
Effectful Programming  
across Heterogeneous Computations

Jean Abou Samra  
Martin Bodin  

Yannick Zakowski

JFLA’23

Work in Progress: Usefulness and Novelty are not Guaranteed!

Monadic Computations

Payoff and Perspectives

Heterogeneous Monadic Programming

Mixing Up the Free Monad

The Free Monad

Monadic Computations

Monadic Computations

4

A way to encode and program with effectful computations

In a statically typed functional language

One monad = One class of computations

Pure Computations

5

Terms of type X are pure computations returning values of type X

(λx => x * x) 2 ~~> 4

Pure Computations

5

Terms of type X are pure computations returning values of type X

(λx => x * x) 2 ~~> 4

let x := t in u ~~> v’

Computations can be sequenced: it’s the let-binding operation

t ~~> v

u[v/x] ~~> v’

Failing Computations

6

Computations can be sequenced: it’s the bind operation

Terms of type X are failing computations returning values of type X

Failing Computations

6

Computations can be sequenced: it’s the bind operation

Terms of type X are failing computations returning values of type Xoption

None | Some (v : X)

Failing Computations

6

Computations can be sequenced: it’s the bind operation

Terms of type X are failing computations returning values of type X

The family of types option is the failure monad

option

None | Some (v : X)

Failing Computations

6

Computations can be sequenced: it’s the bind operation

Terms of type X are failing computations returning values of type X

The family of types option is the failure monad

option

None | Some (v : X)

x <- t;; u ~~> None

t ~~> None

x <- t;; u ~~> v’

t ~~> Some v

u[v/x] ~~> v’

Failing Computations

6

Computations can be sequenced: it’s the bind operation

Terms of type X are failing computations returning values of type Xoption

None | Some (v : X)

x <- t;; u ~~> None

t ~~> None

x <- t;; u ~~> v’

t ~~> Some v

u[v/x] ~~> v’

Pure computations can be embedded: it’s the ret operation (ret Some)≜

Stateful Computations

7

Terms of type S -> S*X are stateful computations returning values of type X

The family of types X|->(S->S*X) is the stateful monad

(x <- t;; u) σ ~~> (σ’’,v’)

t σ ~~> (σ’,v)
u[v/x] σ’ ~~> (σ’’,v’)ret x λσ => (σ,x)≜

Monadic Computations: A Convenient Abstraction

8

A type family M : Type -> Type is a monad if it comes equipped with:

Monadic Computations: A Convenient Abstraction

8

A type family M : Type -> Type is a monad if it comes equipped with:

ret : X, X -> M X∀

Monadic Computations: A Convenient Abstraction

8

A type family M : Type -> Type is a monad if it comes equipped with:

ret : X, X -> M X∀

bind : X Y, M X -> (X -> M Y) -> M Y∀

Monadic Computations: A Convenient Abstraction

8

A type family M : Type -> Type is a monad if it comes equipped with:

ret : X, X -> M X∀

bind : X Y, M X -> (X -> M Y) -> M Y∀

equ : X, M X ->->∀

Monadic Computations: a Convenient Abstraction

9

A type family M : Type -> Type is a monad if it comes equipped with:

ret : X, X -> M X∀

bind : X Y, M X -> (X -> M Y) -> M Y∀

Monad laws:

x <- ret x;; k = k x

x <- c;; ret x = c

x <- c;; (λ x => y <- k x;; g) = y <- (x <- c;;k);; g

Used in Proof Assistants in Particular

10

Gallina

A pure functional language… So pure every function must terminate!

Monads are a convenient abstraction to represent effecful computations in Gallina

as well as to reason about these computations

We discussed failure and state, but divergence can be represented as well!

One Specific Library

11

Gallina

Interaction Trees

A generic toolkit to define and reason about the
semantics of interactive systems

Semantics: Compositional, Modular, Executable

Reasoning: Equational, termination sensitive

The Free Monad

The Free Monad: an Extensible Syntax

13

free E X

My computation is a glorified piece of syntax

able to perform operations specified in E

in order to compute a value of type X

Effectful computations arise from their signature of operations

Modelling Imp as Stateful Computations

14

Imperative programs are stateful computations

p x := n; y := x≜

S -> S * unit

Syntax

Model

Modelling Imp as Stateful Computations

14

Imperative programs are stateful computations

p x := n; y := x≜

S -> S * unit

Syntax

Model

[|p|] = λσ => σ[x<-n][y<-σ[x]]

Modelling Imp as Stateful Computations

14

Imperative programs are stateful computations

p x := n; y := x≜

S -> S * unit

Syntax

Model

[|p|] = λσ => σ[x<-n][y<-σ[x]]

[|p|] = λσ => σ[x<-n, y<-n]

And hence one can prove

The Free Monad: an Extensible Syntax

15

Imperative programs are computations performing reads and writes

p x := n; y := x≜

free RW unit

Syntax

Model

The Free Monad: an Extensible Syntax

15

Imperative programs are computations performing reads and writes

p x := n; y := x≜

free RW unit

Syntax

Model

wr x n

wr x 0 wr x nwr x 1

rd y

tt tt tt

The Free Monad: an Extensible Syntax

15

Imperative programs are computations performing reads and writes

p x := n; y := x≜

free RW unit

Syntax

Model

wr x n

wr x 0 wr x nwr x 1

rd y

tt tt tt
One cannot prove that we write n to y

The Free Monad: Interpretation

16

Imperative programs are computations performing reads and writes

implemented as stateful computations

wr x n

wr x 0 wr x nwr x 1

rd y

tt tt tt

The Free Monad: Interpretation

16

Imperative programs are computations performing reads and writes

implemented as stateful computations

wr x n

wr x 0 wr x nwr x 1

rd y

tt tt tt

|-> λσ => σ[x<-n][y<-σ[x]]
Interpretation

The state monad is a possible implementation of the operations

Used at Scale to Model Languages: LLVM IR

17

Local state

Global state

Memory

Calls

Stack of local frames

Non-determinism

Undefined Behavior

Debugging

Failure

LE

GE

ME

CallE
SFE

PickE

UBE

DebugE

FailE

LLVM IR programs are computations performing 
 reads and writes to the local register; 

read an writes to the global state;

interacting with the memory;

…

18

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

Used at Scale to Model Languages: R

19

18kloc of monadic interpreter

but not uniformly complex at closer inspection

r : reading global variables

w : writing global variables

h : heap operations

e : throwing errors

f : function calls

l : low level operations

Used at Scale to Model Languages: R

19

18kloc of monadic interpreter

but not uniformly complex at closer inspection

r : reading global variables

w : writing global variables

h : heap operations

e : throwing errors

f : function calls

l : low level operations

We should not have to reason  
in a structure

implementing all effects

Heterogeneous Monadic Programming

20

Can we write monadic interpreters at scale

on top of the free monad

combining computations at different types

and get invariants for free and proofs in simpler structures?

Heterogeneous Stateful Programming

21

Let’s consider a single cell containing a natural number

StructureOperations

Heterogeneous Stateful Programming

21

Let’s consider a single cell containing a natural number

StructureOperations

c -> c * Xreads and writes state X

Heterogeneous Stateful Programming

21

Let’s consider a single cell containing a natural number

StructureOperations

c -> c * Xreads and writes state X

c -> Xreads read X

Heterogeneous Stateful Programming

21

Let’s consider a single cell containing a natural number

StructureOperations

c -> c * Xreads and writes state X

c -> Xreads read X

c * Xwrites write X

Heterogeneous Stateful Programming

21

Let’s consider a single cell containing a natural number

StructureOperations

c -> c * Xreads and writes state X

c -> Xreads read X

c * Xwrites write X

Xnothing pure X

Heterogeneous Monadic Programming

Heterogeneous Monadic Programming

Via Monad Morphisms

Transport via Monad Morphism

24

Computations in a given monad can be sequenced

How could I sequence computations in two distinct monads?

Transport via Monad Morphism

24

Computations in a given monad can be sequenced

How could I sequence computations in two distinct monads?

Have them agree to meet at a common place!

Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph : X, M X -> T X }∀

morph (c : M X) : T X c |> T≜

Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph : X, M X -> T X }∀

morph (c : M X) : T X c |> T≜

bindH (c : M X) (k : X -> N Y) : T Y

x <- (c |> T) ((k x) |>T)

≜

Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph : X, M X -> T X }∀

morph (c : M X) : T X c |> T≜

bindH (c : M X) (k : X -> N Y) : T Y

x <- (c |> T) ((k x) |>T)

≜

Monads

Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph : X, M X -> T X }∀

morph (c : M X) : T X c |> T≜

bindH (c : M X) (k : X -> N Y) : T Y

x <- (c |> T) ((k x) |>T)

≜

Monads

Morph M T

Morph N T

Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph : X, M X -> T X }∀

morph (c : M X) : T X c |> T≜

bindH (c : M X) (k : X -> N Y) : T Y

x <- (c |> T) ((k x) |>T)

≜

Problem: how should we help Coq infer T?

Transport via Monad Morphism

26

The monad laws generalize

x <- ret x ;; k = (k x) |> T
M N

T

Transport via Monad Morphism

26

The monad laws generalize

x <- ret x ;; k = (k x) |> T
M N

T

x <- c ;; ret x = c |> T
M N

T

Transport via Monad Morphism

26

The monad laws generalize

x <- ret x ;; k = (k x) |> T
M N

T

x <- c ;; ret x = c |> T
M N

T

x <- c;; (λ x => y <- k x;; g) = y <- (x <- c;; k);; g
A B C

T ABBC T

Transport via Monad Morphism

27

The monad laws generalize

T

AB

A B C

BC

Given the right coherence properties!

(More or Less) Stateful Computations

28

state

read write

pure

At the cost of unacceptable annotations, we can mix up computations 
once our morphisms are defined, and coherence properties proved

Heterogeneous Monadic Programming

Indexation

A Partial Order to Index

30

state X

read X write X

pure X

A Partial Order to Index

30

state X

read X write X

pure X

rw

r w

v

⊑

⊑

⊑

⊑

(I,) partial order⊑

A Partial Order to Index

30

state X

read X write X

pure X

rw

r w

v

⊑

⊑

⊑

⊑

(I,) partial order⊑

[|.|] : I -> Monad

A Partial Order to Index

reify_le : i j, i j -> Morph [|i|] [|j|]∀ ⊑

30

state X

read X write X

pure X

rw

r w

v

⊑

⊑

⊑

⊑

(I,) partial order⊑

[|.|] : I -> Monad

A Partial Order to Index

31

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|t|] Y

x <- (c |> [|t|]) ((k x) |>[|t|])

≜

if we can find two proofs: and j t⊑i t⊑

A Partial Order to Index

31

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|t|] Y

x <- (c |> [|t|]) ((k x) |>[|t|])

≜

if we can find two proofs: and j t⊑i t⊑

We guarantee the coherence requirements once and for all:

(c |> (i j)) |>(j k) = c |> (i k)⊑ ⊑ ⊑

Heterogeneous Monadic Programming

Directed Set

A Join to Settle on our Destination

33

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|t|] Y

x <- (c |> [|t|]) ((k x) |>[|t|])

≜

if we can find two proofs: and j t⊑i t⊑

(I,) ordered set⊑

A Join to Settle on our Destination

34

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|i j|] Y

x <- (c |> [|i j|]) ((k x) |> [|i j|])

⊔ ≜
⊔ ⊔

and we always have: andi [|i j|]⊑ ⊔

(I, ,) directed set⊑ ⊔

j [|i j|]⊑ ⊔

A Join to Settle on our Destination

34

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|i j|] Y

x <- (c |> [|i j|]) ((k x) |> [|i j|])

⊔ ≜
⊔ ⊔

and we always have: andi [|i j|]⊑ ⊔

(I, ,) directed set⊑ ⊔

j [|i j|]⊑ ⊔

No annotation needed anymore! But some dependent programming sneaks in

Mixing Up the Free Monad

36 : Derived definitions

Commutation Property

37

Heterogenous computations can be broken back down

into their simpler components

 (c : free [|i|] X) (k : X -> free [|j|] Y)∀

I (Fbind m k) = Mbind (I m) (λx => I (k x))

Commutation Property

37

Heterogenous computations can be broken back down

into their simpler components

 (c : free [|i|] X) (k : X -> free [|j|] Y)∀

I (Fbind m k) = Mbind (I m) (λx => I (k x))

Simpler monadic structures

Complex monadic structure

Payoff and Perspectives

Toy Example and Illustration

39

Variable init : cell -> free Wr unit

Variable fetch : free Rd cell

Definition main (n : cell) : free (Rd + Wr) bool =

 init n;;

 v1 <- fetch;;

 v2 <- fetch;;

 ret (v1 =? v2)

{ λb => b = true }

Toy Example and Illustration

39

Variable init : cell -> free Wr unit

Variable fetch : free Rd cell

Definition main (n : cell) : free (Rd + Wr) bool =

 init n;;

 v1 <- fetch;;

 v2 <- fetch;;

 ret (v1 =? v2)

➡ Instantiating our interface allows us to write the program above

{ λb => b = true }

Toy Example and Illustration

39

Variable init : cell -> free Wr unit

Variable fetch : free Rd cell

Definition main (n : cell) : free (Rd + Wr) bool =

 init n;;

 v1 <- fetch;;

 v2 <- fetch;;

 ret (v1 =? v2)

➡ Instantiating our interface allows us to write the program above

➡We can leverage the invariant inherent to read-only computations in the proof

{ λb => b = true }

Perspectives

40

Perspectives

40

➡ Better robustness

~~> Tactics to handle indices in types

Perspectives

40

➡ Better robustness

~~> Tactics to handle indices in types

➡ Clarifying how to leverage the approach

~~> Should the monads come with their specification monad à la Maillard?

Perspectives

40

➡ Better robustness

~~> Tactics to handle indices in types

➡ Clarifying how to leverage the approach

~~> Should the monads come with their specification monad à la Maillard?

➡ Scaling up

~~> Can it deliver and help in Martin’s R project?

Perspectives

40

➡ Better robustness

~~> Tactics to handle indices in types

➡ Clarifying how to leverage the approach

~~> Should the monads come with their specification monad à la Maillard?

➡ Scaling up

~~> Can it deliver and help in Martin’s R project?

➡Beyond subsets of operations
~~> Increment operation interpreted into monotone functions of the cell

Perspectives

40

➡ Better robustness

~~> Tactics to handle indices in types

➡ Clarifying how to leverage the approach

~~> Should the monads come with their specification monad à la Maillard?

➡ Scaling up

~~> Can it deliver and help in Martin’s R project?

➡Beyond subsets of operations
~~> Increment operation interpreted into monotone functions of the cell

➡Related Work
~~> Isn’t it just Katsumata’s graded monads?  

Didn’t Swamy’s lightweight monadic programming already address this?

Effectful Programming  
across Heterogeneous Computations

41

Thanks!

https://gitlab.inria.fr/yzakowsk/ordered-signatures/-/tree/jfla23/

