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A way to encode and program with effectful computations

In a statically typed functional language

One monad = One class of computations 
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Terms of type X are pure computations returning values of type X

(λx => x * x) 2 ~~> 4

let x := t in u ~~> v’

Computations can be sequenced: it’s the let-binding operation

t ~~> v

u[v/x] ~~> v’
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Computations can be sequenced: it’s the bind operation

Terms of type                 X are failing computations returning values of type X

The family of types option is the failure monad

option

None | Some (v : X)

x <- t;; u ~~> None

t ~~> None

x <- t;; u ~~> v’

t ~~> Some v

u[v/x] ~~> v’



Failing Computations
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Computations can be sequenced: it’s the bind operation

Terms of type                 X are failing computations returning values of type Xoption

None | Some (v : X)

x <- t;; u ~~> None

t ~~> None

x <- t;; u ~~> v’

t ~~> Some v

u[v/x] ~~> v’

Pure computations can be embedded: it’s the ret operation (ret  Some)≜



Stateful Computations
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Terms of type S -> S*X  are stateful computations returning values of type X

The family of types X|->(S->S*X) is the stateful monad

(x <- t;; u) σ ~~> (σ’’,v’)

t σ ~~> (σ’,v)
u[v/x] σ’ ~~> (σ’’,v’)ret x  λσ => (σ,x)≜
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Monadic Computations: A Convenient Abstraction
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A type family M : Type -> Type is a  monad if it comes equipped with:

ret  :  X, X -> M X∀

bind :  X Y, M X -> (X -> M Y) -> M Y∀

equ  :  X, M X ->->∀



Monadic Computations: a Convenient Abstraction
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A type family M : Type -> Type is a  monad if it comes equipped with:

ret  :  X, X -> M X∀

bind :  X Y, M X -> (X -> M Y) -> M Y∀

Monad laws:

x <- ret x;; k                 = k x

x <- c;; ret x                 = c

x <- c;; (λ x => y <- k x;; g) = y <- (x <- c;;k);; g



Used in Proof Assistants in Particular
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Gallina

A pure functional language… So pure every function must terminate!

Monads are a convenient abstraction to represent effecful computations in Gallina

as well as to reason about these computations

We discussed failure and state, but divergence can be represented as well!



One Specific Library

11

Gallina

Interaction Trees

A generic toolkit to define and reason about the 
semantics of interactive systems

Semantics: Compositional, Modular, Executable

Reasoning: Equational, termination sensitive
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The Free Monad: an Extensible Syntax
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free E X

My computation is a glorified piece of syntax

able to perform operations specified in E

in order to compute a value of type X

Effectful computations arise from their signature of operations
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p  x := n; y := x≜

S -> S * unit

Syntax

Model
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Modelling Imp as Stateful Computations

14

Imperative programs are stateful computations

p  x := n; y := x≜

S -> S * unit

Syntax

Model

[|p|] = λσ => σ[x<-n][y<-σ[x]]

[|p|] = λσ => σ[x<-n, y<-n]

And hence one can prove
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free RW unit

Syntax

Model
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The Free Monad: an Extensible Syntax

15

Imperative programs are computations performing reads and writes

p  x := n; y := x≜

free RW unit

Syntax

Model

wr x n

wr x 0 wr x nwr x 1

rd y

tt tt tt
One cannot prove that we write n to y
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Imperative programs are computations performing reads and writes

implemented as stateful computations

wr x n
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tt tt tt



The Free Monad: Interpretation

16

Imperative programs are computations performing reads and writes

implemented as stateful computations

wr x n

wr x 0 wr x nwr x 1

rd y

tt tt tt

|-> λσ => σ[x<-n][y<-σ[x]]
Interpretation

The state monad is a possible implementation of the operations



Used at Scale to Model Languages: LLVM IR
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Local state 


Global state 


Memory 


Calls 


Stack of local frames 


Non-determinism 


Undefined Behavior 


Debugging 


Failure 

LE

GE

ME

CallE
SFE

PickE

UBE

DebugE

FailE

LLVM IR programs are computations performing 
 reads and writes to the local register; 

read an writes to the global state;

interacting with the memory;


…
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VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2 )*EnvG

propositional model

itree E4 (     * (         * (         *      ))) → Pℙ

itree E5 (     * (         * (         *      ))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG



Used at Scale to Model Languages: R
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18kloc of monadic interpreter

but not uniformly complex at closer inspection

r   :  reading  global variables


w :  writing  global variables 


h  :  heap operations


e  :  throwing errors


f   :  function calls


l   :  low level operations
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19

18kloc of monadic interpreter

but not uniformly complex at closer inspection

r   :  reading  global variables


w :  writing  global variables 


h  :  heap operations


e  :  throwing errors


f   :  function calls


l   :  low level operations

We should not have to reason  
in a structure


implementing all effects



Heterogeneous Monadic Programming
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Can we write monadic interpreters at scale

on top of the free monad

combining computations at different types

and get invariants for free and proofs in simpler structures?



Heterogeneous Stateful Programming
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Let’s consider a single cell containing a natural number

StructureOperations
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Heterogeneous Stateful Programming

21

Let’s consider a single cell containing a natural number

StructureOperations

c -> c * Xreads and writes state X

c -> Xreads read X

c * Xwrites write X

Xnothing pure X
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Heterogeneous Monadic Programming

Via Monad Morphisms
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24

Computations in a given monad can be sequenced

How could I sequence computations in two distinct monads?



Transport via Monad Morphism
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Computations in a given monad can be sequenced

How could I sequence computations in two distinct monads?

Have them agree to meet at a common place!
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Class Morph M T := { morph :  X, M X -> T X }∀

morph (c : M X) : T X  c |> T≜
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x <- (c |> T) ((k x) |>T)

≜



Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph :  X, M X -> T X }∀

morph (c : M X) : T X  c |> T≜

bindH (c : M X) (k : X -> N Y) : T Y  

x <- (c |> T) ((k x) |>T)

≜

Monads



Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph :  X, M X -> T X }∀

morph (c : M X) : T X  c |> T≜

bindH (c : M X) (k : X -> N Y) : T Y  

x <- (c |> T) ((k x) |>T)

≜

Monads

Morph M T

Morph N T



Transport via Monad Morphism

25

Monad morphism: a structure preserving map

Class Morph M T := { morph :  X, M X -> T X }∀

morph (c : M X) : T X  c |> T≜

bindH (c : M X) (k : X -> N Y) : T Y  

x <- (c |> T) ((k x) |>T)

≜

Problem: how should we help Coq infer T?
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Transport via Monad Morphism

26

The monad laws generalize

x <- ret x ;; k  = (k x) |> T
M N

T

x <- c ;; ret x  = c |> T
M N

T

x <- c;; (λ x => y <- k x;; g) = y <- (x <- c;; k);; g
A B C

T ABBC T



Transport via Monad Morphism
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The monad laws generalize

T

AB

A B C

BC

Given the right coherence properties!



(More or Less) Stateful Computations
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state

read write 

pure

At the cost of unacceptable annotations, we can mix up computations 
once our morphisms are defined, and coherence properties proved



Heterogeneous Monadic Programming

Indexation



A Partial Order to Index
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state X

read X write X

pure X



A Partial Order to Index
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state X

read X write X

pure X

rw

r w

v

⊑

⊑

⊑

⊑

(I, ) partial order⊑



A Partial Order to Index
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state X

read X write X

pure X

rw

r w

v

⊑

⊑

⊑

⊑

(I, ) partial order⊑

[|.|] : I -> Monad



A Partial Order to Index

reify_le :  i j, i  j -> Morph [|i|] [|j|]∀ ⊑

30

state X

read X write X

pure X

rw

r w

v

⊑

⊑

⊑

⊑

(I, ) partial order⊑

[|.|] : I -> Monad



A Partial Order to Index
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We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|t|] Y  

x <- (c |> [|t|]) ((k x) |>[|t|])

≜

if we can find two proofs:                     and j  t⊑i  t⊑



A Partial Order to Index

31

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|t|] Y  

x <- (c |> [|t|]) ((k x) |>[|t|])

≜

if we can find two proofs:                     and j  t⊑i  t⊑

We guarantee the coherence requirements once and for all:

(c |> (i  j)) |>(j  k) = c |> (i  k)⊑ ⊑ ⊑



Heterogeneous Monadic Programming

Directed Set



A Join to Settle on our Destination

33

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|t|] Y  

x <- (c |> [|t|]) ((k x) |>[|t|])

≜

if we can find two proofs:                     and j  t⊑i  t⊑

(I, ) ordered set⊑



A Join to Settle on our Destination
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We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|i  j|] Y  

x <- (c |> [|i  j|]) ((k x) |> [|i  j|])

⊔ ≜
⊔ ⊔

and we always have:                                              andi  [|i  j|]⊑ ⊔

(I, , ) directed set⊑ ⊔

j  [|i  j|]⊑ ⊔



A Join to Settle on our Destination

34

We sequence computations across indices

bindH (c : [|i|] X) (k : X -> [|j|] Y) : [|i  j|] Y  

x <- (c |> [|i  j|]) ((k x) |> [|i  j|])

⊔ ≜
⊔ ⊔

and we always have:                                              andi  [|i  j|]⊑ ⊔

(I, , ) directed set⊑ ⊔

j  [|i  j|]⊑ ⊔

No annotation needed anymore! But some dependent programming sneaks in



Mixing Up the Free Monad



36 : Derived definitions



Commutation Property
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Heterogenous computations can be broken back down

into their simpler components

 (c : free [|i|] X) (k : X -> free [|j|] Y)∀

I (Fbind m k) = Mbind (I m) (λx => I (k x))



Commutation Property

37

Heterogenous computations can be broken back down

into their simpler components

 (c : free [|i|] X) (k : X -> free [|j|] Y)∀

I (Fbind m k) = Mbind (I m) (λx => I (k x))

Simpler monadic structures

Complex monadic structure
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Toy Example and Illustration

39

Variable init  : cell -> free Wr unit

Variable fetch : free Rd cell

Definition main (n : cell) : free (Rd + Wr) bool =

  init n;;

  v1 <- fetch;;

  v2 <- fetch;;

  ret (v1 =? v2)

{ λb => b = true }
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Toy Example and Illustration

39

Variable init  : cell -> free Wr unit

Variable fetch : free Rd cell

Definition main (n : cell) : free (Rd + Wr) bool =

  init n;;

  v1 <- fetch;;

  v2 <- fetch;;

  ret (v1 =? v2)

➡ Instantiating our interface allows us to write the program above

➡We can leverage the invariant inherent to read-only computations in the proof

{ λb => b = true }
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Perspectives

40

➡ Better robustness

~~> Tactics to handle indices in types

➡ Clarifying how to leverage the approach

~~> Should the monads come with their specification monad à la Maillard?

➡ Scaling up

~~> Can it deliver and help in Martin’s R project?

➡Beyond subsets of operations
~~> Increment operation interpreted into monotone functions of the cell

➡Related Work
~~> Isn’t it just Katsumata’s graded monads?  

Didn’t Swamy’s lightweight monadic programming already address this?
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Thanks!

https://gitlab.inria.fr/yzakowsk/ordered-signatures/-/tree/jfla23/


