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1. An extension to paco: 
     a generic library to support coinductive reasoning in Coq⟶

2. Reasoning specifically about weak bisimulation: 
     “Parameterized weak bisimulations”⟶
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Extending Paco with  
a Second Parameter 

GuardedReleased

• The released information is always available

Base
R ⊆ ĜF R G

• The approach is entirely backward-compatible with paco 
 Definitions require no change to use the new reasoning principles 
 The “generalized world” is a proof intermediary

⟶
⟶

Init
ĜF ∅ ∅ ≡ GF ∅

Final
R ∪ GF G ⊆ ĜF R G

CPP’20

ĜF R G ≜ R ∪ GF(R ∪ G)
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X ⊆ ĜeuttF ∅ XAccumulate

Init
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(s2, t2) ∈ ĜeuttF X (X ∪ Y )
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X ⊆ ĜeuttF ∅ ∅

s2sτ

s0 s1

0 1

2

τ

CPP’20

2

t2

t0 t1
0

1

Y = {(sτ, t1),(s2, t2)}X = {(s0, t0),(s1, t1)}



Yannick ZAKOWSKI January 20th, 2020/ 209

Extending Paco with  
a Second Parameter 

X ⊆ GeuttF ∅
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Generalized Paco

• Parameterized Coinduction had a leak: a second parameter fixes it 

• Other increment not covered here: “native" support for up-to reasoning 

• Backward compatible: relations are still defined in term of paco, but 

gpaco can be used to conduct proofs about them

See the paper for more details!

Integrated to paco, and on opam!

https://github.com/snu-sf/paco

CPP’20

https://github.com/snu-sf/paco
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(τ ⋅ 0 ⋅ ϵ, τ ⋅ 1 ⋅ ϵ) ∈ ĜeuttF ∅ {(0 ⋅ ϵ,1 ⋅ ϵ)}Rewrite
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Rewriting eutt-Equations 

In general: no!
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The rule is unsound, but only the silent step is to be blamed!
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A Parameterized Weak 
Bisimulation

Objective: define euttG, a sound parameterized generalization of eutt

 : relation stream≈

Let’s look at the reasoning principles it supports 
(for the construction itself, we refer to the paper)

euttG(Rβ Rτ Gβ Gτ: relation stream): relation stream

“Released” “Guarded”

“By a Vis” “By a Tau”

CPP’20
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Yannick ZAKOWSKI 14 January 20th, 2020/ 20

Distinguishing  from  steps allows for a weaker but sound principle:τ β

Rewriting eutt-Equations 

CPP’20

(s, t) ∈ ĜeuttF R G
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Distinguishing  from  steps allows for a weaker but sound principle:τ β

Rewriting eutt-Equations 

CPP’20

(s, t) ∈ ĜeuttF R G

s ≈ s′� (s′�, t) ∈ ĜeuttF R G

We forget all -knowledgeτ

euttG (s′�, t) ∈ Rβ Rβ Gβ Rβ

euttG (s, t) ∈ Rβ Rτ Gβ Gτ

s ≈ s′�
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Soundness

Init

Final
euttG (s, t) ∈ Rβ Rτ Gβ Gτ

Initiates a parameterized proof:

Allows for using any pre-established -equation:≈

CPP’20

euttG is an proof intermediary to  the way gpaco is to paco≈

s ≈ t

euttG (s, t) ∈ ∅ ∅ ∅ ∅

s ≈ t
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Knowledge Manipulation

Released knowledge is fair game:

Information can be accumulated in the style of gpaco:

Base

Accumulate

CPP’20

euttG (s, t) ∈ Rβ Rτ Gβ Gτ

euttG (s, t) ∈ Rβ Rτ Gβ Gτ

euttG (s, t) ∈ Rβ Rτ (Gβ ∪ {(s, t)}) (Gτ ∪ {(s, t)})

(s, t) ∈ Rτ ∪ Rβ
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Stream Processing

Tau

Tau guards release the tau guarded information:

Vis

Vis guards release the vis guarded information:

Invariant: Rβ ⊆ Rτ ⊆ Gτ ⊆ Gβ

CPP’20

euttG (τ ⋅ s, τ ⋅ t) ∈ Rβ Rτ Gβ Gτ

euttG (s, t) ∈ Rβ Gτ Gβ Gτ

euttG (k ⋅ s, k ⋅ t) ∈ Rβ Rτ Gβ Gτ

euttG (s, t) ∈ Gβ Gβ Gβ Gβ
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Parameterized Weak 
Bisimulation

• The intuition behind gpaco can be specialized to specific applications 

• Reasoning principles that differentiate the constructors 

• More in the paper: up-to concatenation, up-to directed weak bisimulation 

• More in the paper: the construction itself of euttG is quite subtle

See the paper for more details!

CPP’20
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Conclusion

• Backward-compatible with paco 

• Don’t lose knowledge + native support for up-to reasoning 

• Available on Opam and Github!

Generalized paco:

Parameterized Weak Bisimulation:

• High level reasoning principles 

• Differentiates the constructors used in the proof

Large scale application: Interaction Trees

• The project was born of necessity to prove the meta-theory of interaction trees 

• Join us for the talk Friday at 11:13!

https://github.com/snu-sf/paco

CPP’20


