
1

Modular, Compositional, and Executable
Formal Semantics for LLVM IR

Yannick Zakowski

ICFP 2021

Steve Zdancewic

Irene YoonCalvin Beck

Ilia Zaichuk Vadim Zaliva

LLVM Compiler Infrastructure

optimizations/
transformations

typed SSA IR

analysis

[Lattner et al.]

2

LLVM

front
ends

code
gen/jit

LLVM Compiler Infrastructure

optimizations/
transformations

typed SSA IR

analysis

[Lattner et al.]

2

LLVM IR

optimizations/
transformations

typed SSA IR

analysis

3

LLVM IR

optimizations/
transformations

typed SSA IR

analysis

3

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

https://llvm.org/docs/LangRef.html

LLVM IR

optimizations/
transformations

typed SSA IR

analysis

3

https://llvm.org/docs/LangRef.html

Vellvm [Zhao et al., 12]

Crellvm [Kang et al., 18]

K-LLVM [Li and Gunter, 20]

Taming UB [Lee et al., 17]

Concurrency [Chakraborty and Vafeiadis, 17]

Formal Semantics

LLVM IR

optimizations/
transformations

typed SSA IR

analysis

3

https://llvm.org/docs/LangRef.html

Vellvm [Zhao et al., 12]

Crellvm [Kang et al., 18]

K-LLVM [Li and Gunter, 20]

Taming UB [Lee et al., 17]

Concurrency [Chakraborty and Vafeiadis, 17]

Formal Semantics

Realistic Memory Models
Integer-Pointer Cast [Kang et al., 15]

Twin-Allocation [Lee et al., 18]

LLVM IR

optimizations/
transformations

typed SSA IR

analysis

3

https://llvm.org/docs/LangRef.html

Vellvm [Zhao et al., 12]

Crellvm [Kang et al., 18]

K-LLVM [Li and Gunter, 20]

Taming UB [Lee et al., 17]

Concurrency [Chakraborty and Vafeiadis, 17]

Formal Semantics

Realistic Memory Models
Integer-Pointer Cast [Kang et al., 15]

Twin-Allocation [Lee et al., 18]

Alive [Lopes et al., 15]

Alive 2 [Lopes et al., 21]

Bug Finding

LLVM IR

optimizations/
transformations

typed SSA IR

analysis

3

https://llvm.org/docs/LangRef.html

Vellvm [Zhao et al., 12]

Crellvm [Kang et al., 18]

K-LLVM [Li and Gunter, 20]

Taming UB [Lee et al., 17]

Concurrency [Chakraborty and Vafeiadis, 17]

Formal Semantics

Realistic Memory Models
Integer-Pointer Cast [Kang et al., 15]

Twin-Allocation [Lee et al., 18]

Alive [Lopes et al., 15]

Alive 2 [Lopes et al., 21]

Bug Finding

This work’s ancestor

The Vellvm Project

4

optimizations/
transformations

VIR

analysis

Vellvm

[Zhao and Zdancewic - CPP 2012]
Verified computation of dominators

[Zhao et al. - POPL 2012]

Formal semantics of IR + verified SoftBound

[Zhao et al. - PLDI 2013]
Verification of (v)mem2reg!

A success, but so monolithic it couldn’t evolve!

https://github.com/vellvm/vellvm-legacy

https://github.com/vellvm/vellvm-legacy

The Vellvm Project

4

optimizations/
transformations

VIR

analysis

Vellvm

[Zhao and Zdancewic - CPP 2012]
Verified computation of dominators

[Zhao et al. - POPL 2012]

Formal semantics of IR + verified SoftBound

[Zhao et al. - PLDI 2013]
Verification of (v)mem2reg!

A success, but so monolithic it couldn’t evolve!

https://github.com/vellvm/vellvm-legacy

https://github.com/vellvm/vellvm-legacy

The Vellvm Project

4

optimizations/
transformations

VIR

analysis

Vellvm

[Zhao and Zdancewic - CPP 2012]
Verified computation of dominators

[Zhao et al. - POPL 2012]

Formal semantics of IR + verified SoftBound

[Zhao et al. - PLDI 2013]
Verification of (v)mem2reg!

A success, but so monolithic it couldn’t evolve!

https://github.com/vellvm/vellvm-legacy

 G ⊢ pc, mem → pc′ , mem′

https://github.com/vellvm/vellvm-legacy

Vellvm Legacy: Rough Approximation

5

 G ⊢ pc, mem → pc′ , mem′

Vellvm Legacy: Rough Approximation

5

 G ⊢ pc, mem → pc′ , mem′

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Vellvm Legacy: Rough Approximation

5

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

 G ⊢ pc, mem → pc′ , mem′

Vellvm Legacy: Rough Approximation

5

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

 G ⊢ pc, mem → pc′ , mem′

Vellvm Legacy: Rough Approximation

5

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Program transformations modify G,
invariants must relate the pc

Lack of compositionality

 G ⊢ pc, mem → pc′ , mem′

Vellvm Legacy: Rough Approximation

5

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Program transformations modify G,
invariants must relate the pc

Lack of compositionality

 G ⊢ pc, mem → pc′ , mem′

A single relation encompasses
all aspects of the semantics

Lack of modularity

Vellvm Legacy: Rough Approximation

5

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Program transformations modify G,
invariants must relate the pc

Lack of compositionality

 G ⊢ pc, mem → pc′ , mem′

The semantics does not compute,
it is a relation

Lack of executability

A single relation encompasses
all aspects of the semantics

Lack of modularity

This Paper: a Redesign for Vellvm

Interaction Trees (itrees)

github.com/DeepSpec/InteractionTrees

(Re)Vellvm

github.com/vellvm/vellvm

Used to build

[Xia et al. - POPL 2020]

[This paper]

A Tree Represents an Interactive Computation

τ Read X

Write Y 0

τ τ τ

1

2

3

r

We consider here a computation whose interactions
with the environment are read and writes to a state

A Tree Represents an Interactive Computation

τ Read X

Write Y 0

τ τ τ

1

2

3

Silent step r

We consider here a computation whose interactions
with the environment are read and writes to a state

A Tree Represents an Interactive Computation

τ Read X

Write Y 0

τ τ τ

1

2

3

Observable
events

Silent step r

We consider here a computation whose interactions
with the environment are read and writes to a state

A Tree Represents an Interactive Computation

τ Read X

Write Y 0

τ τ τ

1

2

3

Observable
events

Silent step

A result

r

We consider here a computation whose interactions
with the environment are read and writes to a state

A Tree Represents an Interactive Computation

τ Read X

Write Y 0

τ τ τ

1

2

3

Observable
events

Silent step

A result

Potentially diverging
computationr

We consider here a computation whose interactions
with the environment are read and writes to a state

8

Write X 1 Read X

Write Y 0

Write Y 1

0

1
tt

0

1

itree MemoryE Nat

Events only specify
the type of effects

8

Write X 1 Read X

Write Y 0

Write Y 1

0

1
tt

0

1

itree MemoryE Nat

Events only specify
the type of effects

handleinterp The tree is interpreted via
an event handler

The semantics of
effects is introduced

generic, provided
by the library

specific,
user defined

8

Write X 1 Read X

Write Y 0

Write Y 1

0

1
tt

0

1

itree MemoryE Nat

Events only specify
the type of effects

St -> itree voidE (St * Nat)

{X → 1} {X → 1}
Answer = 1

{} {X → 1,
 Y → 1}

1

handleinterp The tree is interpreted via
an event handler

The semantics of
effects is introduced

generic, provided
by the library

specific,
user defined

8

Write X 1 Read X

Write Y 0

Write Y 1

0

1
tt

0

1

itree MemoryE Nat

Events only specify
the type of effects

X = 1;
Y = X;
ret X

represented as

St -> itree voidE (St * Nat)

{X → 1} {X → 1}
Answer = 1

{} {X → 1,
 Y → 1}

1

handleinterp The tree is interpreted via
an event handler

The semantics of
effects is introduced

generic, provided
by the library

specific,
user defined

A general recipe

9

A general recipe

9

1. Write down the syntax of your languageℒ

A general recipe

9

1. Write down the syntax of your languageℒ
2. Inventory the effects of your language and

write the corresponding event interface ℰ

A general recipe

9

1. Write down the syntax of your languageℒ
2. Inventory the effects of your language and

write the corresponding event interface ℰ

3. Use the itree combinators to represent as
non-interpreted itrees over

ℒ
ℰ

A general recipe

9

1. Write down the syntax of your languageℒ
2. Inventory the effects of your language and

write the corresponding event interface ℰ

3. Use the itree combinators to represent as
non-interpreted itrees over

ℒ
ℰ

Compositionality

A general recipe

9

1. Write down the syntax of your languageℒ
2. Inventory the effects of your language and

write the corresponding event interface ℰ

3. Use the itree combinators to represent as
non-interpreted itrees over

ℒ
ℰ

4. Handle into an appropriate monad ,
get an interpreter for whole programs for free

ℰ ℳ

Compositionality

A general recipe

9

1. Write down the syntax of your languageℒ
2. Inventory the effects of your language and

write the corresponding event interface ℰ

3. Use the itree combinators to represent as
non-interpreted itrees over

ℒ
ℰ

4. Handle into an appropriate monad ,
get an interpreter for whole programs for free

ℰ ℳ

Compositionality

Modularity

A general recipe

9

1. Write down the syntax of your languageℒ
2. Inventory the effects of your language and

write the corresponding event interface ℰ

3. Use the itree combinators to represent as
non-interpreted itrees over

ℒ
ℰ

4. Handle into an appropriate monad ,
get an interpreter for whole programs for free

ℰ ℳ

5. As a bonus, extract the result to OCaml to
get a definitional interpreter

Compositionality

Modularity

A general recipe

9

1. Write down the syntax of your languageℒ
2. Inventory the effects of your language and

write the corresponding event interface ℰ

3. Use the itree combinators to represent as
non-interpreted itrees over

ℒ
ℰ

4. Handle into an appropriate monad ,
get an interpreter for whole programs for free

ℰ ℳ

5. As a bonus, extract the result to OCaml to
get a definitional interpreter

Compositionality

Modularity

Executability

Scaling to a Fully Fledged Language

10

E = LE +′ GE +′ ME

+′ CallE +′ IntrinsicsE

+′ PickE +′ UBE

+′ DebugE +′ FailureE

Event interface for an IR program
1. Write down the syntax of your language

2. Inventory the effects of your language and
write the corresponding event interface

3. Use the itree combinators to represent as
non-interpreted itrees over

4. Handle into an appropriate monad ,
get an interpreter for whole programs for free

5. As a bonus, extract the result to OCaml to
get a definitional interpreter

ℒ

ℰ

ℒ
ℰ

ℰ ℳ

Scaling to a Fully Fledged Language

10

E = LE +′ GE +′ ME

+′ CallE +′ IntrinsicsE

+′ PickE +′ UBE

+′ DebugE +′ FailureE

Event interface for an IR program
1. Write down the syntax of your language

2. Inventory the effects of your language and
write the corresponding event interface

3. Use the itree combinators to represent as
non-interpreted itrees over

4. Handle into an appropriate monad ,
get an interpreter for whole programs for free

5. As a bonus, extract the result to OCaml to
get a definitional interpreter

ℒ

ℰ

ℒ
ℰ

ℰ ℳ

Compositional representation
for (open) IR programs

Scaling to a Fully Fledged Language

10

E = LE +′ GE +′ ME

+′ CallE +′ IntrinsicsE

+′ PickE +′ UBE

+′ DebugE +′ FailureE

Event interface for an IR program
1. Write down the syntax of your language

2. Inventory the effects of your language and
write the corresponding event interface

3. Use the itree combinators to represent as
non-interpreted itrees over

4. Handle into an appropriate monad ,
get an interpreter for whole programs for free

5. As a bonus, extract the result to OCaml to
get a definitional interpreter

ℒ

ℰ

ℒ
ℰ

ℰ ℳ

Compositional representation
for (open) IR programs

VIR

structural representation
Level 0 itree VellvmE

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

Pieces of state get
introduce

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1) Pieces of state get
introduce

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

Pieces of state get
introduce

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

Pieces of state get
introduce

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG
Memory model

based on CAV’15

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

Pieces of state get
introduce

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG
Memory model

based on CAV’15

Model supports nondeterminism
defines a set of possible behaviors.
 ⇒ to account for undef and UB

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

Pieces of state get
introduce

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

itree E4 (* (* (*)))

executable interpreter

MemstateT (itree E4)* EnvL * EnvG

itree E4 (* (* (*))) MemstateT (itree E5)* EnvL * EnvG

τundefinterpret = 0τ

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG
Memory model

based on CAV’15

Model supports nondeterminism
defines a set of possible behaviors.
 ⇒ to account for undef and UB

VIR

Executable reference interpreter
⇒ for debugging and validation

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

Pieces of state get
introduce

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

itree E4 (* (* (*)))

executable interpreter

MemstateT (itree E4)* EnvL * EnvG

itree E4 (* (* (*))) MemstateT (itree E5)* EnvL * EnvG

τundefinterpret = 0τ

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG
Memory model

based on CAV’15

Model supports nondeterminism
defines a set of possible behaviors.
 ⇒ to account for undef and UB

VIR

Executable reference interpreter
⇒ for debugging and validation

∋

Obtain refinement proof
for free!

12

But How Does it Relate to LLVM IR?

You can play with it yourself!

13

Tiny OCaml driver
to crawl the tree

Parser Extracted
interpreter

120

External calls
Debugging messages
Failure

You can play with it yourself!

13

Tiny OCaml driver
to crawl the tree

Parser Extracted
interpreter

120

External calls
Debugging messages
Failure

* See the paper for the details of the features we cover

Realistic* (sequential) subset, happy to take feature requests!

You can play with it yourself!

13

Tiny OCaml driver
to crawl the tree

Parser Extracted
interpreter

120

External calls
Debugging messages
Failure

* See the paper for the details of the features we cover

Realistic* (sequential) subset, happy to take feature requests!

Tested against clang over:
•A collection of unit tests
•A handful of significant programs from the HELIX project
•Early experiments over randomly generated programs
 using QuickChick

14

But Why Would it Be Any Useful?

15

Coinductive relation ignoring finite amounts of internal steps

A (weak) bisimulation over itrees

≈

Get us a first (fine) notion of equivalent programs

Structural Equational Theory and
Compositional Reasoning

16

A battery of structural equational lemmas at the VIR level

Structural Equational Theory and
Compositional Reasoning

16

A battery of structural equational lemmas at the VIR level

Reasoning about control-flow graph composition

⟦ ⟧ ⟦ ⟧cfg1 ∪ cfg2 (f, to) ≈ cfg2 (f, to)

outputs(cfg2) ∩ inputs(cfg1) = ∅ to ∉ inputs(cfg1)

cfg1

cfg2
to

Structural Equational Theory and
Compositional Reasoning

16

A battery of structural equational lemmas at the VIR level

Proof of a simple block-fusion optimization

Reasoning about control-flow graph composition

⟦ ⟧ ⟦ ⟧cfg1 ∪ cfg2 (f, to) ≈ cfg2 (f, to)

outputs(cfg2) ∩ inputs(cfg1) = ∅ to ∉ inputs(cfg1)

cfg1

cfg2
to

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R

Simulation
relations over

richer and
richer states

⊆

∼1
R

⊆∼2
R

⊆∼3
R

∼4
R

⊆

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R

Simulation
relations over

richer and
richer states

⊆

∼1
R

⊆∼2
R

⊆∼3
R

∼4
R

⊆

Set inclusion
up-to the

underlying
refinement

relation

∼5
R

⊆
⊆

∼6
R

VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2)*EnvG

propositional model

itree E4 (* (* (*))) → Pℙ

itree E5 (* (* (*))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R⊆

∼1
R

⊆∼2
R

⊆∼3
R

∼4
R

⊆

∼5
R

⊆
⊆

∼6
R

Block-Fusion (proof)

Block-Fusion (result)

Instruction level reasoning

18

⟦%x = load i64, i64* %acc⟧instr

To reason about instructions, we could get back down to comparing trees

Instruction level reasoning

18

⟦%x = load i64, i64* %acc⟧instr

To reason about instructions, we could get back down to comparing trees

⟦%x = load i64, i64* %acc⟧instr g l m Ret (m, (Maps.add x uv l’, (g, tt)))≈
read m a i64 = inr uv

⟦acc⟧expr g l m Ret (m, (l’, (g, tt)))≈

Instead, we reason at the level of VIR through a battery of lemmas
for each expression and instruction

Representation functions can be made completely opaque

Two main reasoning ingredients

19

Strong equivalences at the VIR level over:
•the syntactic structure of the language
•the control flow
•the instructions, expressions and terminators.

Symbolic interpreter that can be run by rewriting during refinement proofs

Two main reasoning ingredients

19

Strong equivalences at the VIR level over:
•the syntactic structure of the language
•the control flow
•the instructions, expressions and terminators.

Symbolic interpreter that can be run by rewriting during refinement proofs

A primitive relational program logic:
•Weakening, conjunction, … over the postcondition
•Sequential composition

Compositional construction of refinement proofs

SPIRAL/HELIX

DSL for high-performance numerical computing.
[Püschel, et al. 2005] [Franchetti et al., 2005, 2018] [Zaliva et al., 2015 2018, 2019]

20

•Numerical computations compiled down to LLVM IR

•Formalized in Coq, targets Vellvm

•Bottom of the compilation chain proved* w.r.t. this technique

* Some operators are currently not proved

HCOL ∑-HCOL MHCOL DHCOL FHCOL LLVM IR

formula

SPIRAL
OL

SPIRAL
∑-OL Verified Compiler

via itrees/vir

Vellvm is Back!

Interaction Trees (itrees)

github.com/DeepSpec/InteractionTrees

opam install coq-itree

Vellvm

github.com/vellvm/vellvm

Soon(ish) in opam!

Used to build

(Re)
A fertile ground is laid!

21

•a certified interpreter
•promising modularity
•a rich equational theory
•an equational style to refinement proofs

A Coq formal semantics for a large fragment
of LLVM IR coming with:

Verified optimizationsVerified analyses

Back-endsConcurrency

