ALGORITHMIQUE ET STRUCTURES DE DONNEES

2. Structure de données linéaires et tris

Yoann Coudert--Osmont
27 Janvier 2026

1/45

Type abstrait

Un type abstrait est un modéele mathématique d’un ensemble de données pour
lequel est spécifié un ensemble d’opérations pouvant étre effectuées sur les
données.

2/45

Type abstrait

Un type abstrait est un modéele mathématique d’un ensemble de données pour
lequel est spécifié un ensemble d’opérations pouvant étre effectuées sur les
données.

Structure de données
Une structure de données est une structure qui permet d’implémenter un type
abstrait, rendant les opérations du type abstrait plus ou moins efficaces, le tout

en utilisant peu d’espace mémoire.

2/45

Une file de priorité est un type abstrait maintenant un ensemble de n valeurs
comparables entre elles avec les opérations suivantes possibles :

* Requéte: Obtenir le plus grand élément de I'ensemble.
* Mise a jour :

* Ajouter une nouvelle valeur a I’ensemble.

* Retirer le plus grand élément de I’ensemble.

3/45

Une file de priorité est un type abstrait maintenant un ensemble de n valeurs
comparables entre elles avec les opérations suivantes possibles :

* Requéte: Obtenir le plus grand élément de I'ensemble.
* Mise a jour :

* Ajouter une nouvelle valeur a I’ensemble.

* Retirer le plus grand élément de I’ensemble.

Un tas binaire est une structure de donnée permettant d’implémenter une file de
priorité avec une complexité spatiale en @(n), et les complexités temporelles

suivantes :

* Requéte: Obtenir le plus grand élément de I'ensemble en @ (1).
* Mise a jour :

* Ajouter une nouvelle valeur a I’ensemble en ®(log(n)).

* Retirer le plus grand élément de I’ensemble en O (log(n)).

3/45

1. Structure de données linéaires
Tableaux

Listes chainées

2. Algorithmes de tri
Tri par insertion
Tri rapide
Tri par fusion

Complexité optimale

4/45

Structure de données linéaires

Définition

Structure de données linéaire
Une structure de données linéaire organise les données selon une séquence
linéaire. On peut alors numéroter les données ; chaque élément posseéde un rang.

5/45

Définition

Structure de données linéaire
Une structure de données linéaire organise les données selon une séquence
linéaire. On peut alors numéroter les données ; chaque élément posseéde un rang.

On distingue principalement deux structures de données linéaires :

¢ Les tableaux : Les éléments se trouvent les uns a la suite des autres dans la
mémoire. Il est ainsi possible d’accéder en O(1) a n'importe quel élément.

5/45

Définition

Structure de données linéaire
Une structure de données linéaire organise les données selon une séquence
linéaire. On peut alors numéroter les données ; chaque élément posseéde un rang.

On distingue principalement deux structures de données linéaires :

* Les tableaux : Les éléments se trouvent les uns a la suite des autres dans la
mémoire. Il est ainsi possible d’accéder en O(1) a n'importe quel élément.

* Les listes chainées : Les éléments sont dispersés dans la mémoire. Chaque
élément pointe vers le prochain élément dans la structure. L'accés au k-eme
élément se fait alors en O(k).

5/45

Structure de données linéaires

Tableaux

Tableau

Un tableau T est une structure permettant de stocker des valeurs (toutes du
méme type) T[i] repérés par leurs indices i. Le nombre d’élément n d’un tableau
est fixe. Chaque élément peut étre accédé et modifier en O(1).

T[0] | T[1] | T[2] T[n-1]

H_/H_/
s octets s octets

Comme tous éléments de T ont la méme taille s, I’élément T[i] se trouve a
l’adresse : [adresse(T)+1 - s].

6/45

Dans les langages de programmation

Voici différente fagon de créer un tableau d’entiers T de taille n dans différents
langages :

Python

Il est possible d’utiliser la classe array de numpy.
import numpy as np
T = np.empty(n, dtype=int)

T est alors un tableau de taille n initialisé avec des valeurs aléatoires (celles déja
présentes dans la mémoire de 'ordinateur).

7/45

Dans les langages de programmation

Voici différente fagon de créer un tableau d’entiers T de taille n dans différents

langages :

C++

Il est possible d’utiliser un pointeur intx.
int *T = new int[n];

T est alors un tableau de taille #n initialisé avec des valeurs aléatoires (celles déja
présentes dans la mémoire de l'ordinateur). T est alloué sur le tas.

Pour allouer sur la pile, si n est connu au moment de la compilation, on peut
utiliser la classe std: :array.

#include <array>
std: :array<int, n> T;

7/45

Tableaux dynamiques

Tableau dynamique
Un tableau dynamique est une tableau dont la taille est variable. On peut
ajouter de nouveaux éléments a ce tableau.

8/45

Tableaux dynamiques

Tableau dynamique
Un tableau dynamique est une tableau dont la taille est variable. On peut
ajouter de nouveaux éléments a ce tableau.

Lorsque l'on crée un tableau, on demande au systeme d’exploitation de nous
allouer une zone de la mémoire. Mais il est possible que d’autre données soient
stockées immédiatement apres le tableau.

T[0] T[1] e T[n-1] Autre .t.if)nnées Espa.c'ci libre

S v
s octets (n+1)-s octets

Tableaux dynamiques

Tableau dynamique
Un tableau dynamique est une tableau dont la taille est variable. On peut
ajouter de nouveaux éléments a ce tableau.

Lorsque l'on crée un tableau, on demande au systeme d’exploitation de nous
allouer une zone de la mémoire. Mais il est possible que d’autre données soient
stockées immédiatement apres le tableau.

T(o] | (1] - T[n—1]| Autredomnées | Hepacefbre
S octets k gabioce on \((n+1) °s octets
Espa.c.e. libre Autre.(?(.)nnées T[0] T[1] e T[n]
n-s octets m/

8/45

Tableaux dynamiques

La réallocation du tableau nécessite de le recopier entierement avec une
complexité temporelle en ©(n).

Question : Combien de copies d’éléments sont effectuées lorsque 'on construit
un tableau dynamique de taille n en ajouter des éléments un a un a un tableau
initialement vide ?

9/45

Tableaux dynamiques

* T de taille 0 : 0 copie(s) a effectuer pour ajouter un élément.

10/45

Tableaux dynamiques

* T de taille 0 : 0 copie(s) a effectuer pour ajouter un élément.

e T detaille 1 : 1 copie(s) a effectuer pour ajouter un élément.

10/45

Tableaux dynamiques

* T de taille 0 : 0 copie(s) a effectuer pour ajouter un élément.
e T detaille 1 : 1 copie(s) a effectuer pour ajouter un élément.

* T detaille 2 : 2 copie(s) a effectuer pour ajouter un élément.

10/45

Tableaux dynamiques

T de taille 0 : 0 copie(s) a effectuer pour ajouter un élément.

T de taille 1 : 1 copie(s) a effectuer pour ajouter un élément.

T de taille 2 : 2 copie(s) a effectuer pour ajouter un élément.

T de taille n—1: n—1 copie(s) a effectuer pour ajouter un élément.

e T est de taille n!

10/45

Tableaux dynamiques

T de taille 0 : 0 copie(s) a effectuer pour ajouter un élément.

T de taille 1 : 1 copie(s) a effectuer pour ajouter un élément.

T de taille 2 : 2 copie(s) a effectuer pour ajouter un élément.

T de taille n—1: n—1 copie(s) a effectuer pour ajouter un élément.

e T est de taille n!

Cn)=0+1+2+---+(n-1)

10/45

Tableaux dynamiques

T de taille 0 : 0 copie(s) a effectuer pour ajouter un élément.

T de taille 1 : 1 copie(s) a effectuer pour ajouter un élément.

T de taille 2 : 2 copie(s) a effectuer pour ajouter un élément.

T de taille n—1: n—1 copie(s) a effectuer pour ajouter un élément.

e T est de taille n!

C(n)=0+1+2+-+(n=1)=n(n-1)/2=0 (n?)

10/45

Tableaux dynamiques

T de taille 0 : 0 copie(s) a effectuer pour ajouter un élément.

T de taille 1 : 1 copie(s) a effectuer pour ajouter un élément.

T de taille 2 : 2 copie(s) a effectuer pour ajouter un élément.

T de taille n—1: n—1 copie(s) a effectuer pour ajouter un élément.

e T est de taille n!
C(n)=0+1+2+-+(n=1)=n(n-1)/2=0 (n?)

Question : Peut-on mieux faire ?

10/45

Tableaux dynamiques

On peut allouer une capacité ¢ plus grande que la taille n de T.

T[0] T[1] T[n-1] Espa'c.e. libre
v
s octets (c—mn)-s octets

11/45

Tableaux dynamiques

On peut allouer une capacité ¢ plus grande que la taille n de T.

T[0] T[1] T[n-1] Espa'c.e. libre
v
s octets (c—mn)-s octets

Si ¢ > n, ajouter un élément ne nécessite pas de réallocation et donc pas de copie.
Lopération se fait en ©(1).

T[0] T[1] Tln-1]| T[n] Espafﬁlibre
Y
s octets (c=n—1)-s5 octets

11/45

Tableaux dynamiques

Sic=n.

T[O] T[l] L T[Tl _ 1] Possiblemenf .a.utre données

12/45

Tableaux dynamiques

Sic=n.

T[0]

T[1]

T[n-1]

Possiblement autre données

Alors il faut effectuer une réallocation entrainant n copies.

La nouvelle capacité devient alors [c «— n+d(n)] ou d(n) > 1.

T[0]

T[1]

T[n-1]

T[n] Espa.c.e' libre

~—
s octets

"

(d(n)—1)-s octets

12/45

Tableaux dynamiques

Supposons que l'on ajoute une capacité fixe d(n) = b a chaque réallocation, avec
b > 1. On suppose que 'on construit un tableau de taille n = k- b en partant d'un
tableau vide et en ajoutant les éléments un par un.

13/45

Tableaux dynamiques

Supposons que l'on ajoute une capacité fixe d(n) = b a chaque réallocation, avec
b > 1. On suppose que 'on construit un tableau de taille n = k- b en partant d'un
tableau vide et en ajoutant les éléments un par un.

Etape | Capacité | Nouvelle capacité | #copies
1 0 b 0
2 b 2b b
3 2b 3b 2b
k (k=1)b kb (k=1)b

13/45

Tableaux dynamiques

Supposons que l'on ajoute une capacité fixe d(n) = b a chaque réallocation, avec
b > 1. On suppose que 'on construit un tableau de taille n = k- b en partant d'un

tableau vide et en ajoutant les éléments un par un.

Etape | Capacité | Nouvelle capacité | #copies
1 0 b 0
2 b 2b b
3 2b 3b 2b
k (k=1)b kb (k=1)b
Cn)=(0+1+2+-+(k—-1))-b=k(k—-1)b/2

13/45

Tableaux dynamiques

Supposons que l'on ajoute une capacité fixe d(n) = b a chaque réallocation, avec
b > 1. On suppose que 'on construit un tableau de taille n = k- b en partant d'un
tableau vide et en ajoutant les éléments un par un.

Etape | Capacité | Nouvelle capacité | #copies
1 0 b 0
2 b 2b b
3 2b 3b 2b
k (k=1)b kb (k=1)b

Cn)=(0+1+2+-+(k=1))-b=k(k—1)b/2 = n(n—-b)/(2b) = O(n?)

13/45

Tableaux dynamiques

Supposons désormais que 1’'on ajoute une capacité d(n) = (a—1) -n a chaque
réallocation, avec a > 1. On suppose que 1’on construit un tableau de taille 1 = a*

en partant d’un tableau a un élément et en ajoutant les éléments un par un.

14/45

Tableaux dynamiques

Supposons désormais que 1’'on ajoute une capacité d(n) = (a—1) -n a chaque

réallocation, avec a > 1. On suppose que 1’on construit un tableau de taille 1 = a*

en partant d’un tableau a un élément et en ajoutant les éléments un par un.

Etape | Capacité | Nouvelle capacité | #copies
1 1 a 1
2 a a? a
3 a’ a’ a’
k ak-1 ak ak-1

14/45

Tableaux dynamiques

Supposons désormais que 1’'on ajoute une capacité d(n) = (a—1) -n a chaque

réallocation, avec a > 1. On suppose que 1’on construit un tableau de taille 1 = a*

en partant d’un tableau a un élément et en ajoutant les éléments un par un.

Etape | Capacité | Nouvelle capacité | #copies
1 1 a 1
2 a a? a
3 a’ a’ a’
k ak-1 ak ak-1

C(n):1+a+a2+-+ak_1

14/45

Tableaux dynamiques

Supposons désormais que 1’'on ajoute une capacité d(n) = (a—1) -n a chaque
réallocation, avec a > 1. On suppose que 'on construit un tableau de taille n =a
en partant d’un tableau a un élément et en ajoutant les éléments un par un.

k

Etape | Capacité | Nouvelle capacité | #copies
1 1 a 1
2 a a? a
3 a’ a’ a’
k ak-1 ak ak-1
2 o1 _af =1
Cn)=l+a+a*+-+a"" = | =(m-1)/(a-1)=0(n)
a f—

14/45

Tableaux dynamiques

Cn)=(n-1)/(a=1)=0(n)

Remarque : Plus a est grand, moins de copies sont effectuées.
En revanche, plus a est grand, plus de la mémoire est gachée.
Apres une réallocation, la capacité vaut c=a - n.

En pratique, a est souvent compris entre 1.1 et 2.

15/45

Complexité amortie

L’ajout d’un élément au tableau dynamique peut parfois nécessité n copies si une
réallocation a lieu. Sinon, le plus souvent, aucune copie n’est effectuée.

La complexité dans le pire cas est donc un ©(n).

En revanche, en moyenne, l'insertion nécessite C(n)/n ~ 1/(a—1) = ©(1) copies.

16/45

Complexité amortie

L’ajout d’un élément au tableau dynamique peut parfois nécessité n copies si une
réallocation a lieu. Sinon, le plus souvent, aucune copie n’est effectuée.

La complexité dans le pire cas est donc un ©(n).

En revanche, en moyenne, l'insertion nécessite C(n)/n ~ 1/(a—1) = ©(1) copies.

Complexité amortie
La complexité amortie mesure la complexité moyenne d’une suite d’opérations
effectuées sur une méme structure de données.

16/45

Dans les langages de programmation

Voici différente facon de créer un tableau dynamique d’entiers T de taille n dans
différents langages :

Python

I1 est possible d’utiliser la structure list.

/A malgré le nom, ce n’est pas une liste chainée.
>>> T = [0]*n

T est alors un tableau dynamique de taille # initialisé avec des 0. Le cotit amortie
de l'insertion est en ©(1). L'insertion d’un élément x se fait via :

>>> T.append(x)

17/45

Dans les langages de programmation

Voici différente facon de créer un tableau dynamique d’entiers T de taille n dans
différents langages :

C++

I1 est possible d’utiliser la structure std: :vector.
#include <vector>
std: :vector<int> T(n);

T est alors un tableau dynamique de taille » initialisé avec des 0. Le cotGt amortie
de I'insertion est en ©(1). L'insertion d’un élément x se fait via :

T.push_back(x);

17/45

Structure de données linéaires

Listes chainées

Liste chainée

Une liste chainée L est une structure permettant de stocker une séquence de n
valeurs Ly, Ly,...,L,_; a l'aide de cellules. Chaque cellule contient une valeur de
la séquence ainsi qu'un pointeur vers la cellule suivante formant ainsi une
chaine de cellules. Contrairement au tableau qui permet ’acces direct a
n'importe quelle valeur en ©(1), la liste requiert de parcourir les cellules les

unes apres les autres.

.—)LO

Ly

La derniere cellule ne pointe vers rien.

18/45

Dans les langages de programmation

Les listes sont rarement implémentées dans les librairies standards des langages
de programmation.

C++
Il est possible de définir la structure suivante :

struct Cellule {
int valeur;
Cellule #suivant;

¥

using List = Cellulex;

19/45

Dans les langages de programmation

L'acces a Ly peut étre implémenté de la maniere suivante :

#include <cassert>
int& acces(List &L, int k) {
while(k > 0) {
assert(L != nullptr);
L = L->suivant;
- k’
}
assert(L != nullptr);
return L->valeur;

}

La complexité est en O (k).

20/45

Ajout d’éléments

Ajouter un élément x au début d’une liste est possible.

o— LO [Ll [[Ln—l

21/45

Ajout d’éléments

Ajouter un élément x au début d’une liste est possible.

i LO [Ll [oo [Ln—l

21/45

Ajout d’éléments

Ajouter un élément x au début d’une liste est possible.

f LO [Ll [oo [Ln—l
/
x| o

void ajouter(List &L, int x) {
Cellule *c = new Cellule;
c->valeur =
c->next = L;
L = @3

X

21/45

Ajout d’éléments

Pour ajouter un élément a la fin rapidement, il faut modifier la structure de liste
pour avoir acces au dernier élément en temps constant.

struct List {
Cellule x*debut, x*fin;
};

void ajouter_fin(List &L, int x) { L
if(fin == nullptr) { // Liste vide
L.debut = L.fin = new Cellule;

} else { // Liste non vide

L.fin->suivant = new Cellule;
| Lo| o L

L.fin = L.fin->suivant;

}
L.fin->valeur = x;
L.fin->suivant = nullptr;

22/45

Suppression d’éléments

On peut également retirer le premier ou le dernier élément d’une liste en ©(1).

int retirer_debut(List &L) { int retirer_fin(List &L) {
assert(L.debut != nullptr); assert(L.fin != nullptr);
int x = L.debut->valeur; int x = L.fin->valeur;
Cellule *c = L.debut->suivant; Cellule *c = /» avant derniére valeur ? */;
delete L.debut; delete L.fin;
L.debut = c; L.fin = c;
if(c == nullptr) // L est vide if(c == nullptr) // L est vide
L.fin = nullptr; L.debut = nullptr;
return x; return x;
} }

23/45

Liste doublement chainée

Liste doublement chainée
Une liste doublement chainée est une liste dont les cellules stockes a la fois un
pointeur vers leur successeur et un pointeur vers leur prédécesseur.

24/45

Suppression d’éléments

On peut désormais retirer le dernier élément d’une liste en ©(1).

struct Cellule {
int valeur;
Cellule xprecedent, *suivant,

53

int retirer_fin(List &L) {
assert(L.fin != nullptr);
int x = L.fin->valeur;
Cellule *c = L.fin->precedent;
delete L.fin;
L.fin = c;
if(c == nullptr) // L est vide
L.debut = nullptr;
return x;

25/45

Pile
Une pile est un type abstrait dit LIFO (Last In First Out) qui supporte deux types
d’opérations :

¢ Insertion d’un nouvel élément a la structure.

* Acces et suppression du dernier élément ajouté.

Une pile peut étre implémentée a I’aide d’une liste chainée et des opérations
ajouter_debut et retirer_debut, toutes deux en O(1).

26/45

File
Une file est un type abstrait dit FIFO (First In First Out) qui supporte deux types
d’opérations :

¢ Insertion d’un nouvel élément a la structure.

* Acces et suppression du premier élément ajouté.

Une file peut étre implémentée a I’aide d’une liste chainée et des opérations
ajouter_finet retirer_debut, toutes deux en O(1).

27/45

File de priorité

File de priorité
Une file est un type abstrait qui supporte deux types d’opérations :

¢ Insertion d’un nouvel élément a la structure.

* Acces et suppression du plus grand élément.

Une file de priorité peut étre implémentée a I’aide d’une liste doublement
chainée. Selon si la liste est maintenue triées on obtient des complexités
différentes (voir TP).

Structure Insertion | Trouver + grand | Surpression
Liste doubl. chainée O(1) O(n) O(1)
Idem + triée O(n) o(1) o(1)

28/45

Algorithmes de tri

Probléme

Etant donné un tableau T de taille 1, on cherche a trier les valeurs du tableau de
sorte a avoir :
T[i]<T[i+1], Vi<n-1

tri

29/45

Algorithmes de tri

Tri par insertion

Tri par insertion

Le tri par insertion consiste a itérer sur les éléments du tableau et a les insérer a la
bonne position parmi les éléments déja triés. Ainsi, au moment ou on considere
un élément, les éléments qui le précedent sont déja triés, tandis que les éléments
qui le suivent ne sont pas encore triés.

4191 (12| 0|6 | 8| 4

Tri par insertion

Le tri par insertion consiste a itérer sur les éléments du tableau et a les insérer a la
bonne position parmi les éléments déja triés. Ainsi, au moment ou on considere
un élément, les éléments qui le précedent sont déja triés, tandis que les éléments
qui le suivent ne sont pas encore triés.

4191 (12| 0|6 | 8| 4

4191 (12| 0|6 | 8| 4

Tri par insertion

Le tri par insertion consiste a itérer sur les éléments du tableau et a les insérer a la
bonne position parmi les éléments déja triés. Ainsi, au moment ou on considere
un élément, les éléments qui le précedent sont déja triés, tandis que les éléments
qui le suivent ne sont pas encore triés.

4191 (12| 0|6 | 8| 4

4191 (12| 0|6 | 8| 4

114191206 |84

Tri par insertion

Le tri par insertion consiste a itérer sur les éléments du tableau et a les insérer a la
bonne position parmi les éléments déja triés. Ainsi, au moment ou on considere
un élément, les éléments qui le précedent sont déja triés, tandis que les éléments

qui le suivent ne sont pas encore triés.

4191 (12| 0|6 | 8| 4 0|1 (4]9]|12|6| 8| 4
4191 (12| 0|6 | 8| 4 01| 4|69 (12| 8| 4
114191206 |84 0|1 (4])6]|8|9 |12 4
1 (4191|1206 | 8|4 0|1 (4468|912

30/45

L'insertion du i-éme élément se fait un tableau trié contenant i valeurs. Cout de
I'insertion dans le pire cas en O(i).

L'insertion du i-éme élément se fait un tableau trié contenant i valeurs. Cout de
I'insertion dans le pire cas en O(i).

L'insertion du i-éme élément se fait un tableau trié contenant i valeurs. Cout de
I'insertion dans le pire cas en O(i).

L'insertion du i-éme élément se fait un tableau trié contenant i valeurs. Cout de
I'insertion dans le pire cas en O(i).

L'insertion du i-éme élément se fait un tableau trié contenant i valeurs. Cout de
I'insertion dans le pire cas en O(i).

0|1 (4]9]12 8 | 4 6
0|1 1(4]09 12| 8 | 4 6
0114 9 |12 8 | 4 6

31/45

Pire cas: La complexité du tri par insertion est alors :

—

n—

Cn)=) i=n(n-1)/2=0(n?)

Il
o

32/45

Pire cas: La complexité du tri par insertion est alors :

—

C(n)= ¥ i=n(n-1)/2=0(n?)

i

1l
(=]

Meilleur cas : Si le tableau est déja trié, aucune valeur ne doit étre déplacé. La
complexité est en ®(n) (Chaque élément est comparé a son prédécesseur).

32/45

Pire cas: La complexité du tri par insertion est alors :

—

C(n)= ¥ i=n(n-1)/2=0(n?)

i

1l
(=]

Meilleur cas : Si le tableau est déja trié, aucune valeur ne doit étre déplacé. La
complexité est en ®(n) (Chaque élément est comparé a son prédécesseur).

En moyenne : l'insertion du i-eme élément nécessitent de déplacer i/2 valeurs.

n—1
C(n) = Zi/z = n(n—1)/4=0(n?)
i=0

32/45

Algorithmes de tri

Tri rapide

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4

110 4(4]9]|12| 6|8

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4

110 4(4]9]|12| 6|8

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4

110 4(4]9]|12| 6|8

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4 0|1 (44| 9 (12|68

110 4(4]9]|12| 6|8

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4 0|1 (44| 9 (12|68

110 4(4]9]|12| 6|8 0|1 (4468|912

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4 0|1 (44| 9 (12|68
110 4(4]9]|12| 6|8 0|1 (4468|912
O[1 14|49 |12] 6|38 0O|1(4])4]|6|8]|9]12
O[1 14|49 |12] 6|8

Le tri rapide consiste a choisir un élément du tableau, appelé pivot, et a répartir
les autres éléments de part et d’autre du pivot : a gauche ceux qui sont inférieurs
ou égaux au pivot, et a droite ceux qui sont strictement supérieurs. On fait ensuite
un appel récursif de la méthode dans chaque sous-ensemble gauche et droite.

419|112 0|6 | 8| 4 0|1 (44| 9 (12|68
1 (0] 4|49]|12] 6|8 0|1 (4468|912
O[1 14|49 |12] 6|38 0O|1(4])4]|6|8]|9]12
O[1 14|49 |12] 6|8 0|1 (4468|912

33/45

La répartition des éléments de part et d’autre du pivot est en ©(n).
Si g éléments sont placés a gauche, et d a droite du pivot (avec d + g = n—1), alors,
la complexité C(n) vérifie :

C(n)=C(g)+C(d)+0O(n)

34/45

La répartition des éléments de part et d’autre du pivot est en ©(n).
Si g éléments sont placés a gauche, et d a droite du pivot (avec d + g = n—1), alors,
la complexité C(n) vérifie :

C(n)=C(g)+C(d)+0O(n)

Pire cas: Le tableau est déja trié, tous les éléments sont placés a droite (g =0 et
d=n-1).

n—1
Cn)=Cn-1)+n-1=)Y i=n(n-1)/2=0(n?)
i=0

34/45

La répartition des éléments de part et d’autre du pivot est en ©(n).
Si g éléments sont placés a gauche, et d a droite du pivot (avec d + g = n—1), alors,
la complexité C(n) vérifie :

C(n)=C(g)+C(d)+0O(n)

Pire cas: Le tableau est déja trié, tous les éléments sont placés a droite (g =0 et
d=n-1).

n—1
Cn)=Cn-1)+n-1=)Y i=n(n-1)/2=0(n?)
i=0

Meilleur cas: Le pivot est la médiane, g =d = (n—1)/2.
C(n)=2C(n/2)+0©(n)

Le théoréme maitre donne C(n) = @(nlog(n)).

34/45

Complexité moyenne

* Chaque élément est choisi un fois en tant que pivot — O(n).

35/45

Complexité moyenne

* Chaque élément est choisi un fois en tant que pivot — O(n).

* On note z; la i-eme valeur, une fois le tableau trié. Lorsque z; et z; sont
comparés, I’'un d’eux est pivot et ne sera ensuite plus comparé.
Donc z; et z; sont comparés au plus une fois !
Soit X;; € {0,1} le nombre de fois que z; et z; sont compares.

35/45

Complexité moyenne

* Chaque élément est choisi un fois en tant que pivot — O(n).

* On note z; la i-eme valeur, une fois le tableau trié. Lorsque z; et z; sont
comparés, I’'un d’eux est pivot et ne sera ensuite plus comparé.
Donc z; et z; sont comparés au plus une fois !
Soit X;; € {0,1} le nombre de fois que z; et z; sont compares.

Le nombre de comparaisons total est noté X" =Y 2 Z] 11 Xij- La complexité
moyenne est :
C(n) =E[x"]|+0(n)

35/45

Complexité moyenne

Soit k tel que i <k <j.
Si zj est choisi comme pivot avant z; et z;, alors z; se retrouve a droite de zj et z; a
gauche. z; et z; ne seront alors jamais comparés.

36/45

Complexité moyenne

Soit k tel que i <k <j.

Si zj est choisi comme pivot avant z; et z;, alors z; se retrouve a droite de zj et z; a
gauche. z; et z; ne seront alors jamais comparés.

z; et zj sont comparés ssi le premier pivot choisi parmi {z;, z;,1,..., 2} est z; ou z;.

36/45

Complexité moyenne

Soit k tel que i <k <j.

Si zj est choisi comme pivot avant z; et z;, alors z; se retrouve a droite de zj et z; a
gauche. z; et z; ne seront alors jamais comparés.

z; et zj sont comparés ssi le premier pivot choisi parmi {z;, z;,1,..., 2} est z; ou z;.

2
E[Xij]:j—i+1
) n-2 n—) n—-2 n—i—1 2
ElxW]=)) smi=)) m
i=0 j=i+1 i=0 k=1

36/45

Complexité moyenne

Soit k tel que i <k <j.

Si zj est choisi comme pivot avant z; et z;, alors z; se retrouve a droite de zj et z; a
gauche. z; et z; ne seront alors jamais comparés.

z; et zj sont comparés ssi le premier pivot choisi parmi {z;, z;,1,..., 2} est z; ou z;.

2

E[Xij]:'—i+1
) -2 n-1 n—-2 n—i—1 2
n)| —
IE[X]_;er —i+1 ;, — k+1

La série harmonique } 7, % = O(log(n)). Donc :

E[x®)] = ZOlog O(nlog(n))

La complexité moyenne est donc un O (nlog(n)).

36/45

Algorithmes de tri

Tri par fusion

Tri fusion

Le tri fusion consiste a séparer le tableau en deux parties de tailles |n/2] et [n/2], a
trier récursivement les deux parties et a les fusionner.

4191112 0]|6| 8] 4

Tri fusion

Le tri fusion consiste a séparer le tableau en deux parties de tailles |n/2] et [n/2], a
trier récursivement les deux parties et a les fusionner.

4191112 0]|6| 8] 4

419|112 06| 8| 4
4109 1 (12 0] 6 8 | 4
4 9 1 12 0 6 8 4

37/45

Tri fusion

Le tri fusion consiste a séparer le tableau en deux parties de tailles |n/2] et [n/2], a
trier récursivement les deux parties et a les fusionner.

4191112 0]|6| 8] 4

419|112 06| 8| 4
4109 1 (12 0] 6 8 | 4
4 9 1 12 0 6 8 4

37/45

Tri fusion

Le tri fusion consiste a séparer le tableau en deux parties de tailles |n/2] et [n/2], a
trier récursivement les deux parties et a les fusionner.

4191112 0]|6| 8] 4

419|112 06| 8| 4
419 1 (12 0] 6 4 | 8
4 9 1 12 0 6 8 4

37/45

Tri fusion

Le tri fusion consiste a séparer le tableau en deux parties de tailles |n/2] et [n/2], a

trier récursivement les deux parties et a les fusionner.

4191112 0]|6| 8] 4

1 (4]9 |12 04|68
419 1 (12 0] 6 4 | 8
4 9 1 12 0 6 8 4

37/45

Tri fusion

Le tri fusion consiste a séparer le tableau en deux parties de tailles |n/2] et [n/2], a

trier récursivement les deux parties et a les fusionner.

1 (4]9 |12 04|68
419 1 (12 0] 6 4 | 8
4 9 1 12 0 6 8 4

37/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

38/45

Fusion

La principale opération de ce tri est la fusion de deux tableaux triés.

0 1 4 4 6 8 9 12

38/45

La fusion s’effectue en ©(n). On obtient donc la relation :
n
C(m)=2- C(§)+®(n)

Avec le théoréeme maitre nous obtenons une complexité en @ (nlog(n)).

39/45

Algorithme | Pire cas Moyen Meilleur cas
Insertion O (n?) O(n?) O(n)

Rapide O(n?) O(nlog(n)) | O(nlog(n))

Fusion O(nlog(n)) | ©(nlog(n)) | O(nlog(n))

Récapitulatif

40/45

Dans les langages de programmation

Python

Si L est de type list, alors L.sort() effectue en tri en place.

>> L = [4, 2, 1, 3]
>>> L.sort()
>>> print(L)
[1, 2, 3, 4]

Si a est un itérable, alors sorted(a) renvoie un objet list trié.

>>a = (4, 2, 1, 3)
>>> sorted(a)
[1, 2, 3, 4]

41/45

Dans les langages de programmation

C++

La fonction std: :sort de la librairie standard trie les valeurs en place entre
deux itérateurs.

#include <algorithm>
#include <vector>

std::vector<int> v = {4, 2, 1, 3};
std::sort(v.begin(), v.end()); // désormais v = {1, 2, 3, 4}

int a[] = {4, 2, 1, 3};
std::sort(a, a+4); // désormais a = {1, 2, 3, 4}

42/45

Algorithmes de tri

Complexité optimale

Complexité optimale

Question : Peut on faire mieux que ®(nlog(n)) dans le pire cas ?

43/45

Complexité optimale

Question : Peut on faire mieux que ®(nlog(n)) dans le pire cas ?
On représente un algorithme de tri par un arbre de comparaison.

X1 <Xy
FaV \Vrf\i
X1 <X3 X1 < X3

/N L\

X2 <x3 | [x0,%1,%3] || [X3,%1,%2] | *2<x3

LN\ VAN

[x3,%2,x1] || [%2, %3, %1] [x1,%3, %] || [%1, %2, %3]

43/45

Complexité optimale

Question : Peut on faire mieux que ®(nlog(n)) dans le pire cas ?
On représente un algorithme de tri par un arbre de comparaison.

X1 <Xy
FaV \Vrf\i
X1 <X3 X1 < X3

/N L\

X2 <x3 | [x0,%1,%3] || [X3,%1,%2] | *2<x3

LN\ VAN

[x3,%2,x1] || [%2, %3, %1] [x1,%3, %] || [%1, %2, %3]

Les feuilles sont les résultats de I’algorithme. Il y en a n!, une par permutation.

43/45

Complexité optimale

* Lalongueur d’'un chemin entre la racine et une feuille de I’arbre est le
nombre de comparaisons effectuées pour trier le tableau.

44/45

Complexité optimale

* Lalongueur d’'un chemin entre la racine et une feuille de I’arbre est le
nombre de comparaisons effectuées pour trier le tableau.

* La hauteur H d’un arbre est la longueur du plus long chemin entre la racine et une
feuille.
La complexité dans le pire cas d’un algorithme de tri est donc la hauteur de l'arbre.
Un arbre binaire de hauteur H posséde au plus 2/ feuilles.
Un arbre possédant F feuilles a donc une hauteur supérieur ou égale a [log,(F)].

44/45

Complexité optimale

* Lalongueur d’'un chemin entre la racine et une feuille de I’arbre est le
nombre de comparaisons effectuées pour trier le tableau.

* La hauteur H d’un arbre est la longueur du plus long chemin entre la racine et une
feuille.
La complexité dans le pire cas d’un algorithme de tri est donc la hauteur de l'arbre.
Un arbre binaire de hauteur H posséde au plus 2/ feuilles.
Un arbre possédant F feuilles a donc une hauteur supérieur ou égale a [log,(F)].

On a donc:
Copt(n) =H-= I_logZ(F)] = |-10g2(1/l!)-|

44/45

Complexité optimale

Formule de Stirling

n
n! ~ V2nn(f)
e

En utilisant la formule de Stirling on obtient :

(1 +1log,(m) +1log,(n)) + n-(log,(n) —log,(e)) = © (nlog(n))

N =

log,(n!) =

Conclusion : Un algorithme de tri ne peut donc pas faire mieux que © (nlog(n))
dans le pire cas !

45/45

	Structure de données linéaires
	Tableaux
	Listes chaînées

	Algorithmes de tri
	Tri par insertion
	Tri rapide
	Tri par fusion
	Complexité optimale

