Choice Trees

Representing
Nondeterministic, Recursive, and Impure
Programs in Coqg

Nicolas Chappe, Paul He, Ludovic Henrio,
Steve Zdancewic and Yannick Zakowski

& Penn oLl?O

UNIVERSITY 0f PENNSYLVANIA

o{ce Trees
Interaction

Representlng
aetermtrtste, Recursive, and Impure
Programs Ig Coq

MAS Val'a

Li-yao Xia, Yannick Zakowski, Paul He, Gregory Malecha,
Chung-Kil Hur, Benjamin Pierce, Steve Zdancewic

3 years ago, in New Orleans...

2

Modeling Computations in a Proof

Four core desiderata:

¥ Reusable components .

— Compositional, whenever possible

INn a dependently typed theor
- Executable (allows for tfesting) P Y P y

In the Coqg Proof Assistant
¥ Supporting termination sensitive refinements

A reusable library to define and reason about Monadic Interpreters

Interaction Trees, Summarily

At ITs core, two standard notions from the literature

The Free Monad [Swiestra 08, Kiselyov and Ishii 15, ...]

The Delay Monad [Capretta 05]

Notion 1: The Free Monad

Effectful computations arise from their signature of operations

1tree E

My computation is a glorified piece of syx
able to perform operations specified in E

INn order to compute o of type X

Programs as Irees

Imp programs are computations performing reads and writes

p’éEX?:z();;x;::y

wr X 0O

\
//rdy\\

wr X 0 wr x 1 Wr X n

tt tt tt

Programs as Irees

Imp programs are computations performing reads and writes

tt tt tt

Programs as Irees

Imp programs are computations performing reads and writes

A
=x:=0; x:

P

tt tt tt

Programs as Irees

Imp programs are computations performing reads and writes

Programs as Irees

Imp programs are computations performing reads and writes

= A

p=x:=0;, x:=y gEx:i=y
wr X 0
rd y //////,rd y.\\\\\\
// \\ [
wr X 0 wr x 1 Wr X n - wr X 0 wr X L1 wr X n -

tt tt tt tt tt tt

Programs as Irees

Imp programs are computations performing reads and writes

A () v o— semanftically A .
=x:=0; x:= : A=
P ¢ equivalent 1 Y
wr X 0
rd y ~Y //////,rd y \\\\\\\
// \\ RN
wr X 0 wr x 1 Wr X n - wr X 0 wr X L1 wr X n -

tt tt tt tt tt tt

Programs as Stateful Trees

Imp programs are stateful computations

A A
p=x:=0x:=y g=x:=1Y
wr X 0
rd y //////,rd y.\\\\\\
N0 RN
WE X O wWr X 1 WE X [- wr X 0 wr x 1.~ Wr X n

tt "R tt tt tt tt

Programs as Stateful Trees

Imp programs are stateful computations

A A
pP=X ::O;x;::}z g=x:.=Yy
wr X 0
rd y /rdy\
T N0~ N
WE X 0 wWr X 1 WE X [- wr X 0 wr x 1---- WE X N

tt r "R tt tt tt

Programs as Stateful Trees

Imp programs are stateful computations

A A
pP=X =();x;=y g=x:.=Yy
wr X 0 m —
rd y /rdy\
e N TN
WE X 0 wWr X 1 WE X [- wr X 0 wr x 1. WE X N

tt tt tt mix < O} {x < m(y)} tt tt tt

Programs as Stateful Trees

Imp programs are stateful computations

A A
pP=X =();x;=y g=x:.=Yy
wr X 0O nm — m —
rd y /rdy\
N N
WE X 0 wWr X 1 WE X [- wr X O wr x 1 WE X N

tt tt tt m{x < 0}{x « m(y)} m{x <« m(y)} tt tt tt

Programs as Stateful Trees

Imp programs are stateful computations

A A
pP=X =();x;=y g=x:.=Yy
wr x 0 m = m —
rd y ~ rd y
WE X 0 wWr X 1 WE X [- wr x 0 wr x 1. WE X N

tt tt tt m{x < 0}{x « m(y)} m{x <« m(y)} tt tt tt

ITree Second Notion: Capretta’s Delay Monad

Should recursion be an operatione We hardcode a model for it

r 2 while true do e

~* Something happened infernally
Here, the re-entry of the loop

We move onto a coinductive datatype, ris an infinite tree

8

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

P2=x=OX3=)’ P3=X:=Y)
wr X 0
rd vy //////,rd y.\\\\\\
e N RN
wr X 0 wr x 1 Wr X n - wr X 0 wr X L1 wr X n -

tt tt tt tt tt tt

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

D) =X — () X:=Yy Pi=Xx =Yy
wr X 0
rd vy /rdy\
T N0~ N
WE X 0 wWr X 1 WE X [- wr X 0 wr x 1---- WE X N

tt tt tt tt tt tt

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

wr x 0 m — later
\ \
rd vy later
Wr X @ Wr X l Wr X n - 'La.ter.
\ \ \ \
tt tt tt m{x « 0}H{x « m(y)}

rd
//

wr X 0 wr x 1 Wr X n

tt tt tt

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

wr X 0 m — later
rd vy later
,/////// :i?\\\\ ‘
Wr X O Wr X l Wr X n - 'Later.

tt tt tt m{x « 0}H{x « m(y)}

Pp3=X.=Y
m —
later //////—rd y.\\\\\\
| [\
later wWr X 0O wr X 1 Wr X n
\ \ \ \
m{x < m(y)} tt tt tt

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

D) =X =()x;=y Pi=Xx =Yy
wr X 0 m — later m —
rd y later ~ later rd y
e \ \ N~
Wr X O wWr X 1 WE X [- later later wr x O wr x 1. wWr X n

e ottt mix<Ofxemy) mxemy) ottt

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

A A .
Pr=x=0x:=y P3=X =Y

wrx 9 mi later m Equivalence relation
‘ ‘ (Coinductive-Inductive relafion)

rd

rd later later
//////’/ y;i:\\\\ T ‘ ‘///////

Wr X O wWr X 1 WE X [- later later wr x O wr x 1. wWr X n

e ottt mix<Ofxemy) mxemy) ottt

&

A Reusable Library, at Scale

Intferaction Trees (itrees) @@

github.com/DeepSpec/InteractionTrees

deep
SpecC
Server

‘Ve”vm]
pehed
Verified LLVM

Lakowski et al.

O
N

Verified Web Server

/hang et al.

Verified Transactional Objects!

Lesani et al. |

10

or

Representing
Nondeterministic, Recursive, and Impure
Programs in CoqQ

How does the story go with
nondeterministic computations?

12

Nondeterministic Branching

Imp=e|x:=e|cyc, | while bdoc|brc orc,|stuck| print

br ¢, or ¢, : either branch can be executed

1ck
A true DIe false
[br ¢, or ¢,] = e/ N

[c1] [c2]

13

Nondeterministic Branching

Imp=e|x:=e|cyc, | while bdoc|brc orc,|stuck| print

br ¢, or ¢, : either branch can be executed

pick pick

[bl’ C] OF CZ] é truy xalse % true/ walse é [br 62 or Cl]
[c1] [c2] [c2] [c1]

At this stage, pick Is not commutative (noridempotent, nor associative)

13

Nondeterministic Branching

pick pick
[br ¢, or Cz] é truy Yalse % true/ walse é [br C, Or Cl]

[c1] [c2] [c2] [c1]

At this stage, pick Is not commutative (noridempotent, nor associative)

13

Nondeterministic Branching: Which Meaning?

Imp=e|x:=e|cyc, | while bdoc|brc orc,|stuck| print
br ¢, or ¢, : either branch can be executed

More specifically, we may mean one of two operational behaviours:

14

Nondeterministic Branching: Which Meaning?

Imp=e|x:=e|cyc, | while bdoc|brc orc,|stuck| print
br ¢, or ¢, : either branch can be executed

More specifically, we may mean one of two operational behaviours:

 The system may become either branch br ¢, or ¢, = ¢

14

Nondeterministic Branching: Which Meaning?

Imp=e|x:=e|c;c |while bdoc|brc orc,|stuck| print
br ¢, or ¢, : either branch can be executed

More specifically, we may mean one of two operational behaviours:

 The system may become either branch br ¢, or ¢, = ¢

/
C1 — (4

* The system may take a transition offered by either branch br ¢, or ¢, — |

14

Nondeterministic Branching: Which Meaning?

Imp=e|x:=e|c;c |while bdoc|brc orc,|stuck| print

p = br (while true do print) or stuck

Depending on our choice of semantics, the program p may be stuck, or not

St ’ S e e i e et i e e *«—""2 ;v_,. SATRINEe . SRp— LIPS / S —
| Case1: Case 2: ¢, = ¢

brc, orc, — ¢y | | br ¢ or ¢; = ¢

p — stuck is possible | | p — stuck is not possible|

10

Let’s Take the Perspective of an LTS

p = br (while true do print) or stuck

St ’ S e e i e et i e e *«—""2 ;v_,. SATRINEe . SRp— LIPS / S —
| Case: Case 2: ¢, = ¢

br ¢y or ¢, — ¢ | i'; br ¢y or ¢; = ¢

p — stuck is possible | | p — stuck is not possible|

16

p £ br (while true do print) or stuck

Let’s Take the Perspective of an LTS

{ Case 1:

br ¢y or ¢, = ¢

p — stuck is possible

,j Case 2: ¢, — Ci |

/
br ¢y or ¢, =

| p — stuck is not possible|

16

p £ br (while true do print) or stuck

Let’s Take the Perspective of an LTS

pick

truy Yalse

[c1] [c2]

{ Case 1:

br ¢y or ¢, = ¢

p — stuck is possible

,j Case 2: ¢, — Ci |

/
br ¢y or ¢, =

| p — stuck is not possible|

16

p £ br (while true do print) or stuck

_Let’s Take the Perspective of an LTS

' Case o (itree):

pick

truy Yalse

[c1] [c2]

l) frue
I”Cl OVC2—>C'1

[rue

p — stuck is possible |

t Case 1:

br c; or ¢; = ¢y

p — stuck is possible

,I Case 2: ¢, — Ci |

/
br c; or ¢; = ¢y

| p — stuck is not possible|

16

p £ br (while true do print) or stuck

_Let’s Take the Perspective of an LTS

' Case o (itree): Q
stuck .
print pick External event,

T truy {alse we observe which event happened,

()
=~ what branch we took
@pick) 5 [c1] [c2]
lrue

l) frue
I”Cl OVC2—>C'1

pick
alse

[rue

p — stuck is possible |

t Case 1:

br c; or ¢; = ¢y

p — stuck is possible

,I Case 2: ¢, — Ci |

/
br c; or ¢; = ¢y

| p — stuck is not possible|

16

p £ br (while true do print) or stuck

_Let’s Take the Perspective of an LTS

' Case o (itree): Q
stuck :
print pick External event,

f truy {alse we observe which event happened,

()
what branch we took
lrue
@ rint BrS Stepping branch,

() / \ we observe that a branch

- has been taken
Q 6 - -
p - >{ reac

l) frue
I/'Cl 07"C2—>C1

pick
false

[rue

p — stuck is possible |

{ Case 1:

br ¢y or ¢, = ¢

p — stuck is possible

j Case 2: ¢, = C| ‘,

/
br ¢y or ¢, =

| p — stuck is not possible|

16

p £ br (while true do print) or stuck

_Let’s Take the Perspective of an LTS

' Case o (itree): Q
stuck :
prlnt pick External event,

tru/ \alse we observe which event happened,

whaft branch we took
OOl
@ rint BrS Stepping branch,

l) frue
I/'Cl 07"C2—>C1

o} ck\
false

[rue

p — stuck is possible |

{ Case 1:

br ¢, or ¢, = ¢ () N we observe that a branch
| i 11 oot has been taken
: : ' cl c2
p — stuck is possible | @ . @

/j Case 2: ¢, — C|

print
/ Delayed branch,
br ¢y or c; = ¢ orD there's a branch,
/ \ but we don’t observe it
prlnt fcl] rc2]

| p — stuck is not possible|

16

Choice Trees

A E R models a computation as a potentially infinite free made of:

BrsS BrD

: N PN PN

Leaves, External events, Stepping branches, Delayed branches,
pure computations Inferaction with an environment an internal choice which may an internal choice that
(of type R) (as described by E) be observed only allows o fry reaching

an observable action

CoInductive (E: Type —-> Type) (R: Type): Type :=
Ret (r: R)

Vis {X: Type} (e: E X) (k: X => E R)

BrS {n: nat} (k: fin n -> E R)

BrD {n: nat} (fin n -> E R)

17

LTSs Underlying CTrees

label ::=

18

LTSs Underlying CTrees

label ::= val x

Leaves,
pure computations
(of type R)

18

LTSs Underlying CTrees

(Propositional)
relation label ::= val x

Leaves,
pure computations
(of type R)

18

LTSs Underlying CTrees

(Propositional)

relation label ::= val x| obs e x
- val r %
Leaves,
pure computations
(of type R)

)/ey obse))c f
t u

External events,
Intferaction with an environment
(as described by E)

18

LTSs Underlying CTrees

(Propositional)

relation
[
r vadl r
Leaves,
pure computations
(of type R)

)/ey obse))c
t u

External events,
Intferaction with an environment
(as described by E)

label ::

%,

val x |obs e x | T

18

Stepping branches,
an internal choice which may
be observed

LTSs Underlying CTrees

(Propositional)
relation
[
r vdl r
Leaves,
pure computations
(of type R)

)/ey obse))c
t u

External events,
Intferaction with an environment
(as described by E)

label ::

%,

val x |obs e x | T

18

Stepping branches,
an internal choice which may
be observed

BrD

/N

Delayed branches,
an internal choice that
only allows to try reaching
an observable action

if t 5 ¢

Bisimulations Over CTrees

19

Bisimulations Over CTrees

We can rely on standard notions from the process algebra fradition

[Milner 89, Sangiorgi 11, Pous 16, ...]

19

Bisimulations Over CTrees

Algebraic laws for non-determinism through strong bisimulation (~)

ldempotent Commutative Associative Insensitive to BrD
81D 81D T BrD BrD BD
SN~ SN~ SN N o SN~
+ + " y | n t BrD BrD \Y ¢
""" R NN
u \Y; t u

20

Bisimulations Over CTrees

Algebraic laws for non-determinism through strong bisimulation (~)

ldempotent Commutative Associative Insensitive to BrD
81D 81D T BrD BrD BD
SN~ SN~ SN SN o SN~
+ + " y | n t BrD BrD \Y ¢
"" RNV
u V t u

20

CTrees and Interpretation

- CTrees are an adequate farget monad into which one can interpret 10ss
h(pick) £ BrD 2

interp h : itree (Pick + E) ~> ctree E

2

CTrees and Interpretation

- CTrees are an adequate farget monad into which one can interpret 10ss
h(pick) £ BrD 2

interp h : itree (Pick + E) ~> ctree E

—¥ They of course themselves still support interpretation

(targets must explain how they internalise branching nodes)

2

CTrees and Interpretation

- CTrees are an adequate farget monad into which one can interpret 10ss
h(pick) £ BrD 2

interp h : itree (Pick + E) ~> ctree E

—¥ They of course themselves still support intferpretation

(targets must explain how they internalise branching nodes)

—¥ Branching nodes can be « interpreted » as well

~> [ow level notion of scheduler
+w> formal refinements (complete simulations) in Cog
~w» practical testing in OCam

2

Calculus of Communicating Systems [Milner, 1980]

P:=0|a-P|PO|P||QO|lvc-P|!P

Communication Replication

internal choice Channel restriction

Parallel composition

Goal: co d of ccs using ctrees)
—¥ We establish ccs’s traditional equational theory w.r.t. ~ on our model

—+% We prove an adequacy result against ccs'’s operational semantics

[P] ~ [Q] lffP Nop Q

23

Cooperative scheduling

com:=-e|x:=¢e|cy;c | while b do c| fork ¢ ¢, | yield

-5 [wo layered computable model:
- compositional construction with explicit fork and yield events
- top-level interleaving combinator

¥ Combination of non-determinism with stateful computations

—¥ Selected set of algebraic equations

S[fork c1 (fork c2 skip)| = S[fork c2 (fork c1 skip)]

4

A New Tool In the Interaction Trees Environment

Modelling non-determinism and concurrency as monadic interpreters

¥ TwoO new kind of branching nodes

— Looking at the free as an LIS sheds light to reason on their equivalence:
the tools from the process algebra literature can be brought ir

—¥% Encouraging case studies

20

https://github.com/vellvm/ctrees/tree/popl23

Nondeterministic branching

(e

Anidea: sets of treese J([br ¢, or c;]) £ [c;]1U 3] (In Coq:itree E X -> Prop)

Q PropT M X M X => Prop
IS not a monad fransformer (bind fails fo associate to the left)

A

@ Equivalence is a notfion of bijection
w existential quantification of a coinductive object

Q Imposes trace equivalence onto us

Q We do not want to go into Prop!

28

Nondeterministic branching

fion: what i fh into which we should interpret f0ss? |

(e

Anidea: sets of treese J([br ¢, or c;]) £ [c;]1U 3] (In Coq:itree E X -> Prop)

Q PropT M X M X => Prop
IS not a monad fransformer (bind fails fo associate to the left)

A

@ Equivalence is a notfion of bijection
w existential quantification of a coinductive object

@ Imposes trace equivalence onto us
@ We do not want to go into Prop!

28

Calculus of Communicating Systems [Milner, 1980]

head p: computes all first 3
S Br
reachable actions in a ctree / D \
7 \\ //\ / \\
‘head p SRR ‘head p
‘headp heagqy <headp
|a3p, —:aaq, act C,p,:
' /
a a // \\
f‘ | ,“head q \
IR ;N AN
— N act ¢, q &,
z/_gl‘_‘q__\ //p”q' \\ StED N
0
)
/ \\
// ATPWA
/_ P_Hg _ Y

Fig. 19. Depiction of the tree resulting from pﬂq

29

