Effectful Programming across Heterogeneous Computations

- Work in Progress: Usefulness and Novelty are not Guaranteed!
 - Jean Abou Samra Martin Bodin Yannick Zakowski
 - JFLA'23

Monadic Computations

Heterogeneous Monadic Programming

Mixing Up the Free Monad

Payoff and Perspectives

The Free Monad

Monadic Computations

Monadic Computations

In a statically typed functional language

A way to encode and program with effectful computations

One monad = One class of computations

Pure Computations

Terms of type X are pure computations returning values of type X

$(\lambda x \Rightarrow x * x) 2 \longrightarrow 4$

Pure Computations

Terms of type X are pure computations returning values of type X

 $(\lambda x \Rightarrow x * x) 2 \longrightarrow 4$

Computations can be sequenced: it's the let-binding operation

Terms of type X are failing computations returning values of type X

Computations can be sequenced

None | Some (v : X) Terms of type option X are failing computations returning values of type X

Computations can be sequenced

None | Some (v : X)

Computations can be sequenced

- Terms of type option X are failing computations returning values of type X
 - The family of types option is the failure monad

None | Some (v : X)

t ~~> Some v u[v/x] ~~> v' $x \leftarrow t;; \cup \rightsquigarrow v'$

- Terms of type option X are failing computations returning values of type X
 - The family of types option is the failure monad
 - Computations can be sequenced: it's the bind operation

None | Some (v : X)

t ~~>> Some v u[v/x] ~~>> v' $x \leftarrow t;; \cup \rightsquigarrow v'$

- Terms of type option X are failing computations returning values of type X
 - Pure computations can be embedded: it's the ret operation (ret \triangleq Some)
 - Computations can be sequenced: it's the bind operation

Stateful Computations

Terms of type S \rightarrow S*X are stateful computations returning values of type X

The family of types $X \mapsto (S \rightarrow S * X)$ is the stateful monad

ret x $\triangleq \lambda \sigma \Rightarrow (\sigma, x)$

$$t \sigma \rightsquigarrow (\sigma', v)$$
$$u[v/x] \sigma' \rightsquigarrow (\sigma'', v')$$
$$(x \leftarrow t;; u) \sigma \rightsquigarrow (\sigma'', v')$$

A type family M : Type \rightarrow Type is a monad if it comes equipped with:

A type family M : Type \rightarrow Type is a monad if it comes equipped with: ret : $\forall X, X \rightarrow M X$

ret : $\forall X, X \rightarrow M X$ bind : $\forall X Y, M X \rightarrow (X \rightarrow M Y) \rightarrow M Y$

A type family M : Type \rightarrow Type is a monad if it comes equipped with:

A type family M : Type \rightarrow Type is a monad if it comes equipped with: ret : $\forall X, X \rightarrow M X$ bind : $\forall X Y, M X \rightarrow (X \rightarrow M Y) \rightarrow M Y$ equ : $\forall X, M X \rightarrow M X \rightarrow Prop$

ret : $\forall X, X \rightarrow M X$ bind : $\forall X Y, M X \rightarrow (X \rightarrow M Y) \rightarrow M Y$

Monad laws:

 $x \leftarrow ret x;; k$ $x \leftarrow c;;$ ret x

A type family M : Type \rightarrow Type is a monad if it comes equipped with:

$= \mathbf{k} \mathbf{x}$ = C $x \leftarrow c;; (\lambda x \Rightarrow y \leftarrow k x;; g) = y \leftarrow (x \leftarrow c;;k);; g$

Used in Proof Assistants in Particular

- A pure functional language... So pure every function must terminate!
- Monads are a convenient abstraction to represent effectul computations in Gallina as well as to reason about these computations
 - We discussed failure and state, but **divergence** can be represented as well!

One Specific Library

Interaction Trees

- A generic toolkit to define and reason about the semantics of interactive systems
- Semantics: Compositional, Modular, Executable
 - <u>Reasoning</u>: Equational, termination sensitive

The Free Monad

My computation is a glorified piece of syntax

Effectful computations arise from their signature of operations free E X able to perform operations specified in E in order to compute a value of type X

Modelling Imp as Stateful Computations

Imperative programs are stateful computations

<u>Syntax</u> $p \triangleq x$

$\underline{\mathsf{Model}} \qquad \qquad \mathsf{S} \rightarrow$

$p \triangleq x := n; y := x$

$S \rightarrow S * unit$

Modelling Imp as Stateful Computations

- <u>Syntax</u>
- Model
 - $[p] = \lambda \sigma \implies \sigma[x \leftarrow n][y \leftarrow \sigma[x]]$

- Imperative programs are stateful computations
 - $p \triangleq x := n; y := x$
 - $S \rightarrow S * unit$

Modelling Imp as Stateful Computations

- <u>Syntax</u>
- Model
 - $[p] = \lambda \sigma \implies \sigma[x \leftarrow n][y \leftarrow \sigma[x]]$
 - And hence one can **prove**

- Imperative programs are stateful computations
 - $p \triangleq x := n; y := x$
 - $S \rightarrow S * unit$

 $[p] = \lambda \sigma \implies \sigma[x \leftarrow n, y \leftarrow n]$

Imperative programs are computations performing reads and writes

<u>Syntax</u>	p ≜ x := n; y
<u>Model</u>	free RW uni

:= X

t

Imperative programs are computations performing reads and writes

<u>Syntax</u>	p ≜ x := n; y
<u>Model</u>	free RW uni

Imperative programs are computations performing reads and writes

Syntax $p \triangleq x := n; y := x$ Modelfree RW unit

One cannot prove that we write n to y

The Free Monad: Interpretation

Imperative programs are computations performing reads and writes implemented as stateful computations

The Free Monad: Interpretation

Imperative programs are computations performing reads and writes implemented as stateful computations

$\longrightarrow \quad \lambda \sigma \implies \sigma[x \leftarrow n][y \leftarrow \sigma[x]]$

The state monad is a possible implementation of the operations

Used at Scale to Model Languages: LLVM IR

Local state L_E Global state G_F Memory M_F Calls *Call_E* Stack of local frames SF_E Non-determinism *Pick_E* Undefined Behavior UB_F Debugging *Debug_E* Failure *FailE*

LLVM IR programs are computations performing reads and writes to the local register; read an writes to the global state; interacting with the memory;

 $\bullet \bullet \bullet$

Level 0	-
Level I	
Level 2	sta
Level 3	stat
Level 4	stateT

Used at Scale to Model Languages: R

- r : reading global variables
- w: writing global variables
- h : heap operations
- e : throwing errors
- f : function calls
- I : low level operations

18kloc of monadic interpreter but **not** uniformly complex at closer inspection

Used at Scale to Model Languages: R

- r : reading global variables
- w: writing global variables
- h : heap operations
- e : throwing errors
- f : function calls
- 1 : low level operations

18kloc of monadic interpreter

but **not** uniformly complex at closer inspection

We should not have to reason in a structure implementing all effects

Heterogeneous Monadic Programming

- Can we write monadic interpreters at scale
 - on top of the free monad
- combining computations at different types
- and get invariants for free and proofs in simpler structures?

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number Operations Structure

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number Operations Structure $c \rightarrow c * X$ state X reads and writes
Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number Operations Structure $c \rightarrow c * X$ reads and writes state X $c \rightarrow X$ reads read X

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number Operations Structure $c \rightarrow c * X$ reads and writes state X $c \rightarrow X$ reads read X write X c * X writes

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number Structure Operations $c \rightarrow c * X$ reads and writes state X $c \rightarrow X$ reads read X write X c * X writes pure X

nothing

Heterogeneous Monadic Programming

Heterogeneous Monadic Programming

Via Monad Morphisms

Computations in a given monad can be sequenced

Transport via Monad Morphism

How could I sequence computations in two distinct monads?

Computations in a given monad can be sequenced

How could I sequence computations in two distinct monads?

Have them agree to meet at a common place!

- Monad morphism: a structure preserving map
- - morph (c : M X) : T X \triangleq c \triangleright T

Class Morph M T := { morph : $\forall X, M X \rightarrow T X$ }

- Monad morphism: a structure preserving map

bindH (c : M X) (k : X \rightarrow N Y) : T Y \triangleq $x \leftarrow (c \triangleright T) ((k x) \triangleright T)$

- Class Morph M T := { morph : $\forall X, M X \rightarrow T X$ }
 - morph (c : M X) : T X \triangleq c \triangleright T

- Monad morphism: a structure preserving map
- Class Morph M T := { morph : $\forall X, M X \rightarrow T X$ }
 - morph (c : M X) : T X \triangleq c \triangleright T

- Monad morphism: a structure preserving map
- Class Morph M T := { morph : $\forall X, M X \rightarrow T X$ }
 - morph (c : M X) : T X \triangleq c \triangleright T

- Monad morphism: a structure preserving map

Problem: how should we help Coq infer T?

bindH (c : M X) (I $x \leftarrow (c \triangleright$

- Class Morph M T := { morph : $\forall X, M X \rightarrow T X$ }
 - morph (c : M X) : T X \triangleq c \triangleright T

k : X → N Y) : T Y
$$\triangleq$$

T) ((k x) ▷T)

- The monad laws generalize
- x ← ret x ;; k = (k x) ▷ T

- The monad laws generalize
- x ← ret x ;; k = (k x) ▷ T x ← c ;; ret x = c ▷ T

- The monad laws generalize
- $x \leftarrow ret x ;; k = (k x) \triangleright T$
- $x \leftarrow c;; (\lambda x \Rightarrow y \leftarrow k x;; g) = y \leftarrow (x \leftarrow c;; k); g)$

- The monad laws generalize
- Given the right coherence properties!

(More or Less) Stateful Computations

At the cost of unacceptable annotations, we can mix up computations once our morphisms are defined, and coherence properties proved

Heterogeneous Monadic Programming

Indexation

pure X

(I, ⊑) partial order

rw r w r w

V

(I, ⊑) partial order

 $[|.|] : I \rightarrow Monad$

(I, ⊑) partial order

- We sequence computations across indices
- bindH (c : [i] X) (k : $X \rightarrow [j] Y$) : $[t] Y \triangleq$ $x \leftarrow (c \triangleright [t]) ((k x) \triangleright [t])$
 - if we can find two proofs: $i \sqsubseteq t$ and $j \sqsubseteq t$

$(c \triangleright (i \sqsubseteq j)) \triangleright (j \sqsubseteq k) = c \triangleright (i \sqsubseteq k)$

- We sequence computations across indices
- bindH (c : [i] X) (k : $X \rightarrow [j] Y$) : $[t] Y \triangleq$ $x \leftarrow (c \triangleright [t]) ((k x) \triangleright [t])$
 - if we can find two proofs: $i \sqsubseteq t$ and $j \sqsubseteq t$
 - We guarantee the coherence requirements once and for all:

Heterogeneous Monadic Programming

Directed Set

A Join to Settle on our Destination

We sequence computations across indices

bindH (c : [|i|] X) (k : X \rightarrow [|j|] Y) : [|t|] Y \triangleq $x \leftarrow (c \triangleright [t]) ((k x) \triangleright [t])$

(I, \sqsubseteq) ordered set

if we can find two proofs: $i \sqsubseteq t$ and $j \sqsubseteq t$

A Join to Settle on our Destination

 (I, \sqsubseteq, \sqcup) directed set

- bindH (c : [|i|] X) (k : X \rightarrow [|j|] Y) : [|i \sqcup j|] Y \triangleq x ← (c ▷ [|i ⊔ j|]) ((k x) ▷ [|i ⊔ j|])
 - and we always have: $i \subseteq [[i \sqcup j]]$ and $j \subseteq [[i \sqcup j]]$

We sequence computations across indices

A Join to Settle on our Destination

No annotation needed anymore!

 (I, \sqsubseteq, \sqcup) directed set

But some dependent programming sneaks in

- We sequence computations across indices
- bindH (c : [i] X) (k : $X \rightarrow [j] Y$) : $[i \sqcup j] Y \triangleq$ $x \leftarrow (c \triangleright [|i \sqcup j|]) ((k x) \triangleright [|i \sqcup j|])$
 - and we always have: $i \subseteq [[i \sqcup j]]$ and $j \subseteq [[i \sqcup j]]$

Mixing Up the Free Monad

Commutation Property

- Heterogenous computations can be broken back down into their simpler components
 - \forall (c : free [|i|] X) (k : X \rightarrow free [|j|] Y)
- I (Fbind m k) = Mbind (I m) ($\lambda x \implies I$ (k x))

Commutation Property

- Heterogenous computations can be broken back down into their simpler components
 - \forall (c : free [|i|] X) (k : X \rightarrow free [|j|] Y)
- I (Fbind m k) = Mbind (I m) $(\lambda x \implies I (k x))$

Complex monadic structure

Payoff and Perspectives

Toy Example and Illustration

Variable init : cell → free Wr unit
Variable fetch : free Rd cell
Definition main (n : cell) : free (Rd + Wr) bool =
 init n;;
 v1 ← fetch;;
 v2 ← fetch;;
 ret (v1 =? v2)
{ λb ⇒ b = true }

Toy Example and Illustration

Variable fetch : free Rd cell init n;; $v1 \leftarrow fetch;;$ $v2 \leftarrow fetch;;$ ret (v1 =? v2) $\{ \lambda b \implies b = true \}$

Instantiating our interface allows us to write the program above

Variable init : cell \rightarrow free Wr unit Definition main (n : cell) : free (Rd + Wr) bool =

Toy Example and Illustration

Variable fetch : free Rd cell init n;; $v1 \leftarrow fetch;;$ $v2 \leftarrow fetch;;$ ret (v1 =? v2) $\{ \lambda b \implies b = true \}$

Instantiating our interface allows us to write the program above

Variable init : cell \rightarrow free Wr unit Definition main (n : cell) : free (Rd + Wr) bool =

- We can leverage the invariant inherent to read-only computations in the proof

-----> Tactics to handle indices in types

-----> Tactics to handle indices in types

Clarifying how to leverage the approach

Should the monads come with their specification monad à la Maillard? \sim

~~> Tactics to handle indices in types

Clarifying how to leverage the approach

Should the monads come with their specification monad à la Maillard? \sim

Scaling up

Can it deliver and help in Martin's R project? \sim

Tactics to handle indices in types \sim

Clarifying how to leverage the approach

Should the monads come with their specification monad à la Maillard? \sim

Scaling up

Can it deliver and help in Martin's R project? \sim

Beyond subsets of operations

Increment operation interpreted into monotone functions of the cell $\langle \rangle$

Tactics to handle indices in types \sim

Clarifying how to leverage the approach

Should the monads come with their specification monad à la Maillard? \sim

➡ Scaling up

Can it deliver and help in Martin's R project? \sim

Beyond subsets of operations

Increment operation interpreted into monotone functions of the cell \sim

Related Work

 $\langle \rangle$

Isn't it just Katsumata's graded monads? Didn't Swamy's lightweight monadic programming already address this?

40

Effectful Programming across Heterogeneous Computations

Thanks!

https://gitlab.inria.fr/yzakowsk/ordered-signatures/-/tree/jfla23/