
ITP’17

Verifying a Concurrent Garbage
Collector using a

 Rely-Guarantee Methodology

Yannick Zakowski
David Cachera

Delphine Demange
Gustavo Petri

David Pichardie
Suresh Jagannathan

Jan Vitek

Yannick ZAKOWSKIITP’17 2 September, 26th, 2017

Dynamic allocation of memory (in the heap)
In C: int * array = malloc(10 * sizeof(int))
In Java: Point originOne = new Point(23, 94)
In OCaml: let u = ‘c’::’a’::’m’::’l’::[]

‘a’ ‘l’‘m’‘c’u

Automatic memory
management

Yannick ZAKOWSKIITP’17 2 September, 26th, 2017

Dynamic allocation of memory (in the heap)
In C: int * array = malloc(10 * sizeof(int))
In Java: Point originOne = new Point(23, 94)
In OCaml: let u = ‘c’::’a’::’m’::’l’::[]

Manual memory management
Programmer responsible for deallocation (C, C++…)
Risks: premature/double free, memory leak

‘a’ ‘l’‘m’‘c’u

Automatic memory
management

Yannick ZAKOWSKIITP’17 2 September, 26th, 2017

Dynamic allocation of memory (in the heap)
In C: int * array = malloc(10 * sizeof(int))
In Java: Point originOne = new Point(23, 94)
In OCaml: let u = ‘c’::’a’::’m’::’l’::[]

Manual memory management
Programmer responsible for deallocation (C, C++…)
Risks: premature/double free, memory leak

Automatic memory management
Memory reclaimed automatically: Garbage Collector (Lisp, OCaml, Java…)

‘a’ ‘l’‘m’‘c’u

Automatic memory
management

Yannick ZAKOWSKIITP’17

Garbage Collection

3 September, 26th, 2017

x y z

Sequential Mark-Sweep Collectors (McCarthy, 1960)
On allocation, if few memory available:
1. Stop the user program
2. Perform full cycle: unreachable memory is reclaimed

cycle 1 cycle 2

Stop-the-world
Single thread

time

Yannick ZAKOWSKIITP’17

Garbage Collection

3 September, 26th, 2017

x y z

Sequential Mark-Sweep Collectors (McCarthy, 1960)
On allocation, if few memory available:
1. Stop the user program
2. Perform full cycle: unreachable memory is reclaimed

cycle 1 cycle 2

Stop-the-world
Single thread

time

Yannick ZAKOWSKIITP’17

Garbage Collection

3 September, 26th, 2017

x y z

Sequential Mark-Sweep Collectors (McCarthy, 1960)
On allocation, if few memory available:
1. Stop the user program
2. Perform full cycle: unreachable memory is reclaimed

With concurrency

Multithread
user code

Collector

{
{

Stop-the-world?

cycle 1 cycle 2

Stop-the-world
Single thread

time

Yannick ZAKOWSKIITP’17

Garbage Collection

3 September, 26th, 2017

x y z

Sequential Mark-Sweep Collectors (McCarthy, 1960)
On allocation, if few memory available:
1. Stop the user program
2. Perform full cycle: unreachable memory is reclaimed

cycle 1 cycle 2

Stop-the-world
Single thread

time

With concurrency

Multithread
user code

Collector

{
{

Mostly-concurrent?

Yannick ZAKOWSKIITP’17

Garbage Collection

3 September, 26th, 2017

x y z

Sequential Mark-Sweep Collectors (McCarthy, 1960)
On allocation, if few memory available:
1. Stop the user program
2. Perform full cycle: unreachable memory is reclaimed

cycle 1 cycle 2

Stop-the-world
Single thread

time

With concurrency

Multithread
user code

Collector

{
{

On-the-fly!

Yannick ZAKOWSKIITP’17

On-the-fly garbage collection

4 September, 26th, 2017

CACM ‘78

Yannick ZAKOWSKIITP’17

On-the-fly garbage collection

4 September, 26th, 2017

CACM ‘78

Yannick ZAKOWSKIITP’17

On-the-fly garbage collection

4 September, 26th, 2017

CACM ‘78 POPL ‘93 ‘94

Yannick ZAKOWSKIITP’17

On-the-fly garbage collection

4 September, 26th, 2017

CACM ‘78 POPL ‘93 ‘94

Yannick ZAKOWSKIITP’17

On-the-fly garbage collection

4 September, 26th, 2017

CACM ‘78 POPL ‘93 ‘94

PLDI ‘00

Yannick ZAKOWSKIITP’17

On-the-fly garbage collection

4 September, 26th, 2017

CACM ‘78 POPL ‘93 ‘94

PLDI ‘00

introduce mark buffers, adapt the algorithm to Java

ITP’17

An on-the-fly garbage collector

5

Yannick ZAKOWSKIITP’17 6 September, 26th, 2017

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

Sequential mark & sweep

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17

Periodically stop user code and perform:

• Mark: graph traversal from the roots

• Sweep: free cells remaining unmarked

Color conventions:

• Blue: free cells

• White: not marked

• Gray: being visited (pending nodes)

• Black: marked

September, 26th, 2017

Sequential mark & sweep

7

Root Root Root

Yannick ZAKOWSKIITP’17 8 September, 26th, 2017

Concurrent mark & sweep
1. A need for the mutators’ collaboration

Yannick ZAKOWSKIITP’17 9 September, 26th, 2017

While the collector runs, the user
thread can do:

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 9 September, 26th, 2017

While the collector runs, the user
thread can do:

1. an update;

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 9 September, 26th, 2017

While the collector runs, the user
thread can do:

1. an update;

2. a store.

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 9 September, 26th, 2017

While the collector runs, the user
thread can do:

1. an update;

2. a store.

Concurrent mark & sweep

Only access to
white subgraph is

black!

Yannick ZAKOWSKIITP’17 9 September, 26th, 2017

While the collector runs, the user
thread can do:

1. an update;

2. a store.

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 9 September, 26th, 2017

While the collector runs, the user
thread can do:

1. an update;

2. a store.

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 9 September, 26th, 2017

While the collector runs, the user
thread can do:

1. an update;

2. a store.

Concurrent mark & sweep

Updates go through write barriers

Update(x,f,y) == 
 MarkGray(y); 
 x.f = y

MarkGray(x) == 
 if x.color = WHITE 
 then x.color = GRAY 

Yannick ZAKOWSKIITP’17 10 September, 26th, 2017

1. an update;

2. a store.

Update(x,f,y) == 
 MarkGray(y); 
 x.f = y

MarkGray(x) == 
 if x.color = WHITE 
 then x.color = GRAY 

Concurrent mark & sweep
While the collector runs, the user
thread can do:

Updates go through write barriers

Yannick ZAKOWSKIITP’17 10 September, 26th, 2017

1. an update;

2. a store.

Update(x,f,y) == 
 MarkGray(y); 
 x.f = y

MarkGray(x) == 
 if x.color = WHITE 
 then x.color = GRAY 

Concurrent mark & sweep
While the collector runs, the user
thread can do:

Updates go through write barriers

Yannick ZAKOWSKIITP’17 10 September, 26th, 2017

1. an update;

2. a store.

Update(x,f,y) == 
 MarkGray(y); 
 x.f = y

MarkGray(x) == 
 if x.color = WHITE 
 then x.color = GRAY 

Concurrent mark & sweep
While the collector runs, the user
thread can do:

Updates go through write barriers

Yannick ZAKOWSKIITP’17 10 September, 26th, 2017

1. an update;

2. a store.

Update(x,f,y) == 
 MarkGray(y); 
 x.f = y

MarkGray(x) == 
 if x.color = WHITE 
 then x.color = GRAY 

Concurrent mark & sweep
While the collector runs, the user
thread can do:

Updates go through write barriers

Yannick ZAKOWSKIITP’17 11 September, 26th, 2017

Concurrent mark & sweep
2. A need for synchronisation

Local variables

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 12 September, 26th, 2017

COLLECTOR

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

Concurrent mark & sweep
MUTATOR

[...] 
 Update(x,f,y); 
[...] 
 Alloc(); 
[…] 

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 12 September, 26th, 2017

COLLECTOR

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

Concurrent mark & sweep
MUTATOR

[...] 
 Update(x,f,y); 
[...] 
 Alloc(); 
[…] 

The collector
has not access
to all mutator
roots...

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 12 September, 26th, 2017

COLLECTOR

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

mark your roots please

Concurrent mark & sweep
MUTATOR

[...] 
 Update(x,f,y); 
[...] 
 Alloc(); 
[…] 

The collector
has not access
to all mutator
roots...

Yannick ZAKOWSKIITP’17 13 September, 26th, 2017

Mark: 
 Handshake(); 
 foreach x ∈ GLOBALS 
 do MarkGray(x) 
Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

MUTATOR

[...] 
 Udpate(x1,f1,y1); 
[...] 
 Cooperate(); 
[...] 
 Alloc(); 
[...] 

Concurrent mark & sweep

They need to
synchronise!

Yannick ZAKOWSKIITP’17 13 September, 26th, 2017

Mark: 
 Handshake(); 
 foreach x ∈ GLOBALS 
 do MarkGray(x) 
Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

MUTATOR

[...] 
 Udpate(x1,f1,y1); 
[...] 
 Cooperate(); 
[...] 
 Alloc(); 
[...] 

Concurrent mark & sweep

They need to
synchronise!

But user threads
should not wait!

Yannick ZAKOWSKIITP’17 14 September, 26th, 2017

Handshake() =  
 statusC = Next(statusC);  
 while (statusm ≠ statusC) skip;

Cooperate() =  
 if statusm = statusC  
 then  
 skip 
 else  
 foreach r ∈ LOCAL_ROOTS do 
 MarkGray(r); 
 statusm = statusC;

Mutators mark
their roots

Collector awaits for mutators
to mark their roots

Concurrent mark & sweep

Yannick ZAKOWSKIITP’17 14 September, 26th, 2017

Handshake() =  
 statusC = Next(statusC);  
 while (statusm ≠ statusC) skip;

Cooperate() =  
 if statusm = statusC  
 then  
 skip 
 else  
 foreach r ∈ LOCAL_ROOTS do 
 MarkGray(r); 
 statusm = statusC;

Mutators mark
their roots

Collector awaits for mutators
to mark their roots

Concurrent mark & sweep

Actively waits

Updates
its status

Yannick ZAKOWSKIITP’17 14 September, 26th, 2017

Handshake() =  
 statusC = Next(statusC);  
 while (statusm ≠ statusC) skip;

Cooperate() =  
 if statusm = statusC  
 then  
 skip 
 else  
 foreach r ∈ LOCAL_ROOTS do 
 MarkGray(r); 
 statusm = statusC;

Mutators mark
their roots

Collector awaits for mutators
to mark their roots

Concurrent mark & sweep

Actively waits

Updates
its status

Never waits
for anyone

Checks if in sync

No? Publishes roots
Yes? Back to work

)

Yannick ZAKOWSKIITP’17

Timeline of a collection cycle
(DLG 93/94)

15 September, 26th, 2017

Yannick ZAKOWSKIITP’17

Timeline of a collection cycle
(DLG 93/94)

15 September, 26th, 2017

trace sweep

collection
ends

z }| { z }| {
a
t
o
m
i
c
(
b
l
a
c
k

!
w
h
i
t
e
){

Multithread
user code

Collector

CLEAR TRACING SWEEPING RESTING

SYNC2

SYNC1

ASYNC

SYNC2

SYNC1

ASYNC{

handshakeshandshakes3 handshakes

publish
roots

BLACKAllocation
WHITE

| {z }
write barrier

time

• Graph algorithms

• Subtle synchronisation

• Lots of concurrent accesses

)
Sophisticated invariants

ITP’17

Verifying the garbage collector

16

1. What do we prove?
2. How do we prove it?

Yannick ZAKOWSKIITP’17

What do we prove?

17 September, 26th, 2017

loop
�
update(x, f, v)
� load(x, f)� alloc()
� cooperate()
� changeRoots()

�

mutator ,

mgc ,
collector k mutator k ... k mutator

We rely on a most general client (mgc)

Yannick ZAKOWSKIITP’17

What do we prove?

17 September, 26th, 2017

loop
�
update(x, f, v)
� load(x, f)� alloc()
� cooperate()
� changeRoots()

�

mutator ,

mgc ,
collector k mutator k ... k mutator

We rely on a most general client (mgc)

Abstraction of
any user thread

Yannick ZAKOWSKIITP’17 18 September, 26th, 2017

What do we prove?
Root Root Root

Theorem:
In any execution state of the mgc,
cells reachable by a mutator are

never blue

Yannick ZAKOWSKIITP’17

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od

Yannick ZAKOWSKIITP’17

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od

Yannick ZAKOWSKIITP’17

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od

Yannick ZAKOWSKIITP’17

• Abstract buffers:
 - concrete implementations are linearizable

MarkGray(m, x) == 
 if x.color = WHITE then 
 push(buffer[m], x)

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od

Yannick ZAKOWSKIITP’17

• Intrinsic support for threads, roots, and objects
• Built-in iterator constructs : disciplined access

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od

Yannick ZAKOWSKIITP’17

Right level of abstraction: proofs are conducted with respect to the operational
semantics of the IR, directly over the code

An IR to program the GC

19 September, 26th, 2017

cmd :=
| skip | x = alloc(rn)
| assume e | free(x)
| x = [y].f | x = y.empty?()
| [x].f = e | x = y.top()
| atomic c | x.push(y)
| c1 ; c2 | x.pop()
| c1 � c2 | isFree?(x)
| loop(c) | foreach (x in l) do c od

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Guarantees

Correct abstraction

Sequentially
correct

Annotated code

Global invariants

Stable under

Stable under

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Guarantees

Correct abstraction

Sequentially
correct

Annotated code

Global invariants

Stable under

Stable under

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Guarantees

Correct abstraction

Sequentially
correct

Annotated code

Global invariants

P

R

Stable under

Stable under

Predicate

interference

stable under

8� ` P, 8�0,
� R �0 ! �0 ` P

Yannick ZAKOWSKIITP’17

Rely Guarantee reasoning
[Jones81]

20 September, 26th, 2017

R,G, I `t {P} c {Q}
AnnotationsGlobal Correctness

Invariant

Environment
R: Rely
G: Guarantee

Guarantees

Correct abstraction

Sequentially
correct

Annotated code

Global invariants

P

R

Stable under

Stable under

Predicate

interference

stable under

(#annotations * #interferences)
stability proofs required!

8� ` P, 8�0,
� R �0 ! �0 ` P

Yannick ZAKOWSKIITP’17 21 September, 26th, 2017

Reusing proofs incrementally
Minimal guarantees

No code annotation
No global invariant

Yannick ZAKOWSKIITP’17 21 September, 26th, 2017

Reusing proofs incrementally
Minimal guarantees

No code annotation
No global invariant

Synchronisation
protocol

Add new invariants

Yannick ZAKOWSKIITP’17 21 September, 26th, 2017

Reusing proofs incrementally

Prove I stable
under G

Refine code
annotations

Minimal guarantees

No code annotation
No global invariant

Prove the sequential
correctness

Prove the stability
of the annotations

Synchronisation
protocol

Add new invariants

Prove G abstracts
the code

Refine
Guarantees

Yannick ZAKOWSKIITP’17 21 September, 26th, 2017

Reusing proofs incrementally

Prove I stable
under G

Refine code
annotations

Minimal guarantees

No code annotation
No global invariant

Prove the sequential
correctness

Prove the stability
of the annotations

Synchronisation
protocol

Add new invariants

Prove G abstracts
the code

Refine
Guarantees

+ color invariant

Yannick ZAKOWSKIITP’17 21 September, 26th, 2017

Reusing proofs incrementally

Prove I stable
under G

Refine code
annotations

Minimal guarantees

No code annotation
No global invariant

Prove the sequential
correctness

Prove the stability
of the annotations

Synchronisation
protocol

Add new invariants

Prove G abstracts
the code

Refine
Guarantees

+ color invariant

G changes:
synchronisation

protocole
no longer stable

Yannick ZAKOWSKIITP’17 21 September, 26th, 2017

Reusing proofs incrementally

Prove I stable
under G

Refine code
annotations

Minimal guarantees

No code annotation
No global invariant

Prove the sequential
correctness

Prove the stability
of the annotations

Synchronisation
protocol

Add new invariants

Prove G abstracts
the code

Refine
Guarantees

+ color invariant

Toolkit of meta-
theorems:

lemmas are reused

Yannick ZAKOWSKIITP’17 22 September, 26th, 2017

Incremental invariants of the
GC

Proof = six layers of invariants (partially ordered)

0- Synch Protocol

5- Colors, Reachability, Correctness

trace_grey_reach_white
correctblack_to_white

pointsto_freelist
sweep_no_grey

sweep_asynch

phase_val synch
late_mut_trace

2- Buffers aux.1- Colors in heap
white_or_black buffers_exist

in_buffer_no_null
phant_buffers_exist

stage_val
3- Stage aux. 4- Phantom aux.

hs_flipped
flipped_clear

hs_clear-trace

ITP’17

Conclusion

23

Yannick ZAKOWSKIITP’17 24 September, 26th, 2017

Summary
• Dedicated IR: right level of abstraction 

- Abstract concurrent queues 
- Native support of roots, objects, freelist 
- Iterators

• RG logics + soundness theorem + incremental workflow

• Realistic On-The-Fly garbage collector 
- Significant subset of Domani et al. GC 
- Proofs conducted w.r.t. code’s semantics 
- Most-General-Client theorem 
- Proof: incremental invariants

 

Yannick ZAKOWSKIITP’17 25 September, 26th, 2017

Perspectives
• Dedicated IR: right level of abstraction 

- Abstract concurrent queues 
- Native support of roots, objects, freelist 
- Iterators

• RG logics + soundness theorem + incremental workflow

• Realistic On-The-Fly garbage collector 
- Significant subset of Domani et al. GC 
- Proofs conducted w.r.t. code’s semantics 
- Most-General-Client theorem 
- Proof: incremental invariants

 

Proving
atomic refinement

of linearisable
 data-structures

—> ongoing

We left out
 orthogonal optimisations

ex : Generational GC

- Abstract concurrent queues

- Significant subset of Domani et al. GC

