Verifying a Concurrent Garbage
Collector using a
Rely-Guarantee Methodology

David Cachera
Delphine Demange
Gustavo Petri

David Pichardie
Suresh Jagannathan
Jan Vitek

AS> PARIS

RENNES1 ‘DIDEROT

Automatic memory
management

Dynamic allocation of memory (in the heap)

In C: int * array = malloc(1l0 * sizeof(int))
In Java: Point originOne = new Point (23, 94)
In OCaml: let u = ‘c’::’a’::'m"::'1"::[]

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Automatic memory
management

Dynamic allocation of memory (in the heap)

In C: int * array = malloc(1l0 * sizeof(int))
In Java: Point originOne = new Point (23, 94)
In OCaml: let u = ‘c’::’a’::'m"::'1"::[]

Manual memory management

Programmer responsible for deallocation (C, C++...)
Risks: premature/double free, memory leak

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Automatic memory
management

Dynamic allocation of memory (in the heap)

In C: int * array = malloc(1l0 * sizeof(int))
In Java: Point originOne = new Point (23, 94)
In OCaml: let u = ‘c’::’a’::'m"::'1"::[]

u »| ‘C’ »| ‘A’ » ‘m’ > ‘l’V

Manual memory management

Programmer responsible for deallocation (C, C++...)
Risks: premature/double free, memory leak

Automatic memory management
Memory reclaimed automatically: Garbage Collector (Lisp, OCaml, Java...)

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Garbage Collection

Sequential Mark-Sweep Collectors (McCarthy, 1960)

On allocation, if few memory available:
1. Stop the user program X y
2. Perform full cycle: unreachable memory is reclaimed

Stop-the-world
Single thread
_ cycle 1 cycle 2
time >

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Garbage Collection

Sequential Mark-Sweep Collectors (McCarthy, 1960)

On allocation, if few memory available:
1. Stop the user program X y
2. Perform full cycle: unreachable memory is reclaimed

Stop-the-world
Single thread
_ cycle 1 cycle 2
time >

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Garbage Collection

Sequential Mark-Sweep Collectors (McCarthy, 1960)

On allocation, if few memory available:
1. Stop the user program X y
2. Perform full cycle: unreachable memory is reclaimed

Stop-the-world
Single thread

_ cycle 1 cycle 2
time >
With concurrency Stop-the-world?
Collector {
Multithread
user code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Garbage Collection

Sequential Mark-Sweep Collectors (McCarthy, 1960)

On allocation, if few memory available:
1. Stop the user program X y
2. Perform full cycle: unreachable memory is reclaimed

Stop-the-world
Single thread
_ cycle 1 cycle 2 1
time >

With concurrency Mostly-concurrent?

Collector

Multithread
user code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Garbage Collection

Sequential Mark-Sweep Collectors (McCarthy, 1960)

On allocation, if few memory available:
1. Stop the user program X y
2. Perform full cycle: unreachable memory is reclaimed

Stop-the-world
Single thread

_ cycle 1 cycle 2

time > *
With concurrency On-the-fly!
Collector _

Multithread
user code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

On-the-fly garbage collection

CACM ‘78

On-the-Fly Garbage
Collection: An Exercise in
Cooperation

Edsger W. Dijkstra
Burroughs Corporation

Leslie Lamport
SRI International

A.J. Martin, C.S. Scholten, and
E.F.M. Steffens
Philips Research Laboratories

As an example of cooperation between sequential
processes with very little mutual interference despite

L — T

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

On-the-fly garbage collection

CACM ‘78

On-the-Fly Garbage
Collection: An Exercise 1n
Cooperation

Edsger W. Dijkstra
Burroughs Corporation

Leslie Lamport
SRI International

technique is developed which allows nearly all of the
activity needed for garbage detection and collection to
be performed by an additional processor operating con-

currently with the processor devoted to the computation
proper. Exclusion and synchronization constraints have
been kept as weak as could be achieved; the severe
complexities engendered by doing so are illustrated.

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

On-the-fly garbage collection

CACM ‘78 POPL ‘93 ‘94
On-the-FIy Garbage Pl: concurliep’;; gegelc‘la’FlonlziJl garbage collector
Collection: An Exercise in or a multithreaded implementation of ML
Cooperatlon / Damien Doligez Xavier Leroy
Edsger W. Dijkstra . .
Burroughs Corporation Portable, Unobtrusive Garbage Collection
Leslie Lamport : for Multiprocessor Systems
SRI Internationa

: : r .8 the d Damien Doligez Georges Gonthier*
technique is developed which allows nearly all of the|’ """ fieole Normale Sunérieure INRIA Rocauenconrt
activity needed for garbage detection and collection to ' INRIA Rocquenpcourt -9153 LE CHES%\I AY CEDEX
be performed by an additional processor operating con- Feole Polytechnique FRANCE
currently with the processor devoted to the computation Damien.Doligez@inria.fr Georges.Gonthier@inria.fr
proper. Exclusion and synchronization constraints have
been kept as weak as could be achieved; the severe

complexities engendered by doing so are illustrated.

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

On-the-fly garbage collection

CACM ‘78

On-the-Fly Garbage
Collection: An Exercise in

Cooperation /'

Edsger W. Dijkstra
Burroughs Corporation

Leslie Lamport
SRI International

technique is developed which allows nearly all of the |-

activity needed for garbage detection and collection to
be performed by an additional processor operating con-
currently with the processor devoted to the computation
proper. Exclusion and synchronization constraints have
been kept as weak as could be achieved; the severe
complexities engendered by doing so are illustrated.

Yannick ZAKOWSKI

I ITP'17

POPL ‘93 ‘94
A concurrent, generational garbage collector
for a multithreaded implementation of ML

Damien Doligez Xavier Leroy

Portable, Unobtrusive Garbage Collection
for Multiprocessor Systems

Damien Doligez Georges Gonthier*

the basic algorithm of [9], and expose a series of counterex-
amples to explain why a straightforward adaptation of this
algorithm to multiple mutators would not work; we also ad-
dress some efficiency i1ssues. In section 4 we describe the

September, 26th, 2017

On-the-fly garbage collection

CACM ‘78 POPL ‘93 ‘94
On-the-Fly Garbage A concurrent, generational garbage collector
Collection: An Exercise in for a multithreaded implementation of ML
COOP eration / Damien Doligez Xavier Leroy
Edsger W. Dijkstra
Burroughs Corporation Portable, Unobtrusive Garbage Collection
Leslie Lamport for Multiprocessor Systems

SRI International

Damien Doligez Georges Gonthier*

technique is developed which allows nearly all of the |- : : .
activity needed for garbage detection and collection to the basic algont.hm of [9], a“fl expose a series of FOUMCI‘C{('
be performed by an additional processor operating con- | amples to explain why a straightforward adaptation of this
currently with the processor devoted to the computation algorithm to multiple mutators would not work; we also ad-
proper. Exclusion and synchronization constraints have dress some efficiency issues. In section 4 we describe the

been kept as weak as could be achieved; the severe ‘
PLDI ‘00

complexities engendered by doing so are illustrated.
Implementing an On-the-fly Garbage Collector for Java

Tamar Domani Elliot K. Kolodner* Ethan Lewis Eliot E. Salant
Katherine Barabash Itai Lahan Erez Petrank Igor Yanover
Yossi Levanoni

Abstract introduced for LISP in 1960. Since then,
garbage collection has been adapted for many

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

On-the-fly garbage collection

CACM ‘78

On-the-Fly Garbage
Collection: An Exercise in

Cooperation /'

Edsger W. Dijkstra
Burroughs Corporation

Leslie Lamport
SRI International

technique is developed which allows nearly all of the |

activity needed for garbage detection and collection to
be performed by an additional processor operating con-
currently with the processor devoted to the computation
proper. Exclusion and synchronization constraints have
been kept as weak as could be achieved; the severe
complexities engendered by doing so are illustrated.

dress some efficiency issues.

POPL ‘93 ‘94
A concurrent, generational garbage collector
for a multithreaded implementation of ML

Damien Doligez Xavier Leroy

Portable, Unobtrusive Garbage Collection
for Multiprocessor Systems

Damien Doligez Georges Gonthier*

the basic algorithm of [9], and expose a series of counterex-
amples to explain why a straightforward adaptation of this
algorithm to multiple mutators would not work; we also ad-
In section 4 we describe the

PLDI ‘00 ‘

Implementing an On-the-fly Garbage Collector for Java

Tamar Domani
Katherine Barabash

Elliot K. Kolodner*

Ethan Lewis
Itai Lahan Erez Petrank
Yossi Levanoni

Eliot E. Salant
Igor Yanover

Abstract introduce mark buffers, adapt the algorithm to Java

Yannick ZAKOWSKI

I ITP'17

September, 26th, 2017

An on-the-fly garbage collector

1 -

Sequential mark & sweep

Periodically stop user code and perform:

Mark: graph traversal from the roots ‘ ‘ ‘

Sweep: free cells remaining unmarked | | /

Color conventions:
Blue: free cells . .—).
White: not marked { \ /
Gray: being visited (pending nodes) D—> D D
Black: marked / [

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots Q Q O
Sweep: free cells remaining unmarked | | /

Color conventions:
Blue: free cells D D—)D
White: not marked { \ /
Gray: being visited (pending nodes) D—> D D
Black: marked / [

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions:
Blue: free cells D D D
White: not marked { \ /
Gray: being visited (pending nodes) D—> D D

Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: .
Blue: free cells D D
White: not marked { \ /
Gray: being visited (pending nodes) D—’ D D

Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: .
Blue: free cells D D
White: not marked { \ /
Gray: being visited (pending nodes) D—’ D D

Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, D
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) D—’ D D

Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, D
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) D—’ D D

Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, D
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) D—’ D D
Black: marked / [

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, D
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ D D

Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, D
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ i D

Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, D
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ i D
Black: marked / [

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, .
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ i D
Black: marked / [

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, .
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ i D
Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, .
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ i D
Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, .
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ . D
Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, .
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ . D
Black: marked / [
m

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Sequential mark & sweep

Periodically stop user code and perform: Root Root Root
Mark: graph traversal from the roots ‘ ‘ ‘
Sweep: free cells remaining unmarked | | /

Color conventions: . ._, .
Blue: free cells
White: not marked { \ /
Gray: being visited (pending nodes) .—’ . .
Black: marked / [
o BB

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

1. A need for the mutators’ collaboration

@ 0 ¢
1/
- W
L\ /
=) L

m)]

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

|
‘ ‘ ‘ - . While the collector runs, the user
' thread can do:
L ’

N/
—(

)
=
|

|
|
|
|
|
|
I ITP'17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

|
‘ ‘ ‘ - . While the collector runs, the user
' thread can do:

\ \ : 1. an update;

N X
—(

)
=
|

|
|
|
|
|
|
I ITP'17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

. While the collector runs, the user
' thread can do:

1. an update;

2. a store.

Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

. While the collector runs, the user
' thread can do:

1. an update;

2. a store.

Only access to
white subgraph is

Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

. While the collector runs, the user
' thread can do:

1. an update;

|/
__

2. a store.

N
L\ X0
_ o

|

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

. While the collector runs, the user
' thread can do:

1. an update;

|/
__

2. a store.

N
L\ X0
_ o

|

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

L |/
H N
L\ X0
_ o
_

. While the collector runs, the user
' thread can do:

1. an update;

2. a store.

Updates go through write barriers

Update(x,f,y) ==
MarkGray(y);
Xf=y

MarkGray(x) ==
if x.color = WHITE
then x.color = GRAY

I TP’ 17 Yannick ZAKOWSKI September, 26th

Concurrent mark & sweep

‘ ‘ ‘ B . While the collector runs, the user
' thread can do:
\ | 1. an update;

2. a store.

Updates go through write barriers

Update(x,f,y) ==
[MarkGray(y);
Xf=y
]

if x.color = WHITE
then x.color = GRAY

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

‘ ‘ ‘ B . While the collector runs, the user
' thread can do:

\ | 1. an update;

- W O
LN X
= @

2. a store.

Updates go through write barriers

Update(x,f,y) ==
[MarkGray(y);
Xf=y
]

if x.color = WHITE
then x.color = GRAY

I TP’ 17 Yannick ZAKOWSKI September, 26th

Concurrent mark & sweep

1/
0 m O

N X

. While the collector runs, the user
' thread can do:

1. an update;

2. a store.

Updates go through write barriers

Update(x,f,y) ==
MarkGray(y);
Xf=y

MarkGray(x) ==
if x.color = WHITE
then x.color = GRAY

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

L |/
H AR

LN X
o

. While the collector runs, the user
' thread can do:

1. an update;

2. a store.

Updates go through write barriers

Update(x,f,y) ==
[MarkGray(y);
Xf=y
. . — . MarkGray(x) ==

if x.color = WHITE
then x.color = GRAY

I TP’ 17 Yannick ZAKOWSKI September, 26th

Concurrent mark & sweep

2. A need for synchronisation

. -

- B0
L\, /
&) [
a
m]

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

MUTATOR COLLECTOR
[...] Scan:
: repeat
Update(x,f,y), no_gray = true;
[...] foreach x ¢ OBJECTS
Alloc(); if x.color == GRAY

no_gray = false;
foreach f e fields(x) do
MarkGray(x.f);
x.color = BLACK
until no_gray
Sweep:
foreach x € OBJECTS
if x.color == WHITE
then FREE(X)
Clear:
foreach x € OBJECTS
x.color = WHITE

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

[.]

Concurrent mark & sweep

The collector

MUTATOR COLLECTOR has not access

] Scan: to all mutator
o _ repeat roots...
Update(x,f,y), no_gray = true;

[...] foreach x ¢ OBJECTS
Alloc(); if x.color == GRAY

no_gray = false;
foreach f e fields(x) do
MarkGray(x.f);
x.color = BLACK
until no_gray
Sweep:
foreach x € OBJECTS
if x.color == WHITE
then FREE(X)
Clear:
foreach x € OBJECTS
x.color = WHITE

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

[.]

Concurrent mark & sweep

The collector

MUTATOR has not access
mark your roots please
] : - to all mutator
. repeat roots...
Update(x,f,y), no_gray = true;
[...] foreach x ¢ OBJECTS
Alloc(); if x.color == GRAY

no_gray = false;
foreach f e fields(x) do
MarkGray(x.f);
x.color = BLACK
until no_gray
Sweep:
foreach x € OBJECTS
if x.color == WHITE
then FREE(X)
Clear:
foreach x € OBJECTS
x.color = WHITE

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

[.]

Concurrent mark & sweep

MUTATOR ' Mark:
. Handshake();
L foreach x € GLOBALS
-] : do MarkGray(x)
Udpate(x1,f1,y1);
[-..] They need to e,
Cooperate(); synchronise! AU,
L. olor == GRAY
Alloc(); no_gray = false;
[... foreach f ¢ fields(x) do

MarkGray(x.f);
x.color = BLACK
until no_gray
Sweep:
foreach x € OBJECTS
if x.color == WHITE
then FREE(X)
Clear:
foreach x ¢ OBJECTS

x.color = WHITE

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

MUTATOR ' Mark:
. Handshake();
L foreach x € GLOBALS
-] : do MarkGray(x)
Udpate(x1,f1,y1);
[-..] They need to e,
Cooperate(); synchronise! AU,
L. olor == GRAY
Alloc(); : no_gray = false;
[...] : foreach f ¢ fields(x) do

MarkGray(x.f);
plor = BLACK

But user threads &4
should not wait! e OBJECTS

Blor == WHITE
then FREE(x)

Clear:
foreach x e OBJECTS

x.color = WHITE

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

Mutators mark Collector awaits for mutators
their roots to mark their roots
Cooperate() = ' Handshake() =
if statusm = statusc : statusc = Next(statusc);
then . while (statusm = statusc) skip:
Sklp 1
else :
foreach r e LOCAL_ROOTS do :
MarkGray(r); '

statusm = statusc:

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

Mutators mark Collector awaits for mutators
their roots to mark their roots
Cooperate() = ' Handshake() =
if statusm = statusc : statusc = Next(statusc);
then : while (statusm # statusc) skip;
skip :
else .
foreach r e LOCAL_ROOTS do :
MarkGray(r); ' Updates
statusm = statusc; its status

Actively waits

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Concurrent mark & sweep

Mutators mark Collector awaits for mutators
their roots to mark their roots
Cooperate() = ' Handshake() =
if statusm = statusc : statusc = Next(statusc);
then : while (statusm # statusc) skip;
skip :
else .
foreach r e LOCAL_ROOTS do :
MarkGray(r); ' Updates
statusm = statusc; its status

Actively waits

Checks if in sync

Yes? Back to work b L ever waits

for anyone

No? Publishes roots

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Timeline of a collection cycle
(DLG 93/94)

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Timeline of a collection cycle
(DLG 93/94)

time &
(f CLEAR TRACING SWEEPING RESTING
I | Fsweep |
= ; t . .
Collector < SYNC2 E y : i P e \grswiep .
sync1 | |Z : : : '
\ ASYNC—E—TJ ' ' .
i ' : :
0O | | 1
N
Multithread SYNC2 || : : :
user code syNnci |~ . i N
1.9 D D _
ASENE | & i : : publish !
13 2 i i "roots 1 : »
(o) —# collection
write barrier ends
WHITE
Allocation BLACK
» Graph algorithms
» Subtle synchronisation Sophisticated invariants

 Lots of concurrent accesses

Yannick ZAKOWSKI September, 26th, 2017

I ITP'17

Verifying the garbage collector

1. What do we prove?
2. How do we prove it?

1

What do we prove?

We rely on a most general client (mgc)

A
mge =

collector ||mutator | ... ||mutator

mutator =
Ioop(update(x, f,v)
@ load(x,f) ® alloc()
@ cooperate()
@ changeRoots())

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

What do we prove?

We rely on a most general client (mgc)

A
mgec =
collector ||mutator | ... ||mutator
A Abstraction of
mutator = any user thread

Ioop(update(x, f,v)
@ load(x,f) ® alloc()
@ cooperate()
@ changeRoots())

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

What do we prove?

Root Root Root

Theorem:
In any execution state of the mgc,
cells reachable by a mutator are
never blue

I ITP’'17 Yannick ZAKOWSKI September, 26th, 2017

An IR to program the GC

cmd =
skip r = alloc(rn)
assume e free(x)
x = ly].f r = y.empty?()
z|.f=e z = y.top()
atomic c x.push(y)
€15 €2 x.pop()
c1 P co isFree?(x)
loop(c) foreach (x @n 1) do ¢ od

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

An IR to program the GC

cmd =
skip r = alloc(rn)
assume e free(x)
x = ly].f r = y.empty?()
z].f=e r = y.top()
atomic ¢ x.push(y)
€1, €2 x.pop()
c1 P co isFree?(x)
loop(c) foreach (x in 1) do c od

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

An IR to program the GC

cmd =
skip
x = ly].f r = y.empty?()
z|.f=e z = y.top()
atomic c x.push(y)
€15 €2 x.pop()
c1 D co isFree?(x)
loop(c) foreach (x @n 1) do ¢ od

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

An IR to program the GC

cmd =
skip r = alloc(rn)
assume e free(x)
x = y].f
x|.f=e
atomic c
€1, €2
c1 P co isFree?(x)
loop(c) foreach (x @n 1) do ¢ od
_ MarkGray(m, x) ==
* Abstract bUﬁerS_- | _ | if x.color = WHITE then
- concrete implementations are linearizable push(buffer[m], x)

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

An IR to program the GC

cmd =
skip r = alloc(rn)
assume e free(x)
x = y].f
z|.f=e
atomic c
C1 5 €2
c1 D o isFree?(x)
loop(c) foreach (x in 1) do ¢ od

* Intrinsic support for threads, roots, and objects
* Built-in iterator constructs : disciplined access

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

An IR to program the GC

cmd =
skip r = alloc(rn)
assume e free(x)
x = y].f
z|.f=e
atomic c
C1 5 €2
c1 D o isFree?(x)
loop(c) foreach (x i4n 1) do ¢ od

Right level of abstraction: proofs are conducted with respect to the operational
semantics of the IR, directly over the code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

EnvironmentR7 G’ I I_t {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

I ITP'17

Yannick ZAKOWSKI September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

EnvironmentR7 G’ I I_t {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

I ITP'17

Yannick ZAKOWSKI September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

EnvironmentR7 G’ I I_t {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

I ITP'17

Yannick ZAKOWSKI September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

EnvironmentR’ G’ I I_t {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

I ITP'17

Yannick ZAKOWSKI September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

EnvironmentR’ G’] I_t {P} C {Q}
R: Rely

Global Correctness Annotations
G: Guarantee Invariant
Stable under Global invariants
Sequentially

correct

Correct abstraction O
Guarantees O Annotated code

Stable under
I ITP’17 Yannick ZAKOWSKI 20 September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

EnvironmentR’ G’] I_t {P} C {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

_ Global invariants

Sequentially
correct
Correct abstraction 0

Guarantees O Annotated code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

Predicate P

stable under

EnvironmentR’ G’] I_t {P} C {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant .
interference {

Vo - P, Vo',
cRo —d' P

Sequentially

_ Global invariants
correct

Correct abstraction 0
Guarantees O Annotated code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Rely Guarantee reasoning
[Jones81]

Predicate P

stable under

EnvironmentR’ G’] I_t {P} C {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant .
interference {

Vo - P, Vo',
cRo —d' P

Sequentially

_ Global invariants
correct

Correct abstraction O
Guarantees O Annotated code

Stable under
g

Yannick ZAKOWSKI 20 September, 26th, 2017

(#annotations * #interferences)
stability proofs required!

Reusing proofs incrementally

Minimal guarantees
No global invariant

No code annotation

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Reusing proofs incrementally

Minimal guarantees
No global invariant

No code annotation

v

Add new invariants
Synchronisation
protocol

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Reusing proofs incrementally

Minimal guarantees
No global invariant

No code annotation

v

Add new invariants

Refine
Y Synchronisation
Guarantees Y

/ protocol
Prove | stable Prove the sequential Prove the stability
under G correctness of the annotations

\

Refine code > Prove G abstracts
annotations the code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Reusing proofs incrementally

Minimal guarantees
No global invariant

No code annotation

v

Add new invariants

Refine
Y Synchronisation
Guarantees Y

protocol
/ + color invariant
Prove | stable Prove the sequential Prove the stability
under G correctness of the annotations

\

Refine code > Prove G abstracts
annotations the code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Reusing proofs incrementally

Minimal guarantees
No global invariant

No code annotation

v

: Add new invariants
Refine Y Synchronisation

Guarantees protocol
/ + color invariant @
@ G changes:
Prove | stable synchronisation Prove the sequential Prove the stability

under G protocole correctness of the annotations

no longer stable

Refine code > Prove G abstracts
annotations the code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Reusing proofs incrementally

Minimal guarantees
No global invariant

No code annotation

v

Add new invariants

Refine
Y Synchronisation
Guarantees Y

protocol
/ + color invariant

Toolkit of meta- »
Prove | stable th;orems: Prove the sequential Prove the stability

under G lemmas are reused correctness of the annotations

\

Refine code > Prove G abstracts
annotations the code

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Incremental invariants of the
GC

Proof = six layers of invariants (partially ordered)

5- Colors, Reachability, Correctness

black_to_white correct sweep_no_grey

/ pointsto_freelist trace_grey_reach_white \

0- Synch Protocol 1- Colors in heap 2- Buffers aux. 3- Stage aux. 4- Phantom aux.
phase_val synch white_or_black buffers_exist stage_val hs_clear-trace
late_mut_trace in_buffer_no_null hs_flipped
sweep_asynch phant_buffers_exist flipped_clear

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Conclusion

1

Summary

 Dedicated IR: right level of abstraction

- Abstract concurrent queues

- Native support of roots, objects, freelist

- Iterators
* RG logics + soundness theorem + incremental workflow
e Realistic On-The-Fly garbage collector

- Significant subset of Domani et al. GC

- Proofs conducted w.r.t. code’s semantics

- Most-General-Client theorem
- Proof: incremental invariants

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

Perspectives

- Abstract concurrent queues Proving
atomic refinement

of linearisable
data-structures
—> ongoing

- Significant subset of Domani et al. GC

We left out
orthogonal optimisations
ex : Generational GC

I ITP’17 Yannick ZAKOWSKI September, 26th, 2017

