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%1 = alloca 
%acc = alloca 
store %n,  %1
store 1,  %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:
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br label %start

%12 = load %acc
ret %12

body: post:

Program transformations modify G, 
invariants must relate the pc 

Lack of compositionality

  G ⊢ pc, mem → pc′ , mem′ 

The semantics does not compute, 
it is a relation  

Lack of executability

A single relation encompasses  
all aspects of the semantics 

Lack of modularity



This Paper: a Redesign for Vellvm

Interaction Trees (itrees)

github.com/DeepSpec/InteractionTrees

(Re)Vellvm

github.com/vellvm/vellvm

Used to build

[Xia et al. - POPL 2020]

[This paper]
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A Tree Represents an Interactive Computation

τ Read X

Write Y 0

τ τ τ

1

2

3

Observable 
events

Silent step

A result

Potentially diverging 
computationr

We consider here a computation whose interactions  
with the environment are read and writes to a state
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Write X 1 Read X

Write Y 0

Write Y 1

0

1
tt

0

1

itree MemoryE Nat

Events only specify 
the type of effects

X = 1; 
Y = X; 
ret X

represented as

St -> itree voidE (St * Nat)

{X → 1} {X → 1}
Answer = 1

{} {X → 1,
 Y → 1}

1

handleinterp The tree is interpreted via 
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∋
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Tiny OCaml driver 
to crawl the tree

Parser Extracted 
interpreter

120

External calls 
Debugging messages 
Failure

* See the paper for the details of the features we cover

Realistic* (sequential) subset, happy to take feature requests!

Tested against clang over:
•A collection of unit tests 
•A handful of significant programs from the HELIX project 
•Early experiments over randomly generated programs  
 using QuickChick
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Coinductive relation ignoring finite amounts of internal steps

A (weak) bisimulation over itrees

≈

Get us a first (fine) notion of equivalent programs



Structural Equational Theory and 
Compositional Reasoning

16

A battery of structural equational lemmas at the VIR level



Structural Equational Theory and 
Compositional Reasoning

16

A battery of structural equational lemmas at the VIR level

Reasoning about control-flow graph composition

⟦ ⟧ ⟦ ⟧cfg1 ∪ cfg2 ( f, to) ≈ cfg2 ( f, to)

outputs(cfg2) ∩ inputs(cfg1) = ∅ to ∉ inputs(cfg1)

cfg1

cfg2
to



Structural Equational Theory and 
Compositional Reasoning

16

A battery of structural equational lemmas at the VIR level

Proof of a simple block-fusion optimization

Reasoning about control-flow graph composition

⟦ ⟧ ⟦ ⟧cfg1 ∪ cfg2 ( f, to) ≈ cfg2 ( f, to)

outputs(cfg2) ∩ inputs(cfg1) = ∅ to ∉ inputs(cfg1)

cfg1

cfg2
to



VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2 )*EnvG

propositional model

itree E4 (     * (         * (         *      ))) → Pℙ

itree E5 (     * (         * (         *      ))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R



VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2 )*EnvG

propositional model

itree E4 (     * (         * (         *      ))) → Pℙ

itree E5 (     * (         * (         *      ))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R

Simulation 
relations over 

richer and 
richer states

⊆

∼1
R

⊆∼2
R

⊆∼3
R

∼4
R

⊆



VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2 )*EnvG

propositional model

itree E4 (     * (         * (         *      ))) → Pℙ

itree E5 (     * (         * (         *      ))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R

Simulation 
relations over 

richer and 
richer states

⊆

∼1
R

⊆∼2
R

⊆∼3
R

∼4
R

⊆

Set inclusion 
up-to the 

underlying 
refinement 

relation

∼5
R

⊆
⊆

∼6
R



VIR

intrinsics

Level 1 itree E0

structural representation
Level 0 itree VellvmE

global environment

EnvGLevel 2 stateT (itree E1)
local environment

Level 3 EnvLstateT (itree E2 )*EnvG

propositional model

itree E4 (     * (         * (         *      ))) → Pℙ

itree E5 (     * (         * (         *      ))) → Pℙ

MemstateT (itree E4)* EnvL * EnvG

MemstateT (itree E5)* EnvL * EnvG

τmodel undef

memory model

Level 4 MemstateT (itree E3)* EnvL * EnvG

∼0
R⊆

∼1
R

⊆∼2
R

⊆∼3
R

∼4
R

⊆

∼5
R

⊆
⊆

∼6
R

Block-Fusion (proof)

Block-Fusion (result)
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⟦%x = load i64, i64* %acc⟧instr

To reason about instructions, we could get back down to comparing trees

⟦%x = load i64, i64* %acc⟧instr g l m  Ret (m, (Maps.add x uv l’, (g, tt)))≈
read m a i64 = inr uv

⟦acc⟧expr g l m  Ret (m, (l’, (g, tt)))≈

Instead, we reason at the level of VIR through a battery of lemmas 
for each expression and instruction

Representation functions can be made completely opaque
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Strong equivalences at the VIR level over: 
•the syntactic structure of the language 
•the control flow 
•the instructions, expressions and terminators.

Symbolic interpreter that can be run by rewriting during refinement proofs

A primitive relational program logic: 
•Weakening, conjunction, … over the postcondition 
•Sequential composition

Compositional construction of refinement proofs



SPIRAL/HELIX

DSL for high-performance numerical computing.  
[Püschel, et al. 2005] [Franchetti et al., 2005, 2018] [Zaliva et al., 2015 2018, 2019]
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•Numerical computations compiled down to LLVM IR 

•Formalized in Coq, targets Vellvm 

•Bottom of the compilation chain proved* w.r.t. this technique

* Some operators are currently not proved

HCOL ∑-HCOL MHCOL DHCOL FHCOL LLVM IR

formula

SPIRAL 
OL

SPIRAL 
∑-OL Verified Compiler 

via itrees/vir



Vellvm is Back!

Interaction Trees (itrees)

github.com/DeepSpec/InteractionTrees

opam install coq-itree

Vellvm

github.com/vellvm/vellvm

Soon(ish) in opam!

Used to build

(Re)
A fertile ground is laid!
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•a certified interpreter 
•promising modularity 
•a rich equational theory 
•an equational style to refinement proofs

A Coq formal semantics for a large fragment  
of LLVM IR coming with:

Verified optimizationsVerified analyses

Back-endsConcurrency


