ALGORITHMIQUE ET STRUCTURES DE DONNEES

1. Introduction a l'algorithmie et la complexité

Yoann Coudert--Osmont
26 Janvier 2026

1/23



Algorithme
Un algorithme est une suite finie d’instructions permettant de résoudre un
probleme.

2/23



Algorithme

Un algorithme est une suite finie d’instructions permettant de résoudre un
probleme.

Exemples de problémes

* Trouver le chemin le plus court entre deux points sur une carte (GPS).

» Affecter les nouveaux étudiants aux établissements de ’enseignement
supérieur (Parcoursup).

* Chercher les pages web les plus pertinentes pour une séquence de termes
donnée (Google, Bing, DuckDuckGo).

2/23



Objectif

En algorithmie on cherche généralement a construire des algorithmes efficaces.
C’est a dire, des algorithmes ayant une faible complexité.

Complexite

La complexité temporelle d’un algorithme est le nombre d’opération
élémentaires réalisées durant son exécution.

La complexité spatiale d’un algorithme est la quantité de mémoire nécessaire

pour son exécution.

28



Objectif

En algorithmie on cherche généralement a construire des algorithmes efficaces.
C’est a dire, des algorithmes ayant une faible complexité.

Complexite

La complexité temporelle d’un algorithme est le nombre d’opération
élémentaires réalisées durant son exécution.

La complexité spatiale d’un algorithme est la quantité de mémoire nécessaire

pour son exécution.

Autres objectifs

* Parallélisation pour les ordinateurs récents (CPU multi-cceurs, GPU, ...)
* I’Ergonomie, la lisibilité du code, la compréhensibilité.

28



1. Complexité
2. Exemples
Sous-tableau de somme maximale

Exponentiation rapide

3. Théoreme maitre

4/23



Complexite




Un algorithme A est en quelque sorte une fonction qui prend une entrée x et
retourne une sortie A(y).

Exemple

Pour la recherche de plus court chemin entre deux points d’une carte, ’entrée se
compose d’un graphe (un ensemble de routes reliant des points) et de 2 points A

et B appartenant a ce graphe entre lesquels on cherche un plus court chemin. La
sortie est un chemin entre A et B (une succession de routes entre A et B).

5728



Complexité temporelle
La complexité temporelle C 4 d’un algorithme A est une fonction retournant le
nombre d’opérations effectuées par I'algorithme C 4(x) pour une entrée x.

6/23



IIii%EH!#HHHEIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Complexité temporelle

La complexité temporelle C 4 d’un algorithme A est une fonction retournant le
nombre d’opérations effectuées par I'algorithme C 4(x) pour une entrée x.

Exemple

def somme(L):

s =0 # exécutée 1 fois
for x in L:

s += x # exécutée len(L) fois
return s

Ici, C4(L) =1 +len(L).
Dépend uniquement de len(L) !!!

6/23



Reparameétrisation de la complexite

Complexité temporelle

La complexité temporelle C 4 d’un algorithme A est une fonction retournant le
nombre d’opérations effectuées par l'algorithme C 4(n) pour une-entréex une
taille d’entrée n.

7/23



Reparameétrisation de la complexite

Complexité temporelle

La complexité temporelle C 4 d’un algorithme A est une fonction retournant le
nombre d’opérations effectuées par l'algorithme C 4(n) pour une-entréex une
taille d’entrée n.

Exemple
def trouver(L, x):
for i in range(len(L)):
if L[i] == x:
return i

return None

Ici, C4([3,5,4],3) =1 et C%([3,5,4],4) = 3.
Avec une taille d’entrée n =len(L), C 4(3) ne semble pas bien défini ...
CA(3):1 ? ou CA(3)=3?

7/23



Reparameétrisation de la complexite

Lorsque la complexité ne dépend pas que de la taille de I’entrée, il est nécessaire
d’apporter plus de précision sur ce que I'on mesure.

8/23



Reparameétrisation de la complexite

Lorsque la complexité ne dépend pas que de la taille de I’entrée, il est nécessaire
d’apporter plus de précision sur ce que I'on mesure.

* Complexité dans le pire cas : La facon la plus courante de mesurer la
complexité pour une taille d’entrée n est de donner le nombre d’opérations
effectuées dans le pire cas. C’est a dire :

Ciire(n): max. C4(x)
taille(x)=n

8/23



Reparameétrisation de la complexite

Lorsque la complexité ne dépend pas que de la taille de I’entrée, il est nécessaire
d’apporter plus de précision sur ce que I'on mesure.

* Complexité dans le pire cas : La facon la plus courante de mesurer la
complexité pour une taille d’entrée n est de donner le nombre d’opérations
effectuées dans le pire cas. C’est a dire :

Cplre _ ce
( ) taig;(ax))(:n A(X)

* Complexité en moyenne : Il arrive parfois de considérer ’espérance de la
complexité selon une certaine distribution pour une taille donnée.

Cmoyen( IEX [Ci(x)]

8/23



Reparameétrisation de la complexite

Lorsque la complexité ne dépend pas que de la taille de I’entrée, il est nécessaire
d’apporter plus de précision sur ce que I'on mesure.

* Complexité dans le pire cas : La facon la plus courante de mesurer la
complexité pour une taille d’entrée n est de donner le nombre d’opérations
effectuées dans le pire cas. C’est a dire :

Cplre _ ce
( ) taig;(ax))(:n A(X)

* Complexité en moyenne : Il arrive parfois de considérer ’espérance de la
complexité selon une certaine distribution pour une taille donnée.

Cmoyen( IEX [Ci(x)]
Par défaut, on utilisera la complexité dans le pire cas.

8/23



Reparameétrisation de la complexite

Exemple

def trouver(L, x):
for i in range(len(L)):
if L[i] == x:
return i

return None

9/23



Complexité asymptotique

* Il est souvent difficile de mesurer exactement le nombre d’opérations
effectuées.

¢ Comment comparer deux algorithmes A et B ? Pour quelles tailles d’entée n
faut-il les comparer ?

10/23



Complexité asymptotique

* Il est souvent difficile de mesurer exactement le nombre d’opérations
effectuées.

¢ Comment comparer deux algorithmes A et B ? Pour quelles tailles d’entée n
faut-il les comparer ?

Solution: Comportement asymptotique lorsque n — +oo.

10/23



Domination (Grand O)

Domination

Soit f et g deux fonctions de R dans R. On dit que f est dominée par g et I'on
note f(x) = O(g(x)) lorsqu’il existe deux constantes N et C tel que
Vx> N, |f(x) < Clg(x)].

11/23



Domination (Grand O)

Domination

Soit f et g deux fonctions de R dans R. On dit que f est dominée par g et I'on
note f(x) = O(g(x)) lorsqu’il existe deux constantes N et C tel que
Vx> N, |f(x) < Clg(x)].

Exemples
¢ 2x%+20x? - 5x+100 = O(x?)
* nlog(n) = O(n?)
o nlOOO — 0(2”)

11/23



Notations () et ©

Notations () et ©
Soit f et g deux fonctions de R dans R.

* On dit que f est minorée par g et 'on note f(x) = Q(g(x)) lorsque g est
dominée par f (i.e. lorsque g(x) = O(f(x))).

* On dit que f et g sont du méme ordre de grandeur et I'on note
f(x) =0(g(x)) lorsque f(x) = O(g(x)) et f(x) = Q(g(x))-

12/23



Notations () et ©

Notations () et ©
Soit f et g deux fonctions de R dans R.

* On dit que f est minorée par g et 'on note f(x) = Q(g(x)) lorsque g est
dominée par f (i.e. lorsque g(x) = O(f(x))).
* On dit que f et g sont du méme ordre de grandeur et I'on note
f(x) =0©(g(x)) lorsque f(x) = O(g(x)) et f(x) = Q(g(x)).
Exemples
o 2x3 4+ 5x =0 (x3)

+ i =Q(log(n)
e n=0Q(n!)

12/23



Complexité asymptotique

On utilisera couramment la notation grand O pour donner la complexité
asymptotique des algorithmes.

Les fonctions somme et trouver précédentes sont ainsi des algorithmes que 'on
qualifie de linéaires avec une complexité C 4(n) = O(n).

13/23



Lien entre complexité et temps d’exécution

L'ordre de grandeur de la fréquence des CPU actuels est le GHz.

C’est a dire qu’ils exécutent environs 10° opérations par seconde.

Complexité | n=1|n=10 | n=10% | n=10° Exemple
O(1) 1 ns 1 ns 1 ns 1 ns addition
O(log(n)) 1 ns 3 ns 10 ns 20 ns dichotomie
O(\/n) 1 ns 3 ns 30 ns 1 ps test de primalité naif
O(n) Ins | 10ns 1 ps 1 ms parcours de liste
O(nlog(n)) | 1ns | 30ns 10 ps 20 ms tri de tableau
O(n?) 1ns | 100 ns 1 ms 20 min 3SUM
O(n?) 1 ns 1 ps ls 30 ans | multiplication matricielle
O(2") 1ns 1 ps 10284 ans SAT

14/23



Exemples




Sous-tableau de somme maximale

Probléme

Etant donné un tableau L, contenant #n nombres, notre tiche est de calculer la
plus grande somme possible de valeurs consécutives dans le tableau.

1f2fafs[s]2]s5]2]

15/23



Sous-tableau de somme maximale

Probléme

Etant donné un tableau L, contenant #n nombres, notre tiche est de calculer la
plus grande somme possible de valeurs consécutives dans le tableau.

L [ea s s 2 |
Y =10

15/23



Algorithme 1

Algorithme 1

def Algol(L):
n = len(L)
somme_max = 0
for a in range(n):
for b in range(a, n):
somme = 0
for i in range(a, b+1):
somme += L[i]
somme_max = max(somme_max, somme)
return somme_max

16/23



Algorithme 1

Algorithme 1

def Algol(L):
n = len(L)
somme_max = 0
for a in range(n):
for b in range(a, n):
somme = 0
for i in range(a, b+1):
somme += L[i]
somme_max = max(somme_max, somme)
return somme_max

Analyse de la complexiteé :

3 boucles imbriquées pouvant itérer jusqu’a n valeurs chacune = O(n?).

16/23



Algorithme 1

Algorithme 1

def Algol(L):
n = len(L)
somme_max = 0
for a in range(n):
for b in range(a, n):
somme = 0
for i in range(a, b+1):
somme += L[i]
somme_max = max(somme_max, somme)
return somme_max

Analyse de la complexité plus précise:

b
[2+Zl]:%[n3+9n2+8n+12]
a

n—1 n-1

1
(141(n):: 2+
a=0 b=a =

16/23



Algorithme 2

Algorithme 2

def Algo2(L):
n = len(L)
somme_max = 0
for a in range(n):
somme = 0
for b in range(a, n):
somme += L[b]
somme_max = max(somme_max, somme)
return somme_max

17/23



Algorithme 2

Algorithme 2

def Algo2(L):
n = len(L)
somme_max = 0
for a in range(n):
somme = 0
for b in range(a, n):
somme += L[b]
somme_max = max(somme_max, somme)
return somme_max

Analyse de la complexité :

2 boucles imbriquées pouvant itérer jusqu’a n valeurs chacune = O(n?).

17/23



Algorithme 3

Algorithme 3

def Algo3(L):

n = len(L)

somme_max = 0

somme = 0

for i in range(n):
somme = max (0, somme) + L[i]
somme_max = max(somme_max, somme)

return somme_max

18/23



Algorithme 3

Algorithme 3

def Algo3(L):

n = len(L)

somme_max = 0

somme = 0

for i in range(n):
somme = max (0, somme) + L[i]
somme_max = max(somme_max, somme)

return somme_max

Analyse de la complexité :
Une seule boucle de taille n = O(n).

18/23



Calcul de x"

Probléme

Etant donné une valeur x, et un entier 7, notre tache est de calculer x”.

19/23



Algorithme naif

Algorithme naif

def exponentiation_naive(x, n):
y =1
for _ in range(n):
y*:X
return y

20/23



Algorithme naif

Algorithme naif

def exponentiation_naive(x, n):
y = 1
for _ in range(n):
y *= X
return y

Analyse de la complexité :
Une seule boucle de taille n = O(n).

20/23



Exponentiation rapide

Exponentiation rapide

def exponentiation_rapide(x, n):

if n ==
return 1
else:
y = exponentiation_rapide(x, n//2)
zZ =y *Yy
if n%2 == 1:
Z *= X
return z

21/23



Exponentiation rapide

Exponentiation rapide

def exponentiation_rapide(x, n):

if n == 0:
return 1
else:
y = exponentiation_rapide(x, n//2)
zZ =y *Yy
if n%2 == 1:
Z *= X
return z

Analyse de la complexité :

Ca(0)=0 et CA(”):“CA(EJ) S0

21/23



Théoreme maitre




Théoreme maitre

Théoreme maitre

Si une complexité C(n) vérifie la relation de récurrence suivante :
C(n):a-C(g)+f(n), aveca>letb>1

Alors, en notant ¢ = log,(a) :

« Sif(n)=0(n°), alors C(n)=0 (n°)

* Sif(n)= @(nclogk(n)), alors C(n)= @(nclogk+1(n))
* Sif(n)=Q(n°), etsiilexistek <1etN tel queVn>N, af(%) <kf(n)
alors C(n)=0(f(n))

22/23



Exponentiation rapide

Exponentiation rapide

def exponentiation_rapide(x, n):

if n ==
return 1
else:
y = exponentiation_rapide(x, n//2)
zZ =y *Yy
if n%2 == 1:
Z *= X
return z

Analyse de la complexité :
C () = CA(H)u —  a=1,b=2 f(n)=2

23/23



Exponentiation rapide

Exponentiation rapide

def exponentiation_rapide(x, n):

if n == 0:
return 1
else:
y = exponentiation_rapide(x, n//2)
zZ =y *Yy
if n%2 == 1:
Z *= X
return z

Analyse de la complexité :
Cal(n) = CA({
Exposant critique : ¢ =log,(a) =log,(1)=0 = f(n)=06(1)=0 (nc logo(n))

23/23



Exponentiation rapide

Exponentiation rapide

def exponentiation_rapide(x, n):

if n == 0:
return 1
else:
y = exponentiation_rapide(x, n//2)
zZ =y *Yy
if n%2 == 1:
Z *= X
return z

Analyse de la complexité :
Cy(n)= CA({ J)+2
Exposant critique : ¢ =log,(a) =log,(1)=0 = f(n)=0(1)= @(nclogo(n))

N

N
|
—_
S8
|

»

~

&
Il
[\

Cyq(n)=0 (nc logl(n)) = 0O (log(n))

23/23



	Complexité
	Exemples
	Sous-tableau de somme maximale
	Exponentiation rapide

	Théorème maître

