‘78 POPL ‘93 ‘94

PLDI ‘00

introduce mark buffers, adapt the algorithm to Java
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Periodically stop user code and perform:  

• Mark: graph traversal from the roots 

• Sweep: free cells remaining unmarked 

Color conventions: 

• Blue: free cells 

• White: not marked 

• Gray: being visited (pending nodes) 

• Black: marked 

September, 26th, 2017
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Concurrent mark & sweep
1. A need for the mutators’ collaboration
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1. an update;

2. a store.

Update(x,f,y) == 
     MarkGray(y); 
     x.f = y

MarkGray(x) == 
     if x.color = WHITE 
     then x.color = GRAY 

Concurrent mark & sweep
While the collector runs, the user 
thread can do:

Updates go through write barriers
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Concurrent mark & sweep
2. A need for synchronisation

Local variables



Concurrent mark & sweep
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COLLECTOR 

Scan: 
  repeat 
    no_gray = true; 
    foreach x ∈ OBJECTS 
      if x.color == GRAY 
        no_gray = false; 
        foreach f ∈ fields(x) do  
           MarkGray(x.f); 
        x.color = BLACK 
  until no_gray 
 Sweep: 
  foreach x ∈ OBJECTS 
    if x.color == WHITE 
    then FREE(x) 
Clear: 
  foreach x ∈ OBJECTS 
    x.color = WHITE

Concurrent mark & sweep
MUTATOR 

[...] 
  Update(x,f,y); 
[...] 
  Alloc(); 
[…] 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 Sweep: 
  foreach x ∈ OBJECTS 
    if x.color == WHITE 
    then FREE(x) 
Clear: 
  foreach x ∈ OBJECTS 
    x.color = WHITE

mark your roots please

Concurrent mark & sweep
MUTATOR 

[...] 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[...] 
  Alloc(); 
[…] 

The collector 
has not access 
to all mutator 
roots... 
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[...] 

Concurrent mark & sweep

They need to 
synchronise!

But user threads 
should not wait!
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Handshake() =  
  statusC = Next(statusC);  
  while (statusm ≠ statusC) skip;

Cooperate() =  
  if statusm = statusC  
  then  
    skip 
  else  
    foreach r ∈ LOCAL_ROOTS do 
        MarkGray(r); 
    statusm = statusC;

Mutators mark  
their roots

Collector awaits for mutators  
to mark their roots

Concurrent mark & sweep
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Handshake() =  
  statusC = Next(statusC);  
  while (statusm ≠ statusC) skip;

Cooperate() =  
  if statusm = statusC  
  then  
    skip 
  else  
    foreach r ∈ LOCAL_ROOTS do 
        MarkGray(r); 
    statusm = statusC;

Mutators mark  
their roots

Collector awaits for mutators  
to mark their roots

Concurrent mark & sweep

Actively waits

Updates  
its status

Never waits  
for anyone

Checks if in sync

No? Publishes roots
Yes? Back to work

)
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• Graph algorithms 

• Subtle synchronisation 

• Lots of concurrent accesses 

)
Sophisticated invariants
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Verifying the garbage collector

16

1. What do we prove? 
2. How do we prove it?
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We rely on a most general client (mgc)
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loop
�
update(x, f, v)
� load(x, f)� alloc()
� cooperate()
� changeRoots()

�

mutator ,

mgc ,
collector k mutator k ... k mutator

We rely on a most general client (mgc)

Abstraction of 
any user thread
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What do we prove?
Root Root Root

Theorem:  
In any execution state of the mgc, 
cells reachable by a mutator are 

never blue
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cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od
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• Abstract buffers: 
        - concrete implementations are linearizable 

MarkGray(m, x) == 
     if x.color = WHITE then 
         push(buffer[m], x)
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• Intrinsic support for threads, roots, and objects 
• Built-in iterator constructs : disciplined access 

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od



Yannick ZAKOWSKIITP’17

Right level of abstraction: proofs are conducted with respect to the operational 
semantics of the IR, directly over the code

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
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R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness 

Invariant

Environment 
R: Rely 
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Incremental invariants of the 
GC

Proof = six layers of invariants (partially ordered)

0- Synch Protocol

5- Colors, Reachability, Correctness

trace_grey_reach_white
correctblack_to_white

pointsto_freelist
sweep_no_grey

sweep_asynch

phase_val synch
late_mut_trace

2- Buffers aux.1- Colors in heap
white_or_black buffers_exist

in_buffer_no_null
phant_buffers_exist

stage_val
3- Stage aux. 4- Phantom aux.

hs_flipped
flipped_clear

hs_clear-trace
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Summary
• Dedicated IR: right level of abstraction 

- Abstract concurrent queues 
- Native support of roots, objects, freelist 
- Iterators 

• RG logics + soundness theorem + incremental workflow 

• Realistic On-The-Fly garbage collector 
- Significant subset of Domani et al. GC 
- Proofs conducted w.r.t. code’s semantics 
- Most-General-Client theorem 
- Proof: incremental invariants 
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Proving  
atomic refinement  

of linearisable 
 data-structures 

—> ongoing

We left out 
 orthogonal optimisations  

ex : Generational GC

- Abstract concurrent queues

- Significant subset of Domani et al. GC


