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cycle 1 cycle 2
Single thread

time

P

With a sequential GC, the main program pauses during collection 
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cycle 1 cycle 2
time

P
COn-the-fly

An on-the-fly GC is hosted in a different thread, 
and collects the memory without ever pausing the main program

Theorem (informal)  
The collector never reclaims a part 

of the memory that can still be 
accessed by the program
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Program p

Program compile(p)

Injection of the GC

Memory 
managed 
language

Language 
with explicit 

memory  
management

Verifying an on-the-fly 
garbage collector 

in the context of verified compilation

Observational 
refinement 

∀ P P’ obs,

  compiler P = OK P’ ⋀ 
 low_exec P’ obs  ⇒
 high_exec P obs

SAC’18
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A verified on-the-fly garbage 
collector

Scan: 
  repeat 
    no_gray = true; 
    foreach x ∈ OBJECTS 
      if x.color == GRAY 
        no_gray = false; 
        foreach f ∈ fields(x) do  
           MarkGray(x.f); 
        x.color = BLACK 
  until no_gray 
 Sweep: 
  foreach x ∈ OBJECTS 
    if x.color == WHITE 
    then FREE(x) 
Clear: 
  foreach x ∈ OBJECTS 
    x.color = WHITE

if x.color = WHITE then  
 push(buffer[m], x)
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    then FREE(x) 
Clear: 
  foreach x ∈ OBJECTS 
    x.color = WHITE

if x.color = WHITE then  
 push(buffer[m], x)

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw) 
m.next_write = nw

April, 12th, 2018/ 22SAC’18



Yannick ZAKOWSKI !5
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           MarkGray(x.f); 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    then FREE(x) 
Clear: 
  foreach x ∈ OBJECTS 
    x.color = WHITE

if x.color = WHITE then  
 push(buffer[m], x)

?

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw) 
m.next_write = nw
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1. Linearisability 

2. Using our theorem: proving 
linearisability through Rely-Guarantee 

3. Under the hood: systematic 
derivation of a simulation
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Linearisability 
[Herlihy and Wing 90]
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A notion of coherence for concurrent data structures

t1

t2

t3

q.pop()

q.push(1)

p.pop()p.push(2)

p.push(1)

Principle 1. 
Any method should appear to happen in a one-at-a-time order

Principle 2. (Linearisability) 
Any method should appear to take effect instantaneously  
at some moment between its call and return
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Original formal definition

• Expressed in terms of traces of events (histories) 

• For all possible history, there exists an “equivalent” well-behaved history 

• Great, but does not fit our story

Two main caveats

• The property is not explicitly usable for verified compilation purpose 
       Change definition! 

• Histories are global objects, difficult to reason about 
       Derive it from RG proof obligations!
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We see refinement as a compilation pass

• Source language: 
- abstract data structure  
- atomic operations over it 

• Target language: 
only concrete operations 

• Compilation pass: 
provides a concrete implementation
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We see refinement as a compilation pass

• Source language: 
- abstract data structure  
- atomic operations over it 

• Target language: 
only concrete operations 

• Compilation pass: 
provides a concrete implementation

if x.color = WHITE then  
 push(buffer[m], x)

 if x.color = WHITE then
     nw = m.next_write
     nr = m.next_read
     d = m.data
     d[nw] = x
     nw = (nw+1) mod SIZE
     assume (nr == nw) 
     m.next_write = nw
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We see refinement as a compilation pass

• Source language: 
- abstract data structure  
- atomic operations over it 

• Target language: 
only concrete operations 

• Compilation pass: 
provides a concrete implementation

if x.color = WHITE then  
 push(buffer[m], x)

 if x.color = WHITE then
     nw = m.next_write
     nr = m.next_read
     d = m.data
     d[nw] = x
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Using our result: proving 
linearisability via Rely-Guarantee
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Invariant

Environment 
R: Rely 
G: Guarantee

R,G, I ` {P} c {Q}
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Rely Guarantee reasoning 
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AnnotationsGlobal Correctness 
Invariant

Environment 
R: Rely 
G: Guarantee

A thread is proved against a contract. 
The notion of interference is checked against this contract.

G

R

: Guarantee, approximates the effect of the thread

: Rely, approximates the effect of the environment

R,G, I ` {P} c {Q}
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Introduction of an intermediate, instrumented, language.

• Explicit annotation of linearisation points 

• Hybrid states, both concrete and abstract 

• Linearisation points trigger the abstract semantics
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Abstract data structure Buf := Empty | Cons x b b.Push(x) = Cons x b

SAC’18
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Concrete implementation of methods

Abstract data structure

nw = m.next_write
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Concrete implementation of methods

Abstract data structure

Coherence invariant Ic

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
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Concrete implementation of methods

Abstract data structure

RG method specification

Rpush, Gpush, Ic `
{ln = B}

p.push(v)

{ln = A(v1) ^ ret = v1}

Coherence invariant Ic

Relies and guarantees Rm Gm
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Concrete implementation of methods

Abstract data structure

RG method specification

Rpush, Gpush, Ic `
{ln = B}

p.push(v)

{ln = A(v1) ^ ret = v1}

Coherence invariant Ic

Relies and guarantees Rm Gm

Stability obligations

Ic stable under Rpush

RG consistency
Gpush ✓ Rpop

Gpop ✓ Rpush

SAC’18
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Proving linearisability: 
the perspective of a user

Concrete implementation of methods

Abstract data structure

RG method specification

Coherence invariant Ic

Relies and guarantees Rm Gm

Stability obligations

RG consistency
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Observational refinement of 
the compilation pass 

implementing the methods 
for any client

Automatically 
obtain

Reasoning locally

exclusively on


methods
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Refining linearisable data-
structures

Scan: 
  repeat 
    no_gray = true; 
    foreach x ∈ OBJECTS 
      if x.color == GRAY 
        no_gray = false; 
        foreach f ∈ fields(x) do  
           MarkGray(x.f); 
        x.color = BLACK 
  until no_gray 
 Sweep: 
  foreach x ∈ OBJECTS 
    if x.color == WHITE 
    then FREE(x) 
Clear: 
  foreach x ∈ OBJECTS 
    x.color = WHITE

/ 22

if x.color = WHITE then 
 push(buffer[m], x)
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if x.color = WHITE then 
 push(buffer[m], x)

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw) 
m.next_write = nw
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A quick peak under the hood
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Backward simulations
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Inductive step used to prove observational refinement

s1 s2

s02s01

⇠

⇠

⇠

⇤

o

o

Relation between states of the source and target language
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Backward simulations

nw = p.next_write
nr = p.next_read
d = p.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw) 
p.next_write = nw

p.push(x)

/ 22

Inductive step used to prove observational refinement

s1 s2

s02s01

⇠

⇠

⇠

⇤

o

o

Relation between states of the source and target language
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Two simulations composed

/ 22

The compilation pass is split in two phases

• Implementation of the data structure 

• Cleaning of the instrumentation

t u t ut t u t u u t

u t

t u t ut t u t u u t

We therefore build two simulations, and compose them

SAC’18
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Structure of the proof:  
an intuition

Design and prove a rich invariant at the instrumented level

• Maintains the coherence invariant  

• Builds partial executions of encountered methods

/ 22

Objective: carry enough information to leverage the RG specification

Prove thread local simulations

Combine the simulations using the stability assumptions

• For each thread, build a simulation parameterised by its rely 

• Use the partial execution of methods to invoke  
the RG specification when needed

SAC’18
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Conclusion
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• Linearisability expressed in term of observational refinement 

• A local, sufficient condition expressed in terms of Rely-Guarantee 

• A generic meta-theorem: can be instantiated with any data structure  
(provided you manage to discharge the proof obligations 

• Provide strong semantic foundations:  
- all theorem expressed wrt an operational semantics 
- everything formalised in Coq 

• Instantiated on a realistic example used in another project 

• ~13.5 kloc 
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Thank you
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t u t ut t u t u u t

u t

t u t ut t u t u u t
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Linearisability: limits of our 
result

/ 22

• Example: pair snapshot 

• Linearisation is confirmed at a later point of execution 

• Need: Maintain two speculative simulations in parallel

Future-dependent linearisation points

Helping-based linearisation

• Example: HSY elimination-based stack 

• Linearisation of thread A is performed by a step from thread B 
• Need: Global view of the situation of each thread inside their method

SAC’18
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Separation logic
• Rely-Guarantee: reasoning about races 
• Separation logic: proving concisely the absence of races

` {P} c {Q}
` {P ⇤R} c {Q ⇤R}

Assertions describe more precisely the memory.  
They can be interpreted as ownership of ressources.

Jr 7! vK = {h | h(r) = v ^ dom(h) = {r}}

Achieves great modularity through the frame rule

Several works combine RG and SL: RGSep, SAGL, Iris, …
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