ALGORITHMIQUE ET STRUCTURES DE DONNEES
3. Graphes

Yoann Coudert--Osmont
28 Janvier 2026

1/61

1. Définitions
2. Parcours de graphe

Parcours en largeur

Parcours en profondeur

3. Algorithmes de plus court chemin
Algorithme de Dijkstra
Algorithme de Bellman-Ford

4. Arbre couvrant de poids minimal
Algorithme de Kruskal

Algorithme de Prim

2/61

Définitions

Graphe (orienté)

Graphe (orienté)
Un graphe orienté G = (S, A) est la donnée d’un ensemble de sommets S et d’'un
ensemble d’arcs AC V x V.

a V ={1,2,3,4,5}
A= {(112)1(21 1),(2, 3)1 (3,4), (315)1(41 1),(4, 2)1 (4,5)}

3/61

e On utiliseran =|V]| et m = |A].

4/61

* On utiliseran = |V| et m = |A|.

* On définit le voisinage sortant d’un sommet x € V comme
N*(x)={y | (x,y) € A}. Le degré sortant vaut d*(x) = |[N*(x)|.

* On définit le voisinage entrant d’'un sommet x € V comme
N7 (x)={y | (y,x) € A}. Le degré entrant vaut d*(x) = [N*(x)|.

(1,2,5), d*(4)=3
0 ={3), d(4)=1

4/61

Représentation de graphe

11 existe deux fagons classiques de représenter un graphe :

1 2 3 45
1[of1]ofo]o 1[2]
e e 21110(1]0(0 21113
c‘” 310(0|0 |11 314
a a 411(1]0]0]1 411 5
5/0[0(0]0(0 5
Graphe orienté Matrice d’adjacence Listes d’adjacence
Matrice d’adj. | Listes d’adj.
Mémoire O(n?) O(n+m)
Test "(x,y) € A?" o(1) O(d*(x))

5/61

Graphe non orienté

Graphe non orienté
Un graphe non orienté G = (S, A) est un graphe dont chaque arc est

bidirectionnel :
(x,y)eA < (yx)€A

A est alors un ensemble de paires de sommets {x,y} appelés arétes.

0 A=1{{1,2},{1,4},{2,3},{2,4}, (3,5}, {4,5}}

vV =1{1,2,3,4,5)

6/61

On définit le voisinage d’'un sommet x € V comme N(x) = {y | {x,y} € A}.
Le degré d’un sommet est d(x) = |[N(x)|.

a e N(4)={1,2,3,5}
G d(4) =4
O—C)

7/61

Représentation de graphe

11 existe deux fagons classiques de représenter un graphe :

1 2 3 45
110j1]0)1(0 11214
e e 21101]1{0 2(1(3
0‘ 310(1|0|1(1 3124
e a 4111111101 41112 5
5/0[0(1]1(0 5(3]|4
Graphe non orienté Matrice d’adjacence Listes d’adjacence

Matrice d’adj.

Listes d’adj.

Mémoire

O (n?)

O(n+m)

Test "{x,p} € A ?"

o(1)

O(d(x)

8/61

Chemin

Dans un graphe G = (S, A), un chemin ¢ de longueur k est une séquences de k + 1
sommets ¢ = (sg,Sq,...,5) tel que:

VYO<i<k, (s;,si.1) €A

Lorsque sy = s et s; = t, on dit que ¢ est un chemin allant de s a ¢.

0 (1,2,3,5) est un chemin de longueur 3

9/61

Cycle

Dans un graphe G = (S, A), un cycle ¢ de longueur k est un chemin de longueur k
: ¢ =(50,51,---,5), tel que le dernier sommet est égale au premier sommet.
C’est-a-dire, s = sg.

(D—(3)

a ‘ (1,2,3,4,1) est un cycle de longueur 4

10/61

Accessibilité

Accessibilité

Soit G = (S,A) un graphe. Un sommet ¢ est dit accessible depuis un sommet s
lorsqu’il existe un chemin allant de s a t dans G. On définit la relation
d’accessibilité %, par :

sHyt = testaccessible depuis s

0 (1,2,3,5) est un chemin. Donc 1. %, 5.

11/61

Cas non orienté

Dans un graphe non orienté, si ¢ = (¢, 51,...,5¢) est un chemin, alors la séquence

inverse ¢ = (Sg,Sk_1,--.,51,50) est également un chemin.

c (1,2,3,5) est un chemin. (5,3,2,1) est son chemin inverse.

Dans un graphe non orienté, %, est une relation symétrique :

SA\t — tABys

12/61

Connexité

Connexité

Soit G = (S, A) un graphe non orienté.

* Les classes d’équivalence de la relation %4 sont appelées composantes
connexes de G.

* On dit que G est connexe s’il ne possede qu’une seule composante connexe.
C’est-a-dire, lorsqu’il existe un chemin reliant n’importe quel paire de
sommets.

13/61

Connexité

Connexité

Soit G = (S, A) un graphe non orienté.

* Les classes d’équivalence de la relation %4 sont appelées composantes
connexes de G.

* On dit que G est connexe s’il ne possede qu’une seule composante connexe.
C’est-a-dire, lorsqu’il existe un chemin reliant n’importe quel paire de
sommets.

13/61

Cas orienté

a e 3945
' A
0‘ J, 3 n’est pas accessible depuis 5...
(D—)

I, n'est pas symétrique.

14/61

Forte connexité

Forte connexité
On dit qu'un graphe orienté est fortement connexe si et seulement si il existe un
chemin reliant n'importe quel paire de sommets.

15/61

Forte connexité

Forte connexité
On dit qu'un graphe orienté est fortement connexe si et seulement si il existe un
chemin reliant n'importe quel paire de sommets.

—03)
o¥%%

15/61

Distance entre sommets

Distance entre sommets

Dans un graphe G = (S, A), si t est un sommet accessible depuis s, alors
I’ensemble C(s,t) des chemins allant de s a t n’est pas vide. Dans ce cas, la
distance d(s, t) entre s et t est défini par :

d(s,t) = min I(c)
ceC(s,t)

Ou I(c) est la longueur du chemin c.

(2)—(3)
0 d(1,3) =2
(H)—(5)

16/61

Arbre

Arbre

Un arbre est un graphe non orienté, connexe et sans cycles. Ses sommets sont

appelés nceuds.

17/61

Arbre

Un arbre est un graphe non orienté, connexe et sans cycles. Ses sommets sont

Théoreme

Soit G = (S,A) un arbre. Son nombre d’arétes est m = |A|=|S|-1=n-1.

appelés nceuds.

17/61

Arbre enraciné

Arbre enraciné

Un arbre enraciné est un arbre dont on a particularisé un nceud que l'on appelle
racine de l'arbre.

Arbre précédent enraciné en 4 :

18/61

Représentation d’un arbre enraciné

Dans un arbre enraciné, pour chaque aréte, on peut distinguer ses deux extrémités
* Le nceud le plus proche de la racine est appelé pere.
* Le nceud le plus loin de la racine est appelé fils.

L’arbre peut étre représenté par un tableau parent indiquant le pere de chaque
neceud.

neeud (1|23 /4|5|6|7|8]9
parent |2 |4 |2]| -|4|4|6|6|38

19/61

Arbre couvrant

Arbre couvrant

Soit G = (S,A) un graphe non orienté connexe. Un arbre couvrant de G, est un
arbre T = (S, Ar) dont les sommets sont ceux de G et donc les arétes
appartiennent a G (Ap C A).

<

20/61

Parcours de graphe

Parcours de graphe

Le but d’un parcours de graphe est d’explorer les sommets a partir d’'un sommet
source en parcourant les arétes/arcs du graphe.

* Entrée: Un graphe G et un sommet source s.

* Sortie: Un arbre de parcours enraciné en s, et éventuellement d’autres
informations.

21/61

Parcours de graphe

Le but d’un parcours de graphe est d’explorer les sommets a partir d’'un sommet
source en parcourant les arétes/arcs du graphe.

* Entrée: Un graphe G et un sommet source s.

* Sortie: Un arbre de parcours enraciné en s, et éventuellement d’autres
informations.

On distingue deux principaux types de parcours :

* Le parcours en largeur permettant par exemple de calculer les distances
entre la source s et les autres sommets.

21/61

Parcours de graphe

Le but d’un parcours de graphe est d’explorer les sommets a partir d’'un sommet
source en parcourant les arétes/arcs du graphe.
* Entrée: Un graphe G et un sommet source s.
* Sortie: Un arbre de parcours enraciné en s, et éventuellement d’autres
informations.
On distingue deux principaux types de parcours :
* Le parcours en largeur permettant par exemple de calculer les distances
entre la source s et les autres sommets.

* Le parcours en profondeur permettant par exemple de tester la présence
d’un cycle dans un graphe orienté.

21/61

Parcours de graphe

Parcours en largeur

Parcours en largeur

Le parcours en largeur maintient un ensemble de sommets visités V.
Initialement V = {s}.

A chaque étape, on ajoute tous les voisins de V qui ne sont pas encore dans V.
A I’étape k, V contient tous les sommets a une distance au plus k de s.

07670 ®

00!
o @

Etape 0: V = {2}

22/61

Parcours en largeur

Le parcours en largeur maintient un ensemble de sommets visités V.
Initialement V = {s}.

A chaque étape, on ajoute tous les voisins de V qui ne sont pas encore dans V.
A I’étape k, V contient tous les sommets a une distance au plus k de s.

Etape 1: V ={0,1,2,3}

22/61

Parcours en largeur

Le parcours en largeur maintient un ensemble de sommets visités V.
Initialement V = {s}.

A chaque étape, on ajoute tous les voisins de V qui ne sont pas encore dans V.
A I’étape k, V contient tous les sommets a une distance au plus k de s.

<1

Btape 2: V ={0,1,2,3,4,5}

22/61

Parcours en largeur

Le parcours en largeur maintient un ensemble de sommets visités V.
Initialement V = {s}.

A chaque étape, on ajoute tous les voisins de V qui ne sont pas encore dans V.
A I’étape k, V contient tous les sommets a une distance au plus k de s.

Etape 3: V ={0,1,2,3,4,5,6)

22/61

Parcours en largeur

Le parcours en largeur maintient un ensemble de sommets visités V.
Initialement V = {s}.

A chaque étape, on ajoute tous les voisins de V qui ne sont pas encore dans V.
A I’étape k, V contient tous les sommets a une distance au plus k de s.

Etape 4: V ={0,1,2,3,4,5,6,7}

22/61

Parcours en largeur

Le parcours en largeur maintient un ensemble de sommets visités V.
Initialement V = {s}.

A chaque étape, on ajoute tous les voisins de V qui ne sont pas encore dans V.
A I’étape k, V contient tous les sommets a une distance au plus k de s.

QOO BN
oa(\ SO w
02010
E ©
tape4:V ={0,1,2,3,4,5,6,7}
@

22/61

Algorithme

1: procedure PARCOURS_LARGEUR(G = (S,A), s)
2 dist[u] < +c0, YueS$

3 parent[u] <0, YueS$S

4 dist[s] « 0

5: F « File vide

6 enfiler(F, s)

7 tant que F n’est pas vide faire

8 u « defiler(F)

9 pour tout v € N(u) faire

10: si dist[v] = +oo alors
11: dist[v] « dist[u]+1
12: parent[v] < u

13: enfiler(F, v)

14: fin si

15: fin pour

16: fin tant que

17: fin procedure
23/61

Cet algorithme est linéaire en la taille du graphe d’entrée :

s Avec une matrice d’adjacence, la complexité est ®(n?).

* Avec des listes d’adjacence, la complexité est ©(n + m).

24/61

Parcours de graphe

Parcours en profondeur

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

(2)

07670 ©

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

(2)
©

02020 o

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

(2)
©
(+)

)

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

@

A

1]

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

(2)
(0-H®

TRNe% ¢ %

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

D
0%6%0
RAR A %
>

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

@

.’@

o1

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

(2)

3

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

(2)
©
(4)
ORO
()
@

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

)

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

L]

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

0‘9 @ 99

: a’e 9 "

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

0‘9 @ Y

N a’e 9 "

25/61

Parcours en profondeur

Le parcours en profondeur utilise une pile plutot qu’une file.
Résultat : Au lieu de commencer par explorer les sommets les plus proches de la
source s, le parcours va trés vite aller visiter des sommets loin de la source s.

0‘9 @ ¢

- e’e 9 "

25/61

Algorithme

1: procedure PARCOURS_PROFONDEUR(G = (S, A), s)
2 etat[u] < PAS_VU, VYueS$

3 parent[u] <0, VYueS$S

4: P « Pile vide

5: Visiter(P, 0, s)

6 tant que P n’est pas vide faire

7 u < depiler(P)

8

si etat[u] = A_VOIR alors
1: procedure Visiter(P, u, v)

9: tat EN_COURS
e [u] i 2: etat[v] « A_VOIR
10: empiler(P, u)
. 3 parent[v] « u
11: pour tout v € N(u) faire .
. 4: empiler(P, v)
12: si etat[v] = PAS_VU alors .
. 5: fin procedure

13k Visiter(P, u, v)
14: fin si
15: fin pour
16: sinon
17: etat[u] < VU
18: fin si

19: fin tant que

20: fin procedure 26/61

Version récursive

1: etat[u] < PAS_VU, VYueS
2: parent[u] <0, VYueS

4: procedure PARCOURS_PROFONDEUR(G = (S, A), u)
5 etat[u] <« EN_COURS
6: pour tout v € N(u) faire
7 si etat[v] = PAS_VU alors
8 parent[v] < u
9 Parcours_profondeur(G, v)
10: fin si
11: fin pour
12: etat[u] « VU
13: fin procedure
14:
15: Parcours_profondeur(G, s)

27/61

Cet algorithme est a nouveau linéaire en la taille du graphe d’entrée :

s Avec une matrice d’adjacence, la complexité est ®(n?).

* Avec des listes d’adjacence, la complexité est ©(n + m).

28/61

Exemple d’application

On peut se servir d’un parcours en profondeur pour déterminer si un graphe
orienté possede un cycle.

On peut montrer qu'un graphe possede un cycle si et seulement si on rencontre
un sommet dans 1’état EN_COURS durant le parcours.

29/61

Détection de cycle

. etat[u] « PAS_VU, VYueS

1

2

3: procedure DeTECTER_CYCLE(G = (S, A), u)

4 etat[u] « EN_COURS

5: pour tout v € N*(u) faire

6 si etat[v] = PAS_VU alors

7 si Detecter_cycle(G, v) = VRAI alors
8
9

retourner VRAI
2 fin si
10: sinon si etat[v] = EN_COURS alors
11: retourner VRAI
12: fin si

13: fin pour

14: etat[u] « VU
15: retourner FAUX
16: fin procedure

30/61

Algorithmes de plus court chemin

Graphe pondére

Graphe pondéré
Un graphe pondéré est un triplet G = (S, A, w) ou (S, A) est un graphe (orienté ou
non) et w: A — R est une application associant un poids w((s,)) a chacun des

arcs du graphes. Si G est non orienté, w((t,s)) = w((s, t)).

31/61

Représentation de graphe

Il existe deux fagons classiques de représenter un graphe pondéré :

1 2 3 4 5
1|04]|co|oofc0 12,4
25|01 |o0fo0 2 (1,4(3,1
3o 0| 1|2 3 (4/1|5/2
4112|002 4 (1/1{2/2(5/2
5]oco|loco|oo|oo| (5
Graphe orienté Matrice d’adjacence Listes d’adjacence
Matrice d’adj. | Listes d’adj.
Mémoire O(n?) O(n+m)
Test "(x,p) € A ?" o(1) O(d*(x))

32/61

Poids d’un chemin

Poids d’un chemin
Dans un graphe pondéré G = (S, A, w), on définit le poids W(c) d’'un chemin

c=(sg,...,Sk) par:

k
W(e)=) wlsiyi)
i=1

2 W((2,3,45)=1+1+2=4

33/61

Distance pondérée entre sommets

Distance pondérée entre sommets

Dans un graphe pondéré G = (S, A, w), si t est un sommet accessible depuis s,
alors ’ensemble C(s, t) des chemins allant de s a t n’est pas vide. Dans ce cas, la
distance pondérée 9(s, t) entre s et t est défini par :

o(s, t) = in Wi(c
(s)ngﬂ (c)

Lorsque t n’est pas accessible depuis s, on pose (s, t) = +oo.

5(2,5)=1+2=3

34/61

Cycle de poids négatif ?

Que se passe-t-il lorsqu’un cycle de poids négatif existe ?

35/61

Cycle de poids négatif ?

Que se passe-t-il lorsqu’un cycle de poids négatif existe ?

Quelles est la distance pondérée entre 4 et 3 ?

35/61

Cycle de poids négatif ?

Que se passe-t-il lorsqu’un cycle de poids négatif existe ?

Quelles est la distance pondérée entre 4 et 3 ?
V>0, W((41)-(1,2,1)F+(1,2,3)) = 1+k-(-1)+(4+1) =6-k

0(4,3) = -0

35/61

Algorithme de plus court chemin

Un algorithme de plus court chemin est un algorithme qui étant donné un graphe
pondéré G = (S,A, w) et un sommet source s € S, calcule les distances pondérées
entre s et tous les autres sommets de G. De plus, un tel algorithme calcule un
arbre enraciné en s de tel sorte que la distance pondérée du chemin entre s et ¢
dans cet arbre soit égale (s, t).

36/61

Algorithmes de plus court chemin

Algorithme de Dijkstra

Rappel

On rappelle qu'un parcours en largeur permet de calculer la distance (non
pondérée) entre un sommet source s et tous les autres sommets accessibles depuis
s. L'algorithme de Dijkstra est une version modifiée du parcours en largeur.

37/61

Rappel

On rappelle qu'un parcours en largeur permet de calculer la distance (non
pondérée) entre un sommet source s et tous les autres sommets accessibles depuis

s. L'algorithme de Dijkstra est une version modifiée du parcours en largeur.

Le parcours en largeur maintient un ensemble de sommets visités V.
Initialement V = {s}.
A chaque étape, on ajoute tous les voisins de V qui ne sont pas encore dans V.

37/61

Rappel

On rappelle qu'un parcours en largeur permet de calculer la distance (non
pondérée) entre un sommet source s et tous les autres sommets accessibles depuis
s. L'algorithme de Dijkstra est une version modifiée du parcours en largeur.

L’algorithme de Dijkstra maintient un ensemble de sommets visités V.

Initialement V = {s}.

A chaque étape, on ajoute le voisin de V le plus proche de s qui n’est pas encore
dans V.

37/61

Déroulement de I’algorithme de Dijkstra

sommet | 1 213141|5

dist| 5[0 1 [+oo|+o0

38/61

Déroulement de I’algorithme de Dijkstra

‘/ 2
sommet | 1 213|14]|5
dist| 50| 1] 2] 3

38/61

Déroulement de I’algorithme de Dijkstra

sommet | 1 2131 4|5
dist| 3 [0 | 1] 2] 3

38/61

Déroulement de I’algorithme de Dijkstra

—(3)
2 2
sommet | 1 2131 41|5
dist| 3 [0 | 1] 2] 3

38/61

Déroulement de I’algorithme de Dijkstra

—®
2 2

sommet | 1 2131 41|5
dist| 3 (0| 1] 2] 3

38/61

Algorithme de Dijkstra

1: procedure DyksTtrA(G = (S, A, w), 5)
2 dist[u] < +o0, Yues

3 parent[u] <0, VYueS$S

4: F « File de priorité vide

5: Visiter(F, 0, s, 0)

6 tant que F n’est pas vide faire

7 (d, u) « defiler_min(F)

8

1: d Vi F; » Uy d
si d = dist[u] alors procedure Visiter(F, u, v, d)

2 dist[v] =d

9: continuer
10: fin si 3: parent[v] = u
’ N . 4: enfiler(F, (d,v))
11: pour tout v € N*(u) faire .
, 5: fin procedure
12: d" —d+w(u,v)
13: si d’ <dist[v] alors
14: Visiter(F, u, v, d’)
15: fin si
16: fin pour

17: fin tant que
18: fin procedure

39/61

L'algorithme fait au plus m = |A| appels a enfiler(F, (d,v)) et donc au plus m
appels a defiler(F).

40/61

L'algorithme fait au plus m = |A| appels a enfiler(F, (d,v)) et donc au plus m
appels a defiler(F).

Implémentation | Enfiler Défiler
Liste o(1) O(|F|)
Liste triée O(|F]) o(1)
Tas binaire O(logl|F|) | ©(log|F])

40/61

L'algorithme fait au plus m = |A| appels a enfiler(F, (d,v)) et donc au plus m
appels a defiler(F).

Implémentation | Enfiler Défiler
Liste o(1) O(|F|)
Liste triée O(|F]) o(1)
Tas binaire O(logl|F|) | ©(log|F])

Durant 'exécution de Dijkstra la taille de F est un O(m). Donc :

Cijkstra(1) = O (m - (Cgnfiter (M) + Cpefiter (1))

En utilisant une liste triée ou non, Cpjjkstra(1) = O(m?).
En revanche, avec un tas binaire, on obtient Cpjjistra(m) = O(m -log(m))

40/61

Arbre binaire

Arbre binaire

Un arbre binaire est un arbre enraciné dont chaque nceud posséde au plus deux
fils.

41/61

Arbre binaire complet

Arbre binaire complet

Un arbre binaire complet est un arbre binaire dont tous les niveaux sauf le
dernier doivent étre totalement remplis. Si le dernier niveau ne l'est pas
totalement alors, il doit étre rempli de gauche a droite.

42/61

Tas binaire

Tas binaire
Un tas binaire est un arbre binaire complet dans lequel chaque nceud est plus
grand que c’est fils

43/61

Valeur max d’un tas binaire

La plus grande valeur d’un tas binaire se trouve toujours a la racine de lI'arbre.
Accéder a la plus grande valeur d’un tas binaire se fait donc en ©(1).

44/61

Ajout d’un nouveau nceud

On souhaite ajouter un nouveau nceud de valeur 6 a notre tas binaire :

45/61

Ajout d’un nouveau nceud

On souhaite ajouter un nouveau nceud de valeur 6 a notre tas binaire :

45/61

Ajout d’un nouveau nceud

On souhaite ajouter un nouveau nceud de valeur 6 a notre tas binaire :

45/61

Ajout d’un nouveau nceud

On souhaite ajouter un nouveau nceud de valeur 6 a notre tas binaire :

45/61

Ajout d’un nouveau nceud

On souhaite ajouter un nouveau nceud de valeur 6 a notre tas binaire :

Le nombre d’étape nécessaire pour insérer un nouveau nceud est au plus la
hauteur H de 'arbre.

Or dans un arbre binaire complet : H = |log,(n)]. L’ajout d’un nouveau nceud a
donc une complexité en O (log,(n)).

45/61

Suppression de la racine

On souhaite supprimer la racine de notre tas binaire.

46/61

Suppression de la racine

On souhaite supprimer la racine de notre tas binaire.

46/61

Suppression de la racine

On souhaite supprimer la racine de notre tas binaire.

46/61

Suppression de la racine

On souhaite supprimer la racine de notre tas binaire.

46/61

Suppression de la racine

On souhaite supprimer la racine de notre tas binaire.

46/61

Suppression de la racine

On souhaite supprimer la racine de notre tas binaire.

Le nombre d’étape nécessaire pour supprimer la racine est au plus la hauteur H
de l'arbre.

Or dans un arbre binaire complet : H = |log,(n)]. La suppression de la racine a
donc une complexité en O (log,(n)).

46/61

Conclusion

Un tas binaire permet bien d’implémenter une file de priorité avec ajout d'un
nouvel élément et suppression du maximum en O (log(n)).

47/61

Représentation d’un tas binaire

En pratique on utilise un tableau pour représenter un tas binaire :

Indice | 0 | 1 314(5/6[7|8]9
TasT | - |9 |5(8(4|3]|7]6|2]|1

La racine se trouve a I'indice 1 du tableau, puis on ajoute les niveaux les uns a la
suite des autres.

48/61

Représentation d’un tas binaire

En pratique on utilise un tableau pour représenter un tas binaire :

Indice | 0 | 1
TasT | - | 9

2
5

Les enfants de T[i] sont T[2+i] et T[2%i+1]. Le perede T[i] est T[i/2].

48/61

Implémentation de I’insertion

Une implémentation possible de I'insertion d’une valeur x dans un tas T de taille
n en C++ est la suivante :

void ajouter(int+ T, int n, int x) {
TIn] = x;
while(n > 1 && T[n] > T[n/2]) {
std::swap(T[n], T[n/2]);
n /= 2;

49/61

Algorithmes de plus court chemin

Algorithme de Bellman-Ford

Nécessité d’un autre algorithme

L’algorithme de Dijkstra ne fonctionne que lorsque le poids des arcs est positif.
En effet, I’algorithme de Dijkstra suppose que 'on visite les sommets par ordre
croissant de distance a la source. Or, s’il existe des arcs de poids négatifs, on peut
découvrir plus tard un sommet qui est en réalité plus proche de la source
(exemple au tableau).

Lorsqu’un graphe pondéré possede des arcs de poids négatif, il faut trouver un
autre algorithme.

50/61

Idées de ’algorithme de Bellman-Ford

S’il n’existe pas de cycle de poids négatif, alors un plus court chemin ne passe
jamais deux fois par un méme sommet.
— Un plus court chemin est de taille au plus n— 1.

51/61

Idées de ’algorithme de Bellman-Ford

S’il n’existe pas de cycle de poids négatif, alors un plus court chemin ne passe
jamais deux fois par un méme sommet.
— Un plus court chemin est de taille au plus n— 1.

On peut s’appuyer sur de la programmation dynamique en notant D(t, k), le plus
petit poids d’un chemin de taille au plus k entre la source sett. On a:

D(s,0) = 0
D(t,0) = +oo, Vt=#s

Puis :

D(t,k+1)=min {D(t,k), min [D(u,k)+w(u, t)]}
ueN-=(t)
Enfin la distance pondérée entre s et ¢, est :

d(s,t)=D(t,n—1)

51/61

Algorithme de Bellman-Ford

1: procedure Berman_Forp(G = (S, A, w), s)
2 dist[u] < +co0, YueS$

3 parent[u] <0, VYueS

4 dist[s] « 0

52 pour k — 1 a|S|-1 faire

6 pour tout (u,v) € A faire

7 d « dist[u] +w(u,v)

8 si d < dist[v] alors

9

dist[v] < d
10: parent[v] « u
11: fin si
12: fin pour

13: fin pour
14: fin procedure

52/61

Arbre couvrant de poids minimal

Poids d’un arbre couvrant

Poids d’un arbre couvrant
Soit G = (S, A, w) un graphe non orienté pondéré et T = (S, A7) un arbre couvrant
de G. Alors, on définit le poids de T comme :

W(T)=4+1+1+2=38

53/61

Le probleme de ’arbre couvrant de poids minimal consiste a trouver un arbre
couvrant ayant le plus petit poids possible.

54/61

Le probleme de ’arbre couvrant de poids minimal consiste a trouver un arbre
couvrant ayant le plus petit poids possible.

Exemple de cas concret

On souhaite relier des villes par des routes. On assigne un cout a la construction
d’une route entre chaque paire de ville. arbre couvrant de poids minimal
permet de relier toutes les villes avec le plus petit cott total possible.

54/61

Arbre couvrant de poids minimal

Algorithme de Kruskal

Idées de ’algorithme de Kruskal

L’algorithme de Kruskal est un algorithme glouton qui trie les arétes par ordre
croissant de poids puis tente d’ajouter les arétes une a une a notre arbre couvrant.

55/61

Idées de ’algorithme de Kruskal

L’algorithme de Kruskal est un algorithme glouton qui trie les arétes par ordre
croissant de poids puis tente d’ajouter les arétes une a une a notre arbre couvrant.

55/61

Idées de ’algorithme de Kruskal

L’algorithme de Kruskal est un algorithme glouton qui trie les arétes par ordre
croissant de poids puis tente d’ajouter les arétes une a une a notre arbre couvrant.

55/61

Idées de ’algorithme de Kruskal

L’algorithme de Kruskal est un algorithme glouton qui trie les arétes par ordre
croissant de poids puis tente d’ajouter les arétes une a une a notre arbre couvrant.

55/61

Idées de ’algorithme de Kruskal

L’algorithme de Kruskal est un algorithme glouton qui trie les arétes par ordre
croissant de poids puis tente d’ajouter les arétes une a une a notre arbre couvrant.

55/61

Algorithme de Kruskal

1: procedure KruskarL(G = (S, A, w))
2 Ar <0
3 U « Union_Find de taille |S]
4 trier les arétes de A par poids croissant
5: pour tout (u,v) € A par ordre croissant de poids faire
6 si trouver(U, u) # trouver(U, v) alors
7 unir(U, u, v)
8 Ar «— At U{(u,v)}
9: fin si
10: fin pour
11: retourner Ap
12: fin procedure

56/61

Union-Find
Un Union-Find est une structure de données représentant une partition d’un

ensemble en plusieurs classe d’équivalence. La structure supporte deux
opérations :

* Trouver : retourne le représentant de la classe d’équivalence d’un élément.
Cette opération est principalement utiliser pour savoir si deux élément u et v
appartiennent a la méme classe d’équivalence via le test Trouver(u) =
Trouver(v).

* Unir : réunit deux classes d’équivalence en une seule.

57/61

Union-Find
Un Union-Find est une structure de données représentant une partition d’un

ensemble en plusieurs classe d’équivalence. La structure supporte deux
opérations :

* Trouver : retourne le représentant de la classe d’équivalence d’un élément.
Cette opération est principalement utiliser pour savoir si deux élément u et v
appartiennent a la méme classe d’équivalence via le test Trouver(u) =
Trouver(v).

* Unir : réunit deux classes d’équivalence en une seule.

57/61

Union-Find
Un Union-Find est une structure de données représentant une partition d’un

ensemble en plusieurs classe d’équivalence. La structure supporte deux
opérations :

* Trouver : retourne le représentant de la classe d’équivalence d’un élément.
Cette opération est principalement utiliser pour savoir si deux élément u et v
appartiennent a la méme classe d’équivalence via le test Trouver(u) =
Trouver(v).

* Unir : réunit deux classes d’équivalence en une seule.

57/61

Union-Find
Un Union-Find est une structure de données représentant une partition d’un

ensemble en plusieurs classe d’équivalence. La structure supporte deux
opérations :

* Trouver : retourne le représentant de la classe d’équivalence d’un élément.
Cette opération est principalement utiliser pour savoir si deux élément u et v
appartiennent a la méme classe d’équivalence via le test Trouver(u) =
Trouver(v).

* Unir : réunit deux classes d’équivalence en une seule.

57/61

Union-Find
Un Union-Find est une structure de données représentant une partition d’un

ensemble en plusieurs classe d’équivalence. La structure supporte deux
opérations :

* Trouver : retourne le représentant de la classe d’équivalence d’un élément.
Cette opération est principalement utiliser pour savoir si deux élément u et v
appartiennent a la méme classe d’équivalence via le test Trouver(u) =
Trouver(v).

* Unir : réunit deux classes d’équivalence en une seule.

U=1{{1,23,4,5}}

57/61

La complexité des opérations sur un Union-Find sont en ©(a(n)) (voir
https://fr.wikipedia.org/wiki/Union-find). En pratique Vn, a(n) < 5.
On peut considérer que les opérations sur un Union-Find sont en ©(1).

58/61

https://fr.wikipedia.org/wiki/Union-find

La complexité des opérations sur un Union-Find sont en ©(a(n)) (voir
https://fr.wikipedia.org/wiki/Union-find). En pratique Vn, a(n) < 5.
On peut considérer que les opérations sur un Union-Find sont en ©(1).

Toute la complexité de l’algorithme de Kruskal réside dans le tri des arétes.
On obtient une complexité en @ (m -log(m)).

58/61

https://fr.wikipedia.org/wiki/Union-find

Arbre couvrant de poids minimal

Algorithme de Prim

Idées de ’algorithme de Prim

L’algorithme de Prim consiste a faire croitre une composante connexe en partant
d’une source {s} et en ajoutant étape par étape le sommet le plus proche de la
composante connexe que l’on construit.

sommet | 1 213145
dist| 4 | 0 1 2 |+o0

59/61

Idées de ’algorithme de Prim

L’algorithme de Prim consiste a faire croitre une composante connexe en partant
d’une source {s} et en ajoutant étape par étape le sommet le plus proche de la
composante connexe que l’on construit.

sommet | 1 213145
dist| 4 [0] 0| 1 2

59/61

Idées de ’algorithme de Prim

L’algorithme de Prim consiste a faire croitre une composante connexe en partant
d’une source {s} et en ajoutant étape par étape le sommet le plus proche de la
composante connexe que l’on construit.

(D—3)
4
1

N
N

@
&—C

sommet | 1 21314]|5
dist| 1 O[O0 0] 2

59/61

Idées de ’algorithme de Prim

L’algorithme de Prim consiste a faire croitre une composante connexe en partant
d’une source {s} et en ajoutant étape par étape le sommet le plus proche de la
composante connexe que l’on construit.

sommet | 1 21314]|5
dist| 0O [O] O] 0| 2

59/61

Idées de ’algorithme de Prim

L’algorithme de Prim consiste a faire croitre une composante connexe en partant
d’une source {s} et en ajoutant étape par étape le sommet le plus proche de la
composante connexe que l’on construit.

sommet | 1 213145
dist| 0Ol O] 0] 0[O

59/61

Algorithme de Prim

1: procedure Prim(G = (S, A, w), s)
2: dist[u] < +o0, Yues

3 parent[u] <0, VYueS$S

4: F « File de priorité vide

5: Visiter(F, 0, s, 0)

6 tant que F n’est pas vide faire
7 (d, u) « defiler_min(F)

8

si dist[u] = 0 alors 1: procedure Visiter(F, u, v, d)

2 dist[v] =d

9: continuer
10: fin si 3: parent[v] = u
’ . 4: enfiler(F, (d,v))
11: dist[u] < 0 .
. 5: fin procedure
12: pour tout v € N(u) faire
13: si w(u,v) < dist[v] alors
14: Visiter(E, u, v, w(u,v))
15: fin si
16: fin pour

17: fin tant que
18: fin procedure

60/61

L'algorithme est tres similaire a I’algorithme de Dijkstra et effectue un ©(m)
opérations sur une file de priorité. Il en résulte une complexité de I’algorithme de
Prim en O (m-log(m)) lorsqu’on utilise un tas binaire.

61/61

	Définitions
	Parcours de graphe
	Parcours en largeur
	Parcours en profondeur

	Algorithmes de plus court chemin
	Algorithme de Dijkstra
	Algorithme de Bellman-Ford

	Arbre couvrant de poids minimal
	Algorithme de Kruskal
	Algorithme de Prim

