
Yannick ZAKOWSKI

Yannick Zakowski

April, 12th, 2018/ 22

David Cachera

Verified Compilation of
Linearisable Data Structures

!1

David PichardieDelphine Demange

SAC’18

Introduction: a motivating example

!2 / 22SAC’18

Yannick ZAKOWSKI

Verifying an on-the-fly
garbage collector

!3 April, 12th, 2018/ 22SAC’18

cycle 1 cycle 2
Single thread

time

P

With a sequential GC, the main program pauses during collection

Yannick ZAKOWSKI

Verifying an on-the-fly
garbage collector

!3 April, 12th, 2018/ 22SAC’18

cycle 1 cycle 2
time

P
COn-the-fly

An on-the-fly GC is hosted in a different thread,
and collects the memory without ever pausing the main program

Yannick ZAKOWSKI

Verifying an on-the-fly
garbage collector

!3 April, 12th, 2018/ 22SAC’18

cycle 1 cycle 2
time

P
COn-the-fly

An on-the-fly GC is hosted in a different thread,
and collects the memory without ever pausing the main program

Theorem (informal)
The collector never reclaims a part

of the memory that can still be
accessed by the program

Yannick ZAKOWSKI !4 April, 12th, 2018/ 22

Program p

Program compile(p)

Injection of the GC

Memory
managed
language

Language
with explicit

memory
management

Verifying an on-the-fly
garbage collector

in the context of verified compilation

SAC’18

Yannick ZAKOWSKI !4 April, 12th, 2018/ 22

Program p

Program compile(p)

Injection of the GC

Memory
managed
language

Language
with explicit

memory
management

Verifying an on-the-fly
garbage collector

in the context of verified compilation

Observational
refinement

∀ P P’ obs,

 compiler P = OK P’ ⋀
 low_exec P’ obs ⇒
 high_exec P obs

SAC’18

Yannick ZAKOWSKI !5

A verified on-the-fly garbage
collector

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

if x.color = WHITE then  
 push(buffer[m], x)

April, 12th, 2018/ 22SAC’18

Yannick ZAKOWSKI !5

A verified on-the-fly garbage
collector

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

if x.color = WHITE then  
 push(buffer[m], x)

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
m.next_write = nw

April, 12th, 2018/ 22SAC’18

Yannick ZAKOWSKI !5

A verified on-the-fly garbage
collector

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

if x.color = WHITE then  
 push(buffer[m], x)

?

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
m.next_write = nw

April, 12th, 2018/ 22

?

SAC’18

1. Linearisability

2. Using our theorem: proving
linearisability through Rely-Guarantee

3. Under the hood: systematic
derivation of a simulation

!6 / 22SAC’18

Linearisability

!7 / 22SAC’18

Yannick ZAKOWSKI

Linearisability
[Herlihy and Wing 90]

!8 April, 12th, 2018/ 22SAC’18

A notion of coherence for concurrent data structures

t1

t2

t3

q.pop()

q.push(1)

p.pop()p.push(2)

p.push(1)

Yannick ZAKOWSKI

Linearisability
[Herlihy and Wing 90]

!8 April, 12th, 2018/ 22SAC’18

A notion of coherence for concurrent data structures

t1

t2

t3

q.pop()

q.push(1)

p.pop()p.push(2)

p.push(1)

Principle 1.
Any method should appear to happen in a one-at-a-time order

Yannick ZAKOWSKI

Linearisability
[Herlihy and Wing 90]

!8 April, 12th, 2018/ 22SAC’18

A notion of coherence for concurrent data structures

t1

t2

t3

q.pop()

q.push(1)

p.pop()p.push(2)

p.push(1)

Principle 1.
Any method should appear to happen in a one-at-a-time order

Principle 2. (Linearisability)
Any method should appear to take effect instantaneously
at some moment between its call and return

Yannick ZAKOWSKI

Linearisability

!9 April, 12th, 2018/ 22SAC’18

Original formal definition

• Expressed in terms of traces of events (histories)

• For all possible history, there exists an “equivalent” well-behaved history

• Great, but does not fit our story

Two main caveats

• The property is not explicitly usable for verified compilation purpose 
 Change definition!

• Histories are global objects, difficult to reason about 
 Derive it from RG proof obligations!

Yannick ZAKOWSKI !10 April, 12th, 2018

Linearisability as an
observational refinement

/ 22

We see refinement as a compilation pass

• Source language: 
- abstract data structure  
- atomic operations over it

• Target language: 
only concrete operations

• Compilation pass: 
provides a concrete implementation

SAC’18

Yannick ZAKOWSKI !10 April, 12th, 2018

Linearisability as an
observational refinement

/ 22

We see refinement as a compilation pass

• Source language: 
- abstract data structure  
- atomic operations over it

• Target language: 
only concrete operations

• Compilation pass: 
provides a concrete implementation

if x.color = WHITE then  
 push(buffer[m], x)

 if x.color = WHITE then
 nw = m.next_write
 nr = m.next_read
 d = m.data
 d[nw] = x
 nw = (nw+1) mod SIZE
 assume (nr == nw)
 m.next_write = nw

SAC’18

Yannick ZAKOWSKI !10 April, 12th, 2018

Linearisability as an
observational refinement

/ 22

We see refinement as a compilation pass

• Source language: 
- abstract data structure  
- atomic operations over it

• Target language: 
only concrete operations

• Compilation pass: 
provides a concrete implementation

if x.color = WHITE then  
 push(buffer[m], x)

 if x.color = WHITE then
 nw = m.next_write
 nr = m.next_read
 d = m.data
 d[nw] = x
 nw = (nw+1) mod SIZE
 assume (nr == nw)
 m.next_write = nw

✓
O
b
s
(
T
(
p
)
)

O
b
s
(p
)

SAC’18

Using our result: proving
linearisability via Rely-Guarantee

!11 / 22SAC’18

Yannick ZAKOWSKI

Rely Guarantee reasoning
[Jones81]

!12 April, 12th, 2018/ 22SAC’18

AnnotationsGlobal Correctness
Invariant

Environment
R: Rely
G: Guarantee

R,G, I ` {P} c {Q}

Yannick ZAKOWSKI

Rely Guarantee reasoning
[Jones81]

!12 April, 12th, 2018/ 22SAC’18

AnnotationsGlobal Correctness
Invariant

Environment
R: Rely
G: Guarantee

R,G, I ` {P} c {Q}

Yannick ZAKOWSKI

Rely Guarantee reasoning
[Jones81]

!12 April, 12th, 2018/ 22SAC’18

AnnotationsGlobal Correctness
Invariant

Environment
R: Rely
G: Guarantee

R,G, I ` {P} c {Q}

Yannick ZAKOWSKI

Rely Guarantee reasoning
[Jones81]

!12 April, 12th, 2018/ 22SAC’18

AnnotationsGlobal Correctness
Invariant

Environment
R: Rely
G: Guarantee

G

R

: Guarantee, approximates the effect of the thread

: Rely, approximates the effect of the environment

R,G, I ` {P} c {Q}

Yannick ZAKOWSKI

Rely Guarantee reasoning
[Jones81]

!12 April, 12th, 2018/ 22SAC’18

AnnotationsGlobal Correctness
Invariant

Environment
R: Rely
G: Guarantee

A thread is proved against a contract.
The notion of interference is checked against this contract.

G

R

: Guarantee, approximates the effect of the thread

: Rely, approximates the effect of the environment

R,G, I ` {P} c {Q}

Yannick ZAKOWSKI April, 12th, 2018!13

Reasoning about linearisation
using Rely-Guarantee

/ 22

Introduction of an intermediate, instrumented, language.

• Explicit annotation of linearisation points

• Hybrid states, both concrete and abstract

• Linearisation points trigger the abstract semantics

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!13

Reasoning about linearisation
using Rely-Guarantee

/ 22

Introduction of an intermediate, instrumented, language.

• Explicit annotation of linearisation points

• Hybrid states, both concrete and abstract

• Linearisation points trigger the abstract semantics

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!13

Reasoning about linearisation
using Rely-Guarantee

/ 22

Introduction of an intermediate, instrumented, language.

• Explicit annotation of linearisation points

• Hybrid states, both concrete and abstract

• Linearisation points trigger the abstract semantics

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

local map

shared heap

abstract
data-structure

�1

p1

⇢1

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!13

Reasoning about linearisation
using Rely-Guarantee

/ 22

Introduction of an intermediate, instrumented, language.

• Explicit annotation of linearisation points

• Hybrid states, both concrete and abstract

• Linearisation points trigger the abstract semantics

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

local map

shared heap

abstract
data-structure

�1

p1

⇢1

�1

p1

⇢2

�1

p1

⇢3

�2

⇢4

p1p1

⇢4

�1 �2

p1

⇢5

�2

p1

⇢5

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!13

Reasoning about linearisation
using Rely-Guarantee

/ 22

Introduction of an intermediate, instrumented, language.

• Explicit annotation of linearisation points

• Hybrid states, both concrete and abstract

• Linearisation points trigger the abstract semantics

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

local map

shared heap

abstract
data-structure

�1

p1

⇢1

�1

p1

⇢2

�1

p1

⇢3

�2

⇢4

p1p1

⇢4

�1 �2

p1

⇢5

�3

p2

⇢5

�2

p1

⇢5

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!13

Reasoning about linearisation
using Rely-Guarantee

/ 22

Introduction of an intermediate, instrumented, language.

• Explicit annotation of linearisation points

• Hybrid states, both concrete and abstract

• Linearisation points trigger the abstract semantics

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

local map

shared heap

abstract
data-structure

�1

p1

⇢1

�1

p1

⇢2

�1

p1

⇢3

�2

⇢4

p1p1

⇢4

�1 �2

p1

⇢5

�3

p2

⇢5

�2

p1

⇢5

linearisation
state B B B B B B B A(v)

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Abstract data structure Buf := Empty | Cons x b b.Push(x) = Cons x b

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

Buf := Empty | Cons x b b.Push(x) = Cons x b

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

Coherence invariant Ic

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

Buf := Empty | Cons x b b.Push(x) = Cons x b

next_read

next_write

data

nr
nw …

nr

nw
0
1

SIZE-1

2

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

Coherence invariant Ic

Relies and guarantees Rm Gm

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

Buf := Empty | Cons x b b.Push(x) = Cons x b

next_read

next_write

data

nr
nw …

nr

nw
0
1

SIZE-1

2

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

Coherence invariant Ic

Relies and guarantees Rm Gm

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>

Buf := Empty | Cons x b b.Push(x) = Cons x b

next_read

next_write

data

nr
nw …

nr

nw
0
1

SIZE-1

2

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

Coherence invariant Ic

Relies and guarantees Rm Gm

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

RG method specification

Rpush, Gpush, Ic `
{ln = B}

p.push(v)

{ln = A(v1) ^ ret = v1}

Coherence invariant Ic

Relies and guarantees Rm Gm

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

RG method specification

Rpush, Gpush, Ic `
{ln = B}

p.push(v)

{ln = A(v1) ^ ret = v1}

Coherence invariant Ic

Relies and guarantees Rm Gm

Stability obligations

Ic stable under Rpush

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!14

Proving linearisability:
the perspective of a user

/ 22

Concrete implementation of methods

Abstract data structure

RG method specification

Rpush, Gpush, Ic `
{ln = B}

p.push(v)

{ln = A(v1) ^ ret = v1}

Coherence invariant Ic

Relies and guarantees Rm Gm

Stability obligations

Ic stable under Rpush

RG consistency
Gpush ✓ Rpop

Gpop ✓ Rpush

SAC’18

Yannick ZAKOWSKI !15

Proving linearisability:
the perspective of a user

Concrete implementation of methods

Abstract data structure

RG method specification

Coherence invariant Ic

Relies and guarantees Rm Gm

Stability obligations

RG consistency

April, 12th, 2018/ 22

Observational refinement of
the compilation pass

implementing the methods
for any client

Automatically
obtain

Reasoning locally

exclusively on

methods

SAC’18

Yannick ZAKOWSKI !16 April, 12th, 2018

Refining linearisable data-
structures

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

/ 22

if x.color = WHITE then 
 push(buffer[m], x)

SAC’18

Yannick ZAKOWSKI !16 April, 12th, 2018

Refining linearisable data-
structures

Scan: 
 repeat 
 no_gray = true; 
 foreach x ∈ OBJECTS 
 if x.color == GRAY 
 no_gray = false; 
 foreach f ∈ fields(x) do  
 MarkGray(x.f); 
 x.color = BLACK 
 until no_gray 
 Sweep: 
 foreach x ∈ OBJECTS 
 if x.color == WHITE 
 then FREE(x) 
Clear: 
 foreach x ∈ OBJECTS 
 x.color = WHITE

/ 22

if x.color = WHITE then 
 push(buffer[m], x)

nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
m.next_write = nw

SAC’18

A quick peak under the hood

!17 / 22SAC’18

Yannick ZAKOWSKI April, 12th, 2018!18

Backward simulations

/ 22

Inductive step used to prove observational refinement

s1 s2

s02s01

⇠

⇠

⇠

⇤

o

o

Relation between states of the source and target language

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!18

Backward simulations

nw = p.next_write
nr = p.next_read
d = p.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
p.next_write = nw

p.push(x)

/ 22

Inductive step used to prove observational refinement

s1 s2

s02s01

⇠

⇠

⇠

⇤

o

o

Relation between states of the source and target language

SAC’18

Yannick ZAKOWSKI !19 April, 12th, 2018

Two simulations composed

/ 22

The compilation pass is split in two phases

• Implementation of the data structure

• Cleaning of the instrumentation

t u t ut t u t u u t

u t

t u t ut t u t u u t

We therefore build two simulations, and compose them

SAC’18

Yannick ZAKOWSKI April, 12th, 2018!20

Structure of the proof:
an intuition

Design and prove a rich invariant at the instrumented level

• Maintains the coherence invariant

• Builds partial executions of encountered methods

/ 22

Objective: carry enough information to leverage the RG specification

Prove thread local simulations

Combine the simulations using the stability assumptions

• For each thread, build a simulation parameterised by its rely

• Use the partial execution of methods to invoke  
the RG specification when needed

SAC’18

Yannick ZAKOWSKI

Conclusion

!21 April, 12th, 2018/ 22SAC’18

• Linearisability expressed in term of observational refinement

• A local, sufficient condition expressed in terms of Rely-Guarantee

• A generic meta-theorem: can be instantiated with any data structure  
(provided you manage to discharge the proof obligations

• Provide strong semantic foundations:  
- all theorem expressed wrt an operational semantics 
- everything formalised in Coq

• Instantiated on a realistic example used in another project

• ~13.5 kloc

Yannick ZAKOWSKI

Thank you

!22 April, 12th, 2018/ 22SAC’18

t u t ut t u t u u t

u t

t u t ut t u t u u t

Appendix

!23 / 22SAC’18

Yannick ZAKOWSKI !24 April, 12th, 2018

Linearisability: limits of our
result

/ 22

• Example: pair snapshot

• Linearisation is confirmed at a later point of execution

• Need: Maintain two speculative simulations in parallel

Future-dependent linearisation points

Helping-based linearisation

• Example: HSY elimination-based stack

• Linearisation of thread A is performed by a step from thread B
• Need: Global view of the situation of each thread inside their method

SAC’18

Yannick ZAKOWSKI !25 April, 12th, 2018

Separation logic
• Rely-Guarantee: reasoning about races
• Separation logic: proving concisely the absence of races

` {P} c {Q}
` {P ⇤R} c {Q ⇤R}

Assertions describe more precisely the memory.
They can be interpreted as ownership of ressources.

Jr 7! vK = {h | h(r) = v ^ dom(h) = {r}}

Achieves great modularity through the frame rule

Several works combine RG and SL: RGSep, SAGL, Iris, …

/ 22SAC’18

