Choice Trees

Representing
 Nondeterministic, Recursive, and Impure Programs in Coq

Nicolas Chappe, Paul He, Ludovic Henrio, Steve Zdancewic and Yannick Zakowski

Chýce Trees Interaction

Representing

Nondeterministie, Recursive, and Impure Programs in Coq

Li-yao Xia, Yannick Zakowski, Paul He, Gregory Malecha, Chung-Kil Hur, Benjamin Pierce, Steve Zdancewic

3 years ago, in New Orleans...

Modeling Computations in a Proof Assistant

Four core desiderata:
\rightarrow Reusable components
\rightarrow Compositional, whenever possible
\rightarrow Executable (allows for testing)
\rightarrow Supporting termination sensitive refinements

In a dependently typed theory In the Coq Proof Assistant

A reusable library to define and reason about Monadic Interpreters

Interaction Trees, Summarily

At its core, two standard notions from the literature

The Free Monad [Swiestra 08, Kiselyov and Ishii 15, ...]

The Delay Monad [Capretta 05]

Notion 1: The Free Monad

Effectful computations arise from their signature of operations

My computation is a glorified piece of syntax
able to perform operations specified in E
in order to compute a value of type x

Programs as Trees

Imp programs are computations performing reads and writes

$$
p \triangleq x:=0 ; x:=y
$$

Programs as Trees

Imp programs are computations performing reads and writes

Programs as Trees

Imp programs are computations performing reads and writes

$$
p \triangleq x:=0 ; x:=y
$$

Programs as Trees

Imp programs are computations performing reads and writes

$$
p \triangleq x:=0 ; x:=y
$$

Programs as Trees

Imp programs are computations performing reads and writes

$$
p \triangleq x:=0 ; x:=y
$$

$$
q \triangleq x:=y
$$

Programs as Trees

Imp programs are computations performing reads and writes

$$
p \triangleq x:=0 ; x:=y \quad \begin{gathered}
\text { semantically } \\
\text { equivalent }
\end{gathered} \quad q \triangleq x:=y
$$

Programs as Stateful Trees

Imp programs are stateful computations

$$
p \triangleq x:=0 ; x:=y \quad q \triangleq x:=y
$$

Programs as Stateful Trees

Imp programs are stateful computations

$$
p \triangleq x:=0 ; x:=y
$$

$$
q \triangleq x:=y
$$

Programs as Stateful Trees

Imp programs are stateful computations

$$
p \triangleq x:=0 ; x:=y
$$

$$
q \triangleq x:=y
$$

Programs as Stateful Trees

Imp programs are stateful computations

$$
p \triangleq x:=0 ; x:=y
$$

$$
q \triangleq x:=y
$$

Programs as Stateful Trees

Imp programs are stateful computations

$$
p \triangleq x:=0 ; x:=y
$$

$$
q \triangleq x:=y
$$

ITree Second Notion: Capretta's Delay Monad

Should recursion be an operation? We hardcode a model for it
$r \triangleq$ while true do •

We move onto a coinductive datatype, r is an infinite tree

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

$$
p_{2} \triangleq x:=0 ; x:=y
$$

$$
p_{3} \triangleq x:=y
$$

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

$$
p_{2} \triangleq x:=0 ; x:=y
$$

$$
p_{3} \triangleq x:=y
$$

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

$$
p_{2} \triangleq x:=0 ; x:=y
$$

$$
p_{3} \triangleq x:=y
$$

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

$$
p_{2} \triangleq x:=0 ; x:=y \quad p_{3} \triangleq x:=y
$$

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

$$
p_{2} \triangleq x:=0 ; x:=y \quad p_{3} \triangleq x:=y
$$

Programs as Stateful Potentially Infinite Trees

Imp programs are stateful delayed computations

$$
p_{2} \triangleq x:=0 ; x:=y \quad p_{3} \triangleq x:=y
$$

A Reusable Library, at Scale

Choice Trees

Representing

Nondeterministic, Recursive, and Impure Programs in Coq

How does the story go with nondeterministic computations?

Nondeterministic Branching

$$
\begin{gathered}
\operatorname{Imp} \triangleq \bullet|x:=e| c_{1} ; c_{2} \mid \text { while } b \text { do } c \mid \text { br } c_{1} \text { or } c_{2} \mid \text { stuck } \mid \text { print } \\
\text { br } c_{1} \text { or } c_{2}: \text { either branch can be executed } \\
{\left[\text { br } c_{1} \text { or } c_{2}\right] \triangleq \underset{[c 1]}{\text { true } / \text { pick false }_{\text {fal }}} .}
\end{gathered}
$$

Nondeterministic Branching

$$
\begin{aligned}
& \operatorname{Imp} \triangleq \bullet|x:=e| c_{1} ; c_{2} \mid \text { while } b \text { do } c \mid \text { br } c_{1} \text { or } c_{2} \mid \text { stuck } \mid \text { print } \\
& \text { br } c_{1} \text { or } c_{2} \text { : either branch can be executed }
\end{aligned}
$$

At this stage, pick is not commutative (nor idempotent, nor associative)

Nondeterministic Branching

This paper: what structure should we implement pick into?

At this stage, pick is not commutative (nor idempotent, nor associative)

Nondeterministic Branching: Which Meaning?

$$
\operatorname{Imp} \triangleq \bullet|x:=e| c_{1} ; c_{2} \mid \text { while } b \text { do } c \mid \text { br } c_{1} \text { or } c_{2} \mid \text { stuck } \mid \text { print }
$$

$\operatorname{br} c_{1}$ or c_{2} : either branch can be executed

More specifically, we may mean one of two operational behaviours:

Nondeterministic Branching: Which Meaning?

$$
\operatorname{Imp} \triangleq \bullet|x:=e| c_{1} ; c_{2} \mid \text { while } b \text { do } c \mid \text { br } c_{1} \text { or } c_{2} \mid \text { stuck } \mid \text { print }
$$

br c_{1} or c_{2} : either branch can be executed

More specifically, we may mean one of two operational behaviours:

- The system may become either branch

$$
\overline{\text { br } c_{1} \text { or } c_{2} \rightarrow c_{1}}
$$

Nondeterministic Branching: Which Meaning?

$$
\operatorname{Imp} \triangleq \bullet|x:=e| c_{1} ; c_{2} \mid \text { while } b \text { do } c \mid \text { br } c_{1} \text { or } c_{2} \mid \text { stuck } \mid \text { print }
$$

br c_{1} or c_{2} : either branch can be executed

More specifically, we may mean one of two operational behaviours:

- The system may become either branch

$$
\begin{aligned}
& \overline{\text { br } c_{1} \text { or } c_{2} \rightarrow c_{1}} \\
& \frac{c_{1} \rightarrow c_{1}^{\prime}}{\text { br } c_{1} \text { or } c_{2} \rightarrow c_{1}^{\prime}}
\end{aligned}
$$

- The system may take a transition offered by either branch

Nondeterministic Branching: Which Meaning?

$$
\begin{gathered}
\operatorname{Imp} \triangleq \bullet|x:=e| c_{1} ; c_{2} \mid \text { while } b \text { do } c \mid \text { br } c_{1} \text { or } c_{2} \mid \text { stuck } \mid \text { print } \\
p \triangleq b r \text { (while true do print) or stuck }
\end{gathered}
$$

Depending on our choice of semantics, the program p may be stuck, or not

$$
\begin{aligned}
& \text { Case } 1: \\
& \\
& \\
& p r c_{1} \text { or } c_{2} \rightarrow c_{1} \\
& p \rightarrow \text { stuck is possible }
\end{aligned}
$$

$$
\begin{gathered}
\text { Case 2: } \frac{c_{1} \rightarrow c_{1}^{\prime}}{\text { br } c_{1} \text { or } c_{2} \rightarrow c_{1}^{\prime}} \\
p \rightarrow \text { stuck is not possible }
\end{gathered}
$$

Let's Take the Perspective of an LTS

$$
p \triangleq b r \text { (while true do print) or stuck }
$$

```
Case 1:
\mathrm{ br c}\mp@subsup{c}{1}{}\mathrm{ or c}\mp@subsup{c}{2}{}->\mp@subsup{c}{1}{}
    p->stuck is possible
```

Case 2: $\frac{c_{1} \rightarrow c_{1}^{\prime}}{\text { br } c_{1} \text { or } c_{2} \rightarrow c_{1}^{\prime}}$
$p \rightarrow$ stuck is not possible
$p \triangleq b r$ (while true do print) or stuck

Let's Take the Perspective of an LTS

Case $1:$ $p r c_{1}$ or $c_{2} \rightarrow c_{1}$ $p \rightarrow$ stuck is possible Case 2: $\frac{c_{1} \rightarrow c_{1}^{\prime}}{b r c_{1} \text { or } c_{2} \rightarrow c_{1}^{\prime}}$ $p \rightarrow$ stuck is not possible

$p \triangleq b r$ (while true do print) or stuck

Let's Take the Perspective of an LTS

$p \triangleq b r$ (while true do print) or stuck
Let's Take the Perspective of an LTS

$p \triangleq b r$ (while true do print) or stuck
Let's Take the Perspective of an LTS

External event,
we observe which event happened, what branch we took
$p \triangleq b r$ (while true do print) or stuck
Let's Take the Perspective of an LTS

External event,
we observe which event happened, what branch we took
$\frac{c_{1} \rightarrow c_{1}^{\prime}}{b r c_{1} \text { or } c_{2} \rightarrow c_{1}^{\prime}}$
$p \rightarrow$ stuck is not possible

Stepping branch, we observe that a branch has been taken
$p \triangleq b r$ (while true do print) or stuck
Let's Take the Perspective of an LTS

Case o (itree):
br c_{1} or $c_{2} \xrightarrow{\text { true }} c_{1}$
$p \xrightarrow{\text { true }}$ stuck is possible
Case 1:
br c_{1} or $c_{2} \rightarrow c_{1}$
$p \rightarrow$ stuck is possible

External event,
we observe which event happened, what branch we took
Case 2: $\frac{c_{1} \rightarrow c_{1}^{\prime}}{\text { br } c_{1} \text { or } c_{2} \rightarrow c_{1}^{\prime}}$
$p \rightarrow$ stuck is not possible

Delayed branch, there's a branch, but we don't observe it

Choice Trees

A ctree ER models a computation as a potentially infinite tree made of:

Leaves, pure computations (of type R)

External events, interaction with an environment (as described by E)

Stepping branches, an internal choice which may be observed

Delayed branches, an internal choice that only allows to try reaching an observable action

```
CoInductive ctree (E: Type -> Type) (R: Type): Type :=
```

| Ret (r: R)
| Vis \{X: Type\} (e: E X) (k: X \rightarrow ctree E R)
| $\operatorname{BrS}\{n:$ nat $\}$
(k: fin n-> ctree E R)
$\mid \operatorname{BrD}\{n:$ nat\} (k: fin $n->$ ctree E R)

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?
label ::=

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

$$
\text { label }::=\text { val } x
$$

$r \xrightarrow{\text { val } r} \varnothing$

Leaves,
pure computations
(of type R)

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

```
(Propositional)
    relation
    label ::= val }
    r \xrightarrow{M valr }{\mathrm{ v}}\varnothing0
        Leaves,
        pure computations
        (of type R)
```


LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?
(Propositional) relation

$$
\text { label }::=\text { val } x \mid \text { obs e } x
$$

Leaves,
pure computations (of type R)

External events,
interaction with an environment
(as described by E)

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

LTSs Underlying CTrees

Question: How to build the LTS underlying a ctree?

(Propositional) relation
label $::=$ val $x \mid$ obs e $x \mid \tau$

Stepping branches, an internal choice which may be observed

Delayed branches, an internal choice that only allows to try reaching an observable action

Bisimulations Over CTrees

When should two ctrees be deemed equivalent?

Bisimulations Over CTrees

> When should two ctrees be deemed equivalent?

When their underlying LTSs are bisimilar

We can rely on standard notions from the process algebra tradition

$$
\text { [Milner 89, Sangiorgi } 11 \text {, Pous } 16, \ldots \text {] }
$$

Bisimulations Over CTrees

Algebraic laws for non-determinism through strong bisimulation (~)

Bisimulations Over CTrees

Algebraic laws for non-determinism through strong bisimulation (~)

Insensitive to BrS

Insensitivity to BrS through weak bisimulation (\approx)

CTrees and Interpretation

\rightarrow CTrees are an adequate target monad into which one can interpret toss

$$
\begin{gathered}
\mathrm{h}(\text { pick }) \triangleq \mathrm{BrD} 2 \\
\text { interp } \mathrm{h}: \text { itree }(\text { Pick }+\mathrm{E}) \sim \text { ctree } \mathrm{E} \\
t \approx u \longrightarrow \text { interp } \mathrm{h} t \sim \text { interp } \mathrm{h} u
\end{gathered}
$$

CTrees and Interpretation

\rightarrow CTrees are an adequate target monad into which one can interpret toss

$$
\begin{gathered}
\mathrm{h}(\text { pick }) \triangleq \text { BrD } 2 \\
\text { interp } \mathrm{h}: \text { itree }(\text { Pick }+\mathrm{E}) \sim>\text { ctree } \mathrm{E} \\
t \approx u \longrightarrow \text { interp } \mathrm{h} t \sim \text { interp } \mathrm{h} u
\end{gathered}
$$

\rightarrow They of course themselves still support interpretation (targets must explain how they internalise branching nodes)

CTrees and Interpretation

\rightarrow CTrees are an adequate target monad into which one can interpret toss

```
    h(pick) \triangleq BrD 2
interp h : itree (Pick + E) ~> ctree E
t\approxu\longrightarrowinterp h t~ interp h u
```

\rightarrow They of course themselves still support interpretation
(targets must explain how they internalise branching nodes)
\longrightarrow Branching nodes can be «interpreted» as well
$\leadsto \rightarrow$ low level notion of scheduler
\leadsto formal refinements (complete simulations) in Coq
\leadsto practical testing in OCaml

Choice Trees: Case Studies

Calculus of Communicating Systems [Milner, 1980]

Goal: compute a model of ccs using ctrees
\rightarrow We establish ccs's traditional equational theory w.r.t. \sim on our model
\rightarrow We prove an adequacy result against ccs's operational semantics

$$
[P] \sim[Q] \text { iff } P \sim_{o p} Q
$$

Cooperative scheduling

$$
\text { com }::=\bullet|x:=e| c_{1} ; c_{2} \mid \text { while } b \text { do } c \mid \text { fork } c_{1} c_{2} \mid \text { yield }
$$

\rightarrow Two layered computable model:

- compositional construction with explicit fork and yield events - top-level interleaving combinator
\rightarrow Combination of non-determinism with stateful computations
\longrightarrow Selected set of algebraic equations

$$
\mathcal{S} \llbracket \text { fork } c 1 \text { (fork } c 2 \text { skip) } \rrbracket \approx \mathcal{S} \llbracket \text { fork } c 2 \text { (fork } c 1 \text { skip) } \rrbracket
$$

Conclusion

A New Tool in the Interaction Trees Environment

Modelling non-determinism and concurrency as monadic interpreters
\rightarrow Two new kind of branching nodes
\rightarrow Looking at the tree as an LTS sheds light to reason on their equivalence: the tools from the process algebra literature can be brought in
\longrightarrow Encouraging case studies

Implemented as a Coq library: https://github.com/vellvm/ctrees/tree/popl23

Relies heavily on Pous's coinduction library (coq-coinduction on Opam)

Backup

Nondeterministic branching

Question: what is the structure into which we should interpret toss?

An idea: sets of trees? $\mathcal{J}\left(\left[\right.\right.$ br c_{1} or $\left.\left.c_{2}\right]\right) \triangleq\left[c_{1}\right] \cup\left[c_{2}\right] \quad$ (In Coq: itree E X \rightarrow Prop)
PropT $M X \triangleq M X$-> Prop
is not a monad transformer (bind fails to associate to the left)
Equivalence is a notion of bijection
\leadsto existential quantification of a coinductive object
x Imposes trace equivalence onto us
(We do not want to go into Prop!

Nondeterministic branching

Question: what is the structure into which we should interpret toss?
An idea: sets of trees? $\mathscr{J}\left(\left[\right.\right.$ br c_{1} or $\left.\left.c_{2}\right]\right) \triangleq\left[c_{1}\right] \cup\left[c_{2}\right] \quad$ (In Coq: itree $\mathrm{E} X \quad$-> Prop $)$
PropT $M X \triangleq M X$-> Prop
is not a monad transformer (bind fails to associate to the left)
Equivalence is a notion of bijection
\leadsto existential quantification of a coinductive objectImposes trace equivalence onto us
(x
We do not want to go into Prop!
This work: ctrees, what we believe to be the right structure

Calculus of Communicating Systems [Milner, 1980]

head p: computes all first reachable actions in a ctree

Fig. 19. Depiction of the tree resulting from $p \overline{\|} q$

