
1

Choice Trees

Nicolas Chappe, Paul He, Ludovic Henrio,

Steve Zdancewic and Yannick Zakowski

Representing  
Nondeterministic, Recursive, and Impure 

Programs in Coq

2

Choice Trees

Li-yao Xia, Yannick Zakowski, Paul He, Gregory Malecha, 
Chung-Kil Hur, Benjamin Pierce, Steve Zdancewic

Representing  
Nondeterministic, Recursive, and Impure 

Programs in Coq

Interaction

3 years ago, in New Orleans…

Modeling Computations in a Proof Assistant

3

In a dependently typed theory

In the Coq Proof Assistant

A reusable library to define and reason about Monadic Interpreters

Reusable components

Compositional, whenever possible

Executable (allows for testing)

Four core desiderata:

Supporting termination sensitive refinements

Interaction Trees, Summarily

At its core, two standard notions from the literature

The Free Monad [Swiestra 08, Kiselyov and Ishii 15, …]

The Delay Monad [Capretta 05]

Notion 1: The Free Monad

5

Effectful computations arise from their signature of operations

itree E X

My computation is a glorified piece of syntax

able to perform operations specified in E

in order to compute a value of type X

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Trees

6

Imp programs are computations performing reads and writes

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Trees

6

Imp programs are computations performing reads and writes

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Trees

6

Imp programs are computations performing reads and writes

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Trees

6

Imp programs are computations performing reads and writes

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Trees

6

q ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

Imp programs are computations performing reads and writes

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Trees

6

q ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

semantically 
equivalent

≉

Imp programs are computations performing reads and writes

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Trees

7

q ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

Imp programs are stateful computations

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Trees

7

q ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

Imp programs are stateful computations

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Trees

7

q ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt ttm{x ← 0}{x ← m(y)}

m ↦

Imp programs are stateful computations

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Trees

7

q ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt ttm{x ← 0}{x ← m(y)}

m ↦

m{x ← m(y)}

m ↦

Imp programs are stateful computations

p ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Trees

7

q ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt ttm{x ← 0}{x ← m(y)}

m ↦

m{x ← m(y)}

m ↦

≈

Imp programs are stateful computations

ITree Second Notion: Capretta’s Delay Monad

8

r ≜ while true do ∙

later

later

later

We move onto a coinductive datatype, is an infinite treer

Something happened internally 
Here, the re-entry of the loop

Should recursion be an operation? We hardcode a model for it

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Potentially Infinite Trees

9

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

Imp programs are stateful delayed computations

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Potentially Infinite Trees

9

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

Imp programs are stateful delayed computations

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Potentially Infinite Trees

9

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

later

later

later

m{x ← 0}{x ← m(y)}

m ↦

Imp programs are stateful delayed computations

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Potentially Infinite Trees

9

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

later

later

later

m{x ← 0}{x ← m(y)}

m ↦

later

m{x ← m(y)}

m ↦

later

Imp programs are stateful delayed computations

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Potentially Infinite Trees

9

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

later

later

later

m{x ← 0}{x ← m(y)}

m ↦

later

m{x ← m(y)}

m ↦

later

≈

Imp programs are stateful delayed computations

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

Programs as Stateful Potentially Infinite Trees

9

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

later

later

later

m{x ← 0}{x ← m(y)}

m ↦

later

m{x ← m(y)}

m ↦

later

≈

Equivalence relation 
(Coinductive-Inductive relation)

Imp programs are stateful delayed computations

A Reusable Library, at Scale

10

Interaction Trees (itrees)

github.com/DeepSpec/InteractionTrees

C4

Lesani et al.
Verified Transactional Objects

Zakowski et al.
Verified LLVMVerified Web Server

Zhang et al.

Representing  
Nondeterministic, Recursive, and Impure 

Programs in Coq

or

Choice Trees

How does the story go with 
nondeterministic computations?

12

Nondeterministic Branching

13

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ br c1 or c2 ∣ stuck ∣ print

 : either branch can be executedbr c1 or c2

[c1]

pick

[c2]

true false[br c1 or c2] ≜

Nondeterministic Branching

13

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ br c1 or c2 ∣ stuck ∣ print

 : either branch can be executedbr c1 or c2

[c1]

pick

[c2]

true false[br c1 or c2] ≜
[c2]

pick

[c1]

true false≉ ≜ [br c2 or c1]

At this stage, pick is not commutative (nor idempotent, nor associative)

Nondeterministic Branching

13

This paper: what structure should we implement pick into?

[c1]

pick

[c2]

true false[br c1 or c2] ≜
[c2]

pick

[c1]

true false≉ ≜ [br c2 or c1]

At this stage, pick is not commutative (nor idempotent, nor associative)

Nondeterministic Branching: Which Meaning?

14

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ br c1 or c2 ∣ stuck ∣ print

 : either branch can be executedbr c1 or c2

More specifically, we may mean one of two operational behaviours:

• The system may become either branch

• The system may take a transition offered by either branch

Nondeterministic Branching: Which Meaning?

14

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ br c1 or c2 ∣ stuck ∣ print

 : either branch can be executedbr c1 or c2

br c1 or c2 → c1

More specifically, we may mean one of two operational behaviours:

• The system may become either branch

• The system may take a transition offered by either branch

Nondeterministic Branching: Which Meaning?

14

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ br c1 or c2 ∣ stuck ∣ print

 : either branch can be executedbr c1 or c2

br c1 or c2 → c1

c1 → c′￼1

br c1 or c2 → c′￼1

More specifically, we may mean one of two operational behaviours:

• The system may become either branch

• The system may take a transition offered by either branch

Nondeterministic Branching: Which Meaning?

15

p ≜ br (while true do print) or stuck

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ br c1 or c2 ∣ stuck ∣ print

Depending on our choice of semantics, the program may be stuck, or notp

br c1 or c2 → c1

c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is possible p → stuck is not possible

Case 1: Case 2:

16

p ≜ br (while true do print) or stuck

br c1 or c2 → c1

p → stuck is possible

Case 1: c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is not possible

Case 2:

Let’s Take the Perspective of an LTS

16

p ≜ br (while true do print) or stuck

br c1 or c2 → c1

p → stuck is possible

Case 1:

c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is not possible

Case 2:

Let’s Take the Perspective of an LTS

16

[c1]

pick

[c2]

true false

p ≜ br (while true do print) or stuck

br c1 or c2 → c1

p → stuck is possible

Case 1:

c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is not possible

Case 2:

Let’s Take the Perspective of an LTS

16

[c1]

pick

[c2]

true false

p ≜ br (while true do print) or stuck

br c1 or c2 → c1

p → stuck is possible

Case 1:

c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is not possible

Case 2:

br c1 or c2
true c1

p true stuck is possible

Case 0 (itree):
Let’s Take the Perspective of an LTS

16

[c1]

pick

[c2]

true false

p ≜ br (while true do print) or stuck

br c1 or c2 → c1

p → stuck is possible

Case 1:

c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is not possible

Case 2:

br c1 or c2
true c1

p true stuck is possible

Case 0 (itree):
Let’s Take the Perspective of an LTS

External event, 
we observe which event happened, 

what branch we took

16

[c1]

pick

[c2]

true false

p ≜ br (while true do print) or stuck

br c1 or c2 → c1

p → stuck is possible

Case 1:

c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is not possible

Case 2:

br c1 or c2
true c1

p true stuck is possible

Case 0 (itree):
Let’s Take the Perspective of an LTS

External event, 
we observe which event happened, 

what branch we took

[c1]

BrS

[c2]

Stepping branch, 
we observe that a branch 

has been taken

16

[c1]

pick

[c2]

true false

p ≜ br (while true do print) or stuck

br c1 or c2 → c1

p → stuck is possible

Case 1:

c1 → c′￼1

br c1 or c2 → c′￼1

p → stuck is not possible

Case 2:

br c1 or c2
true c1

p true stuck is possible

Case 0 (itree):
Let’s Take the Perspective of an LTS

External event, 
we observe which event happened, 

what branch we took

[c1]

BrS

[c2]

Stepping branch, 
we observe that a branch 

has been taken

[c1]

BrD

[c2]

Delayed branch, 
there’s a branch,  

but we don’t observe it

17

Choice Trees

A ctree E R models a computation as a potentially infinite tree made of:

r

Leaves, 
pure computations 

(of type R)

t

e

u

x y

External events, 
interaction with an environment 

(as described by E)

t

BrS

u

Stepping branches, 
an internal choice which may 

be observed

t

BrD

u

Delayed branches, 
an internal choice that 

only allows to try reaching 
an observable action

CoInductive ctree (E: Type -> Type) (R: Type): Type :=

| Ret (r: R)

| Vis {X: Type} (e: E X) (k: X -> ctree E R)

| BrS {n: nat} (k: fin n -> ctree E R)

| BrD {n: nat} (k: fin n -> ctree E R)

18

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

label ::=

18

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

label ::=

val rr

Leaves, 
pure computations 

(of type R)

∅

val x

18

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

label ::=

val rr

Leaves, 
pure computations 

(of type R)

∅

val x
(Propositional)  

relation

18

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

label ::=

val rr

Leaves, 
pure computations 

(of type R)

∅

val x

obs e x

t

e

u

x y

External events, 
interaction with an environment 

(as described by E)

∣ obs e x

t

(Propositional)  
relation

18

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

label ::=

val rr

Leaves, 
pure computations 

(of type R)

∅

val x

obs e x

t

e

u

x y

External events, 
interaction with an environment 

(as described by E)

∣ obs e x

t

τ

t

BrS

u

Stepping branches, 
an internal choice which may 

be observed

t

∣ τ
(Propositional)  

relation

18

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

label ::=

t

BrD

u

l t′￼

if t l t′￼

Delayed branches, 
an internal choice that 

only allows to try reaching 
an observable action

val rr

Leaves, 
pure computations 

(of type R)

∅

val x

obs e x

t

e

u

x y

External events, 
interaction with an environment 

(as described by E)

∣ obs e x

t

τ

t

BrS

u

Stepping branches, 
an internal choice which may 

be observed

t

∣ τ
(Propositional)  

relation

19

Bisimulations Over CTrees

When should two ctrees be deemed equivalent?

19

Bisimulations Over CTrees

When should two ctrees be deemed equivalent?

When their underlying LTSs are bisimilar

We can rely on standard notions from the process algebra tradition

[Milner 89, Sangiorgi 11, Pous 16, …]

20

Bisimulations Over CTrees

Algebraic laws for non-determinism through strong bisimulation ()∼

t

BrD

u u

BrD

tt

BrD

t

t∼ ∼
t

BrD

u

BrD

v

BrD

t

BrD

u

v
∼

BrD

t

∼ t

Idempotent Commutative Associative Insensitive to BrD

20

Bisimulations Over CTrees

Algebraic laws for non-determinism through strong bisimulation ()∼

t

BrD

u u

BrD

tt

BrD

t

t∼ ∼
t

BrD

u

BrD

v

BrD

t

BrD

u

v
∼

BrD

t

∼ t

Idempotent Commutative Associative Insensitive to BrD

BrS

t

∼ t

Insensitive to BrS

Insensitivity to BrS through weak bisimulation ()≈
≈

21

CTrees and Interpretation

h(pick) BrD 2≜

interp h : itree (Pick + E) ~> ctree E

interp h interp h t ≈ u ⟶ t ∼ u

CTrees are an adequate target monad into which one can interpret toss

21

CTrees and Interpretation

h(pick) BrD 2≜

interp h : itree (Pick + E) ~> ctree E

interp h interp h t ≈ u ⟶ t ∼ u

CTrees are an adequate target monad into which one can interpret toss

They of course themselves still support interpretation

 (targets must explain how they internalise branching nodes)

21

CTrees and Interpretation

h(pick) BrD 2≜

interp h : itree (Pick + E) ~> ctree E

interp h interp h t ≈ u ⟶ t ∼ u

CTrees are an adequate target monad into which one can interpret toss

They of course themselves still support interpretation

 (targets must explain how they internalise branching nodes)

Branching nodes can be « interpreted » as well

 low level notion of scheduler 
 formal refinements (complete simulations) in Coq 
 practical testing in OCaml

⇝
⇝
⇝

Choice Trees: Case Studies

23

Calculus of Communicating Systems [Milner, 1980]

Communication
Internal choice

Parallel composition

Channel restriction
Replication

Goal: compute a model of ccs using ctrees

P ::= 0 ∣ a ⋅ P ∣ P ⊕ Q ∣ P ∥ Q ∣ νc ⋅ P ∣ !P

We establish ccs’s traditional equational theory w.r.t. on our model∼

We prove an adequacy result against ccs’s operational semantics

[P] ∼ [Q] iff P ∼op Q

24

Cooperative scheduling

Two layered computable model:  
- compositional construction with explicit fork and yield events 
- top-level interleaving combinator

Combination of non-determinism with stateful computations

Selected set of algebraic equations

com ::= ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ fork c1 c2 ∣ yield

Conclusion

26

A New Tool in the Interaction Trees Environment

Modelling non-determinism and concurrency as monadic interpreters

Implemented as a Coq library: https://github.com/vellvm/ctrees/tree/popl23

Two new kind of branching nodes

Looking at the tree as an LTS sheds light to reason on their equivalence: 
the tools from the process algebra literature can be brought in

Encouraging case studies

Relies heavily on Pous’s coinduction library (coq-coinduction on Opam)

https://github.com/vellvm/ctrees/tree/popl23

Backup

Nondeterministic branching

28

Question: what is the structure into which we should interpret toss?

An idea: sets of trees? ℐ([br c1 or c2]) ≜ [c1] ∪ [c2] (In Coq:)itree E X -> Prop

is not a monad transformer (bind fails to associate to the left)
PropT M X M X -> Prop≜

Equivalence is a notion of bijection  
 existential quantification of a coinductive object⇝

Imposes trace equivalence onto us

We do not want to go into Prop!

Nondeterministic branching

28

Question: what is the structure into which we should interpret toss?

An idea: sets of trees? ℐ([br c1 or c2]) ≜ [c1] ∪ [c2] (In Coq:)itree E X -> Prop

This work: ctrees, what we believe to be the right structure

is not a monad transformer (bind fails to associate to the left)
PropT M X M X -> Prop≜

Equivalence is a notion of bijection  
 existential quantification of a coinductive object⇝

Imposes trace equivalence onto us

We do not want to go into Prop!

29

Calculus of Communicating Systems [Milner, 1980]

head p: computes all first  
reachable actions in a ctree

