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Définition

Algorithme

Un algorithme est une suite finie d’instructions permettant de résoudre un
problème.

Exemples de problèmes

• Trouver le chemin le plus court entre deux points sur une carte (GPS).

• Affecter les nouveaux étudiants aux établissements de l’enseignement
supérieur (Parcoursup).

• Chercher les pages web les plus pertinentes pour une séquence de termes
donnée (Google, Bing, DuckDuckGo).
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Objectif

En algorithmie on cherche généralement à construire des algorithmes efficaces.
C’est à dire, des algorithmes ayant une faible complexité.

Complexité

La complexité temporelle d’un algorithme est le nombre d’opération
élémentaires réalisées durant son exécution.
La complexité spatiale d’un algorithme est la quantité de mémoire nécessaire
pour son exécution.

Autres objectifs

• Parallélisation pour les ordinateurs récents (CPU multi-cœurs, GPU, ...)

• l’Ergonomie, la lisibilité du code, la compréhensibilité.

• ...
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Plan
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Définitions

Un algorithme A est en quelque sorte une fonction qui prend une entrée x et
retourne une sortie A(y).

Exemple

Pour la recherche de plus court chemin entre deux points d’une carte, l’entrée se
compose d’un graphe (un ensemble de routes reliant des points) et de 2 points A
et B appartenant à ce graphe entre lesquels on cherche un plus court chemin. La
sortie est un chemin entre A et B (une succession de routes entre A et B).
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Définitions

Complexité temporelle

La complexité temporelle CA d’un algorithme A est une fonction retournant le
nombre d’opérations effectuées par l’algorithme CA(x) pour une entrée x.

Exemple

def somme(L):

s = 0 # exécutée 1 fois

for x in L:

s += x # exécutée len(L) fois

return s

Ici, CA(L) = 1 + len(L).
Dépend uniquement de len(L) !!!
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Reparamétrisation de la complexité

Complexité temporelle

La complexité temporelle CA d’un algorithme A est une fonction retournant le
nombre d’opérations effectuées par l’algorithme CA(n) pour une entrée x une
taille d’entrée n.

Exemple

def trouver(L, x):

for i in range(len(L)):

if L[i] == x:

return i

return None

Ici, Ce
A([3,5,4],3) = 1 et Ce

A([3,5,4],4) = 3.
Avec une taille d’entrée n = len(L), CA(3) ne semble pas bien défini ...
CA(3) = 1 ? ou CA(3) = 3 ?
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Reparamétrisation de la complexité

Lorsque la complexité ne dépend pas que de la taille de l’entrée, il est nécessaire
d’apporter plus de précision sur ce que l’on mesure.

• Complexité dans le pire cas : La façon la plus courante de mesurer la
complexité pour une taille d’entrée n est de donner le nombre d’opérations
effectuées dans le pire cas. C’est à dire :

C
pire
A (n) = max

taille(x)=n
Ce
A(x)

• Complexité en moyenne : Il arrive parfois de considérer l’espérance de la
complexité selon une certaine distribution pour une taille donnée.

C
moyen
A (n) = Ex

[
Ce
A(x)

]
Par défaut, on utilisera la complexité dans le pire cas.
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Reparamétrisation de la complexité

Exemple

def trouver(L, x):

for i in range(len(L)):

if L[i] == x:

return i

return None

C
pire
A (n) = n et, C

moyen
A (n) =

n
2
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Complexité asymptotique

• Il est souvent difficile de mesurer exactement le nombre d’opérations
effectuées.

• Comment comparer deux algorithmes A et B ? Pour quelles tailles d’entée n

faut-il les comparer ?

Solution: Comportement asymptotique lorsque n→ +∞.
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Domination (Grand O)

Domination

Soit f et g deux fonctions de R dans R. On dit que f est dominée par g et l’on
note f (x) =O(g(x)) lorsqu’il existe deux constantes N et C tel que
∀x > N, |f (x)| ⩽ C|g(x)|.

Exemples

• 2x3 + 20x2 − 5x+ 100 = O(x3)

• n log(n) = O(n2)

• n1000 = O(2n)
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Notations Ω et Θ

Notations Ω et Θ

Soit f et g deux fonctions de R dans R.

• On dit que f est minorée par g et l’on note f (x) = Ω(g(x)) lorsque g est
dominée par f (i.e. lorsque g(x) = O(f (x))).

• On dit que f et g sont du même ordre de grandeur et l’on note
f (x) = Θ(g(x)) lorsque f (x) = O(g(x)) et f (x) = Ω(g(x)).

Exemples

• 2x3 + 5x = Θ(x3)

•
√
n = Ω(log(n))

• nn = Ω(n!)
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Complexité asymptotique

On utilisera couramment la notation grand O pour donner la complexité
asymptotique des algorithmes.
Les fonctions somme et trouver précédentes sont ainsi des algorithmes que l’on
qualifie de linéaires avec une complexité CA(n) = O(n).
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Lien entre complexité et temps d’exécution

L’ordre de grandeur de la fréquence des CPU actuels est le GHz.
C’est à dire qu’ils exécutent environs 109 opérations par seconde.

Complexité n = 1 n = 10 n = 103 n = 106 Exemple
O(1) 1 ns 1 ns 1 ns 1 ns addition

O(log(n)) 1 ns 3 ns 10 ns 20 ns dichotomie
O(
√
n) 1 ns 3 ns 30 ns 1 µs test de primalité naïf

O(n) 1 ns 10 ns 1 µs 1 ms parcours de liste
O(n log(n)) 1 ns 30 ns 10 µs 20 ms tri de tableau
O(n2) 1 ns 100 ns 1 ms 20 min 3SUM
O(n3) 1 ns 1 µs 1 s 30 ans multiplication matricielle
O(2n) 1 ns 1 µs 10284 ans . . . SAT
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Exemples



Sous-tableau de somme maximale

Problème

Étant donné un tableau L, contenant n nombres, notre tâche est de calculer la
plus grande somme possible de valeurs consécutives dans le tableau.

Σ = 10

-1 2 4 -3 5 2 -5 2
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Algorithme 1

Algorithme 1

def Algo1(L):

n = len(L)

somme_max = 0

for a in range(n):

for b in range(a, n):

somme = 0

for i in range(a, b+1):

somme += L[i]

somme_max = max(somme_max, somme)

return somme_max

Analyse de la complexité plus précise:

CA1
(n) = 2 +

n−1∑
a=0

n−1∑
b=a

2 +
b∑
i=a

1

 =
1
6

[
n3 + 9n2 + 8n+ 12

]
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Algorithme 2

Algorithme 2

def Algo2(L):

n = len(L)

somme_max = 0

for a in range(n):

somme = 0

for b in range(a, n):

somme += L[b]

somme_max = max(somme_max, somme)

return somme_max

Analyse de la complexité :
2 boucles imbriquées pouvant itérer jusqu’à n valeurs chacune =⇒O(n2).
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Algorithme 3

Algorithme 3

def Algo3(L):

n = len(L)

somme_max = 0

somme = 0

for i in range(n):

somme = max(0, somme) + L[i]

somme_max = max(somme_max, somme)

return somme_max

Analyse de la complexité :
Une seule boucle de taille n =⇒O(n).
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Calcul de xn

Problème

Étant donné une valeur x, et un entier n, notre tâche est de calculer xn.
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Algorithme naïf

Algorithme naïf

def exponentiation_naive(x, n):

y = 1

for _ in range(n):

y *= x

return y

Analyse de la complexité :
Une seule boucle de taille n =⇒O(n).
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Exponentiation rapide

Exponentiation rapide

def exponentiation_rapide(x, n):

if n == 0:

return 1

else:

y = exponentiation_rapide(x, n//2)

z = y * y

if n%2 == 1:

z *= x

return z

Analyse de la complexité :

CA(0) = 0 et CA(n) = 2 +CA

(⌊n
2

⌋)
si n > 0
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Théorème maître

Théorème maître

Si une complexité C(n) vérifie la relation de récurrence suivante :

C(n) = a ·C
(n
b

)
+ f (n), avec a ⩾ 1 et b > 1

Alors, en notant c = logb(a) :

• Si f (n) = O (nc), alors C(n) = Θ (nc)

• Si f (n) = Θ
(
nc logk(n)

)
, alors C(n) = Θ

(
nc logk+1(n)

)
• Si f (n) = Ω (nc), et si il existe k < 1 et N tel que ∀n > N, af

(
n
b

)
< kf (n)

alors C(n) = Θ (f (n))
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Exponentiation rapide

Exponentiation rapide
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return 1

else:
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z *= x

return z

Analyse de la complexité :

CA(n) = CA

(⌊n
2

⌋)
+ 2 =⇒ a = 1, b = 2, f (n) = 2

Exposant critique : c = logb(a) = log2(1) = 0 =⇒ f (n) = Θ(1) = Θ
(
nc log0(n)

)
CA(n) = Θ

(
nc log1(n)

)
= Θ (log(n))
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