Verified Compilation of
Linearisable Data Structures

Yannick Zakowski

David Cachera Delphine Demange David Pichardie

INVENTEURS DU MONDE NUM ERIQUE
rennes

'Pe

Yannick ZAKOWSKI April, 12th, 2018

Introduction: a motivating example

g oo

Verifying an on-the-fly
garbage collector

Single thread P — _

cycle 1 cycle 2
time >

With a sequential GC, the main program pauses during collection

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Verifying an on-the-fly
garbage collector

On-the-fly c
P

cycle 1 cycle 2
time >

An on-the-fly GC is hosted in a different thread,
and collects the memory without ever pausing the main program

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

I SAC'18

Verifying an on-the-fly
garbage collector

I

cycle 1 cycle 2
time >

On-the-fly

An on-the-fly GC is hosted in a different thread,
and collects the memory without ever pausing the main program

Theorem (informal)
The collector never reclaims a part
of the memory that can still be
accessed by the program

Yannick ZAKOWSKI April, 12th, 2018

Verifying an on-the-fly

garbage collector
in the context of verified compilation

Memory
managed Program p
language
Injection of the GC
Language
with explicit :
memory Program compile(p)
management

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Verifying an on-the-fly

garbage collector
in the context of verified compilation

Memory

managed Program p

| -
anguage Observational

refinement

vV P P’ obs,

Injection of the GC

compiler P = OK P’ A

low exec P’ obs =

high exec P obs

Language
with explicit
memory
management

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

30— B

Program compile(p)

A verified on-the-fly garbage
collector

Scan:
repeat
no_gray = true;
foreach x € OBJECTS
if x.color == GRAY
no_gray = false;
foreach f e fields(x) do L ccrrirmii

MarkGray(x.f): - : if x.color = WHITE then:
Rpushbutferiml, x)
until no_gray
Sweep:

foreach x e OBJECTS

if x.color == WHITE
then FREE(x)

Clear:
foreach x e OBJECTS

x.color = WHITE

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

A verified on-the-fly garbage
collector

‘f

\ J
\ /

SAC’18 Yannick ZAKOWSKI 5 /22 April, 12th, 2018

A verified on-the-fly garbage
collector ?

‘I

\ /
\ /

SAC’18 Yannick ZAKOWSKI 5 /22 April, 12th, 2018

1. Linearisability

2. Using our theorem: proving
linearisability through Rely-Guarantee

3. Under the hood: systematic
derivation of a simulation

g o

Linearisability

g oo

Linearisability

[Herlihy and Wing 90]

A notion of coherence for concurrent data structures

p.push(1) g.pop()
11 o — e, >
2 M
p.push(2) p-pop()
3 e e >

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Linearisability

[Herlihy and Wing 90]

A notion of coherence for concurrent data structures

p.push(1) g.pop()
11 o — e, >
2 M
p.push(2) p-pop()
3 e e >

Principle 1.
Any method should appear to happen in a one-at-a-time order

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Linearisability

[Herlihy and Wing 90]

A notion of coherence for concurrent data structures

p.push(1) g.pop()
11 o — e, >
2 M
p.push(2) p-pop()
3 e e >

Principle 1.
Any method should appear to happen in a one-at-a-time order

Principle 2. (Linearisability)
Any method should appear to take effect instantaneously
at some moment between its call and return

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Linearisability

Original formal definition

Expressed in terms of traces of events (histories)
For all possible history, there exists an “equivalent” well-behaved history
Great, but does not fit our story

Two main caveats

The property is not explicitly usable for verified compilation purpose
—» Change definition!

Histories are global objects, difficult to reason about
— Derive it from RG proof obligations!

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Linearisability as an
observational refinement

We see refinement as a compilation pass

Source language:

- abstract data structure

- atomic operations over it
Target language:

only concrete operations
Compilation pass:

provides a concrete implementation

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Linearisability as an
observational refinement

We see refinement as a compilation pass

|f x.color = WHITE then
push(buffer[m], x)
Source language: UUT v Sod St Ay :

- abstract data structure l
- atomic operations over it

Target language: i x.color = WHITE then
: nw = m.next_write

only concrete operations
nr = m.next_read

Compilation pass: : d=m.data
provides a concrete implementation . nw = (nw+1) mod SIZE

assume (nr == nw)
m.next_write = nw

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Linearisability as an
observational refinement

We see refinement as a compilation pass

|f x.color = WHITE then
push(buffer[m], x)

Source language:
- abstract data structure
- atomic operations over it

 if x.color = WHITE then
. nw = m.next_write

nr = m.next_read

d = m.data

d[nw] = :
nw = (nw+1) mod SIZE
assume (nr == nw) :
m.next_write = nw

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Target language:
only concrete operations
Compilation pass:

provides a concrete implementation

Obs(7T (p)) € Obs(p)

Using our result: proving
linearisability via Rely-Guarantee

g oo

Rely Guarantee reasoning
[Jones81]

Environmenﬁ’ G’I I_ {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Rely Guarantee reasoning
[Jones81]

Environmenﬁ’ G’I I_ {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Rely Guarantee reasoning
[Jones81]

Environmenﬁ’ G’I I_ {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Rely Guarantee reasoning
[Jones81]

Environmenﬁ’ G’I I_ {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

R Rely, approximates the effect of the environment

(7 : Guarantee, approximates the effect of the thread

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Rely Guarantee reasoning
[Jones81]

EnvironmentR’ G’I I_ {P} ¢ {Q}
R: Rely

Global Correctness Annotations
G: Guarantee

Invariant

R Rely, approximates the effect of the environment

(7 : Guarantee, approximates the effect of the thread

A thread is proved against a contract.
The notion of interference is checked against this contract.

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Reasoning about linearisation
using Rely-Guarantee

Introduction of an intermediate, instrumented, language.

Explicit annotation of /inearisation points
Hybrid states, both concrete and abstract
Linearisation points trigger the abstract semantics

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Reasoning about linearisation
using Rely-Guarantee

Introduction of an intermediate, instrumented, language.

Explicit annotation of /inearisation points
Hybrid states, both concrete and abstract
Linearisation points trigger the abstract semantics

:Nw = m.next_write

:nr = m.next_read

:d = m.data

:d[nw] = x

:nw = (nw+1) mod SIZE
:assume (nr == nw) :
:<m.next_write = nw; LIN>:

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Reasoning about linearisation
using Rely-Guarantee

Introduction of an intermediate, instrumented, language.

Explicit annotation of /inearisation points
Hybrid states, both concrete and abstract
Linearisation points trigger the abstract semantics

local map P1 —> inw = m.next_write
:nr = m.next_read
shared heap 01 :d = m.data
-d[nw] = x

:nw = (nw+1) mod SIZE
:assume (nr == nw) :
:<m.next_write = nw; LIN>:

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

abstract
data-structure P1

Reasoning about linearisation
using Rely-Guarantee

Introduction of an intermediate, instrumented, language.

Explicit annotation of /inearisation points
Hybrid states, both concrete and abstract
Linearisation points trigger the abstract semantics

local map P1 P2 P3 P4 P4 P5 P5 :nw = m.next_write
:nr = m.next_read
sharedheap 071 01 01 071 092 09 02 ;g{: n]1.data
-d[nw] =X
abstract ;nw = (nw+1) mod SIZE
data-structure pl pl pl pl pl p]. pl ;assume (nr .== nw) 5
—p Sminextwrite = nw; LIN>:

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Reasoning about linearisation
using Rely-Guarantee

Introduction of an intermediate, instrumented, language.

Explicit annotation of /inearisation points
Hybrid states, both concrete and abstract
Linearisation points trigger the abstract semantics

local map P1 P2 P3 P4 P4 P5 P5 P5 :nw = m.next_write
:nr = m.next_read
sharedheap 071 01 01 01 092 09 092 O3 ;g[=n]1.data
-d[nw] =X
] :nw = (nw+1) mod SIZE
abstract pl pl pl pl pl p]. pl .'E ;assume(nrzznw)

-structur ' i :
data-structure :<m.next_write = nw; LIN>

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Reasoning about linearisation
using Rely-Guarantee

Introduction of an intermediate, instrumented, language.

Explicit annotation of /inearisation points
Hybrid states, both concrete and abstract
Linearisation points trigger the abstract semantics

local map P1 P2 P3 P4 P4 P5 P5 P5 :nw = m.next_write
:nr = m.next_read

sharedheap 071 01 01 01 092 09 092 O3 §g[=rr]1.data
:d[nw] = x

i :nw = (nw+1) mod SIZE
abstract pl pl pl pl pl p]. pl .'E ;assume(nrzznw)

-structur ' i :
data-structure :<m.next_write = nw; LIN>

nearisation 3 3 B3 B B B B A(p) o

state

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Buf := Empty | Cons x b b.Push(x) = Cons x b

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Buf := Empty | Cons x b b.Push(x) = Cons x b

nw = m.next_write

;nr = m.next_read

:d = m.data

:d[nw] = x

:nw = (nw+1) mod SIZE
:assume (nr == nw) :
:<m.next_write = nw; LIN>:

Concrete implementation of methods

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Buf := Empty | Cons x b b.Push(x) = Cons x b

:nwW = m.next_write
Coherence invariant |, ggf_=nf:1(-jf§;t—read
;d[nw] = X

:nw = (nw+1) mod SIZE

Concrete implementation of methods

:assume (nr == nw) _
:<m.next_write = nw; LIN>:

0
f' 1 <4+ nw
2
next_read nr
next write nw e
<4+ nr
data —
SIZE-1

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Buf := Empty | Cons x b b.Push(x) = Cons x b

Concrete implementation of methods ;nw — m.next_write

Coherence invariant | :nr = m.next_read
:d = m.data
Relies and guarantees R,, G,, :d[nw] = X

:nw = (nw+1) mod SIZE
:assume (nr == nw) _
:<m.next_write = nw; LIN>:

0
f' 1 <4+ nw
2
next_read nr
next write nw e
<4+ nr
data —
SIZE-1

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Buf := Empty | Cons x b b.Push(x) = Cons x b

Concrete implementation of methods ;nw — m.next_write

Coherence invariant | :nr = m.next_read
:d = m.data
Relies and guarantees R,, G,, :d[nw] = X

:nw = (nw+1) mod SIZE
:assume (nr == nw) _
:<m.next_write = nw; LIN>:

0
f' 1 <4+ nw
2
next_read nr
next write nw e
<4+ nr
data —
SIZE-1

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure
Concrete implementation of methods
Coherence invariant |,

Relies and guarantees R,, G,

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Rpu sh s Gpu sh s 1 C -
Concrete implementation of methods {1n = B}

Coherence invariant |, p.push(v)

Relies and guarantees R,, G, {ln _ A(Ul) A Tet — Ul}

RG method specification

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Rpu sh s Gpu sh s 1 C -
Concrete implementation of methods {1n = B}

Coherence invariant |, p.push(v)

Relies and guarantees R,, G, {ln _ A(Ul) A Tet — Ul}

I. stable under R,,sh
RG method specification

Stability obligations

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure Rpu sh s Gpu sh s 1 C -
Concrete implementation of methods {1n = B}

Coherence invariant |, p.push(v)

Relies and guarantees R,, G, {ln _ A(Ul) A Tet — Ul}

I. stable under R,,sh
RG method specification

Stability obligations Gpush € Rpop

RG consistency Grpop € Rpush

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Proving linearisability:
the perspective of a user

Abstract data structure

_ _ Reasoning locally
Concrete implementation of methods exclusively on

Coherence invariant], methods

Relies and guarantees R,, G,
Automatically

obtain

RG method specification Observational refinement of

Stability obligations the compilation pass
_ Implementing the methods
RG consistency for any client

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Refining linearisable data-
structures

SAC’18 Yannick ZAKOWSKI 16 / 22 April, 12th, 2018

Refining linearisable data-
structures

SAC’18 Yannick ZAKOWSKI 16 / 22 April, 12th, 2018

A quick peak under the hood

g o

Backward simulations

Inductive step used to prove observational refinement

~ Relation between states of the source and target language

0,
* o/
83 > 82
Y Y
0,
S1 » SS9

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Backward simulations

Inductive step used to prove observational refinement

~ Relation between states of the source and target language

p.push(x)
—
/ O %
81 > 82
~y ~U R > > > > > > >
0 ~~~~ ”'l
S1 > S9 S e .

nw = p.next_write

:nr = p.next_read

:d = p.data

:d[nw] = x :
:nw = (nw+1) mod SIZE :
- assume (nr == nw) :
: p.next_write = nw

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Two simulations composed

The compilation pass is split in two phases

Implementation of the data structure
Cleaning of the instrumentation

We therefore build two simulations, and compose them

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Structure of the proof:
an intuition

Design and prove a rich invariant at the instrumented level
Obijective: carry enough information to leverage the RG specification

Maintains the coherence invariant
Builds partial executions of encountered methods

Prove thread local simulations

For each thread, build a simulation parameterised by its rely
Use the partial execution of methods to invoke
the RG specification when needed

Combine the simulations using the stability assumptions

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Conclusion

Linearisability expressed in term of observational refinement

A local, sufficient condition expressed in terms of Rely-Guarantee

A generic meta-theorem: can be instantiated with any data structure
(provided you manage to discharge the proof obligations

Provide strong semantic foundations:

- all theorem expressed wrt an operational semantics

- everything formalised in Coq

Instantiated on a realistic example used in another project

~13.5 kloc

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Appendix

g o

Linearisabillity: limits of our
result

Future-dependent linearisation points

Example: pair snapshot
Linearisation is confirmed at a later point of execution
Need: Maintain two speculative simulations in parallel

Helping-based linearisation

Example: HSY elimination-based stack
Linearisation of thread A is performed by a step from thread B
Need: Global view of the situation of each thread inside their method

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

Separation logic

- Rely-Guarantee: reasoning about races
- Separation logic: proving concisely the absence of races

Assertions describe more precisely the memory.
They can be interpreted as ownership of ressources.

lr—ov]={h|h(r)=vAdom(h) ={r}}
Achieves great modularity through the frame rule

- {Pici@]
F{P xR} c{Q * R}

Several works combine RG and SL: RGSep, SAGL, Iris, ...

I SAC’18 Yannick ZAKOWSKI April, 12th, 2018

