
Perspective Check in Paintings
M1 Internship

Yoann Coudert–Osmont

Supervised by
Elmar Eisemann Ricardo Marroqium

May - July 2019

Introduction

In a Delft museum, paintings by Pieter de Hooch are on display. It is quite easy to notice that
some pairs of paintings are very similar (e.g. Figure1). One hypothesis that would explain this
strangeness is the possibility that another painter copied Pieter de Hooch’s paintings. Looking
at the pairs in more detail, we can notice that quite often one painting respects the rules of
perspective well and the other does not respect them. This gives credibility to the hypothesis
of the existence of another painter. But humans tend to be biased to check that in each pair,
one painting respects the rules of perspective and the other does not. Then comes the need

Figure 1: A pair of similar paintings

1

to create a tool that allow us to check whether the perspective is respected in a painting with
as little human intervention as possible. The goal of this internship was therefore to create a
graphical interface to verify the perspective in a painting with as much automation as possible.
Tools already exist to find lines in an image. The most common and the one I used is the Hough
transform [DH72]. I will describe the algorithms used to create my interface in this report. In
most paintings there is a tiled floor and it is mainly the lines of the tiles that I studied. The
development of a graphical user interface with minimal user control was necessary because
there is no guarantee that a fully automated program will do exactly what we want. Part of
the internship was used to learn how to make a graphical interface with Qt and to design an
interface that is easily usable. But I’m not going to describe how this interface works, I’ll just
give some implemented features inside this report.

Contents

1 Reminders on the rules of perspective 3
1.1 Special case of a tiled floor . 3

2 Description of the algorithm 4
2.1 General description . 4
2.2 Color Space . 4
2.3 Smoothing . 5
2.4 Gradient . 6
2.5 Hough Transform . 9

3 Attempt to redraw the paintings with a perfect perspective 13

4 Conclusion 16

A Source Code 16

B Result on the other painting of the pair 17

2

1 Reminders on the rules of perspective

The main rule of perspective is that when you make a drawing, the parallel lines must all cross
at the same point. We call this point a vanishing point. In addition, all vanishing points must
be on the same line. This line is the vanishing line and corresponds to the horizon.

•
Vanishing Point

Vanishing Line

Parallel lines

Figure 2: Illustration of the perspective rules

1.1 Special case of a tiled floor

This subsection will be useful for the last section of this report. There are two interesting
equations to record about tiled floors linking tile lines with their diagonals. Indeed I will try
to build a new painting that perfectly respects the perspective. But to do this, it is necessary to
know the properties that the vanishing points of a tiled floor must respect.

Vanishing LineA B C

|
dA

| |
dB

| |
dC

| line parallel to
the vanishing line

Figure 3: Tiled floor in perspective

In the Figure3, blue lines represent a tiled floor in perspective. We will always assume that
tiles are squares. Then all the parallel lines are equally spaced. In perspective, this implies that
if a line parallel to the vanishing line is drawn, then the tile lines intersect with it at regular
intervals. We write these intervals dB for the depth lines, and dA and dC for the diagonals. A, B
and C are the vanishing points located on the vanishing line (note that here the vanishing line
is horizontal but it may not be). Finally here are the two equations respected by such a tiled
floor:

B =
dCA+ dAC
dA + dC

(1) dB = 2
dAdC
dA + dC

(2)

3

2 Description of the algorithm

2.1 General description

Finding lines in an image can be broken down into several steps. For my part, I divided
this task into four main steps. First I change the color space to switch from RGB space to
CIE Lab space [CF97]. Then I eliminate the noise and smooth the image while keeping the
areas with high gradient. In the third step I compute in each pixel of the image the direction
and amplitude of the gradient. I leave some user control over the value of some thresholds
used in this step. In addition, the user has the possibility to erase certain parts of the gradient
that are not interesting to study perspective. Finally, the last step consists in applying the
Hough transform to the gradient. The local maxima of this transformation then give us the
lines contained in the image.

Once the user has obtained the lines of the image he has the possibility to make groups in
order to calculate the vanishing points, the vanishing line but also to calculate the diagonals of
a tiled floor as we could see in the previous part. Once the user has finished this part he can
judge if the perspective is well respected.

2.2 Color Space

At the beginning of my experiments I did not make any color space changes. The gradient of
the image was calculated in the RGB space well known to all. In this space the colors are repre-
sented by three bytes, representing respectively the intensity of red, green and blue in the color.
Unfortunately for some paintings, the amplitude of the gradient obtained did not necessarily
match what I observed with the naked eye. My algorithm could return a high gradient where
I could only see a slight color change and return a low gradient where I could see a boundary
between two distinct colors. One of the concerns of RGB space, for example, is that it does not
take into account the fact that the human eye is less sensitive to the color blue than to the color
green.

The CIELAB space [CF97] allows us to correct this problem. Indeed, the Euclidean distance
in this space corresponds well to the difference in color that a human observes with his eyes.
It is a space more in line with human vision. The three coordinates of CIELAB represent the
lightness of the color (L∗ = 0 yields black and L∗ = 100 indicates diffuse white), its position be-
tween red/magenta and green (a∗, negative values indicate green while positive values indicate
magenta) and its position between yellow and blue (b∗, negative values indicate blue and posi-
tive values indicate yellow). Thus the difference between two colors (L∗1, a

∗
1,b
∗
1) and (L∗2, a

∗
2,b
∗
2) is

given by the Euclidean distance:

∆E =
√

(L∗1 −L
∗
2)2 + (a∗1 − a

∗
2)2 + (b∗1 − b

∗
2)2

I will not give the formulas for switching from RGB to CIELAB, but I can give the interme-
diate steps. There is first a non-linear transformation from RBG to sRGB then a linear transfor-
mation to the XYZ space and finally a non-linear transformation from XYZ to CIELAB. Once
this change of space was implemented, the results on some paints improved considerably.

4

2.3 Smoothing

Smoothing is often important in image processing because it allows noise to disappear. There
are many filters known to perform smoothing. There is for example the median filter which
replaces each pixel by the median value on a neighborhood, or the very used Gaussian filter
which has the particularity to be applied with a low complexity thanks to a Fourier transform.
The Gaussian filter performs a weighted average of the neighboring pixels. This weighting is
done using a Gaussian with a standard deviation σ . Averages are taken individually on each
component of the color space. If we consider an image I : N ×N → R which associates real
values to integer coordinates, then applying a Gaussian filter of standard deviation σ gives the
following image I ′:

I ′(z) =
1
W

∑
z′∈Ωz

I(z′)exp
(
−‖z − z

′‖2

2σ2

)

Where Ωz is a window around z ∈N2 andW =
∑
z′∈Ωz

exp
(
− ‖z−z

′‖2
2σ2

)
is a factor of normalization.

Since it is a convolution product, this can be computed in the Fourier space with a point-wise
product. That’s the big advantage of this filter. The problem is that it could erase borders that
would be useful for finding the lines in the image.

One solution to overcome these important edge disappearances is to use a bilateral filter
[TM98]. This filter is defined using two functions f : N2 ×N2→R and g : R×R→R and gives
the following image:

I ′(z) =
1
W

∑
z′∈Ωz

I(z)f (z,z′)g (I(z), I(z′))

Where Ωz is still a window around z and W =
∑
z′∈Ωz

f (z,z′)g(I(z), I(z′)). Thanks to the g func-
tion, not only the position of the other pixels is taken into account, but also the value of these
pixels. The idea we can then have is to use this function g to ignore pixels that have a too differ-
ent color in order not to smooth the borders between two different colors. Taking two Gaussian
functions for f and g is then common practice and that is the choice I made:

f (z,z′) = exp

−‖z − z′‖22σ2
f

 g(u,u′) = exp

−‖u −u′‖22σ2
g

The two standard deviations (σf and σg) and the size of the neighborhood are automatically
calculated according to certain image characteristics.

Gaussian filterOriginal image Bilateral filter

Figure 4: Comparison of smoothing filters

5

It can be seen in the Figure4 that the bilateral filter keeps the edges clean between the tiles
and that the noise inside the tiles is erased. This filter therefore does exactly what we want it to
do, unlike the Gaussian filter which smooths the edges between the tiles and therefore makes
it difficult to accurately locate the edges. On the other hand because of the function g, the filter
is not a convolution product and it is therefore no longer possible to go through the Fourier
space in order to calculate the results in a fast way. That’s the only downside of this filter. To
compensate for this calculation time which can be long and even to simplify the steps that will
follow, I leave the user the possibility to select with a lasso the interesting area to study in the
painting (Figure5).

Cut the image
and apply

bilateral filter

Figure 5: The user has the possibility to select the interesting zone.

2.4 Gradient

To compute the gradient of the image, I used a Sobel filter of size 3 by 3. This filter calculates
the amplitude of the gradient along the x-axis and the y-axis and then deduces the gradient
norm and direction from it. This is done for each component C of the CIELAB space. I denote
by ∗ the convolution product. We then have:

GC,x =

−3 0 3
−10 0 10
−3 0 3

 ∗C GC,y =

−3 −10 −3
0 0 0
3 10 3

 ∗C
Where GC,x and GC,y are are respectively the discrete horizontal and vertical gradients of the
component C. We can then compute the norm of the gradient in this component:

GC =
√
G2
C,x +G2

C,y

As only the direction of the gradient and not the orientation of the gradient interests us, we
want to compute the angle of the gradient modulo π instead of 2π. We then defines (G′C,x, G

′
C,y)

equal to (GC,x, GC,y) ifGC,x > 0 or to (−GC,x, −GC,y) otherwise. Finally, the normG and the angle
Θ of the gradient are obtained as follows:

G =
√
GL∗ +Ga∗ +Gb∗ Θ = arg

(
GL∗G

′
L∗,x +Ga∗G

′
a∗,x +Gb∗G

′
b∗,x + i

(
GL∗G

′
L∗,y +Ga∗G

′
a∗,y +Gb∗G

′
b∗,y

))

6

Figure 6: Result of the Sobel filter

In the Figure6 we can see the result obtained on the same painting used in the previous part
about smoothing (I will use this painting throughout the explanation of the algorithm). The
image on the left is the smoothed paint from the previous part and the one on the right is the
image representing the gradient. For each pixel, the intensity of the color represents the norm
of the gradient. In the image I give, the intensity is proportional to the square root of the norm.
This choice was made so that it could be seen that despite the smoothing done previously, the
gradient norm is not zero inside the tiles. The color gives the angle of the gradient. Red for
0 +Zπ, green for π/3 +Zπ and blue for 2π/3 +Zπ.

Automatic cleaning To eliminate the remaining noise and make the rest easier, I clean the
image a little bit. To do so, I apply a threshold that will zero all pixels in the gradient whose in-
tensity is less than a certain value. Then I compute the connected components of the remaining
pixels and zero all pixels of the connected components that have a size smaller than a minimum
size. I have a function that calculates the intensity threshold and minimum size of the related
components based on the characteristics of the image. Unfortunately, these two values are not
always perfect. I therefore allow the user to modify these values if necessary using sliders. The
effect of this cleaning is illustrated in Figure7.

Cleaning

Erased because connected component too small
Erased because the intensity is too low

Figure 7: Cleaning the gradient image

Smoothing It can be noted that the direction of the gradient is not perfect. Some isolated
pixels, or even groups of pixels, do not have a good direction. However, in the following I will
use this direction to find the lines. That’s why I smooth the direction in the gradient image. The
Algorithm 1 at the top of the next page is the function that gives the new smoothed direction
of a pixel of the gradient.

7

Algorithm 1 Gradient Smoothing

M←

0.0925 0.12 0.0925

0.12 0.15 0.12
0.0925 0.12 0.0925

function SmoothGrad(G,Θ,x,y)

a,b← 0,0
for i, j ∈ {−1,0,1}2 do

a← a+M[j + 1][i + 1]×G[x+ i][y + j]× cos(2×Θ[x+ i][y + j])
b← b+M[j + 1][i + 1]×G[x+ i][y + j]× sin(2×Θ[x+ i][y + j])

end for
Θ[x][y]← arg(a+ ib) / 2

end function

The function computes a weighted average of the gradient angle Θ in a neighborhood of size
3× 3 around the pixel (x,y). The weight depends on the distance (thanks to the M matrix) and
the amplitude of the gradient (G). In addition, the factor 2 that appears in the cosine and sinus
comes from the fact that we consider angles modulo π. Finally, because a single step of this
smoothing is not enough, this algorithm is called several times. For example, for the paint that
we use as an example, we apply 5 times the smoothing. For higher resolution images (because
this one is low resolution), I can apply up to 15 smoothing steps for the gradient. The Figure8
shows the result of the previous algorithm.

Without smoothing

With smoothing

Figure 8: Smoothing gradient result

Manual cleaning Because there may be objects on the floor of the paint or sometimes because
the noise is too high (or because we can see some damages on the paints of high quality) there
may be undesirable parts left in the gradient image. That’s why I’m leaving user control again.
There is the possibility of using a brush to remove unwanted parts. The user can choose the
size of the brush and erase bad brush strokes that he could have given. The Figure9 illustrates
this tool. White pixels are the erased gradient pixels.

8

brush stroke

Figure 9: Usage of the brush

2.5 Hough Transform

A first try Before using Hough’s transform I tried something else that I will describe in a few
lines in this paragraph. We are trying to find the main lines that make up the image. My idea
was to compute connected components on the pixels of the gradient. I considered two pixels,
adjacent if they touched each other and if their gradient angle difference was less than a certain
value. Then I performed a PCA (Principal Component Analysis) [Shl14] on each connected
component in order to obtain equations of lines corresponding to the main direction of each
component. Then I merged all the connected components for which the guide lines were close
and re-performed a PCA again to obtain new, more precise line equations.

But the big problem is that the principal component analysis was not very good on the small
connected components and some lines were mainly formed by a succession of small connected
components especially in paintings with very small tiles. Then there is a butterfly effect, some
components merge when they should not, and others do not merge when they should. The
results were therefore not very good and I implemented the Hough transform [DH72] which
gave much better results.

Parameterization We often represent a line with two parameters a and b, by the equation:
y = ax+ b

But this representation has some drawbacks. The parameters are not bounded if we consider
all the lines passing through a rectangle. Fortunately, Duda and Hart have designed another
representation that allows us to have bounded parameters ρ and θ:

ρ = xcos(θ) + y sin(θ)
Thus ρ represents the distance between the line and the origin except for the sign and θ repre-
sents the angle of the line normal. Let’s call D the length of the diagonal of the image. In the
literature we generally take θ in [0;π[and ρ in [−D;D]. For my part, I preferred to take θ in
[−π/2;π] and ρ in [0;D]. These domains cover the entire rectangle of the image, i.e. [0;W)×[0;H)
where W and H are the width and the height of the image.

Algorithm The idea of the algorithm is to build a new image H ∗, of size R× T where R and T
are fixed using the dimensions of the original image. Then for each pixel of position (x,y) of the
gradient with a non-zero intensity, and for each t ∈ [0;T) we compute the distance at the origin,
ρ of the line of direction θ = 3π/2× t/T −π/2 passing by (x,y). We then let r = R× ρ/D and we
add a positive value to the pixel of coordinates (r, t) in the image H ∗ (Algorithm 2).

9

Algorithm 2 Hough Transform
function Hough(G,Θ)

H ∗← Null image of size R× T
for (x,y) ∈ [0,W)× [0;H) with G[x][y] > 0 do

for t ∈ [0;T) do
θ← 3π/2× t/T −π/2
ρ← x.cos(θ) + y.sin(θ)
if ρ > 0 then

r← ρ ×R/D
H ∗[r][t]←H[r][t] + f (G,Θ,θ,x,y)

end if
end for

end for
return H ∗

end function

When Hough transform is computed, lines are local maximums of H ∗. To obtain these local
maximums, I sort all the pixels of the transform in descending order and then take the pixels
one by one and add them to a list L of lines if and only if the line corresponding to the pixel in
question is far enough away from all the other lines already contained in the list L.

The valueH ∗[r][t] then corresponds approximately to the number of pixels of the gradient on
the line parameterized by r and t. I say approximately because of the function f . This function
allows us to take into account the intensity of the gradient and the difference between the angle
of the line and the angle of the gradient. I have designed the following function:

f (G,Θ,θ,x,y) =
(
1−

∣∣∣sin(θ −Θ[x][y])
∣∣∣ 2

3

)
×
(
1 +

3
2
G[x][y]
max(G)

)

x

y

+
+

+
A

B

C

× ×D E

ρ

θ

A B CD

E

line

line

Original Space Hough Space

Figure 10: Hough Transform Example

The Figure10 shows the curves where the Hough transform is strictly positive for five points
sampled on two lines. The local maximums are located where the curves intersect. The two
intersection points observed therefore correspond to the two lines that were sampled.

10

Improvements This algorithm can be improved in many ways to reduce the computation time
but also to improve the final result. Here are the main improvements I have implemented:

• We don’t have to go through the whole spectrum of θ but just limit ourselves to a smaller
window around Θ[x][y]. This limits the computation time and prevents some pixels from
contributing to a line that does not correspond at all to the orientation of the gradient.

• After computing ρ for a given pixel and direction θ, instead of taking r as a rounding of
ρ ×R/D we can take the two integers r1 = bρ ×R/Dc and r2 = dρ ×R/De and add a portion
from f (G,Θ,θ,x,y) to H[r1][t] and H[r2][t].

• The valuesH[r][t] can be readjusted according to the distance that the line parameterized
by r and t travels in the cut area of the image (see Figure5).

• Once you have found that the pixel (r, t) of the Hough transform corresponds to a local
maximum and therefore to a line, you can use the values of the Hough transform in a
small neighbourhood of (r, t) to readjust the parameters ρ and θ of the corresponding
line.

Hough
trans.

Figure 11: Hough Transform on painting

11

On the Figure11 we can see what the transform gives on the painting we have been following
since the beginning. Only the 20 best lines are displayed in the interface after clicking on the
button to find the lines. But the user has the possibility to delete the lines that do not interest
him with the right click and to add the lines that the Hough transform found without them
being displayed by right-clicking approximately where the desired line should be. The user also
has the possibility to drag the mouse to indicate approximately the direction of the line if the
position of the click is not really accurate. As mentioned in the subsection 2.1, the user can then
group the lines together to compute the vanishing points (they are computed by minimizing the
average square distances with the group lines) and also to compute the diagonals of the tiles.
Diagonals are calculated by applying a PCA [Shl14] on the intersections of the horizontal and
depth lines. Finally, it is possible to save the result obtained in SVG format. The Figure12
shows the result obtained for the painting we are following. It can then be seen that even if the
vanishing line is not very horizontal, the perspective seems to be respected since the parallel
lines all intersect well at the same point and all these vanishing points are approximately on
the same line.

Figure 12: Final Result

Result on the painting that looks like this one is given in the appendices. I also give for
some of them the difference obtained between the lines drawn by my algorithm and the lines
drawn by Ricardo. Finally, we would also like to know how close or far away the painting is to
a perfect perspective. Indeed, we would like to know if it is possible that the artist made small
inaccuracies or if he did not completely take into account the rules of perspective. Moreover,
my algorithm is not necessarily very precise and therefore it can be interesting to see that a
perfect perspective can be very close to the painting. This is the purpose of the next section.

12

3 Attempt to redraw the paintings with a perfect perspective

Elmar suggested I use the paper Structure preserving manipulation of photographs [OBBT07]
that allows us to modify an image by using its gradient. The idea is then to do the following
steps starting from the lines obtained in the previous section:

• Compute new lines for the tiles that would all intersect exactly at a single vanishing point
and remain as close as possible to the previously obtained lines.

• Modify the gradient of the image so that the high intensity pixels are on the new lines.

• Use Poisson editing [PGB03] to obtain the new image with perfect perspective from the
new gradient.

Unfortunately, I didn’t get anything conclusive for this second step. I will therefore only de-
scribe what I was able to do for the first step.

For the first step I parameterize the perspective with the coordinates of the points A, B and
C and with the distances dA, dB and dC (see Figure3) between the intersections of the paintings
lines with a line parallel to the vanishing line and located at a distance dtrans from it. Thanks to
the equations (1) and (2) we can remove B and dB from our parameterization. We then have 6
parameters to optimize:

xA, yA, xC , yC , dA, dC
I have broken down the function that these parameters should minimize into the sum of three
sub-functions explained in the next paragraphs. In the following I will use the notation cte to
designate a constant whose value won’t be given in order not to overload the expression with
uninteresting details. And I will also use v to designate an expression that does not depend on
the parameters to be minimized but that is dependent on the lines of the painting to which we
are trying to be the closest.

In order to have a horizontal vanishing line and in order to have well oriented tiles, I try to
minimize the following value:

R =
(yC − yA)2

(xC − xA)2 + (yC − yA)2
×
(
v.(dC − dA)2 + cte

)
(3)

The left-side of the multiplication is null when the vanishing line is horizontal and strictly
positive otherwise. The right-side try to minimize the difference between dC and dA because
if these two values are equal then tiles are correctly oriented (horizontal lines of the floor are
parallel to the vanishing line).

So that the vanishing points do not diverge too much, I minimize also this expression:

S = v.(xA − xA0
)2 + v.(yA − yA0

)2 + v.(xB − xB0
)2 + v.(yB − yB0

)2 + v.(xC − xC0
)2 + v.(yC − yC0

)2 (4)

Where B and dB are still given by the equations (1) and (2). The points A0, B0 and C0 are the
vanishing points obtained in the previous section, the ones that are represented by red dots in
the Figure12. This expression S is simply the sum of the square distances of the new vanishing
points to the old ones.

13

The last expression to minimize is the most complicated one. With the two previous expres-
sions R and S we only take care of the vanishing line and the vanishing points but we don’t take
care of the position of the lines in the paintings. In order not to have something too complicated
to optimize, I decided to make sure that for each group of parallel lines, the endpoints of the
right-most line and the left-most line match as closely as possible with the endpoints of initial
lines.

Lines from the previous part

•
A0

•
PA0

•P ′A0

nA = 8 lines

Vanishing Line

Image Border

New lines

(D)
(nA − 1)× dA

d
tran

s

•A

•
PA0

•P ′A0
•
PA •

P ′A

~u

~n

Figure 13: Constructions of a few points for the function to be minimized

We call PA0
the endpoint of the left-most line whose vanishing point is A0 and P ′A0

the end-
point of the right-most line whose vanishing point is also A0. We define PB0

, P ′B0
, PC0

and P ′C0
in

the same way. Here I will only explain what I minimize for the lines whose vanishing points is
A, but you can replace A with B or C for the rest of the paragraph. We can also define the unit

vanishing line direction vector ~u by the normalization of
−−→
AC . Then we can obtain the normal

unit vector ~n by a simple rotation of minus 90 degrees. Now our goal is to compute the distance
between P ′A0

and the new right-most line assuming that the left-most line passes through PA0
.

To do this, we use the fact that the intersections of lines whose vanishing point is Awith the line
(D) (the one parallel to the vanishing line and located at a distance dtrans from it) are spaced
from the distance dA. Thus we define PA as the intersection between (D) and (APA0

):

PA = A+ dtrans /
(
~n.
−−−−→
APA0

)
×
−−−−→
APA0

Therefore the right-most line passes through the point P ′A defined by:

P ′A = PA + (nA − 1)× dA × ~u

Where nA is the number of lines whose vanishing points is A. We finally get the wanted dis-
tance:

dist
(
(AP ′A), P ′A0

)
=

∣∣∣∣∣det
[−−−−−→
P ′AP

′
A0

−−−→
AP ′A

]∣∣∣∣∣ / ∥∥∥∥∥−−−→AP ′A ∥∥∥∥∥
The last term that we need to minimize is then:

T = dist
(
(AP ′A), P ′A0

)2
+ dist

(
(BP ′B), P ′B0

)2
+ dist

(
(CP ′C), P ′C0

)2
(5)

14

Thanks to the equation (3), (4) and (5) we obtain the function to minimize:

F(xA, yA,xC , yC ,dA,dC) = cte.R + v.S + v.T

This minimization is done using the Newton Raphson’s method. With my way of initializing
variables (which I will not detail) it generally takes no more than 3 steps of this method to
converge.

wrong Ok

Once the six parameters have been optimized, we actually obtain lines
that remain close to the initial lines. But there is one thing wrong with it.
Lines from the vanishing points A, B and C do not all intersect at the same
time. There is a slight difference between the intersections of these lines
two by two. I then slightly shift each group of lines along the direction of the vanishing line to
ensure that the three groups intersect at the same time. Once this problem is solved, we obtain
the result in the Figure14.

Figure 14: Result of the perfect perspective

It can be seen that these new lines match the tiles of the paint well. Unfortunately, when
trying on other paints, the result obtained is not always great. It is then necessary to modify
some constants in the function to be minimized to ensure that a perfect perspective really does
not fit with the paint because by changing the constants it is sometimes possible to obtain a
perfect perspective that fits well. To fix this we could add sub-functions to minimize like T but
on extreme points of different lines rather than the right-most one. On the other hand, doing
this increases the computing time.

15

4 Conclusion

At the end of this internship I have obtained a graphic interface that is quite easy to use
and allows us to do the desired work without human bias. Indeed, for some paints, I obtained
different results from what Ricardo had obtained by hand. Of course, there is still much room
for improvement. When the lines are not quite straight in the painting, the algorithm will
usually find a line that matches a portion of the painting’s line but not the entire painting’s
line. I tried to use a PCA on the pixels close to the found lines but the result was not great.
Moreover, the thresholding after the Sobel filter is certainly not the best that can be done,
one could imagine using a threshold that depends on local and not global intensity. Indeed
currently the contours in a shaded area are less strong than the illuminated contours which is
not desirable. Finally, the last part, which was supposed to consist of redrawing the paint, was
not completed. This is clearly an avenue to explore.

References

[CF97] Christine Connolly and Thomas Fliess. A study of efficiency and accuracy in the
transformation from RGB to CIELAB color space. IEEE Trans. Image Processing,
6(7):1046–1048, 1997.

[DH72] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect lines
and curves in pictures. Commun. ACM, 15(1):11–15, 1972.

[OBBT07] Alexandrina Orzan, Adrien Bousseau, Pascal Barla, and Joëlle Thollot. Structure-
preserving manipulation of photographs. In Proceedings of the 5th International Sym-
posium on Non-Photorealistic Animation and Rendering 2007, San Diego, California,
USA, August 4-5, 2007, pages 103–110, 2007.

[PGB03] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM
Trans. Graph., 22(3):313–318, 2003.

[Shl14] Jonathon Shlens. A tutorial on principal component analysis. CoRR, abs/1404.1100,
2014.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images.
In ICCV, pages 839–846, 1998.

A Source Code

Here is my git repository: https://github.com/Nanored4498/Painting-Analysis. The source
code of the interface is in the folder src and there is Python script in the folder redraw for the
section 3 about the perfect perspective.

16

https://github.com/Nanored4498/Painting-Analysis

B Result on the other painting of the pair

Figure 15: Results on the painting that looks similar to the one in the Figure12

In this painting (Figure15) the perspective also seems to be well respected. The observation
that in each pair, one painting respects perspective and the other not, is then not realy verified
for the pair that illustrated this report. However, by observing the perfect perspective closest to
this painting (Figure16), we can see that it does not quite match the painting. We can say that
the perspective remains verified but that it is not as good as in the first painting of this pair.

17

Bad

Bad

Figure 16: Perfect perspective obtained on the other painting of the pair

18

	Reminders on the rules of perspective
	Special case of a tiled floor

	Description of the algorithm
	General description
	Color Space
	Smoothing
	Gradient
	Hough Transform

	Attempt to redraw the paintings with a perfect perspective
	Conclusion
	Source Code
	Result on the other painting of the pair

