Verified Compilation of Linearisable Data Structures

Yannick Zakowski

Introduction: a motivating example

Verifying an on-the-fly garbage collector

With a sequential GC, the main program pauses during collection

Verifying an on-the-fly garbage collector

An on-the-fly GC is hosted in a different thread, and collects the memory without ever pausing the main program

Verifying an on-the-fly garbage collector

An on-the-fly GC is hosted in a different thread, and collects the memory without ever pausing the main program

Theorem (informal)

The collector never reclaims a part of the memory that can still be accessed by the program

SAC'18

Yannick ZAKOWSKI

Verifying an on-the-fly garbage collector in the context of verified compilation

Verifying an on-the-fly garbage collector in the context of verified compilation

A verified on-the-fly garbage collector

Scan:	
repeat	
no_gray = true ;	
foreach $x \in OBJECTS$	
if x.color == GRAY	
no_gray = false ;	
foreach $f \in fields(x)$ of	do
MarkGray(x.f);	if x.color = WHITE then
x.color = BLACK	push(buffer[m], x)
until no_gray	
Sweep:	
foreach $x \in OBJECTS$	
if x.color == WHITE	
then FREE(x)	
Clear:	
foreach $x \in OBJECTS$	
x.color = WHITE	

A verified on-the-fly garbage collector

A verified on-the-fly garbage collector?

1. Linearisability

2. Using our theorem: proving linearisability through Rely-Guarantee

3. Under the hood: systematic derivation of a simulation

Linearisability

Linearisability [Herlihy and Wing 90]

A notion of coherence for concurrent data structures

Linearisability [Herlihy and Wing 90]

A notion of coherence for concurrent data structures

Principle 1. Any method should appear to happen in a one-at-a-time order

Linearisability [Herlihy and Wing 90]

A notion of coherence for concurrent data structures

Principle 1.

Any method should appear to happen in a one-at-a-time order

Principle 2. (Linearisability)

Any method should appear to take effect instantaneously at some moment between its call and return

Linearisability

Original formal definition

- Expressed in terms of traces of events (histories)
- For all possible history, there exists an "equivalent" well-behaved history
- Great, but does not fit our story

Two main caveats

- The property is not explicitly usable for verified compilation purpose
 - → Change definition!
- Histories are global objects, difficult to reason about
 - → Derive it from RG proof obligations!

Linearisability as an observational refinement

We see refinement as a compilation pass

- Source language:
 - abstract data structure
 - atomic operations over it
- Target language: only concrete operations
- Compilation pass:

provides a concrete implementation

Linearisability as an observational refinement

We see refinement as a compilation pass

- Source language:
 - abstract data structure
 - atomic operations over it
- Target language: only concrete operations
- Compilation pass:

provides a concrete implementation

if x.color = WHITE then
push(buffer[m], x)

if x.color = WHITE then
 nw = m.next_write
 nr = m.next_read
 d = m.data
 d[nw] = x
 nw = (nw+1) mod SIZE
 assume (nr == nw)
 m.next_write = nw

Linearisability as an observational refinement

We see refinement as a compilation pass

- Source language:
 - abstract data structure
 - atomic operations over it
- Target language: only concrete operations
- Compilation pass:

provides a concrete implementation

Obs(p)	if x.color = WHITE then push(buffer[m], x)
\bigcup	
$Obs(\mathcal{T}(p))$	<pre>if x.color = WHITE then nw = m.next_write nr = m.next_read d = m.data d[nw] = x nw = (nw+1) mod SIZE assume (nr == nw) m.next_write = nw</pre>

Using our result: proving linearisability via Rely-Guarantee

 $\underset{\text{Environment}}{R}, G, I \ \vdash \{P\} \ c \ \{Q\}$ R: Rely Annotations **Global Correctness** G: Guarantee

Invariant

 $\underset{\text{Environment}}{R,G,I} \vdash \{P\} c \ \{Q\}$ R: Rely Annotations **Global Correctness** G: Guarantee Invariant

- R : Rely, approximates the effect of the environment
- G : Guarantee, approximates the effect of the thread

SAC'18

Yannick ZAKOWSKI

- R : Rely, approximates the effect of the environment
- G : Guarantee, approximates the effect of the thread

A thread is proved against a contract. The notion of interference is checked against this contract.

- Explicit annotation of *linearisation points*
- Hybrid states, both concrete and abstract
- Linearisation points trigger the abstract semantics

- Explicit annotation of *linearisation points*
- Hybrid states, both concrete and abstract
- Linearisation points trigger the abstract semantics

```
nw = m.next_write

nr = m.next_read

d = m.data

d[nw] = x

nw = (nw+1) mod SIZE

assume (nr == nw)

<m.next_write = nw; LIN>
```

- Explicit annotation of *linearisation points*
- Hybrid states, both concrete and abstract
- Linearisation points trigger the abstract semantics

local map	$ ho_1$
shared heap	σ_1
abstract data-structure	p_1

→	nw = m.next_write
	nr = m.next_read
	d = m.data
	d[nw] = x
	nw = (nw+1) mod SIZE
	assume (nr == nw)
	<m.next_write =="" lin="" nw;=""></m.next_write>
	-

- Explicit annotation of *linearisation points*
- Hybrid states, both concrete and abstract
- Linearisation points trigger the abstract semantics

local map	$ ho_1$	$ ho_2$	$ ho_3$	$ ho_4$	$ ho_4$	$ ho_5$	$ ho_5$	
shared heap	σ_1	σ_1	σ_1	σ_1	σ_2	σ_2	σ_2	
abstract data-structure	p_1							

```
nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>
```

- Explicit annotation of *linearisation points*
- Hybrid states, both concrete and abstract
- Linearisation points trigger the abstract semantics

local map	$ ho_1$	ρ_2	$ ho_3$	$ ho_4$	$ ho_4$	$ ho_5$	$ ho_5$	$ ho_5$	
shared heap	σ_1	σ_1	σ_1	σ_1	σ_2	σ_2	σ_2	σ_3	
abstract data-structure	p_1	p_2							

```
nw = m.next_write
nr = m.next_read
d = m.data
d[nw] = x
nw = (nw+1) mod SIZE
assume (nr == nw)
<m.next_write = nw; LIN>
```

- Explicit annotation of *linearisation points*
- Hybrid states, both concrete and abstract
- Linearisation points trigger the abstract semantics

local map	$ ho_1$	$ ho_2$	$ ho_3$	$ ho_4$	$ ho_4$	$ ho_5$	$ ho_5$	$ ho_5$	nw = m.next_write
shared heap	σ_1	σ_1	σ_1	σ_1	σ_2	σ_2	σ_2	σ_3	$nr = m.next_read$ d = m.data d[nw] = x
abstract data-structure	p_1	p_2	nw = (nw+1) mod SIZE assume (nr == nw)						
linearisation state	В	В	В	B	B	B	В	$A(v) \rightarrow$	

Abstract data structure

Buf := Empty I Cons x b

b.Push(x) = Cons x b

Abstract of	data st	ructure
-------------	---------	---------

Concrete implementation of methods

Buf := Empty I Cons x b

b.Push(x) = Cons x b

nw = m.next_write nr = m.next_read d = m.data d[nw] = x nw = (nw+1) mod SIZE assume (nr == nw) <m.next_write = nw; LIN>

Yannick ZAKOWSKI

Yannick ZAKOWSKI

14 / 22

April, 12th, 2018

Yannick ZAKOWSKI

Abstract data structure

Concrete implementation of methods

Coherence invariant I_c

Relies and guarantees $R_m G_m$

Abstract data structure Concrete implementation of methods Coherence invariant I_c Relies and guarantees $R_m G_m$

 $R_{push}, G_{push}, I_c \vdash \{ \ln = B \}$ p.push(v) $\{ \ln = A(v_1) \land \texttt{ret} = v_1 \}$

RG method specification

Abstract data structure Concrete implementation of methods Coherence invariant I_c Relies and guarantees $R_m G_m$

 $R_{push}, G_{push}, I_c \vdash \{ \ln = B \}$ p.push(v) $\{ \ln = A(v_1) \land \texttt{ret} = v_1 \}$

 I_c stable under R_{push}

RG method specification

Stability obligations

Abstract data structure $R_{mush}, G_{mush}, L_{c}$

Proving linearisability:

Concrete implementation of methods Coherence invariant I_c Relies and guarantees $R_m G_m$

RG method specification Stability obligations RG consistency $R_{push}, G_{push}, I_c \vdash \{ ln = B \}$ p.push(v) $\{ ln = A(v_1) \land ret = v_1 \}$

 I_c stable under R_{push}

 $G_{push} \subseteq R_{pop}$ $G_{pop} \subseteq R_{push}$

SAC'18

Yannick ZAKOWSKI

Abstract data structure

Concrete implementation of methods

Coherence invariant I_c

Relies and guarantees $R_m G_m$

RG method specification

Stability obligations

RG consistency

Reasoning locally exclusively on methods

Automatically obtain

Observational refinement of the compilation pass implementing the methods for any client

SAC'18

Yannick ZAKOWSKI

15 / 22

Refining linearisable datastructures

Scan:	
repeat	
no_gray = true ;	
foreach $x \in OBJECTS$	
if x.color == GRAY	
no_gray = false ;	
foreach $f \in fields(x)$ do	
MarkGray(x.f); if x.color = WHITE then	
x.color = BLACK push(buffer[m], x)	
until no_gray	
Sweep:	
foreach $x \in OBJECTS$	
if x.color == WHITE	
then FREE(x)	
Clear:	
foreach $x \in OBJECTS$	
x.color = WHITE	

Refining linearisable datastructures

SAC'18

Yannick ZAKOWSKI

16 / 22

A quick peak under the hood

Backward simulations

Inductive step used to prove observational refinement

 $\sim~$ Relation between states of the source and target language

Backward simulations

Inductive step used to prove observational refinement

 $\sim~$ Relation between states of the source and target language

April, 12th, 2018

Two simulations composed

The compilation pass is split in two phases

- Implementation of the data structure
- Cleaning of the instrumentation

We therefore build two simulations, and compose them

SAC'18

Yannick ZAKOWSKI

April, 12th, 2018

Structure of the proof: an intuition

Design and prove a rich invariant at the instrumented level

Objective: carry enough information to leverage the RG specification

- Maintains the coherence invariant
- Builds partial executions of encountered methods

Prove thread local simulations

- For each thread, build a simulation parameterised by its rely
- Use the partial execution of methods to invoke the RG specification when needed

Combine the simulations using the stability assumptions

Conclusion

- Linearisability expressed in term of observational refinement
- A *local*, sufficient condition expressed in terms of Rely-Guarantee
- A generic meta-theorem: can be instantiated with any data structure (provided you manage to discharge the proof obligations
- Provide strong semantic foundations:
 - all theorem expressed wrt an operational semantics
 - everything formalised in Coq
- Instantiated on a realistic example used in another project
- ~13.5 kloc

Thank you

SAC'18

Yannick ZAKOWSKI

22 / 22

April, 12th, 2018

Appendix

Linearisability: limits of our result

Future-dependent linearisation points

- Example: pair snapshot
- Linearisation is confirmed at a later point of execution
- Need: Maintain two speculative simulations in parallel

Helping-based linearisation

- Example: HSY elimination-based stack
- Linearisation of thread A is performed by a step from thread B
- Need: Global view of the situation of each thread inside their method

Separation logic

- Rely-Guarantee: reasoning about races
- Separation logic: proving concisely the absence of races

Assertions describe more precisely the memory. They can be interpreted as ownership of ressources.

$$\llbracket r \mapsto v \rrbracket = \{h \mid h(r) = v \land dom(h) = \{r\}\}$$

Achieves great modularity through the *frame rule*

$$\frac{\vdash \{P\} c \{Q\}}{\vdash \{P \ast R\} c \{Q \ast R\}}$$

Several works combine RG and SL: RGSep, SAGL, Iris, ...

Yannick ZAKOWSKI