Weak Bisimulation via Generalized Parameterized Coinduction

Yannick Zakowski

Chung Kil-Hur

Paul He Steve Zdancewic

Weak Bisimulation via Generalized Parameterized Coinduction

1. An extension to paco:
\longrightarrow a generic library to support coinductive reasoning in Coq
2. Reasoning specifically about weak bisimulation:
\longrightarrow "Parameterized weak bisimulations"

Generalized Parameterized Coinduction

Coinductive Lists of Naturals

$$
\begin{aligned}
\text { stream }(X: \text { Set }): \text { Set } \triangleq & \{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\}
\end{aligned}
$$

Coinductive Lists of Naturals

$$
\begin{aligned}
\operatorname{streamF}(X: \text { Set }): \text { Set } \triangleq & \{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\}
\end{aligned}
$$

Empty list

Coinductive Lists of Naturals

$$
\begin{aligned}
\text { stream }(X: \text { Set }): \text { Set } \triangleq & \{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\}
\end{aligned}
$$

Empty list
Silent internal step

Coinductive Lists of Naturals

$$
\begin{aligned}
\text { stream }(X: \text { Set }): \text { Set } \triangleq & \{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\}
\end{aligned}
$$

Empty list
Silent internal step
Visible event

Coinductive Lists of Naturals

streamF $(X:$ Set $): S e t \triangleq\{\epsilon\} \cup$
$\{\tau \cdot s \mid s \in X\} \cup$
$\{k \cdot s \mid k \in \mathbb{N}, s \in X\}$
stream $\triangleq \nu$ stream F

Empty list
Silent internal step
Visible event

Coinductive Lists of Naturals

$$
\begin{aligned}
& \operatorname{streamF}(X: \text { Set }): \text { Set } \triangleq\{\epsilon\} \cup \\
&\{\tau \cdot s \mid s \in X\} \cup \\
&\{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
& \text { stream } \triangleq \nu \text { stream } F \\
& 0 \cdot 1 \cdot \epsilon
\end{aligned}
$$

Empty list
Silent internal step
Visible event

Finite list

Coinductive Lists of Naturals

$$
\begin{gathered}
\text { streamF }(X: \text { Set }): \text { Set } \triangleq\{\epsilon\} \cup \\
\\
\{\tau \cdot s \mid s \in X\} \cup \\
\{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
\text { stream } \triangleq \nu \text { stream } F \\
0 \cdot 1 \cdot \epsilon \\
0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon
\end{gathered}
$$

Empty list
Silent internal step
Visible event

Finite list
Finite list

Coinductive Lists of Naturals

$$
\begin{gathered}
\operatorname{streamF}(X: \text { Set }): \text { Set } \triangleq\{\epsilon\} \cup \\
\{\tau \cdot s \mid s \in X\} \cup \\
\{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
\text { stream } \triangleq \nu \text { stream } F \\
0 \cdot 1 \cdot \epsilon \\
0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon \\
0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots
\end{gathered}
$$

Empty list
Silent internal step
Visible event

Finite list
Finite list
Alternating stream

Coinductive Lists of Naturals

$$
\begin{gathered}
\operatorname{streamF}(X: \text { Set }): \operatorname{Set} \triangleq\{\epsilon\} \cup \\
\{\tau \cdot s \mid s \in X\} \cup \\
\{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
\text { stream } \triangleq \nu \text { stream } F \\
0 \cdot 1 \cdot \epsilon \\
0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon \\
0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots \\
0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots
\end{gathered}
$$

Empty list
Silent internal step
Visible event

Finite list
Finite list
Alternating stream
Alternating stream

Coinductive Lists of Naturals

$$
\begin{array}{cc}
\text { streamF }(X: S e t): S e t \triangleq\{\epsilon\} \cup & \text { Empty list } \\
\{\tau \cdot s \mid s \in X\} \cup & \text { Silent internal step } \\
\{k \cdot s \mid k \in \mathbb{N}, s \in X\} & \text { Visible event } \\
\text { stream } \triangleq \nu \text { stream } & \\
0 \cdot 1 \cdot \epsilon & \text { Finite list } \\
0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon & \text { Finite list } \\
0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots & \text { Alternating stream } \\
0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots & \text { Alternating stream } \\
\tau \cdot \tau \cdot \tau \cdot \tau \cdot \ldots & \text { Silently diverging stream }
\end{array}
$$

Coinductive Lists of Naturals

$$
\begin{array}{cc}
\text { streamF }(X: S e t): S e t \triangleq\{\epsilon\} \cup & \text { Empty list } \\
\{\tau \cdot s \mid s \in X\} \cup & \text { Silent internal step } \\
\{k \cdot s \mid k \in \mathbb{N}, s \in X\} & \text { Visible event } \\
\text { stream } \triangleq \nu \text { streamF } & \\
0 \cdot 1 \cdot \epsilon & \\
22 & \text { Finite list } \\
0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon & \text { Finite list } \\
0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots & \text { Alternating stream } \\
0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots & \text { Alternating stream } \\
\tau \cdot \tau \cdot \tau \cdot \tau \cdot \ldots & \text { Silently diverging stream }
\end{array}
$$

Coinductive Lists of Naturals

$$
\begin{array}{cc}
\text { streamF }(X: S e t): S e t \triangleq\{\epsilon\} \cup & \text { Empty list } \\
\{\tau \cdot s \mid s \in X\} \cup & \text { Silent internal step } \\
\{k \cdot s \mid k \in \mathbb{N}, s \in X\} & \text { Visible event } \\
\text { stream } \triangleq \nu \text { streamF } & \\
0 \cdot 1 \cdot \epsilon & \\
22 & \text { Finite list } \\
0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon & \text { Finite list } \\
0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots & \text { Alternating stream } \\
0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots & \text { Alternating stream } \\
\tau \cdot \tau \cdot \tau \cdot \tau \cdot \ldots & \text { Silently diverging stream }
\end{array}
$$

Coinductive Lists of Naturals

$$
\begin{aligned}
& \text { streamF }(X: \text { Set }): \text { Set } \triangleq\{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
& \text { stream } \triangleq \nu \text { stream } F \\
& 0 \cdot 1 \cdot \epsilon \\
& \text { « } \\
& 0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon \\
& 0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots \\
& 2 \\
& 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots \\
& \text { z } \\
& \tau \cdot \tau \cdot \tau \cdot \tau \cdot \ldots \quad \text { Silently diverging stream }
\end{aligned}
$$

Coinductive Lists of Naturals

$$
\begin{aligned}
& \text { streamF }(X: S e t): S e t \triangleq\{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
& \text { stream } \triangleq \nu \text { stream } F \\
& 0 \cdot 1 \cdot \epsilon \\
& 2 \\
& 0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon \\
& 0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots \\
& 2 \\
& 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots \\
& \approx \triangleq \nu e u t t F
\end{aligned}
$$

Coinductive Lists of Naturals

$$
\begin{aligned}
& \text { streamF }(X: \text { Set }): \text { Set } \triangleq\{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
& \text { stream } \triangleq \nu \text { stream } F \\
& 0 \cdot 1 \cdot \epsilon \\
& \text { « } \\
& 0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon \\
& 0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots \\
& \text { 22 } \\
& 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots \\
& \text { 双 } \\
& \tau \cdot \tau \cdot \tau \cdot \tau \cdot \ldots \quad \text { Silently diverging stream }
\end{aligned}
$$

Coinductive Lists of Naturals

$$
\begin{aligned}
& \text { streamF }(X: S e t): S e t \triangleq\{\epsilon\} \cup \\
& \{\tau \cdot s \mid s \in X\} \cup \\
& \{k \cdot s \mid k \in \mathbb{N}, s \in X\} \\
& \text { stream } \triangleq \nu \text { stream } F \\
& 0 \cdot 1 \cdot \epsilon \\
& \text { « } \\
& 0 \cdot \tau \cdot \tau \cdot 1 \cdot \tau \cdot \epsilon \\
& 0 \cdot 2 \cdot 0 \cdot 2 \cdot 0 \cdot 2 \cdot \ldots \\
& \text { 22 } \\
& 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot 0 \cdot 2 \cdot \tau \cdot \ldots \\
& \text { 双 } \\
& \tau \cdot \tau \cdot \tau \cdot \tau \cdot \ldots \quad \text { Silently diverging stream } \\
& \text { Finite list } \\
& \text { Finite list } \\
& \text { Alternating stream } \\
& \text { Alternating stream } \\
& \text { Silently diverging stream } \\
& \text { eutt: "Equivalent Up-To Tau" }
\end{aligned}
$$

Parameterized Coinduction

If by ν we mean to define eutt as a Coq coinductive relation
\hookrightarrow Then the tool to conduct proofs is guarded coinduction (cofix)

- Support incremental reasoning (nested cofixes)
- Syntactic check (Breaks automation, composes poorly)

Parameterized Coinduction

If by ν we mean to define eutt as a Coq coinductive relation
\hookrightarrow Then the tool to conduct proofs is guarded coinduction (cofix)

- Support incremental reasoning (nested cofixes)
- Syntactic check (Breaks automation, composes poorly)

If by ν we mean the lattice-theoretic greatest fixed-point
\hookrightarrow Then the (basic) tool to conduct proofs is Tarski's fixed-point theorem A.k.a. "pick a post-fixed point"

- Does not support incremental reasoning
- Semantic

Parameterized Coinduction

If by ν we mean to define eutt as a Coq coinductive relation
\hookrightarrow Then the tool to conduct proofs is guarded coinduction (cofix)

- Support incremental reasoning (nested cofixes)
- Syntactic check (Breaks automation, composes poorly)

If by ν we mean the lattice-theoretic greatest fixed-point
\hookrightarrow Then the (basic) tool to conduct proofs is Tarski's fixed-point theorem A.k.a. "pick a post-fixed point"

- Does not support incremental reasoning
- Semantic

Let ν be the parameterized greatest fixed-point (Hur et al., POPL'13)
\longrightarrow Implemented in Coq by the paco library

- Support incremental reasoning
- Semantic

A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

Problem with Coq's cofix:

```
cofix CIH.
```

auto.
\square

A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

Problem with Coq's cofix:

```
cofix CIH.
```

auto.
*

A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

Problem with Coq's cofix:

```
cofix CIH.
    auto.
        *
```


A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

$$
\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \subseteq G_{\text {euttF }} \varnothing
$$

A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

$$
\begin{aligned}
& G_{\text {eutt } F} \equiv \text { paco euttF } \equiv \nu \text { eutt } F \\
& \left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \subseteq G_{\text {eutt } F} \varnothing
\end{aligned}
$$

A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

We start with only the pairs of interest $\quad G_{\text {eutt }} \equiv$ paco euttF $\equiv \nu$ euttF

A Minimal Example

Let's show that $s_{0} \approx t_{0}$ and $s_{1} \approx t_{1}$

We start with only the pairs of interest

$$
G_{\text {eutF } F} \equiv \text { paco eutt } \equiv \nu \text { eutt } F
$$

The bisimulation is built incrementally by recording knowledge in this parameter

A Minimal Example

$$
\begin{aligned}
& X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \\
& X \subseteq G_{\text {euttF }} \varnothing
\end{aligned}
$$

A Minimal Example

$$
\begin{aligned}
& X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \\
& X \subseteq G_{\text {euttF }} \varnothing
\end{aligned}
$$

Accumulate $X \subseteq G_{\text {euttF }} X$

A Minimal Example

$$
\begin{aligned}
& X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \\
& X \subseteq G_{\text {euttF }} \varnothing \\
& \text { Accumulate } X \subseteq G_{\text {euttF }} X \\
& \text { Unfold } X \subseteq \operatorname{eutt} F\left(X \cup G_{\text {euttF }} X\right)
\end{aligned}
$$

A Minimal Example

$$
\begin{gathered}
X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \\
X \subseteq G_{\text {euttF }} \varnothing \\
\text { Accumulate } X \subseteq G_{\text {eutF } F} X \\
\text { Unfold } X \subseteq e u t t F\left(X \cup G_{\text {euttF }} X\right) \\
\text { Step } Y \subseteq X \cup G_{\text {euttF }} X
\end{gathered}
$$

A Minimal Example

$$
\begin{gathered}
X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \\
X \subseteq G_{\text {eutt } F} \varnothing \\
\text { Accumulate } X \subseteq G_{\text {eutF } F} X \\
\text { Unfold } X \subseteq \text { euttF }\left(X \cup G_{\text {euttF }} X\right) \\
\text { Step } Y \subseteq X \cup G_{\text {euttF }} X
\end{gathered}
$$

Accumulate $Y \subseteq G_{\text {euttF }}(X \cup Y)$

A Minimal Example


```
\(X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \quad\) Two cases:
\[
X \subseteq G_{e u t t F} \varnothing
\]
Accumulate \(X \subseteq G_{\text {euttF }} X\)
\[
\text { Unfold } X \subseteq \operatorname{euttF}\left(X \cup G_{\text {eutt }} X\right)
\]
\[
\text { Step } Y \subseteq X \cup G_{\text {eutt }} X
\]
```

Accumulate $Y \subseteq G_{\text {euttF }}(X \cup Y)$

$$
\left(s_{2}, t_{2}\right) \in G_{\text {euttF }}(X \cup Y)
$$

A Minimal Example

$$
\begin{gathered}
X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \\
X \subseteq G_{\text {eutf }} \varnothing
\end{gathered}
$$

Accumulate $X \subseteq G_{\text {eutr }} X$

$$
\text { Unfold } X \subseteq \text { eutt } F\left(X \cup G_{\text {eutt } F} X\right)
$$

$$
\text { Step } Y \subseteq X \cup G_{\text {eutF }} X
$$

Accumulate $Y \subseteq G_{\text {eutf }}(X \cup Y)$

Two cases:
$\left(s_{2}, t_{2}\right) \in G_{\text {eutFF }}(X \cup Y)$
$\left(s_{\tau}, t_{1}\right) \in X \cup Y \cup G_{\text {eutt } F}(X \cup Y) \quad$ Step

A Minimal Example

$$
\begin{gathered}
X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \\
X \subseteq G_{\text {euttF }} \varnothing
\end{gathered}
$$

Accumulate $X \subseteq G_{\text {euttF }} X$
Unfold $X \subseteq \operatorname{euttF}\left(X \cup G_{\text {eutt } F} X\right)$
Step $Y \subseteq X \cup G_{\text {euttF }} X$
Accumulate $Y \subseteq G_{\text {euttF }}(X \cup Y)$

Two cases:
$\left(s_{2}, t_{2}\right) \in G_{\text {eutFF }}(X \cup Y)$
$\left(s_{\tau}, t_{1}\right) \in X \cup Y \cup G_{\text {eutt } F}(X \cup Y) \quad$ Step

A Minimal Example

$$
\begin{gathered}
X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \\
X \subseteq G_{\text {eutt }} \varnothing
\end{gathered}
$$

Accumulate $X \subseteq G_{\text {euttF }} X$

Two cases:

$$
\begin{aligned}
& \left(s_{2}, t_{2}\right) \in G_{\text {euttF }}(X \cup Y) \\
& \left(s_{\tau}, t_{1}\right) \in X \cup Y \cup G_{\text {euttF }}(X \cup Y) \quad \text { Step }
\end{aligned}
$$

$$
\left(s_{\tau}, t_{1}\right) \in G_{\text {euttF }}(X \cup Y)
$$

 Step \(Y \subseteq X \cup G_{\text {euttF }} X\)
 Accumulate \(Y \subseteq G_{\text {euttF }}(X \cup Y)\)

A Minimal Example

$$
\begin{gathered}
X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \\
X \subseteq G_{\text {euttF }} \varnothing
\end{gathered}
$$

Accumulate $X \subseteq G_{\text {euttF }} X$

$$
\text { Unfold } X \subseteq e u t t F\left(X \cup G_{\text {eutt } F} X\right)
$$

$$
\text { Step } Y \subseteq X \cup G_{\text {euttF }} X
$$

Two cases:

$$
\begin{aligned}
& \left(s_{2}, t_{2}\right) \in G_{\text {eutt } F}(X \cup Y) \\
& \left(s_{\tau}, t_{1}\right) \in X \cup Y \cup G_{\text {eutt } F}(X \cup Y) \quad \text { Step } \\
& \left(s_{\tau}, t_{1}\right) \in G_{\text {eutt }}(X \cup Y) \\
& \left(s_{1}, t_{1}\right) \in G_{\text {euttF }}(X \cup Y) \quad \text { Easy Lemma }
\end{aligned}
$$

Accumulate $Y \subseteq G_{\text {euttF }}(X \cup Y)$

A Minimal Example

$$
\begin{gathered}
X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \\
X \subseteq G_{\text {euttF }} \varnothing
\end{gathered}
$$

$$
\text { Accumulate } X \subseteq G_{\text {euttF }} X
$$

$$
\text { Unfold } X \subseteq e u t t F\left(X \cup G_{\text {eutt } F} X\right)
$$

$$
\text { Step } Y \subseteq X \cup \underset{\underbrace{}}{G_{e u t t F}} X
$$

Accumulate $Y \subseteq G_{\text {eutt } F}(X \cup Y)$

Two cases:

$$
\begin{aligned}
& \left(s_{2}, t_{2}\right) \in G_{\text {eutt } F}(X \cup Y) \\
& \left(s_{\tau}, t_{1}\right) \in X \cup Y \cup G_{\text {euttF }}(X \cup Y) \quad \text { Step } \\
& \left(s_{\tau}, t_{1}\right) \in G_{\text {eutt } F}(X \cup Y) \\
& \left(s_{1}, t_{1}\right) \in G_{\text {eutt } F}(X \cup Y) \quad \text { Easy Lemma } \\
& \text { We should be able to conclude! }
\end{aligned}
$$

Extending Paco with a Second Parameter

- The released information is always available

Base

$$
R \subseteq \hat{G}_{F} R G
$$

- The approach is entirely backward-compatible with paco
\longrightarrow Definitions require no change to use the new reasoning principles
\longrightarrow The "generalized world" is a proof intermediary

Extending Paco with a Second Parameter

$X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \quad$ Two cases:

	$X \subseteq G_{\text {eutF }} \varnothing$	$\left(s_{2}, t_{2}\right) \in \hat{G}_{\text {eutf } F} X(X \cup Y)$
Init	$X \subseteq \hat{G}_{\text {eutF }} \varnothing \varnothing$	$\left(s_{v}, t_{1}\right) \in \hat{G}_{\text {eutt } F}(X \cup Y)(X \cup Y) \quad$ Step
Accumulate	$X \subseteq \hat{G}_{\text {eutf }} \varnothing X$	$\left(s_{v}, t_{1}\right) \in \hat{G}_{\text {eutf } F} X(X \cup Y) \quad$
Step	$Y \subseteq \hat{G}_{\text {eutf }} X X$	$\left(s_{1}, t_{1}\right) \in \hat{G}_{\text {eutf }} X(X \cup Y)$ Easy Lemma
Accumulate	$Y \subseteq \hat{G}_{\text {eutf }} X(X \cup Y)$	

Extending Paco with a Second Parameter

$X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\}$

	$X \subseteq G_{\text {eutFF }} \varnothing$
Init	$X \subseteq \hat{G}_{\text {euttF }} \varnothing \varnothing$
Accumulate	$X \subseteq \hat{G}_{\text {euttF }} \varnothing X$
Step	$Y \subseteq \hat{G}_{\text {eutF }} X X$
Accumulate	$Y \subseteq \hat{G}_{\text {eutF }} X(X \cup Y)$

Extending Paco with a Second Parameter

$X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\}$

	$X \subseteq G_{\text {eutt }} \varnothing$
Init	$X \subseteq \hat{G}_{\text {euttF }} \varnothing \varnothing$

Accumulate $\quad X \subseteq \hat{G}_{\text {euttF }} \varnothing X$

$$
\text { Step } \quad Y \subseteq \hat{G}_{\text {eutt } F} X X
$$

Accumulate $\quad Y \subseteq \hat{G}_{\text {euttF }} X(X \cup Y)$

Two cases:

$$
\begin{aligned}
& \left(s_{2}, t_{2}\right) \in \hat{G}_{\text {euttF }} X(X \cup Y) \\
& \left(s_{\tau}, t_{1}\right) \in \hat{G}_{\text {euttF }}(X \cup Y)(X \cup Y) \quad \text { Step }
\end{aligned}
$$

$$
\left(s_{\tau}, t_{1}\right) \in \hat{G}_{\text {euttF }} X(X \cup Y)
$$

$$
\left(s_{1}, t_{1}\right) \in \hat{G}_{\text {euttF }} X(X \cup Y) \text { Easy Lemma }
$$

Extending Paco with a Second Parameter

$X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \quad$ Two cases:

	$X \subseteq G_{\text {eutt }} \varnothing$	$\left(s_{2}, t_{2}\right) \in \hat{G}_{\text {eutF }} X(X \cup Y)$
Init	$X \subseteq \hat{G}_{\text {eutF }} \varnothing \varnothing$	$\left(s_{v}, t_{1}\right) \in \hat{G}_{\text {eutt } F}(X \cup Y)(X \cup Y) \quad$ Step
Accumulate	$X \subseteq \hat{G}_{\text {eutF }} \varnothing X$	\square
Step	$Y \subseteq \hat{G}_{\text {eutF }} X X$	$\left(s_{v}, t_{1}\right) \in \hat{G}_{\text {eutt } F} X(X \cup Y) \quad$
Accumulate	$Y \subseteq \hat{G}_{\text {eutf }} X(X \cup Y)$	$\left(s_{1}, t_{1}\right) \in \hat{G}_{\text {euttF }} X(X \cup Y)$ Easy Lemma

Extending Paco with a Second Parameter

$X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \quad$ Two cases:

	$X \subseteq G_{\text {eutF }} \varnothing$
Init	$X \subseteq \hat{G}_{\text {eutf } F} \varnothing \varnothing$
Accumulate	$X \subseteq \hat{G}_{\text {eutt } F} \varnothing X$
Step	$Y \subseteq \hat{G}_{\text {eutF }} X X$
Accumulate	$Y \subseteq \hat{G}_{\text {eutt }} X(X \cup Y) \longleftarrow$

Extending Paco with a Second Parameter

$X=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right)\right\} \quad Y=\left\{\left(s_{\tau}, t_{1}\right),\left(s_{2}, t_{2}\right)\right\} \quad$ Two cases:

	$X \subseteq G_{\text {eutf }} \varnothing$	$\left(s_{2}, t_{2}\right) \in \hat{G}_{\text {eutt }} X(X \cup Y)$
Init	$X \subseteq \hat{G}_{\text {eutF }} \varnothing \varnothing$	$\left(s_{\tau}, t_{1}\right) \in \hat{G}_{\text {euttF }}(X \cup Y)(X \cup Y) \quad$ Step
Accumulate	$X \subseteq \hat{G}_{\text {eutf }} \varnothing X$	$\left(s_{v}, t_{1}\right) \in \hat{G}_{\text {euttF }} X(X \cup Y) \quad \square$
Step	$Y \subseteq \hat{G}_{\text {eutF }} X X$	$\left(s_{1}, t_{1}\right) \in \hat{G}_{\text {euttF }} X(X \cup Y)$ Easy Lemma
Accumulate	$Y \subseteq \hat{G}_{\text {eutf } F} X(X \cup Y)$	X is still accessible! \square

Generalized Paco

- Parameterized Coinduction had a leak: a second parameter fixes it
- Other increment not covered here: "native" support for up-to reasoning
- Backward compatible: relations are still defined in term of paco, but gpaco can be used to conduct proofs about them

See the paper for more details!

Integrated to paco, and on opam!
https://github.com/snu-sf/paco

A Parameterized Weak Bisimulation

Rewriting eutt-Equations

$\frac{s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G}{(s, t) \in \hat{G}_{\text {euttF }} R G}$ Rewrite Is such a rewriting rule sound?

Rewriting eutt-Equations

$\begin{array}{cc}s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G \\ (s, t) \in \hat{G}_{\text {euttF }} R G & \text { Rewrite } \\ \text { Is such a rewriting rule sound? } \\ \text { In general: no! X }\end{array}$

Rewriting eutt-Equations

$\begin{array}{cc}s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \hat{G}_{\text {eutt } F} R G \\ (s, t) \in \hat{G}_{\text {euttF } F} R G & \text { Rewrite } \\ \text { Is such a rewriting rule sound? } \\ \text { In general: no! X }\end{array}$
Let's assume this rule and prove that $0 \cdot \epsilon \approx 1 \cdot \epsilon$:

Rewriting eutt-Equations

$\begin{array}{cc}s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G \\ (s, t) \in \hat{G}_{\text {euttF }} R G & \text { Rewrite } \\ \text { Is such a rewriting rule sound? } \\ \text { In general: no! X }\end{array}$
Let's assume this rule and prove that $0 \cdot \epsilon \approx 1 \cdot \epsilon$:
Init

$$
(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {euttF }} \varnothing \varnothing
$$

Rewriting eutt-Equations

$\begin{array}{cc}s \approx s^{\prime}\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G \\ (s, t) \in \hat{G}_{\text {euttF }} R G & \text { Rewrite } \\ \text { Is such a rewriting rule sound? } \\ \text { In general: no! X }\end{array}$
Let's assume this rule and prove that $0 \cdot \epsilon \approx 1 \cdot \epsilon$:

Init

$$
(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {eutFF }} \varnothing \varnothing
$$

Accumulate $(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {eutt } F} \varnothing\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}$

Rewriting eutt-Equations

$\begin{array}{cc}s \approx s^{\prime}\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G \\ (s, t) \in \hat{G}_{\text {euttF }} R G & \text { Rewrite } \\ \text { Is such a rewriting rule sound? } \\ \text { In general: no! X }\end{array}$
Let's assume this rule and prove that $0 \cdot \epsilon \approx 1 \cdot \epsilon$:

Init

$$
(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {eutFF }} \varnothing \varnothing
$$

Accumulate $(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {eutt } F} \varnothing\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}$
Rewrite

$$
(\tau \cdot 0 \cdot \epsilon, \tau \cdot 1 \cdot \epsilon) \in \hat{G}_{\text {euttF }} \varnothing\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}
$$

Rewriting eutt-Equations

$$
\begin{array}{cc}
s \approx s^{\prime}\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G \\
(s, t) \in \hat{G}_{\text {euttF } F} R G & \text { Rewrite } \\
\text { Is such a rewriting rule sound? } \\
\text { In general: no! X }
\end{array}
$$

Let's assume this rule and prove that $0 \cdot \epsilon \approx 1 \cdot \epsilon$:

Init

$$
(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {eutFF }} \varnothing \varnothing
$$

Accumulate $(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {eutt } F} \varnothing\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}$
Rewrite

$$
(\tau \cdot 0 \cdot \epsilon, \tau \cdot 1 \cdot \epsilon) \in \hat{G}_{\text {euttF }} \varnothing\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}
$$

Step

$$
(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {euttF }}\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}
$$

Rewriting eutt-Equations

$$
\begin{array}{cc}
s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G \\
(s, t) \in \hat{G}_{\text {euttF }} R G & \text { Rewrite } \\
\text { Is such a rewriting rule sound? } \\
\text { In general: no! X }
\end{array}
$$

Let's assume this rule and prove that $0 \cdot \epsilon \approx 1 \cdot \epsilon$:
Init

$$
(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {euttF }} \varnothing \varnothing
$$

Accumulate $(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {eutt }} \varnothing\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}$
Rewrite

$$
(\tau \cdot 0 \cdot \epsilon, \tau \cdot 1 \cdot \epsilon) \in \hat{G}_{\text {euttF }} \varnothing\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}
$$

Step

$$
(0 \cdot \epsilon, 1 \cdot \epsilon) \in \hat{G}_{\text {euttF }}\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}\{(0 \cdot \epsilon, 1 \cdot \epsilon)\}
$$

The rule is unsound, but only the silent step is to be blamed!

A Parameterized Weak Bisimulation

Objective: define euttG, a sound parameterized generalization of eutt
\approx : relation stream

euttG $\left(R_{\beta} R_{\tau} G_{\beta} G_{\tau}\right.$: relation stream $)$: relation stream

A Parameterized Weak Bisimulation

Objective: define euttG, a sound parameterized generalization of eutt
\approx : relation stream

A Parameterized Weak Bisimulation

Objective: define euttG, a sound parameterized generalization of eutt
\approx : relation stream

A Parameterized Weak Bisimulation

Objective: define euttG, a sound parameterized generalization of eutt
\approx : relation stream

Let's look at the reasoning principles it supports (for the construction itself, we refer to the paper)

Rewriting eutt-Equations

$$
\frac{s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF } F} R G}{(s, t) \in \hat{G}_{\text {euttF } F} R G} \mathbf{X}
$$

Distinguishing τ from β steps allows for a weaker but sound principle:

Rewriting eutt-Equations

$$
\frac{s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF } F} R G}{(s, t) \in \hat{G}_{\text {euttF } F} R G} \mathbf{X}
$$

Distinguishing τ from β steps allows for a weaker but sound principle:

$$
\frac{s \approx s^{\prime} \quad\left(s^{\prime}, t\right) \in \operatorname{euttG} R_{\beta} R_{\beta} G_{\beta} R_{\beta}}{(s, t) \in \operatorname{euttG} R_{\beta} R_{\tau} G_{\beta} G_{\tau}}
$$

Rewriting eutt-Equations

$$
\frac{s \approx s^{\prime}\left(s^{\prime}, t\right) \in \hat{G}_{\text {euttF }} R G}{(s, t) \in \hat{G}_{\text {euttF } F} R G} \mathbf{X}
$$

Distinguishing τ from β steps allows for a weaker but sound principle:

$$
\text { We forget all } \tau \text {-knowledge }
$$

$$
(s, t) \in \operatorname{euttG} R_{\beta} R_{\tau} G_{\beta} G_{\tau}
$$

Soundness

euttG is an proof intermediary to \approx the way gpaco is to paco
Initiates a parameterized proof:

$$
\frac{(s, t) \in \operatorname{euttG} \varnothing \varnothing \varnothing \varnothing}{s \approx t} \text { Init }
$$

Allows for using any pre-established \approx-equation:

$$
\frac{s \approx t}{(s, t) \in \operatorname{euttG} R_{\beta} R_{\tau} G_{\beta} G_{\tau}}
$$

Knowledge Manipulation

Released knowledge is fair game:

$$
\frac{(s, t) \in R_{\tau} \cup R_{\beta}}{(s, t) \in \operatorname{euttG} R_{\beta} R_{\tau} G_{\beta} G_{\tau}}
$$

Information can be accumulated in the style of gpaco:

$$
(s, t) \in \operatorname{euttG} R_{\beta} R_{\tau}\left(G_{\beta} \cup\{(s, t)\}\right)\left(G_{\tau} \cup\{(s, t)\}\right)
$$

Accumulate
$(s, t) \in$ euttG $R_{\beta} R_{\tau} G_{\beta} G_{\tau}$

Stream Processing

Tau guards release the tau guarded information:

$$
(s, t) \in \operatorname{euttG} R_{\beta} G_{\tau} G_{\beta} G_{\tau}
$$

Tau
$(\tau \cdot s, \tau \cdot t) \in$ euttG $R_{\beta} R_{\tau} G_{\beta} G_{\tau}$

Vis guards release the vis guarded information:

$$
\begin{aligned}
& \frac{(s, t) \in \operatorname{euttG} G_{\beta} G_{\beta} G_{\beta} G_{\beta}}{(k \cdot s, k \cdot t) \in \operatorname{euttG} R_{\beta} R_{\tau} G_{\beta} G_{\tau}} \\
& \text { Invariant: } \quad R_{\beta} \subseteq R_{\tau} \subseteq G_{\tau} \subseteq G_{\beta}
\end{aligned}
$$

Parameterized Weak Bisimulation

- The intuition behind gpaco can be specialized to specific applications
- Reasoning principles that differentiate the constructors
- More in the paper: up-to concatenation, up-to directed weak bisimulation
- More in the paper: the construction itself of euttG is quite subtle

See the paper for more details!

Conclusion

Conclusion

Generalized paco:

- Backward-compatible with paco
- Don't lose knowledge + native support for up-to reasoning
- Available on Opam and Github!
https://github.com/snu-sf/paco
Parameterized Weak Bisimulation:
- High level reasoning principles
- Differentiates the constructors used in the proof

Large scale application: Interaction Trees

- The project was born of necessity to prove the meta-theory of interaction trees
- Join us for the talk Friday at $11: 13$!

