Choice Trees

Representing Nondeterministic, Recursive, and Impure Programs in Coq

Nicolas Chappe, Paul He, Ludovic Henrio, Steve Zdancewic and Yannick Zakowski

Representing **Nondeterministie**, Recursive, and Impure Programs in Coq

Li-yao Xia, Yannick Zakowski, Paul He, Gregory Malecha, Chung-Kil Hur, Benjamin Pierce, Steve Zdancewic

3 years ago, in New Orleans...

Choice Trees

Modeling Computations in a Proof Assistant

Four core desiderata:

- ----> Reusable components
- Compositional, whenever possible
- Executable (allows for testing)
- Supporting termination sensitive refinements

A reusable library to define and reason about Monadic Interpreters

In a dependently typed theory In the Cog Proof Assistant

Interaction Trees, Summarily

At its core, two standard notions from the literature

The Free Monad [Swiestra 08, Kiselyov and Ishii 15, ...] The Delay Monad [Capretta 05]

Notion 1: The Free Monad

Effectful computations arise from their signature of operations

itree E X My computation is a glorified piece of syntax able to perform operations specified in E

in order to compute a value of type X

$$p \triangleq x := 0; x := y$$

$$p \triangleq x := 0; x := y$$

$$p \triangleq x := 0; x := y$$

$$p \triangleq x := 0; x := y$$

$$q \triangleq x := y$$

$$p \triangleq x := 0; \ x := y$$
 served eq

- Imp programs are computations performing reads and writes
 - nantically $q \triangleq x := y$ uivalent

 \varkappa

$$p \triangleq x := 0; x := y$$

Imp programs are stateful computations

$$q \triangleq x := y$$

$$p \triangleq x := 0; x := y$$

Imp programs are stateful computations

 $q \triangleq x := y$

$$p \triangleq x := 0; x := y$$

Imp programs are stateful computations

 $q \triangleq x := y$

Imp programs are stateful computations

$$p \triangleq x := 0; x := y$$

 $q \triangleq x := y$

Imp programs are stateful computations

$$p \triangleq x := 0; x := y$$

 $q \triangleq x := y$

ITree Second Notion: Capretta's Delay Monad

Should recursion be an operation? We hardcode a model for it

 $r \triangleq while true do \bullet$

We move onto a coinductive datatype, r is an infinite tree

Imp programs are stateful delayed computations

$$p_2 \triangleq x := 0; x := y$$

$$p_3 \triangleq x := y$$

Imp programs are stateful delayed computations

$$p_2 \triangleq x := 0; x := y$$

 $p_3 \triangleq x := y$

Imp programs are stateful delayed computations

$$p_2 \triangleq x := 0; x := y$$

 $p_3 \triangleq x := y$

Imp programs are stateful delayed computations

$$p_2 \triangleq x := 0; x := y$$

 $p_3 \triangleq x := y$

 $m \mapsto$

later $wr x 0 wr x 1 \cdots wr x n$ later $m\{x \leftarrow m(y)\}$ tt tt tt

Imp programs are stateful delayed computations

$$p_2 \triangleq x := 0; x := y$$

 $p_3 \triangleq x := y$

Imp programs are stateful delayed computations

$$p_2 \triangleq x := 0; x := y$$

 $p_3 \triangleq x := y$

A Reusable Library, at Scale

Choice Trees

Representing Nondeterministic, Recursive, and Impure Programs in Coq

Or

How does the story go with nondeterministic computations?

Nondeterministic Branching

$$Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid white$$

ile b do c | br c_1 or c_2 | stuck | print

br c_1 *or* c_2 : either branch can be executed

Nondeterministic Branching

$$Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid whit$$

$$[br c_1 or c_2] \triangleq \underset{[c1]}{\mathsf{pick}}$$

At this stage, pick is not commutative (nor idempotent, nor associative)

ile b do c | br c_1 or c_2 | stuck | print

br c_1 or c_2 : either branch can be executed

Nondeterministic Branching

This paper: what structure should we implement pick into?

$$[br c_1 or c_2] \triangleq \underset{[c1]}{\mathsf{pick}}$$

At this stage, pick is not commutative (nor idempotent, nor associative)

br c_1 or c_2 : either branch can be executed

More specifically, we may mean one of two operational behaviours:

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c \mid br \mid c_1 \mid or \mid c_2 \mid stuck \mid print$

br c_1 or c_2 : either branch can be executed

More specifically, we may mean one of two operational behaviours:

• The system may **become** either branch

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c \mid br \mid c_1 \mid or \mid c_2 \mid stuck \mid print$

br c_1 or $c_2 \rightarrow c_1$

br c_1 or c_2 : either branch can be executed

More specifically, we may mean one of two operational behaviours:

• The system may **become** either branch

• The system may **take a transition** offered by either branch

- $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c \mid br \mid c_1 \mid or \mid c_2 \mid stuck \mid print$

br
$$c_1$$
 or $c_2 \rightarrow c_1$
 $c_1 \rightarrow c'_1$

br
$$c_1$$
 or $c_2 \rightarrow c'_1$

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c \mid br \mid c_1 \mid or \mid c_2 \mid stuck \mid print$

 $p \triangleq br$ (while true do print) or stuck

Case 1:

br c_1 *or* $c_2 \rightarrow c_1$ $p \rightarrow stuck$ is possible

Depending on our choice of semantics, the program p may be stuck, or not

Case 2:
$$c_1 \rightarrow c'_1$$

 $br \ c_1 \ or \ c_2 \rightarrow c'_1$
 $p \rightarrow stuck \text{ is not possible}$

Let's Take the Perspective of an LTS

 $p \triangleq br$ (while true do print) or stuck

Case 1:

br c_1 *or* $c_2 \rightarrow c_1$

 $p \rightarrow stuck$ is possible

Case 2:
$$c_1 \rightarrow c'_1$$

 $br \ c_1 \ or \ c_2 \rightarrow c'_1$
 $p \rightarrow stuck \text{ is not possible}$

$p \triangleq br$ (while true do print) or stuck Let's Take the Perspective of an LTS

$p \triangleq br$ (while true do print) or stuck Let's Take the Perspective of an LTS

Let's Take the Perspective of an LTS

ed,

Ķ	C	e	r	١E	Э(b	1
J	C	cł	٦				
Ì	i-	ł					

Choice Trees

t

r

External events, interaction with an environment (as described by E)

U

CoInductive ctree (E: Type -> Type) (R: Type): Type := Ret (r: R) Vis {X: Type} (e: E X) (k: X -> ctree E R) BrS {n: nat} BrD {n: nat}

A ctree E R models a computation as a potentially infinite tree made of:

Stepping branches, an internal choice which may be observed

Delayed branches, an internal choice that only allows to try reaching an observable action

(k: fin n -> ctree E R)

(k: fin n -> ctree E R)

Question: How to build the LTS underlying a ctree?

label ::=

Question: How to build the LTS underlying a ctree?

label ::= val x

Leaves, pure computations (of type R)

Leaves, pure computations (of type R)

Question: How to build the LTS underlying a ctree?

Question: How to build the LTS underlying a ctree?

label ::= $val x \mid obs \ e x$

Question: How to build the LTS underlying a ctree?

t

 $label ::= val x \mid obs \ e \ x \mid \tau$

Stepping branches, an internal choice which may be observed

U

BrS

t

When should two ctrees be deemed equivalent?

When their underlying LTSs are bisimilar

We can rely on standard notions from the process algebra tradition

[Milner 89, Sangiorgi 11, Pous 16, ...]

When should two ctrees be deemed equivalent?

Algebraic laws for non-determinism through strong bisimulation (\sim)

Algebraic laws for non-determinism through strong bisimulation (\sim)

Insensitivity to BrS through weak bisimulation (\approx)

Insensitive to **BrS**

CTrees and Interpretation

CTrees are an adequate target monad into which one can interpret toss

 $h(pick) \triangleq BrD 2$

 $t \approx u \longrightarrow interp h t \sim interp h u$

interp h : itree (Pick + E) ~> ctree E

CTrees and Interpretation

CTrees are an adequate target monad into which one can interpret toss

They of course themselves still support interpretation

(targets must explain how they internalise branching nodes)

- $h(pick) \triangleq BrD 2$
- interp h : itree (Pick + E) ~> ctree E
 - $t \approx u \longrightarrow interp h t \sim interp h u$

CTrees and Interpretation

CTrees are an adequate target monad into which one can interpret toss

They of course themselves still support interpretation

Branching nodes can be «interpreted » as well

 \rightarrow low level notion of scheduler \rightarrow formal refinements (complete simulations) in Coq → practical testing in OCam

- $h(pick) \triangleq BrD 2$
- interp h : itree (Pick + E) ~> ctree E
 - $t \approx u \longrightarrow interp h t \sim interp h u$
- (targets must explain how they internalise branching nodes)

Choice Trees: Case Studies

Communication

Internal choice

We establish ccs's traditional equational theory w.r.t. \sim on our model

We prove an adequacy result against ccs's operational semantics

 $[P] \sim [Q] \text{ iff } P \sim_{op} Q$

Cooperative scheduling

$com ::= \bullet | x := e | c_1; c_2 | while b do c | fork c_1 c_2 | yield$

----> Two layered computable model: - compositional construction with explicit fork and yield events - top-level interleaving combinator

Combination of non-determinism with stateful computations

- Selected set of algebraic equations

 $S[\text{fork } c1 \text{ (fork } c2 \text{ skip})] \approx S[\text{fork } c2 \text{ (fork } c1 \text{ skip})]$

Conclusion

A New Tool in the Interaction Trees Environment

Modelling non-determinism and concurrency as monadic interpreters

Two new kind of branching nodes

- ----> Looking at the tree as an LTS sheds light to reason on their equivalence: the tools from the process algebra literature can be brought in
- ----> Encouraging case studies

Implemented as a Coq library: <u>https://github.com/vellvm/ctrees/tree/popl23</u>

Relies heavily on Pous's coinduction library (coq-coinduction on Opam)

Nondeterministic branching

Question: what is the structure into which we should interpret toss?

- An idea: sets of trees? $\mathcal{I}([br c_1 \text{ or } c_2]) \triangleq [c_1] \cup [c_2]$ (In Coq: itree E X -> Prop)
 - PropT M X \triangleq M X -> Prop is not a monad transformer (bind fails to associate to the left)
 - Equivalence is a notion of bijection \rightarrow existential quantification of a coinductive object
 - Imposes trace equivalence onto us
 - We do not want to go into Prop!

 \mathbf{X}

Nondeterministic branching

Question: what is the structure into which we should interpret toss?

- An idea: sets of trees? $\mathcal{I}([br c_1 \text{ or } c_2]) \triangleq [c_1] \cup [c_2]$ (In Coq: itree E X -> Prop)
 - PropT M X \triangleq M X -> Prop is not a monad transformer (bind fails to associate to the left)
 - Equivalence is a notion of bijection \rightarrow existential quantification of a coinductive object
 - Imposes trace equivalence onto us
 - We do not want to go into Prop!

 \mathbf{X}

This work: ctrees, what we believe to be the right structure

Calculus of Communicating Systems [Milner, 1980]

head p: computes all first reachable actions in a ctree

Fig. 19. Depiction of the tree resulting from p || q