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Définitions



Ensemble (Set)

Ensemble (Set)

Un Ensemble (ou Set) est un type abstrait stockant des valeurs non ordonnées et
sans répétitions. Il s’agit d’une mise en œuvre de la notion mathématique
d’ensemble fini. Les opérations possibles sont :

• Ajout : ajoute une nouvelle valeur à l’ensemble.

• Recherche : teste si une valeur appartient à l’ensemble.

• Suppression : supprime une valeur de l’ensemble.
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Remarques

• Les valeurs sont non ordonnées : Si implémentation par tableau alors :
1 4 2 5 et 4 5 2 1 représentent le même Ensemble.

• Les valeurs sont sans répétitions :
4 5 2 1 5 ne représente pas un ensemble.
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Tableau associatif

Tableau associatif

Un tableau associatif est un type abstrait qui associe à un ensemble de clefs, un
ensemble correspondants de valeurs. Un tableau associatif supporte quatre
opérations :

• Ajout : associe une nouvelle valeur à une nouvelle clef.

• Recherche : retourne la valeur associée à une clef, si cette dernière existe.

• Suppression : supprime une clef du tableau ainsi que sa valeur associée.

• Modification : associe une nouvelle valeur à une clef déjà présente.
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Implémentation avec un tableau (dynamique)

Implémentation Ajout Recherche Suppression
Tableau Θ(1) en moy. (Θ(n) pire cas) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)

Lorsque que le tableau est trié, on peut effectué une recherche dichotomique !
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Suppression en temps constant

Lorsque le tableau n’est pas trié, la suppression est en Θ(1).
Pour un Ensemble E représenté par un std::vector en C++ on pourra supprimer
la valeur se trouvant en position i comme suit :

void retirer(std::vector<int> &E, int i) {

E[i] = E.back();

E.pop_back();

}
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Implémentation avec une liste chaînée

Implémentation Ajout Recherche Suppression
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)

Lorsque que la liste est triée, on ne peut faire de recherches dichotomiques !
La complexité moyenne et pire cas est inchangée (Θ(n)). En revanche la

complexité dans le meilleur cas devient Θ(1) si l’élément recherché est inférieur
ou égale au premier élément de la liste.
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Question

Question : Peut-on faire mieux que des opérations en temps linéaire ?
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Arbres binaires de recherche



Arbre binaire de recherche

Arbre binaire de recherche

Un arbre binaire de recherche (ABR) est un arbre binaire dans lequel chaque
nœud est supérieur aux nœuds dans son sous-arbre gauche et inférieur aux
noeuds dans son sous-arbre droit.

8

3 10

1 6 14

4 7 13
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Opération recherche dans un ABR

On recherche la valeur 4 dans notre ABR :

8

3 10

1 6 14

4 7 13

8

3

6

4

Le nombre de comparaison est au plus la hauteur H de l’arbre. La complexité est
en Θ(H).
L’arbre n’est pas un arbre binaire complet. Nous avons aucune garantie sur H
hormis H < n. La complexité est donc en Θ(n).
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Représentation d’un ABR

Un ABR se représente généralement par des cellules qui pointent entre elles à la
manière d’une liste chaînée.

struct Cellule {

int valeur;

Cellule *pere, *fild_droit, *fils_gauche;

};

using ABR = Cellule*; // pointeur vers la racine
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Implémentation de la recherche en C++

Voici une implémentation récursive de la recherche de la valeur x dans un ABR A :

Cellule* recherche(ABR A, int x) {

if(A == nullptr) return nullptr;

if(x == A.valeur) return A;

if(x < A.valeur) return recherche(A->fils_gauche, x);

else return recherche(A->fils_droit, x);

}

Lorsque que la valeur x n’est pas trouvée, la fonction retourne nullptr.
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Opération ajouter dans un ABR

On ajoute la valeur 5 dans notre ABR :
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5

La complexité pire cas est en Θ(H) = Θ(n).
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Opération suppression dans un ABR

On supprime la valeur 4 dans notre ABR :

8

3 10

1 6 14

7 134

La complexité est en Θ(1) lorsqu’on supprime une feuille.
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Opération suppression dans un ABR

On supprime la valeur 4 dans notre ABR :
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Opération suppression dans un ABR

On supprime la valeur 10 dans notre ABR :

8

3

1 6

4 7

10

14

13

14

13

La complexité est en Θ(1) lorsqu’on supprime un nœud possédant un seul fils.
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Opération suppression dans un ABR

On supprime la valeur 8 dans notre ABR :

3 10

1 6 14

4 13

8

7

7

Si A est le sous-arbre de l’élément à supprimer, et G le sous-arbre gauche de A.
Alors on trouve le maximum x de G, on le supprime et on remplace la racine de A

par x.
La complexité est en Θ(H) = Θ(n).
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Implémentation de la suppression en C++

Voici une implémentation récursive de la suppression de la racine d’un ABR :

ABR suppression(ABR A) {

ABR B = nullptr;

if(A->fils_gauche) {

if(A->fils_droit) {

B = max(A->fils_gauche);

A->valeur = B->valeur;

suppression(B);

return A;

} else B = A->fils_gauche;

} else if(A->fils_droit) B = A->fils_droit;

if(A->pere) {

if(A->pere->fils_gauche == A) A->pere->fils_gauche = B;

if(A->pere->fils_droit == A) A->pere->fils_droit = B;

}

if(B) B->pere = A->pere;

delete A;

return B;
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Récapitulatif

Pire cas :

Implémentation Ajout Recherche Suppression
Tableau Θ(n) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)
ABR Θ(n) Θ(n) Θ(n)

On peut montrer qu’en moyenne H = Θ(log(n)).

Cas Moyen :

Implémentation Ajout Recherche Suppression
Tableau Θ(1) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)
ABR Θ(log(n)) Θ(log(n)) Θ(log(n))

19/38



Récapitulatif

Pire cas :

Implémentation Ajout Recherche Suppression
Tableau Θ(n) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)
ABR Θ(n) Θ(n) Θ(n)

On peut montrer qu’en moyenne H = Θ(log(n)).

Cas Moyen :

Implémentation Ajout Recherche Suppression
Tableau Θ(1) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)
ABR Θ(log(n)) Θ(log(n)) Θ(log(n))

19/38



Question

Question : Peut-on également obtenir du Θ(log(n)) dans le pire cas ?
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Arbres binaires de recherche

Arbre AVL



Arbre AVL

Arbre AVL

Un arbre AVL est un ABR tel que pour chaque nœud la différence de hauteur
entre son fils droit et son fils gauche est au plus 1.

8

3 10

1 6 14

4 7 13

ABR non AVL

8

3 13

1 6 10 14

4 7

ABR AVL
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Analyse de la hauteur

On pose Nmin(h) le nombre minimum de nœuds dans un arbre AVL de hauteur h.

Nmin(0) = 1 Nmin(1) = 2

Un arbre AVL contient moins de sommets lorsqu’il est déséquilibré. Donc :

Nmin(h+ 1) = 1 +Nmin(h) +Nmin(h− 1)

Asymptotiquement Nmin se comporte comme la suite de Fibonacci :

Nmin(h) = Θ
(
ϕh

)
En passant au log2 on obtient : log2 (Nmin(h)) ∼ h · log2ϕ. Ainsi la hauteur
maximum Hmax(n) d’un arbre AVL de taille n est :

Hmax(n) ∼
log2(n)
log2ϕ

≃ 1,44 · log2(n)
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Complexité

Pire cas :

Implémentation Ajout Recherche Suppression
Tableau Θ(n) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)
ABR Θ(n) Θ(n) Θ(n)

Arbre AVL Θ(log(n)) Θ(log(n)) Θ(log(n))
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Opérations sur un arbre AVL

Les opérations sur un arbre AVL sont les mêmes que sur un ABR, mais après avoir
modifié un nœud de l’arbre, il faut le rééquilibré pour que les hauteurs de ses
sous-arbres droit et gauche diffèrent d’au plus 1.
Pour cela il faut utiliser une nouvelle opération appelé rotation.
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Opération de rotation

Une rotation consiste à échanger la racine d’un arbre avec l’un de ses fils.

a

b

< a

> a et < b > b

a

b

< a > a et < b

> b

Rotation gauche

Rotation droite
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Arbres binaires de recherche

Arbre Rouge-Noir



Arbre Rouge-Noir

Arbre Rouge-Noir

Un arbre rouge noir est un ABR vérifiant les propriétés suivantes :

• Chaque nœud est soit rouge soit noir.

• Les enfants d’un nœud rouge sont noirs.

• Les feuilles sont noires et n’ont pas de valeurs.

• Tous les chemins descendant d’un même nœud vers les feuilles ont le même
nombre de nœuds noirs.
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Analyse de la hauteur

Soit un arbre Rouge-Noir de taille n et de hauteur H . On pose nn, le nombre de
nœuds noirs par branche depuis la racine.
D’après la dernière propriété, les nn premiers niveaux de l’arbre sont complets :

n ⩾ 2nn − 1

La deuxième propriété implique que chaque broche a au plus nn nœuds rouges :

H < 2 ·nn

Donc n ⩾ 2H/2. Ce qui veut dire, en passant au log2 :

H ⩽ 2 · log2(n)
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Complexité

Pire cas :

Implémentation Ajout Recherche Suppression
Tableau Θ(n) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)
ABR Θ(n) Θ(n) Θ(n)

Arbre AVL Θ(log(n)) Θ(log(n)) Θ(log(n))
Arbre Rouge-Noir Θ(log(n)) Θ(log(n)) Θ(log(n))
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Dans les langages de programmation

La librairie standard de C++ contient des arbres binaires de recherche
implémentant des Ensembles.

#include <set>

std::set<int> S; // Un Ensemble d'entiers

S.insert(x); // Ajoute x à l'Ensemble

S.find(x); // Cherche x dans l'Ensemble

S.erase(x); // Supprime la valeur x de l'ensemble

De la même manière, on trouve des tableau associatifs.

#include <map>

// Un tableau associatif dont les clefs sont des entiers

// et les valeurs des strings

std::map<int, string> M;

M[x] = s; // Modifie la valeur de la clef x
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Fonction de hachage

Fonction de hachage

Une fonction de hachage est une fonction h qui prend en entrée une donnée
stockée sur un nombre arbitraire de bits et retourne un entier tenant sur un
nombre b fixé de bits.
Une fonction de hachage doit avoir l’air aléatoire. Si x et y sont proches, alors
h(x) et h(y) ne doivent pas être proches.
Elle doit être difficile à inverser. Si 0 ⩽ y < 2b, alors il doit être difficile de
trouver x tel que h(x) = y.
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Exemples

MD5 et SHA256 sont des fonctions de hachages de tailles 128 et 256 bits.

>>> import hashlib

>>> hashlib.md5(b"coucou").hexdigest()

'721a9b52bfceacc503c056e3b9b93cfa'

>>> len(hashlib.md5(b"coucou").hexdigest())*4

128

>>> hashlib.sha256(b"coucou").hexdigest()

'110812f67fa1e1f0117f6f3d70241c1a42a7b07711a93c2477cc516d9042f9db'

>>> hashlib.sha256(b"nounou").hexdigest()

'8ed8dc9a684052fc5d9a61464087059ca32044d8342116854b78a81579196727'
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Usage

Les fonctions de hachages sont utiles dans de nombreux contextes :

• Stocker les mots de passe

• Vérifier si des données envoyées ont été correctement reçu.

• La sécurité des blockchains reposent sur les fonctions de hachage.

• Et bien sûr les tables de hachage...
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Table de hachage

Table de hachage

Une table de hachage est une structure de données implémentant un Ensemble à
l’aide d’une fonction de hachage h.
Les valeurs sont stockés dans une table (un tableau). Une valeur x sera stocké à
l’indice h(x) dans la table. Les valeurs stockés à un même indice sont organisés
sous forme d’une liste chaînée.

0 1 2 3 4 5 6 7 8 9

1 3 4 6 7 810

13 14
{1,3,4,6,7,8,10,13,14}

Ensemble

h(x) = [x mod 10]

Table de hachage

Indice
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Analyse

On note Li , la liste à l’indice i de la table.

• Recherche : Pour chercher si x est présent, il faut parcourir la liste Lh(x). La
complexité est donc Θ

(∣∣∣Lh(x)

∣∣∣).
• Ajout : Lors de l’ajout d’une valeur x, il faut vérifier que x n’est pas présent

dans Lh(x). La complexité est alors Θ
(∣∣∣Lh(x)

∣∣∣).
• Suppression : La suppression correspond à la suppression d’un élément

dans une liste. En la supposant doublement chaînée, la complexité est Θ(1).

Bien que dans le pire cas
∣∣∣Lh(x)

∣∣∣ = n, en moyenne, si la fonction de hachage est
bonne,

∣∣∣Lh(x)

∣∣∣ = Θ(1).
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Complexité

Pire cas :

Implémentation Ajout Recherche Suppression
Tableau Θ(n) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)
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ABR Θ(n) Θ(n) Θ(n)

Arbre AVL Θ(log(n)) Θ(log(n)) Θ(log(n))
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Complexité

Cas Moyen :

Implémentation Ajout Recherche Suppression
Tableau Θ(1) Θ(n) Θ(1)

Tableau trié Θ(n) Θ(log(n)) Θ(n)
Liste Θ(1) Θ(n) Θ(1)

Liste trié Θ(n) Θ(n) Θ(1)
ABR Θ(log(n)) Θ(log(n)) Θ(log(n))

Arbre AVL Θ(log(n)) Θ(log(n)) Θ(log(n))
Arbre Rouge-Noir Θ(log(n)) Θ(log(n)) Θ(log(n))
Table de hachage Θ(1) Θ(1) Θ(1)
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Dans les langages de programmation

La librairie standard de C++ contient des tables de hachage implémentant des
Ensembles.

#include <unordered_set>

std::unordered_set<int> S; // Un Ensemble d'entiers

S.insert(x); // Ajoute x à l'Ensemble

S.find(x); // Cherche x dans l'Ensemble

S.erase(x); // Supprime la valeur x de l'ensemble

De la même manière, on trouve des tableau associatifs.

#include <unordered_map>

// Un tableau associatif dont les clefs sont des entiers

// et les valeurs des strings

std::unordered_map<int, string> M;

M[x] = s; // Modifie la valeur de la clef x
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Dans les langages de programmation

Python possède également des tables de hachages implémentant des Ensembles.

>>> set([4, 5, 4, 9])

{4, 5, 9}

>>> S = {3, 8, 56}

>>> S.add(x) # Ajoute x

>>> S.remove(x) # Supprime x

>>> x in S # Test si x est dans S

De la même manière, on trouve des tableau associatifs.

>>> dict([(4, "coucou"), (5, "salut")])

{4: 'coucou', 5: 'salut'}

>>> d = {"a": 42, 12: "test"}

>>> d[x] = y # Modifie la valeur de clef x
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