
ALGORITHMIQUE ET STRUCTURES DE DONNÉES

2. Structure de données linéaires et tris

Yoann Coudert--Osmont

27 Janvier 2026

1/45



Définitions

Type abstrait

Un type abstrait est un modèle mathématique d’un ensemble de données pour
lequel est spécifié un ensemble d’opérations pouvant être effectuées sur les
données.

Structure de données

Une structure de données est une structure qui permet d’implémenter un type
abstrait, rendant les opérations du type abstrait plus ou moins efficaces, le tout
en utilisant peu d’espace mémoire.

2/45



Définitions

Type abstrait

Un type abstrait est un modèle mathématique d’un ensemble de données pour
lequel est spécifié un ensemble d’opérations pouvant être effectuées sur les
données.

Structure de données

Une structure de données est une structure qui permet d’implémenter un type
abstrait, rendant les opérations du type abstrait plus ou moins efficaces, le tout
en utilisant peu d’espace mémoire.

2/45



Exemple

Une file de priorité est un type abstrait maintenant un ensemble de n valeurs
comparables entre elles avec les opérations suivantes possibles :

• Requête : Obtenir le plus grand élément de l’ensemble.
• Mise à jour :

• Ajouter une nouvelle valeur à l’ensemble.
• Retirer le plus grand élément de l’ensemble.

Un tas binaire est une structure de donnée permettant d’implémenter une file de
priorité avec une complexité spatiale en Θ(n), et les complexités temporelles
suivantes :

• Requête : Obtenir le plus grand élément de l’ensemble en Θ(1).
• Mise à jour :

• Ajouter une nouvelle valeur à l’ensemble en Θ(log(n)).
• Retirer le plus grand élément de l’ensemble en Θ(log(n)).

3/45



Exemple

Une file de priorité est un type abstrait maintenant un ensemble de n valeurs
comparables entre elles avec les opérations suivantes possibles :

• Requête : Obtenir le plus grand élément de l’ensemble.
• Mise à jour :

• Ajouter une nouvelle valeur à l’ensemble.
• Retirer le plus grand élément de l’ensemble.

Un tas binaire est une structure de donnée permettant d’implémenter une file de
priorité avec une complexité spatiale en Θ(n), et les complexités temporelles
suivantes :

• Requête : Obtenir le plus grand élément de l’ensemble en Θ(1).
• Mise à jour :

• Ajouter une nouvelle valeur à l’ensemble en Θ(log(n)).
• Retirer le plus grand élément de l’ensemble en Θ(log(n)).

3/45



Plan

1. Structure de données linéaires

Tableaux

Listes chaînées

2. Algorithmes de tri

Tri par insertion

Tri rapide

Tri par fusion

Complexité optimale

4/45



Structure de données linéaires



Définition

Structure de données linéaire

Une structure de données linéaire organise les données selon une séquence
linéaire. On peut alors numéroter les données ; chaque élément possède un rang.

On distingue principalement deux structures de données linéaires :

• Les tableaux : Les éléments se trouvent les uns à la suite des autres dans la
mémoire. Il est ainsi possible d’accéder en O(1) à n’importe quel élément.

• Les listes chaînées : Les éléments sont dispersés dans la mémoire. Chaque
élément pointe vers le prochain élément dans la structure. L’accès au k-ème
élément se fait alors en O(k).

5/45



Définition

Structure de données linéaire

Une structure de données linéaire organise les données selon une séquence
linéaire. On peut alors numéroter les données ; chaque élément possède un rang.

On distingue principalement deux structures de données linéaires :

• Les tableaux : Les éléments se trouvent les uns à la suite des autres dans la
mémoire. Il est ainsi possible d’accéder en O(1) à n’importe quel élément.

• Les listes chaînées : Les éléments sont dispersés dans la mémoire. Chaque
élément pointe vers le prochain élément dans la structure. L’accès au k-ème
élément se fait alors en O(k).

5/45



Définition

Structure de données linéaire

Une structure de données linéaire organise les données selon une séquence
linéaire. On peut alors numéroter les données ; chaque élément possède un rang.

On distingue principalement deux structures de données linéaires :

• Les tableaux : Les éléments se trouvent les uns à la suite des autres dans la
mémoire. Il est ainsi possible d’accéder en O(1) à n’importe quel élément.

• Les listes chaînées : Les éléments sont dispersés dans la mémoire. Chaque
élément pointe vers le prochain élément dans la structure. L’accès au k-ème
élément se fait alors en O(k).

5/45



Structure de données linéaires

Tableaux



Définition

Tableau

Un tableau T est une structure permettant de stocker des valeurs (toutes du
même type) T [i] repérés par leurs indices i. Le nombre d’élément n d’un tableau
est fixe. Chaque élément peut être accédé et modifier en O(1).

T [0] T [1] T [2] . . . T [n− 1]

s octets s octets

Comme tous éléments de T ont la même taille s, l’élément T [i] se trouve à
l’adresse : [adresse(T ) + i · s].

6/45



Dans les langages de programmation

Voici différente façon de créer un tableau d’entiers T de taille n dans différents
langages :

Python

Il est possible d’utiliser la classe array de numpy.
import numpy as np

T = np.empty(n, dtype=int)

T est alors un tableau de taille n initialisé avec des valeurs aléatoires (celles déjà
présentes dans la mémoire de l’ordinateur).

7/45



Dans les langages de programmation

Voici différente façon de créer un tableau d’entiers T de taille n dans différents
langages :

C++

Il est possible d’utiliser un pointeur int*.
int *T = new int[n];

T est alors un tableau de taille n initialisé avec des valeurs aléatoires (celles déjà
présentes dans la mémoire de l’ordinateur). T est alloué sur le tas.
Pour allouer sur la pile, si n est connu au moment de la compilation, on peut
utiliser la classe std::array.

#include <array>

std::array<int, n> T;

7/45



Tableaux dynamiques

Tableau dynamique

Un tableau dynamique est une tableau dont la taille est variable. On peut
ajouter de nouveaux éléments à ce tableau.

Lorsque l’on crée un tableau, on demande au système d’exploitation de nous
allouer une zone de la mémoire. Mais il est possible que d’autre données soient
stockées immédiatement après le tableau.

T [0] T [1] . . . T [n − 1] Autre données
. . .

Espace libre
. . .

s octets (n+ 1) · s octetsréallocation

T [0] T [1] . . . T [n]Autre données
. . .

Espace libre
. . .

n · s octets s octets

8/45



Tableaux dynamiques

Tableau dynamique

Un tableau dynamique est une tableau dont la taille est variable. On peut
ajouter de nouveaux éléments à ce tableau.

Lorsque l’on crée un tableau, on demande au système d’exploitation de nous
allouer une zone de la mémoire. Mais il est possible que d’autre données soient
stockées immédiatement après le tableau.

T [0] T [1] . . . T [n − 1] Autre données
. . .

Espace libre
. . .

s octets (n+ 1) · s octets

réallocation

T [0] T [1] . . . T [n]Autre données
. . .

Espace libre
. . .

n · s octets s octets

8/45



Tableaux dynamiques

Tableau dynamique

Un tableau dynamique est une tableau dont la taille est variable. On peut
ajouter de nouveaux éléments à ce tableau.

Lorsque l’on crée un tableau, on demande au système d’exploitation de nous
allouer une zone de la mémoire. Mais il est possible que d’autre données soient
stockées immédiatement après le tableau.

T [0] T [1] . . . T [n − 1] Autre données
. . .

Espace libre
. . .

s octets (n+ 1) · s octetsréallocation

T [0] T [1] . . . T [n]Autre données
. . .

Espace libre
. . .

n · s octets s octets

8/45



Tableaux dynamiques

La réallocation du tableau nécessite de le recopier entièrement avec une
complexité temporelle en Θ(n).
Question : Combien de copies d’éléments sont effectuées lorsque l’on construit
un tableau dynamique de taille n en ajouter des éléments un à un à un tableau
initialement vide ?

9/45



Tableaux dynamiques

• T de taille 0 : 0 copie(s) à effectuer pour ajouter un élément.

• T de taille 1 : 1 copie(s) à effectuer pour ajouter un élément.

• T de taille 2 : 2 copie(s) à effectuer pour ajouter un élément.

• . . .

• T de taille n− 1 : n− 1 copie(s) à effectuer pour ajouter un élément.

• T est de taille n !

C(n) = 0 + 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 = Θ
(
n2

)
Question : Peut-on mieux faire ?

10/45



Tableaux dynamiques

• T de taille 0 : 0 copie(s) à effectuer pour ajouter un élément.

• T de taille 1 : 1 copie(s) à effectuer pour ajouter un élément.

• T de taille 2 : 2 copie(s) à effectuer pour ajouter un élément.

• . . .

• T de taille n− 1 : n− 1 copie(s) à effectuer pour ajouter un élément.

• T est de taille n !

C(n) = 0 + 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 = Θ
(
n2

)
Question : Peut-on mieux faire ?

10/45



Tableaux dynamiques

• T de taille 0 : 0 copie(s) à effectuer pour ajouter un élément.

• T de taille 1 : 1 copie(s) à effectuer pour ajouter un élément.

• T de taille 2 : 2 copie(s) à effectuer pour ajouter un élément.

• . . .

• T de taille n− 1 : n− 1 copie(s) à effectuer pour ajouter un élément.

• T est de taille n !

C(n) = 0 + 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 = Θ
(
n2

)
Question : Peut-on mieux faire ?

10/45



Tableaux dynamiques

• T de taille 0 : 0 copie(s) à effectuer pour ajouter un élément.

• T de taille 1 : 1 copie(s) à effectuer pour ajouter un élément.

• T de taille 2 : 2 copie(s) à effectuer pour ajouter un élément.

• . . .

• T de taille n− 1 : n− 1 copie(s) à effectuer pour ajouter un élément.

• T est de taille n !

C(n) = 0 + 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 = Θ
(
n2

)
Question : Peut-on mieux faire ?

10/45



Tableaux dynamiques

• T de taille 0 : 0 copie(s) à effectuer pour ajouter un élément.

• T de taille 1 : 1 copie(s) à effectuer pour ajouter un élément.

• T de taille 2 : 2 copie(s) à effectuer pour ajouter un élément.

• . . .

• T de taille n− 1 : n− 1 copie(s) à effectuer pour ajouter un élément.

• T est de taille n !

C(n) = 0 + 1 + 2 + · · ·+ (n− 1)

= n(n− 1)/2 = Θ
(
n2

)
Question : Peut-on mieux faire ?

10/45



Tableaux dynamiques

• T de taille 0 : 0 copie(s) à effectuer pour ajouter un élément.

• T de taille 1 : 1 copie(s) à effectuer pour ajouter un élément.

• T de taille 2 : 2 copie(s) à effectuer pour ajouter un élément.

• . . .

• T de taille n− 1 : n− 1 copie(s) à effectuer pour ajouter un élément.

• T est de taille n !

C(n) = 0 + 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 = Θ
(
n2

)

Question : Peut-on mieux faire ?

10/45



Tableaux dynamiques

• T de taille 0 : 0 copie(s) à effectuer pour ajouter un élément.

• T de taille 1 : 1 copie(s) à effectuer pour ajouter un élément.

• T de taille 2 : 2 copie(s) à effectuer pour ajouter un élément.

• . . .

• T de taille n− 1 : n− 1 copie(s) à effectuer pour ajouter un élément.

• T est de taille n !

C(n) = 0 + 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 = Θ
(
n2

)
Question : Peut-on mieux faire ?

10/45



Tableaux dynamiques

On peut allouer une capacité c plus grande que la taille n de T .

T [0] T [1] . . . T [n− 1] Espace libre
. . .

s octets (c −n) · s octets

Si c > n, ajouter un élément ne nécessite pas de réallocation et donc pas de copie.
L’opération se fait en Θ(1).

T [0] T [1] . . . T [n− 1] T [n] Espace libre
. . .

s octets (c −n− 1) · s octets

11/45



Tableaux dynamiques

On peut allouer une capacité c plus grande que la taille n de T .

T [0] T [1] . . . T [n− 1] Espace libre
. . .

s octets (c −n) · s octets

Si c > n, ajouter un élément ne nécessite pas de réallocation et donc pas de copie.
L’opération se fait en Θ(1).

T [0] T [1] . . . T [n− 1] T [n] Espace libre
. . .

s octets (c −n− 1) · s octets

11/45



Tableaux dynamiques

Si c = n.

T [0] T [1] . . . T [n− 1] Possiblement autre données
. . .

Alors il faut effectuer une réallocation entraînant n copies.
La nouvelle capacité devient alors [c← n+ d(n)] où d(n) ⩾ 1.

T [0] T [1] . . . T [n− 1] T [n] Espace libre
. . .

s octets (d(n)− 1) · s octets

12/45



Tableaux dynamiques

Si c = n.

T [0] T [1] . . . T [n− 1] Possiblement autre données
. . .

Alors il faut effectuer une réallocation entraînant n copies.
La nouvelle capacité devient alors [c← n+ d(n)] où d(n) ⩾ 1.

T [0] T [1] . . . T [n− 1] T [n] Espace libre
. . .

s octets (d(n)− 1) · s octets

12/45



Tableaux dynamiques

Supposons que l’on ajoute une capacité fixe d(n) = b à chaque réallocation, avec
b ⩾ 1. On suppose que l’on construit un tableau de taille n = k · b en partant d’un
tableau vide et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 0 b 0
2 b 2b b

3 2b 3b 2b
...

...
...

...

k (k − 1)b kb (k − 1)b

C(n) = (0 + 1 + 2 + ·+ (k − 1)) · b = k(k − 1)b/2 = n(n− b)/(2b) = Θ(n2)

13/45



Tableaux dynamiques

Supposons que l’on ajoute une capacité fixe d(n) = b à chaque réallocation, avec
b ⩾ 1. On suppose que l’on construit un tableau de taille n = k · b en partant d’un
tableau vide et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 0 b 0
2 b 2b b

3 2b 3b 2b
...

...
...

...

k (k − 1)b kb (k − 1)b

C(n) = (0 + 1 + 2 + ·+ (k − 1)) · b = k(k − 1)b/2 = n(n− b)/(2b) = Θ(n2)

13/45



Tableaux dynamiques

Supposons que l’on ajoute une capacité fixe d(n) = b à chaque réallocation, avec
b ⩾ 1. On suppose que l’on construit un tableau de taille n = k · b en partant d’un
tableau vide et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 0 b 0
2 b 2b b

3 2b 3b 2b
...

...
...

...

k (k − 1)b kb (k − 1)b

C(n) = (0 + 1 + 2 + ·+ (k − 1)) · b = k(k − 1)b/2

= n(n− b)/(2b) = Θ(n2)

13/45



Tableaux dynamiques

Supposons que l’on ajoute une capacité fixe d(n) = b à chaque réallocation, avec
b ⩾ 1. On suppose que l’on construit un tableau de taille n = k · b en partant d’un
tableau vide et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 0 b 0
2 b 2b b

3 2b 3b 2b
...

...
...

...

k (k − 1)b kb (k − 1)b

C(n) = (0 + 1 + 2 + ·+ (k − 1)) · b = k(k − 1)b/2 = n(n− b)/(2b) = Θ(n2)

13/45



Tableaux dynamiques

Supposons désormais que l’on ajoute une capacité d(n) = (a− 1) ·n à chaque
réallocation, avec a > 1. On suppose que l’on construit un tableau de taille n = ak

en partant d’un tableau à un élément et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 1 a 1
2 a a2 a

3 a2 a3 a2

...
...

...
...

k ak−1 ak ak−1

C(n) = 1 + a+ a2 + ·+ ak−1 =
ak − 1
a− 1

= (n− 1)/(a− 1) = Θ(n)

14/45



Tableaux dynamiques

Supposons désormais que l’on ajoute une capacité d(n) = (a− 1) ·n à chaque
réallocation, avec a > 1. On suppose que l’on construit un tableau de taille n = ak

en partant d’un tableau à un élément et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 1 a 1
2 a a2 a

3 a2 a3 a2

...
...

...
...

k ak−1 ak ak−1

C(n) = 1 + a+ a2 + ·+ ak−1 =
ak − 1
a− 1

= (n− 1)/(a− 1) = Θ(n)

14/45



Tableaux dynamiques

Supposons désormais que l’on ajoute une capacité d(n) = (a− 1) ·n à chaque
réallocation, avec a > 1. On suppose que l’on construit un tableau de taille n = ak

en partant d’un tableau à un élément et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 1 a 1
2 a a2 a

3 a2 a3 a2

...
...

...
...

k ak−1 ak ak−1

C(n) = 1 + a+ a2 + ·+ ak−1

=
ak − 1
a− 1

= (n− 1)/(a− 1) = Θ(n)

14/45



Tableaux dynamiques

Supposons désormais que l’on ajoute une capacité d(n) = (a− 1) ·n à chaque
réallocation, avec a > 1. On suppose que l’on construit un tableau de taille n = ak

en partant d’un tableau à un élément et en ajoutant les éléments un par un.

Étape Capacité Nouvelle capacité #copies
1 1 a 1
2 a a2 a

3 a2 a3 a2

...
...

...
...

k ak−1 ak ak−1

C(n) = 1 + a+ a2 + ·+ ak−1 =
ak − 1
a− 1

= (n− 1)/(a− 1) = Θ(n)

14/45



Tableaux dynamiques

C(n) = (n− 1)/(a− 1) = Θ(n)

Remarque : Plus a est grand, moins de copies sont effectuées.
En revanche, plus a est grand, plus de la mémoire est gâchée.
Après une réallocation, la capacité vaut c = a ·n.
En pratique, a est souvent compris entre 1.1 et 2.

15/45



Complexité amortie

L’ajout d’un élément au tableau dynamique peut parfois nécessité n copies si une
réallocation a lieu. Sinon, le plus souvent, aucune copie n’est effectuée.
La complexité dans le pire cas est donc un Θ(n).
En revanche, en moyenne, l’insertion nécessite C(n)/n ∼ 1/(a− 1) = Θ(1) copies.

Complexité amortie

La complexité amortie mesure la complexité moyenne d’une suite d’opérations
effectuées sur une même structure de données.

16/45



Complexité amortie

L’ajout d’un élément au tableau dynamique peut parfois nécessité n copies si une
réallocation a lieu. Sinon, le plus souvent, aucune copie n’est effectuée.
La complexité dans le pire cas est donc un Θ(n).
En revanche, en moyenne, l’insertion nécessite C(n)/n ∼ 1/(a− 1) = Θ(1) copies.

Complexité amortie

La complexité amortie mesure la complexité moyenne d’une suite d’opérations
effectuées sur une même structure de données.

16/45



Dans les langages de programmation

Voici différente façon de créer un tableau dynamique d’entiers T de taille n dans
différents langages :

Python

Il est possible d’utiliser la structure list.
� malgré le nom, ce n’est pas une liste chaînée.
>>> T = [0]*n

T est alors un tableau dynamique de taille n initialisé avec des 0. Le coût amortie
de l’insertion est en Θ(1). L’insertion d’un élément x se fait via :

>>> T.append(x)

17/45



Dans les langages de programmation

Voici différente façon de créer un tableau dynamique d’entiers T de taille n dans
différents langages :

C++

Il est possible d’utiliser la structure std::vector.
#include <vector>

std::vector<int> T(n);

T est alors un tableau dynamique de taille n initialisé avec des 0. Le coût amortie
de l’insertion est en Θ(1). L’insertion d’un élément x se fait via :

T.push_back(x);

17/45



Structure de données linéaires

Listes chaînées



Définition

Liste chaînée

Une liste chaînée L est une structure permettant de stocker une séquence de n

valeurs L0,L1, . . . ,Ln−1 à l’aide de cellules. Chaque cellule contient une valeur de
la séquence ainsi qu’un pointeur vers la cellule suivante formant ainsi une
chaîne de cellules. Contrairement au tableau qui permet l’accès direct à
n’importe quelle valeur en Θ(1), la liste requiert de parcourir les cellules les
unes après les autres.

L
L0 L1 . . . Ln−1

La dernière cellule ne pointe vers rien.

18/45



Dans les langages de programmation

Les listes sont rarement implémentées dans les librairies standards des langages
de programmation.

C++

Il est possible de définir la structure suivante :

struct Cellule {

int valeur;

Cellule *suivant;

};

using List = Cellule*;

19/45



Dans les langages de programmation

L’accès à Lk peut être implémenté de la manière suivante :

#include <cassert>

int& acces(List &L, int k) {

while(k > 0) {

assert(L != nullptr);

L = L->suivant;

-- k;

}

assert(L != nullptr);

return L->valeur;

}

La complexité est en Θ(k).

20/45



Ajout d’éléments

Ajouter un élément x au début d’une liste est possible.

L

L

x

L0 L1 . . . Ln−1

void ajouter(List &L, int x) {

Cellule *c = new Cellule;

c->valeur = x:

c->next = L;

L = c;

}

21/45



Ajout d’éléments

Ajouter un élément x au début d’une liste est possible.

L

L

x

L0 L1 . . . Ln−1

void ajouter(List &L, int x) {

Cellule *c = new Cellule;

c->valeur = x:

c->next = L;

L = c;

}

21/45



Ajout d’éléments

Ajouter un élément x au début d’une liste est possible.

L

L

x

L0 L1 . . . Ln−1

void ajouter(List &L, int x) {

Cellule *c = new Cellule;

c->valeur = x:

c->next = L;

L = c;

}

21/45



Ajout d’éléments

Pour ajouter un élément à la fin rapidement, il faut modifier la structure de liste
pour avoir accès au dernier élément en temps constant.
struct List {

Cellule *debut, *fin;

};

void ajouter_fin(List &L, int x) {

if(fin == nullptr) { // Liste vide

L.debut = L.fin = new Cellule;

} else { // Liste non vide

L.fin->suivant = new Cellule;

L.fin = L.fin->suivant;

}

L.fin->valeur = x;

L.fin->suivant = nullptr;

}

L

L0 L1 . . . Ln−1

22/45



Suppression d’éléments

On peut également retirer le premier ou le dernier élément d’une liste en Θ(1).

int retirer_debut(List &L) {

assert(L.debut != nullptr);

int x = L.debut->valeur;

Cellule *c = L.debut->suivant;

delete L.debut;

L.debut = c;

if(c == nullptr) // L est vide

L.fin = nullptr;

return x;

}

int retirer_fin(List &L) {

assert(L.fin != nullptr);

int x = L.fin->valeur;

Cellule *c = /* avant dernière valeur ? */;

delete L.fin;

L.fin = c;

if(c == nullptr) // L est vide

L.debut = nullptr;

return x;

}

23/45



Liste doublement chaînée

Liste doublement chaînée

Une liste doublement chaînée est une liste dont les cellules stockes à la fois un
pointeur vers leur successeur et un pointeur vers leur prédécesseur.

L

L0 L1 Ln−1. . .

24/45



Suppression d’éléments

On peut désormais retirer le dernier élément d’une liste en Θ(1).

struct Cellule {

int valeur;

Cellule *precedent, *suivant,

};

int retirer_fin(List &L) {

assert(L.fin != nullptr);

int x = L.fin->valeur;

Cellule *c = L.fin->precedent;

delete L.fin;

L.fin = c;

if(c == nullptr) // L est vide

L.debut = nullptr;

return x;

}

25/45



Pile

Pile

Une pile est un type abstrait dit LIFO (Last In First Out) qui supporte deux types
d’opérations :

• Insertion d’un nouvel élément à la structure.

• Accès et suppression du dernier élément ajouté.

Une pile peut être implémentée à l’aide d’une liste chaînée et des opérations
ajouter_debut et retirer_debut, toutes deux en Θ(1).

26/45



File

File

Une file est un type abstrait dit FIFO (First In First Out) qui supporte deux types
d’opérations :

• Insertion d’un nouvel élément à la structure.

• Accès et suppression du premier élément ajouté.

Une file peut être implémentée à l’aide d’une liste chaînée et des opérations
ajouter_fin et retirer_debut, toutes deux en Θ(1).

27/45



File de priorité

File de priorité

Une file est un type abstrait qui supporte deux types d’opérations :

• Insertion d’un nouvel élément à la structure.

• Accès et suppression du plus grand élément.

Une file de priorité peut être implémentée à l’aide d’une liste doublement
chaînée. Selon si la liste est maintenue triées on obtient des complexités
différentes (voir TP).

Structure Insertion Trouver + grand Surpression
Liste doubl. chaînée Θ(1) Θ(n) Θ(1)

Idem + triée Θ(n) Θ(1) Θ(1)

28/45



Algorithmes de tri



Problème

Problème

Étant donné un tableau T de taille n, on cherche à trier les valeurs du tableau de
sorte à avoir :

T [i] ⩽ T [i + 1], ∀i < n− 1

4 9 1 12 0 6 8 4

tri

0 1 4 4 6 8 9 12

29/45



Algorithmes de tri

Tri par insertion



Tri par insertion

Le tri par insertion consiste à itérer sur les éléments du tableau et à les insérer à la
bonne position parmi les éléments déjà triés. Ainsi, au moment où on considère
un élément, les éléments qui le précèdent sont déjà triés, tandis que les éléments
qui le suivent ne sont pas encore triés.

4 9 1 12 0 6 8 4

4 9 1 12 0 6 8 4

1 4 9 12 0 6 8 4

1 4 9 12 0 6 8 4

0 1 4 9 12 6 8 4

0 1 4 6 9 12 8 4

0 1 4 6 8 9 12 4

0 1 4 4 6 8 9 12

30/45



Tri par insertion

Le tri par insertion consiste à itérer sur les éléments du tableau et à les insérer à la
bonne position parmi les éléments déjà triés. Ainsi, au moment où on considère
un élément, les éléments qui le précèdent sont déjà triés, tandis que les éléments
qui le suivent ne sont pas encore triés.

4 9 1 12 0 6 8 4

4 9 1 12 0 6 8 4

1 4 9 12 0 6 8 4

1 4 9 12 0 6 8 4

0 1 4 9 12 6 8 4

0 1 4 6 9 12 8 4

0 1 4 6 8 9 12 4

0 1 4 4 6 8 9 12

30/45



Tri par insertion

Le tri par insertion consiste à itérer sur les éléments du tableau et à les insérer à la
bonne position parmi les éléments déjà triés. Ainsi, au moment où on considère
un élément, les éléments qui le précèdent sont déjà triés, tandis que les éléments
qui le suivent ne sont pas encore triés.

4 9 1 12 0 6 8 4

4 9 1 12 0 6 8 4

1 4 9 12 0 6 8 4

1 4 9 12 0 6 8 4

0 1 4 9 12 6 8 4

0 1 4 6 9 12 8 4

0 1 4 6 8 9 12 4

0 1 4 4 6 8 9 12

30/45



Tri par insertion

Le tri par insertion consiste à itérer sur les éléments du tableau et à les insérer à la
bonne position parmi les éléments déjà triés. Ainsi, au moment où on considère
un élément, les éléments qui le précèdent sont déjà triés, tandis que les éléments
qui le suivent ne sont pas encore triés.

4 9 1 12 0 6 8 4

4 9 1 12 0 6 8 4

1 4 9 12 0 6 8 4

1 4 9 12 0 6 8 4

0 1 4 9 12 6 8 4

0 1 4 6 9 12 8 4

0 1 4 6 8 9 12 4

0 1 4 4 6 8 9 12

30/45



Complexité

L’insertion du i-ème élément se fait un tableau trié contenant i valeurs. Coût de
l’insertion dans le pire cas en O(i).

0 1 4 9 12 6 8 4

60 1 4 9 12 . 8 4

60 1 4 9 . 12 8 4

60 1 4 . 9 12 8 4

0 1 4 6 9 12 8 4

31/45



Complexité

L’insertion du i-ème élément se fait un tableau trié contenant i valeurs. Coût de
l’insertion dans le pire cas en O(i).

0 1 4 9 12 6 8 4

60 1 4 9 12 . 8 4

60 1 4 9 . 12 8 4

60 1 4 . 9 12 8 4

0 1 4 6 9 12 8 4

31/45



Complexité

L’insertion du i-ème élément se fait un tableau trié contenant i valeurs. Coût de
l’insertion dans le pire cas en O(i).

0 1 4 9 12 6 8 4

60 1 4 9 12 . 8 4

60 1 4 9 . 12 8 4

60 1 4 . 9 12 8 4

0 1 4 6 9 12 8 4

31/45



Complexité

L’insertion du i-ème élément se fait un tableau trié contenant i valeurs. Coût de
l’insertion dans le pire cas en O(i).

0 1 4 9 12 6 8 4

60 1 4 9 12 . 8 4

60 1 4 9 . 12 8 4

60 1 4 . 9 12 8 4

0 1 4 6 9 12 8 4

31/45



Complexité

L’insertion du i-ème élément se fait un tableau trié contenant i valeurs. Coût de
l’insertion dans le pire cas en O(i).

0 1 4 9 12 6 8 4

60 1 4 9 12 . 8 4

60 1 4 9 . 12 8 4

60 1 4 . 9 12 8 4

0 1 4 6 9 12 8 4

31/45



Complexité

Pire cas : La complexité du tri par insertion est alors :

C(n) =
n−1∑
i=0

i = n(n− 1)/2 = Θ(n2)

Meilleur cas : Si le tableau est déjà trié, aucune valeur ne doit être déplacé. La
complexité est en Θ(n) (Chaque élément est comparé à son prédécesseur).

En moyenne : l’insertion du i-ème élément nécessitent de déplacer i/2 valeurs.

C(n) =
n−1∑
i=0

i/2 = n(n− 1)/4 = Θ(n2)

32/45



Complexité

Pire cas : La complexité du tri par insertion est alors :

C(n) =
n−1∑
i=0

i = n(n− 1)/2 = Θ(n2)

Meilleur cas : Si le tableau est déjà trié, aucune valeur ne doit être déplacé. La
complexité est en Θ(n) (Chaque élément est comparé à son prédécesseur).

En moyenne : l’insertion du i-ème élément nécessitent de déplacer i/2 valeurs.

C(n) =
n−1∑
i=0

i/2 = n(n− 1)/4 = Θ(n2)

32/45



Complexité

Pire cas : La complexité du tri par insertion est alors :

C(n) =
n−1∑
i=0

i = n(n− 1)/2 = Θ(n2)

Meilleur cas : Si le tableau est déjà trié, aucune valeur ne doit être déplacé. La
complexité est en Θ(n) (Chaque élément est comparé à son prédécesseur).

En moyenne : l’insertion du i-ème élément nécessitent de déplacer i/2 valeurs.

C(n) =
n−1∑
i=0

i/2 = n(n− 1)/4 = Θ(n2)

32/45



Algorithmes de tri

Tri rapide



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Tri rapide

Le tri rapide consiste à choisir un élément du tableau, appelé pivot, et à répartir
les autres éléments de part et d’autre du pivot : à gauche ceux qui sont inférieurs
ou égaux au pivot, et à droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

4 9 1 12 0 6 8 4

1 0 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 9 12 6 8

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

0 1 4 4 6 8 9 12

33/45



Complexité

La répartition des éléments de part et d’autre du pivot est en Θ(n).
Si g éléments sont placés à gauche, et d à droite du pivot (avec d + g = n− 1), alors,
la complexité C(n) vérifie :

C(n) = C(g) +C(d) +Θ(n)

Pire cas : Le tableau est déjà trié, tous les éléments sont placés à droite (g = 0 et
d = n− 1).

C(n) = C(n− 1) +n− 1 =
n−1∑
i=0

i = n(n− 1)/2 = Θ(n2)

Meilleur cas : Le pivot est la médiane, g = d = (n− 1)/2.

C(n) = 2C(n/2) +Θ(n)

Le théorème maître donne C(n) = Θ(n log(n)).

34/45



Complexité

La répartition des éléments de part et d’autre du pivot est en Θ(n).
Si g éléments sont placés à gauche, et d à droite du pivot (avec d + g = n− 1), alors,
la complexité C(n) vérifie :

C(n) = C(g) +C(d) +Θ(n)

Pire cas : Le tableau est déjà trié, tous les éléments sont placés à droite (g = 0 et
d = n− 1).

C(n) = C(n− 1) +n− 1 =
n−1∑
i=0

i = n(n− 1)/2 = Θ(n2)

Meilleur cas : Le pivot est la médiane, g = d = (n− 1)/2.

C(n) = 2C(n/2) +Θ(n)

Le théorème maître donne C(n) = Θ(n log(n)).

34/45



Complexité

La répartition des éléments de part et d’autre du pivot est en Θ(n).
Si g éléments sont placés à gauche, et d à droite du pivot (avec d + g = n− 1), alors,
la complexité C(n) vérifie :

C(n) = C(g) +C(d) +Θ(n)

Pire cas : Le tableau est déjà trié, tous les éléments sont placés à droite (g = 0 et
d = n− 1).

C(n) = C(n− 1) +n− 1 =
n−1∑
i=0

i = n(n− 1)/2 = Θ(n2)

Meilleur cas : Le pivot est la médiane, g = d = (n− 1)/2.

C(n) = 2C(n/2) +Θ(n)

Le théorème maître donne C(n) = Θ(n log(n)).

34/45



Complexité moyenne

• Chaque élément est choisi un fois en tant que pivot =⇒Θ(n).

• On note zi la i-ème valeur, une fois le tableau trié. Lorsque zi et zj sont
comparés, l’un d’eux est pivot et ne sera ensuite plus comparé.
Donc zi et zj sont comparés au plus une fois !
Soit Xij ∈ {0,1} le nombre de fois que zi et zj sont comparés.

Le nombre de comparaisons total est noté X(n) =
∑n−2

i=0
∑n−1

j=i+1Xij . La complexité
moyenne est :

C(n) = E

[
X(n)

]
+Θ(n)

35/45



Complexité moyenne

• Chaque élément est choisi un fois en tant que pivot =⇒Θ(n).

• On note zi la i-ème valeur, une fois le tableau trié. Lorsque zi et zj sont
comparés, l’un d’eux est pivot et ne sera ensuite plus comparé.
Donc zi et zj sont comparés au plus une fois !
Soit Xij ∈ {0,1} le nombre de fois que zi et zj sont comparés.

Le nombre de comparaisons total est noté X(n) =
∑n−2

i=0
∑n−1

j=i+1Xij . La complexité
moyenne est :

C(n) = E

[
X(n)

]
+Θ(n)

35/45



Complexité moyenne

• Chaque élément est choisi un fois en tant que pivot =⇒Θ(n).

• On note zi la i-ème valeur, une fois le tableau trié. Lorsque zi et zj sont
comparés, l’un d’eux est pivot et ne sera ensuite plus comparé.
Donc zi et zj sont comparés au plus une fois !
Soit Xij ∈ {0,1} le nombre de fois que zi et zj sont comparés.

Le nombre de comparaisons total est noté X(n) =
∑n−2

i=0
∑n−1

j=i+1Xij . La complexité
moyenne est :

C(n) = E

[
X(n)

]
+Θ(n)

35/45



Complexité moyenne

Soit k tel que i < k < j.
Si zk est choisi comme pivot avant zi et zk , alors zi se retrouve à droite de zk et zj à
gauche. zi et zj ne seront alors jamais comparés.

zi et zj sont comparés ssi le premier pivot choisi parmi {zi , zi+1, . . . , zj} est zi ou zj .

E
[
Xij

]
=

2
j − i + 1

E

[
X(n)

]
=

n−2∑
i=0

n−1∑
j=i+1

2
j − i + 1

=
n−2∑
i=0

n−i−1∑
k=1

2
k + 1

La série harmonique
∑∞

k=1
1
k = O(log(n)). Donc :

E

[
X(n)

]
=

n−2∑
i=0

O(log(n)) = O (n log(n))

La complexité moyenne est donc un O (n log(n)).

36/45



Complexité moyenne

Soit k tel que i < k < j.
Si zk est choisi comme pivot avant zi et zk , alors zi se retrouve à droite de zk et zj à
gauche. zi et zj ne seront alors jamais comparés.
zi et zj sont comparés ssi le premier pivot choisi parmi {zi , zi+1, . . . , zj} est zi ou zj .

E
[
Xij

]
=

2
j − i + 1

E

[
X(n)

]
=

n−2∑
i=0

n−1∑
j=i+1

2
j − i + 1

=
n−2∑
i=0

n−i−1∑
k=1

2
k + 1

La série harmonique
∑∞

k=1
1
k = O(log(n)). Donc :

E

[
X(n)

]
=

n−2∑
i=0

O(log(n)) = O (n log(n))

La complexité moyenne est donc un O (n log(n)).

36/45



Complexité moyenne

Soit k tel que i < k < j.
Si zk est choisi comme pivot avant zi et zk , alors zi se retrouve à droite de zk et zj à
gauche. zi et zj ne seront alors jamais comparés.
zi et zj sont comparés ssi le premier pivot choisi parmi {zi , zi+1, . . . , zj} est zi ou zj .

E
[
Xij

]
=

2
j − i + 1

E

[
X(n)

]
=

n−2∑
i=0

n−1∑
j=i+1

2
j − i + 1

=
n−2∑
i=0

n−i−1∑
k=1

2
k + 1

La série harmonique
∑∞

k=1
1
k = O(log(n)). Donc :

E

[
X(n)

]
=

n−2∑
i=0

O(log(n)) = O (n log(n))

La complexité moyenne est donc un O (n log(n)).

36/45



Complexité moyenne

Soit k tel que i < k < j.
Si zk est choisi comme pivot avant zi et zk , alors zi se retrouve à droite de zk et zj à
gauche. zi et zj ne seront alors jamais comparés.
zi et zj sont comparés ssi le premier pivot choisi parmi {zi , zi+1, . . . , zj} est zi ou zj .

E
[
Xij

]
=

2
j − i + 1

E

[
X(n)

]
=

n−2∑
i=0

n−1∑
j=i+1

2
j − i + 1

=
n−2∑
i=0

n−i−1∑
k=1

2
k + 1

La série harmonique
∑∞

k=1
1
k = O(log(n)). Donc :

E

[
X(n)

]
=

n−2∑
i=0

O(log(n)) = O (n log(n))

La complexité moyenne est donc un O (n log(n)).

36/45



Algorithmes de tri

Tri par fusion



Tri fusion

Le tri fusion consiste à séparer le tableau en deux parties de tailles ⌊n/2⌋ et ⌈n/2⌉, à
trier récursivement les deux parties et à les fusionner.

4 9 1 12 0 6 8 4

0 1 4 4 6 8 9 12

4 9 1 12 0 6 8 4

1 4 9 12 0 4 6 8

4 9 1 12 0 6 8 4

4 9 1 12 0 6 4 8

4 9 1 12 0 6 8 4

37/45



Tri fusion

Le tri fusion consiste à séparer le tableau en deux parties de tailles ⌊n/2⌋ et ⌈n/2⌉, à
trier récursivement les deux parties et à les fusionner.

4 9 1 12 0 6 8 4

0 1 4 4 6 8 9 12

4 9 1 12 0 6 8 4

1 4 9 12 0 4 6 8

4 9 1 12 0 6 8 4

4 9 1 12 0 6 4 8

4 9 1 12 0 6 8 4

37/45



Tri fusion

Le tri fusion consiste à séparer le tableau en deux parties de tailles ⌊n/2⌋ et ⌈n/2⌉, à
trier récursivement les deux parties et à les fusionner.

4 9 1 12 0 6 8 4

0 1 4 4 6 8 9 12

4 9 1 12 0 6 8 4

1 4 9 12 0 4 6 8

4 9 1 12 0 6 8 4

4 9 1 12 0 6 4 8

4 9 1 12 0 6 8 4

37/45



Tri fusion

Le tri fusion consiste à séparer le tableau en deux parties de tailles ⌊n/2⌋ et ⌈n/2⌉, à
trier récursivement les deux parties et à les fusionner.

4 9 1 12 0 6 8 4

0 1 4 4 6 8 9 12

4 9 1 12 0 6 8 4

1 4 9 12 0 4 6 8

4 9 1 12 0 6 8 4

4 9 1 12 0 6 4 8

4 9 1 12 0 6 8 4

37/45



Tri fusion

Le tri fusion consiste à séparer le tableau en deux parties de tailles ⌊n/2⌋ et ⌈n/2⌉, à
trier récursivement les deux parties et à les fusionner.

4 9 1 12 0 6 8 4

0 1 4 4 6 8 9 12

4 9 1 12 0 6 8 4

1 4 9 12 0 4 6 8

4 9 1 12 0 6 8 4

4 9 1 12 0 6 4 8

4 9 1 12 0 6 8 4

37/45



Tri fusion

Le tri fusion consiste à séparer le tableau en deux parties de tailles ⌊n/2⌋ et ⌈n/2⌉, à
trier récursivement les deux parties et à les fusionner.

4 9 1 12 0 6 8 4

0 1 4 4 6 8 9 12

4 9 1 12 0 6 8 4

1 4 9 12 0 4 6 8

4 9 1 12 0 6 8 4

4 9 1 12 0 6 4 8

4 9 1 12 0 6 8 4

37/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4 4 6 8 9 12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0

1 4 4 6 8 9 12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1

4 4 6 8 9 12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4

4 6 8 9 12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4 4

6 8 9 12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4 4 6

8 9 12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4 4 6 8

9 12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4 4 6 8 9

12

1 4 9 12 0 4 6 8

38/45



Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4 4 6 8 9 12

1 4 9 12 0 4 6 8

38/45



Complexité

La fusion s’effectue en Θ(n). On obtient donc la relation :

C(n) = 2 ·C
(n

2

)
+Θ(n)

Avec le théorème maître nous obtenons une complexité en Θ(n log(n)).

39/45



Récapitulatif

Algorithme Pire cas Moyen Meilleur cas
Insertion Θ(n2) Θ(n2) Θ(n)
Rapide Θ(n2) Θ(n log(n)) Θ(n log(n))
Fusion Θ(n log(n)) Θ(n log(n)) Θ(n log(n))

40/45



Dans les langages de programmation

Python

Si L est de type list, alors L.sort() effectue en tri en place.

>>> L = [4, 2, 1, 3]

>>> L.sort()

>>> print(L)

[1, 2, 3, 4]

Si a est un itérable, alors sorted(a) renvoie un objet list trié.

>>> a = (4, 2, 1, 3)

>>> sorted(a)

[1, 2, 3, 4]

41/45



Dans les langages de programmation

C++

La fonction std::sort de la librairie standard trie les valeurs en place entre
deux itérateurs.

#include <algorithm>

#include <vector>

std::vector<int> v = {4, 2, 1, 3};

std::sort(v.begin(), v.end()); // désormais v = {1, 2, 3, 4}

int a[] = {4, 2, 1, 3};

std::sort(a, a+4); // désormais a = {1, 2, 3, 4}

42/45



Algorithmes de tri

Complexité optimale



Complexité optimale

Question : Peut on faire mieux que Θ(n log(n)) dans le pire cas ?

On représente un algorithme de tri par un arbre de comparaison.

x1 < x2

x1 < x3

x2 < x3

[x3,x2,x1] [x2,x3,x1]

[x2,x1,x3]

x1 < x3

[x3,x1,x2] x2 < x3

[x1,x3,x2] [x1,x2,x3]

Faux Vrai

Les feuilles sont les résultats de l’algorithme. Il y en a n!, une par permutation.

43/45



Complexité optimale

Question : Peut on faire mieux que Θ(n log(n)) dans le pire cas ?
On représente un algorithme de tri par un arbre de comparaison.

x1 < x2

x1 < x3

x2 < x3

[x3,x2,x1] [x2,x3,x1]

[x2,x1,x3]

x1 < x3

[x3,x1,x2] x2 < x3

[x1,x3,x2] [x1,x2,x3]

Faux Vrai

Les feuilles sont les résultats de l’algorithme. Il y en a n!, une par permutation.

43/45



Complexité optimale

Question : Peut on faire mieux que Θ(n log(n)) dans le pire cas ?
On représente un algorithme de tri par un arbre de comparaison.

x1 < x2

x1 < x3

x2 < x3

[x3,x2,x1] [x2,x3,x1]

[x2,x1,x3]

x1 < x3

[x3,x1,x2] x2 < x3

[x1,x3,x2] [x1,x2,x3]

Faux Vrai

Les feuilles sont les résultats de l’algorithme. Il y en a n!, une par permutation.

43/45



Complexité optimale

• La longueur d’un chemin entre la racine et une feuille de l’arbre est le
nombre de comparaisons effectuées pour trier le tableau.

• La hauteur H d’un arbre est la longueur du plus long chemin entre la racine et une
feuille.
La complexité dans le pire cas d’un algorithme de tri est donc la hauteur de l’arbre.
Un arbre binaire de hauteur H possède au plus 2H feuilles.
Un arbre possédant F feuilles a donc une hauteur supérieur ou égale à

⌈
log2(F)

⌉
.

On a donc :
Copt(n) = H =

⌈
log2(F)

⌉
=
⌈
log2(n!)

⌉

44/45



Complexité optimale

• La longueur d’un chemin entre la racine et une feuille de l’arbre est le
nombre de comparaisons effectuées pour trier le tableau.

• La hauteur H d’un arbre est la longueur du plus long chemin entre la racine et une
feuille.
La complexité dans le pire cas d’un algorithme de tri est donc la hauteur de l’arbre.
Un arbre binaire de hauteur H possède au plus 2H feuilles.
Un arbre possédant F feuilles a donc une hauteur supérieur ou égale à

⌈
log2(F)

⌉
.

On a donc :
Copt(n) = H =

⌈
log2(F)

⌉
=
⌈
log2(n!)

⌉

44/45



Complexité optimale

• La longueur d’un chemin entre la racine et une feuille de l’arbre est le
nombre de comparaisons effectuées pour trier le tableau.

• La hauteur H d’un arbre est la longueur du plus long chemin entre la racine et une
feuille.
La complexité dans le pire cas d’un algorithme de tri est donc la hauteur de l’arbre.
Un arbre binaire de hauteur H possède au plus 2H feuilles.
Un arbre possédant F feuilles a donc une hauteur supérieur ou égale à

⌈
log2(F)

⌉
.

On a donc :
Copt(n) = H =

⌈
log2(F)

⌉
=
⌈
log2(n!)

⌉

44/45



Complexité optimale

Formule de Stirling

n! ∼
√

2πn
(n
e

)n
En utilisant la formule de Stirling on obtient :

log2(n!) =
1
2
·
(
1 + log2(π) + log2(n)

)
+ n ·

(
log2(n)− log2(e)

)
= Θ (n log(n))

Conclusion : Un algorithme de tri ne peut donc pas faire mieux que Θ (n log(n))
dans le pire cas !

45/45


	Structure de données linéaires
	Tableaux
	Listes chaînées

	Algorithmes de tri
	Tri par insertion
	Tri rapide
	Tri par fusion
	Complexité optimale


