Effectful Programming across Heterogeneous Computations

Work in Progress: Usefulness and Novelty are not Guaranteed!

Jean Abou Samra Martin Bodin
Yannick Zakowski

JFLA'23

Monadic Computations

The Free Monad

Heterogeneous Monadic Programming

Mixing Up the Free Monad

Payoff and Perspectives

Monadic Computations

Monadic Computations

In a statically typed functional language

A way to encode and program with effectful computations

One monad = One class of computations

Pure Computations

Terms of type X are pure computations returning values of type X

$$
(\lambda x \Rightarrow x * x) 2 m m 4
$$

Pure Computations

Terms of type X are pure computations returning values of type X

$$
(\lambda x \Rightarrow x * x) 2 m m 4
$$

Computations can be sequenced: it's the let-binding operation

$$
\begin{aligned}
& t \mathrm{~mm} v \\
& u[v / x] m a v^{\prime} \\
& \text { Let } x \text { := } t \text { in } u m v^{\prime}
\end{aligned}
$$

Failing Computations

Terms of type
X are failing computations returning values of type X

Computations can be sequenced

Failing Computations

Computations can be sequenced

Failing Computations

Terms of type option X are failing computations returning values of type X

The family of types option is the failure monad

Computations can be sequenced

Failing Computations

\longrightarrow None I Some (v : X)

Terms of type option X are failing computations returning values of type X

The family of types option is the failure monad

Computations can be sequenced: it's the bind operation

$$
\begin{gathered}
t \leadsto \text { Some } v \\
u[v / x] \leadsto v^{\prime}
\end{gathered}
$$

$t \rightarrow$ None

$$
X \leftarrow t i ; \quad U \sim V^{\prime}
$$

Failing Computations

\longrightarrow None I Some (v : X)

Terms of type option X are failing computations returning values of type X

Pure computations can be embedded: it's the ret operation (ret \triangleq Some)

Computations can be sequenced: it's the bind operation

$$
\begin{gathered}
t \leadsto \text { Some } v \\
u[v / x] \leadsto v^{\prime}
\end{gathered}
$$

$t \rightarrow$ None
$x \leftarrow t ; i \quad u \leadsto v^{\prime}$
$x \leftarrow t ; i \quad u \leadsto$ None

Stateful Computations

Terms of type $S \rightarrow S * X$ are stateful computations returning values of type X The family of types $\mathrm{X} \longmapsto(S \rightarrow S * X)$ is the stateful monad

$$
\begin{aligned}
& \text { t o mis (} \sigma^{\prime}, v \text {) } \\
& \text { ret } x \triangleq \lambda \sigma \Rightarrow(\sigma, x) \\
& u[v / x] \sigma^{\prime} m i=\left(\sigma^{\prime \prime}, v^{\prime}\right) \\
& \left(x \leftarrow t ; \text { U) } \sigma \leadsto \rightarrow\left(\sigma^{\prime \prime}, v^{\prime}\right)\right.
\end{aligned}
$$

Monadic Computations: A Convenient Abstraction

A type family M : Type \rightarrow Type is a monad if it comes equipped with:

Monadic Computations: A Convenient Abstraction

A type family M : Type \rightarrow Type is a monad if it comes equipped with:

$$
\text { ret }: \forall X, X \rightarrow M X
$$

Monadic Computations: A Convenient Abstraction

A type family M : Type \rightarrow Type is a monad if it comes equipped with:

$$
\begin{aligned}
& \text { ret }: \forall X, X \rightarrow M X \\
& \text { bind }: \forall X Y, M X \rightarrow(X \rightarrow M Y) \rightarrow M Y
\end{aligned}
$$

Monadic Computations: A Convenient Abstraction

A type family M : Type \rightarrow Type is a monad if it comes equipped with:

$$
\begin{aligned}
& \text { ret }: \forall X, X \rightarrow M X \\
& \text { bind }: \forall X Y, M X \rightarrow(X \rightarrow M Y) \rightarrow M Y \\
& \text { equ }: \forall X, M X \rightarrow M X \rightarrow \text { Prop }
\end{aligned}
$$

Monadic Computations: a Convenient Abstraction

A type family M : Type \rightarrow Type is a monad if it comes equipped with:
ret $: \forall X, X \rightarrow M X$
bind $: \forall X Y, M X \rightarrow(X \rightarrow M Y) \rightarrow M Y$

Monad laws:
$x \leftarrow$ ret $x ; i=k \quad=k x$
$x \leftarrow c i ;$ ret $x \quad=c$
$x \leftarrow c ; i(\lambda x \Rightarrow y \leftarrow k x ; i g)=y \leftarrow(x \leftarrow c ; j) ; i g$

Used in Proof Assistants in Particular

Gallina

A pure functional language... So pure every function must terminate!
Monads are a convenient abstraction to represent effecful computations in Gallina as well as to reason about these computations

We discussed failure and state, but divergence can be represented as well!

One Specific Library

Gallina

Interaction Trees

A generic toolkit to define and reason about the
 semantics of interactive systems

Semantics: Compositional, Modular, Executable
Reasoning: Equational, termination sensitive

The Free Monad

The Free Monad: an Extensible Syntax

Effectful computations arise from their signature of operations

My computation is a glorified piece of syntax

able to perform operations specified in E in order to compute a value of type X

Modelling Imp as Stateful Computations

Imperative programs are stateful computations
Syntax

$$
p \triangleq x:=n ; y:=x
$$

Model

$$
S \rightarrow S * \text { unit }
$$

Modelling Imp as Stateful Computations

Imperative programs are stateful computations

Syntax

$$
p \triangleq x:=n ; y:=x
$$

Model

$$
\begin{gathered}
S \rightarrow S * \text { unit } \\
{[|p|]=\lambda \sigma \Rightarrow \sigma[x \leftarrow n][y \leftarrow \sigma[x]]}
\end{gathered}
$$

Modelling Imp as Stateful Computations

Imperative programs are stateful computations
Syntax

$$
p \triangleq x:=n ; y:=x
$$

Model

$$
\begin{gathered}
S \rightarrow S * \text { unit } \\
{[|p|]=\lambda \sigma \Rightarrow \sigma[x \leftarrow n][y \leftarrow \sigma[x]]} \\
\text { And hence one can prove } \\
{[|p|]=\lambda \sigma \Rightarrow \sigma[x \leftarrow n, y \leftarrow n]}
\end{gathered}
$$

The Free Monad: an Extensible Syntax

Imperative programs are computations performing reads and writes

Syntax

$$
\mathrm{p} \triangleq \mathrm{x}:=\mathrm{n} ; \mathrm{y}:=\mathrm{x}
$$

Model
free RW unit

The Free Monad: an Extensible Syntax

Imperative programs are computations performing reads and writes

Syntax

$$
p \triangleq x:=n ; y:=x
$$

free RW unit

The Free Monad: an Extensible Syntax

Imperative programs are computations performing reads and writes

Syntax

$$
p \triangleq x:=n ; y:=x
$$

free RW unit

One cannot prove that we write n to y

The Free Monad: Interpretation

Imperative programs are computations performing reads and writes implemented as stateful computations

The Free Monad: Interpretation

Imperative programs are computations performing reads and writes implemented as stateful computations

Interpretation

$$
\lambda \sigma \Rightarrow \sigma[\mathrm{x} \leftarrow \mathrm{n}][\mathrm{y} \leftarrow \sigma[\mathrm{x}]]
$$

The state monad is a possible implementation of the operations

Used at Scale to Model Languages: LLVM IR

Local state L_{E}
Global state G_{E}
Memory M_{E}
Calls Call $_{E}$
Stack of local frames $S F_{E}$
Non-determinism Pick $_{E}$
Undefined Behavior $U B_{E}$
Debugging Debug ${ }_{E}$
Failure FailE

LLVM IR programs are computations performing reads and writes to the local register; read an writes to the global state; interacting with the memory;

Used at Scale to Model Languages: R

r : reading global variables
w: writing global variables
h : heap operations
e : throwing errors
f : function calls
I : low level operations

18kloc of monadic interpreter
but not uniformly complex at closer inspection

Used at Scale to Model Languages: R

r : reading global variables
w: writing global variables
h : heap operations
e : throwing errors
f : function calls
I : low level operations

18kloc of monadic interpreter
but not uniformly complex at closer inspection

> We should not have to reason
> in a structure implementing all effects

Heterogeneous Monadic Programming

Can we write monadic interpreters at scale on top of the free monad combining computations at different types and get invariants for free and proofs in simpler structures?

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number

Operations
Structure

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number

Operations		Structure
reads and writes	state X	$c \rightarrow c * x$

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number

Operations		Structure
reads and writes	state X	$c \rightarrow c * x$
reads	read X	$c \rightarrow x$

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number

Operations		Structure
reads and writes	state X	$c \rightarrow c * X$
reads	read X	$c \rightarrow x$
writes	write X	$c * X$

Heterogeneous Stateful Programming

Let's consider a single cell containing a natural number

Operations		Structure
reads and writes	state X	$c \rightarrow c * X$
reads	read X	$c \rightarrow X$
writes	write X	$c * X$
nothing	pure X	X

Heterogeneous Monadic Programming

Heterogeneous Monadic Programming

Via Monad Morphisms

Transport via Monad Morphism

Computations in a given monad can be sequenced

How could I sequence computations in two distinct monads?

Transport via Monad Morphism

Computations in a given monad can be sequenced

How could I sequence computations in two distinct monads?

Have them agree to meet at a common place!

Transport via Monad Morphism

Monad morphism: a structure preserving map

$$
\begin{gathered}
\text { Class Morph } M \mathrm{~T}:=\{\operatorname{morph}: \forall X, \mathrm{M} X \rightarrow \mathrm{TX}\} \\
\operatorname{morph}(\mathrm{c}: M \mathrm{X}): \mathrm{T} X \triangleq \mathrm{c} \triangleright \mathrm{~T}
\end{gathered}
$$

Transport via Monad Morphism

Monad morphism: a structure preserving map

```
Class Morph M T := { morph : \forall X, M X }->\mathrm{ T X }
    morph (c : M X) : T X 介 c D T
    bindH (c : M X) (k : X -> N Y) : T Y \triangleq
        x}\leftarrow(c\trianglerightT)((k x) \trianglerightT
```

Transport via Monad Morphism

Monad morphism: a structure preserving map
Class Morph M T := \{ morph : $\forall \mathrm{X}, \mathrm{M}$ X $\rightarrow \mathrm{T}$ X \}

Transport via Monad Morphism

Monad morphism: a structure preserving map

$$
\begin{aligned}
& \text { Class Morph M T := }\{\text { morph }: \forall \mathrm{X}, \mathrm{M} \mathrm{X} \rightarrow \mathrm{~T} \text { X \}} \\
& \text { morph (c : M X) : T X } \triangleq c \mid T \\
& \text { Monads } \\
& \text { bindH (c : M) X) }(k: X \rightarrow(N) Y):(T) Y \triangleq \\
& x \leftarrow(c \boxtimes T)((k x)(D T)
\end{aligned}
$$

Transport via Monad Morphism

Monad morphism: a structure preserving map
Class Morph M T := $\{$ morph $: \forall X, M X \rightarrow T X\}$
morph (c : M X) : T X $\triangleq c \quad$ T

Problem: how should we help Coq infer T?

$$
\begin{aligned}
\text { bindH } & (c: M X)(k: X \rightarrow N Y): T Y \triangleq \\
& X \leftarrow(c \vee T)((k x) D T)
\end{aligned}
$$

Transport via Monad Morphism

The monad laws generalize

$$
x \leftarrow \operatorname{ret} x_{M} ; ;_{N} k_{N}=(k x) \triangleright T
$$

Transport via Monad Morphism

The monad laws generalize

$$
\begin{aligned}
& x \leftarrow \operatorname{ret} x_{M} ; i_{N}^{\top}=(k x) D T \\
& x \leftarrow c_{M} \because{ }_{N}^{\top} \operatorname{ret} x_{N}=c D T
\end{aligned}
$$

Transport via Monad Morphism

The monad laws generalize

$$
\begin{aligned}
& x \leftarrow \operatorname{ret} x_{M} ; i^{\top} k_{N}=(k x) \triangleright T \\
& x \leftarrow c_{M} ; ;^{\top} \text { ret } x_{N}=c \quad T \\
& x \leftarrow \mathrm{c}_{\mathrm{A}} ; ;^{\top}\left(\lambda \mathrm{x} \Rightarrow \mathrm{y} \leftarrow \underset{\mathrm{~B}}{\mathrm{k}} \mathrm{x} ; ;_{\mathrm{C}}^{\mathrm{CC}} \mathrm{~g}\right)=\mathrm{y} \leftarrow\left(\mathrm{x} \leftarrow \mathrm{c} ; ;^{A B} \mathrm{k}\right) ; ;^{\top} \mathrm{g}
\end{aligned}
$$

Transport via Monad Morphism

The monad laws generalize

Given the right coherence properties!

(More or Less) Stateful Computations

At the cost of unacceptable annotations, we can mix up computations once our morphisms are defined, and coherence properties proved

Heterogeneous Monadic Programming

Indexation

A Partial Order to Index

A Partial Order to Index

(I, ㄷ) partial order

A Partial Order to Index

$$
\text { [l. }] \text {] }: ~ I ~ M o n a d ~
$$

(I, ㄷ) partial order

A Partial Order to Index

A Partial Order to Index

We sequence computations across indices

$$
\begin{gathered}
\text { bindH }(c:[|i|] x)(k: X \rightarrow[|j|] Y):[|t|] Y \triangleq \\
x \leftarrow(c \triangleright[|t|])((k x) D[|t|]) \\
\\
\text { if we can find two proofs: } i \sqsubseteq t \text { and } j \sqsubseteq t
\end{gathered}
$$

A Partial Order to Index

We sequence computations across indices
bindH (c : [lil] X) (k : X \rightarrow [|j|] Y) : [|t|] Y $x \leftarrow(c \triangleright[|t|])((k x) D[|t|])$
if we can find two proofs: $\mathrm{i} \sqsubseteq \mathrm{t}$ and $\mathrm{j} \sqsubseteq \mathrm{t}$

We guarantee the coherence requirements once and for all:

$$
(c \triangleright(i \sqsubseteq j)) \triangleright(j \sqsubseteq k)=c \triangleright(i \sqsubseteq k)
$$

Heterogeneous Monadic Programming

Directed Set

A Join to Settle on our Destination

$$
(I, \sqsubseteq) \text { ordered set }
$$

We sequence computations across indices

if we can find two proofs: $\mathrm{i} \sqsubseteq \mathrm{t}$ and $\mathrm{j} \sqsubseteq \mathrm{t}$

A Join to Settle on our Destination

(I, ᄃ, ப) directed set

We sequence computations across indices
bindH (c : [lil] X) (k : X \rightarrow [ljl] Y) : [li $\sqcup \mathrm{jl]} \mathrm{Y} \triangleq$ $x \leftarrow(c \quad[\mid i \quad \sqcup j l])((k x) \triangleright[|i \quad \sqcup j|])$ and we always have: $\mathrm{i} \sqsubseteq[|\mathrm{i} \sqcup \mathrm{j}|$] and $\mathrm{j} \sqsubseteq[|\mathrm{i} \sqcup \mathrm{j}|]$

A Join to Settle on our Destination

No annotation needed anymore!
But some dependent programming sneaks in
(I, $\sqsubseteq, ~ ப) ~ d i r e c t e d ~ s e t ~$
We sequence computations across indices
bindH (c : [lil] X) (k : X \rightarrow [ljl] Y) : [li $\sqcup j 1]$ Y § $x \leftarrow(c \quad[\mid i \quad \sqcup j l])((k x) \triangleright[|i \quad \sqcup j|])$ and we always have: $\mathrm{i} \sqsubseteq[|\mathrm{i} \sqcup \mathrm{j}|$] and $\mathrm{j} \sqsubseteq[|\mathrm{i} \sqcup \mathrm{j}|]$

Mixing Up the Free Monad

Commutation Property

Heterogenous computations can be broken back down into their simpler components

$$
\begin{gathered}
\forall(c: \text { free }[l i l] x)(k: x \rightarrow \text { free }[l j \mid] y) \\
I(\text { Fbind } m k)=\text { Mbind }(I m)(\lambda x \Rightarrow I(k x))
\end{gathered}
$$

Commutation Property

Heterogenous computations can be broken back down into their simpler components

Payoff and Perspectives

Toy Example and Illustration

```
Variable init : cell }->\mathrm{ free Wr unit
Variable fetch : free Rd cell
Definition main (n : cell) : free (Rd + Wr) bool =
    init n;;
    v1 \leftarrow fetch;;
    v2 \leftarrow fetch;;
    ret (v1 =? v2)
{ \b 死 = true }
```


Toy Example and Illustration

```
Variable init : cell }->\mathrm{ free Wr unit
Variable fetch : free Rd cell
Definition main (n : cell) : free (Rd + Wr) bool =
    init n;;
    v1 \leftarrow fetch;;
    v2 \leftarrow fetch;;
    ret (v1 =? v2)
{ \lambdab 吾 = true }
```

\Rightarrow Instantiating our interface allows us to write the program above

Toy Example and Illustration

```
Variable init : cell }->\mathrm{ free Wr unit
Variable fetch : free Rd cell
Definition main (n : cell) : free (Rd + Wr) bool =
    init n;;
    v1 \leftarrow fetch;;
    v2 \leftarrow fetch;;
    ret (v1 =? v2)
{ \lambdab 吾 = true }
```

\Rightarrow Instantiating our interface allows us to write the program above
\Rightarrow We can leverage the invariant inherent to read-only computations in the proof

Perspectives

Perspectives

- Better robustness
\leadsto Tactics to handle indices in types

Perspectives

- Better robustness
\leadsto Tactics to handle indices in types
- Clarifying how to leverage the approach
\leadsto Should the monads come with their specification monad à la Maillard?

Perspectives

- Better robustness
\leadsto Tactics to handle indices in types
- Clarifying how to leverage the approach
\leadsto Should the monads come with their specification monad à la Maillard?
\Rightarrow Scaling up
\leadsto Can it deliver and help in Martin's R project?

Perspectives

- Better robustness
\leadsto Tactics to handle indices in types
- Clarifying how to leverage the approach
\leadsto Should the monads come with their specification monad à la Maillard?
\Rightarrow Scaling up
\leadsto Can it deliver and help in Martin's R project?
-Beyond subsets of operations
\leadsto Increment operation interpreted into monotone functions of the cell

Perspectives

- Better robustness
\leadsto Tactics to handle indices in types
- Clarifying how to leverage the approach
$\leadsto \rightarrow$ Should the monads come with their specification monad à la Maillard?
\Rightarrow Scaling up
\leadsto Can it deliver and help in Martin's R project?
\Rightarrow Beyond subsets of operations
\leadsto Increment operation interpreted into monotone functions of the cell

\Rightarrow Related Work

$\leadsto \leadsto$ Isn't it just Katsumata's graded monads?
Didn't Swamy's lightweight monadic programming already address this?

Effectful Programming across Heterogeneous Computations

Thanks!

https://gitlab.inria.fr/yzakowsk/ordered-signatures/-/tree/jfla23/

