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Visualizing the extra symmetry of the Kepler problem
Jim Moreheada)

120 Holly Court, Mountain View, California 94043
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The extra symmetry of the Kepler problem corresponding to the conservation of the Runge–Lenz
vector can be visualized by studying how entire Kepler ellipses evolve under symmetry
transformations. After discussing the general case, we show that the evolution generated by a
component of the Runge–Lenz vector in the plane of the orbit yields the same family of ellipses in
the plane as the projection onto the plane of a rotation of a certain circle in three
dimensions. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION

The classical two-body 1/r 2 force problem has many spe-
cial properties. The best known is that all of its bound orbits
are closed. The reason is that there is an extra quantity, the
Runge–Lenz vector, conserved by the motion in addition to
the angular momentum, which is conserved by all central
forces. This extra conserved vector has a clear physical in-
terpretation: it points in the direction of the perihelion~clos-
est approach! and its magnitude is proportional to the eccen-
tricity of the ellipse. The fact that the vector does not change
along the orbit can be interpreted as there being no preces-
sion or change in shape: a closed orbit~see, for example,
Ref. 1!.

Equivalently, the problem has extra symmetry in addition
to the rotational symmetry common to all central forces. The
whole symmetry group isO(4), all orthogonal transforma-
tions ~rotations! on four-dimensional space. This generaliza-
tion from the symmetry groupO(3) of rotations of physical
space is somewhat abstract. The fictitious fourth dimension
does not behave in a straightforward way. For example, a
physical rotation has a simple action on phase space: the
position and momentum are separately and identically ro-
tated. In the extra symmetry the position and momentum are
coupled and the symmetry trajectories generated in phase
space are complicated.

How can we obtain a physical intuition for the extra sym-
metry, as we have for the extra conservation law? In this
paper we suggest that the extra symmetry is easy to visualize
in terms of its action on entire orbits instead of on individual
points in phase space. The flow generated by a given com-
ponent of the Runge–Lenz vector takes a given Kepler el-
lipse ~given values of the major axis, eccentricity, and orien-
tation! through other ellipses of different eccentricities and
possibly different orientations, but with the same length of
the major axis. This length is preserved as well as the energy
because the energy of an ellipse depends on only the length
of the major axis and not on the eccentricity or orientation.
The extra symmetry is, in a sense, the independence of the
energy on the eccentricity.

We derive the family generated by any component of the
Runge–Lenz vector acting on any Kepler ellipse. Although
the general family is not difficult to characterize, the special
cases of the symmetry generated by the component of the
Runge–Lenz vector perpendicular to the plane of the orbit
and by a component of the Runge–Lenz vector in the plane
of the orbit are particularly easy to visualize. For example,
the evolution generated by a component of the Runge–Lenz

vector in the plane of the orbit keeps the orbit in the plane.
The sequence of ellipses traced out in the plane is~when
drawn centered at the origin! the same as the projection onto
the plane of the rotation of a certain circle in three dimen-
sions.

II. CONSERVATION AND SYMMETRY

In addition to conserving angular momentumL5rÃp, the
Kepler problem, with the Hamiltonian

H~r ,p!5
1

2m
~px

21py
21pz

2!2
k

r
, ~1!

also conserves the Runge–Lenz vector,

M5
1

m
pÃL2k

r

r
, ~2!

where k5Gm1m2 and m is the reduced mass,m1m2 /(m1

1m2). The closing of the orbits can be understood by this
extra conservation. The motion under a general central force
conserves the Hamiltonian and the angular momentum vec-
tor, a total of four functions. The trajectory must lie on the
level set of these four functions in six-dimensional phase
space, which is a two-dimensional surface, corresponding to
planar central-force orbits. The Kepler Hamiltonian con-
serves these four plus the three components of the Runge–
Lenz vector. Not all seven functions are independent. Two
constraints follow from the facts that

L "M50, uM u25k2S 11
2HL2

mk2 D . ~3!

Equation ~3! leaves five independent constraints in six di-
mensions, leaving a one-dimensional space for the
trajectory—a closed orbit.

In classical mechanics there is a one-to-one correspon-
dence between conservation laws and symmetry. A function
that is a constant of the motion serves as the generator of a
symmetry of the system. This connection is most easily stud-
ied in the Hamiltonian formulation. There the rate of change
of a function in phase spaceA(r ,p) along a trajectory of the
HamiltonianH(r ,p) can be written as

dA

dt
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where the sum overi from 1 to 3 is implicit. The bracket on
the right is the Poisson bracket.

If the functionA is conserved along the trajectories ofH,
then

dA

dt
5$A,H%50, ~5!

that is, A and H commute. Conversely, the value ofH is
conserved under the motion generated byA. That is, the
value ofH does not change along a trajectory generated by
A,

dH

dl
5$H,A%50, ~6!

wherel is used instead oft to remind us that the evolution
parameter is not a physical time. Equation~6! implies thatH
is invariant under the symmetry transformation generated by
A.

A standard example is angular momentum. For any con-
stant unit vectorn̂, the functionA5n̂"L generates the motion

dr

dl
5

]A

]p
5n̂Ãr , ~7a!

dp

dl
52

]A

]r
5n̂Ãp, ~7b!

which is a rotation about the axisn̂. Equation~7! implies that
the symmetry of a system under rotations about the axisn̂ is
equivalent to the conservation of the component of angular
momentum in the directionn̂.

The components of the Runge–Lenz vector generate tra-
jectories that are much more complicated. Hamilton’s equa-
tions for the general componentn̂"M are

dr

dl
5

1

m
@rÃ~pÃn̂!2n̂Ã~rÃp!#, ~8a!

dp

dl
52

1

m
pÃ~ n̂Ãp!1

k

r 3 rÃ~ n̂Ãr !. ~8b!

The position and momentum variables are coupled, implying
that the symmetry cannot be thought of as acting on real
space, but rather on all of phase space. The trajectories can-
not be expressed in closed form and are not closed.

The Poisson brackets of all the generators with each other
helps to elucidate the symmetry group. Simple calculations
reveal that

$Li ,L j%5e i jkLk , ~9a!

$Mi ,L j%5e i jkMk , ~9b!

$Mi ,M j%5„22H~r ,p!/m…e i jkLk . ~9c!

Equation~9b! says thatM (r ,p) is a vector function~that is,
it rotates properly!. Equation~9c! hints that we should res-
cale the Runge–Lenz vector as

M* ~r ,p!5M ~r ,p!/A22H~r ,p!/m ~10!

on the part of phase space where the energy is negative
~bound orbits!. Because the Hamiltonian commutes with all
the symmetry generators, the commutation relations of the
rescaled Runge–Lenz vector are simply

$Li ,L j%5e i jkLk , ~11a!

$Mi* ,L j%5e i jkMk* , ~11b!

$Mi* ,M j* %5e i jkLk . ~11c!

If we consider a fictitious fourth dimension and defineMk*
5x4pk2xkp4 , then the relations~11! are the angular mo-
mentum commutation of rotations in four dimensions.2

The symmetry trajectories generated by a component
n̂"M* are closed~see the end of Sec. V!, unlike those of the
original vectorM . However the trajectories cannot appar-
ently be written down in closed form and are probably not a
great help for developing intuition.

III. ACTIONS ON ORBITS

It is much easier to understand the flow generated by a
componentMk* by studying how an entire Kepler ellipse
evolves: take all points in phase space on a given Kepler
ellipse and flow each underMk* for a ‘‘time’’ l. The Poisson
commutativity ofH andMk* implies that the flows of those
two functions commute. That is, flow underH for t then flow
underMk* for l is the same as flow underMk* for l then
flow underH for t. This equivalence implies that an initial
Kepler ellipse flows underMk* into another Kepler ellipse of
the same energy.

The evolution of the ellipses is easy to study because an
ellipse is completely specified by its values ofL andM* . By
calculating the values at the perihelion~closest approach! or
the aphelion~farthest approach!, we can see that the vector
M points to the perihelion. The magnitude ofM is @see Eq.
~3!#

uM u5kA11
2HL2

mk2 5kA12
L2

kma
, ~12!

because the energy of a Kepler ellipse is2k/(2a), wherea
is the semimajor axis. The denominatorkma is the square of
the maximal angular momentum for an orbit of semimajor
axis a, because this case is a circular orbit with constant
radiusr 5a and momentump5Akm/a. The square root in
Eq. ~12! is the eccentricity of the ellipse. So the magnitude of
M is k times the eccentricity~and thus the Runge–Lenz vec-
tor is the eccentric perihelion vector!.

If we rescaleM @using Eq.~10! and H52k/(2a)], we
find that

uM* u5Akmae, uL u5AkmaA12e2, ~13!

wheree is the eccentricity,A12b2/a2, and b is the semi-
minor axis. Thus the magnitudes of the two vectors deter-
mine the size and shape of the ellipse. The directions of the
vectors determine the orientation: the orbital plane is perpen-
dicular toL and the perihelion lies alongM* . Thus the five
independent components ofL and M* @see the discussion
after Eq. ~3!# determine the ellipse. Any point in the
~negative-energy part of the! six-dimensional phase space
can be interpreted in terms of five coordinates determining
the Kepler ellipse and a coordinate~like t) that determines
the position along the ellipse~see Fig. 1!.

Thus, the evolution of a Kepler ellipse under the compo-
nentMz* , for example, is determined by the evolution ofL
andM* underMz* . By Eq. ~11! this evolution is given by
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dL

dl
5$L ,Mz* %5 ẑÃM* , ~14a!

dM*

dl
5$M* ,Mz* %5 ẑÃL . ~14b!

Note that this evolution maintainsL "M* 50 and uL u2

1uM* u2 constant. It is convenient to rescaleL and M* to
make this constant equal to unity by defining

,5
L

Akma
, m5

M*

Akma
, ~15!

so that

d,

dl
5 ẑÃm,

dm

dl
5 ẑÃ,, ~16!

with

,"m50, u,u21umu251. ~17!

@The evolution of, and m under the original Runge–Lenz
generatorMz is the same, just with period 2p/A22H/m
instead of 2p, as can be seen from Eq.~9! compared to Eq.
~11!. Entire orbits flow the same underM andM* , although
individual points do not.#

The system of differential equations~16! is easily solved
as

,x~l!5,x~0!cosl2my~0!sinl,

mx~l!52,y~0!sinl1mx~0!cosl,

,y~l!5,y~0!cosl1mx~0!sinl, ~18!

my~l!5,x~0!sinl1my~0!cosl,

,z~l!5,z~0!, mz~l!5mz~0!.

The motion of both, andm are ellipses in planes of a con-
stantz-component. Some algebra reveals that these two el-
lipses are identical, except for being rotated by 90° from
each other. The major and minor semiaxes of each ellipse in
the constantz-component planes are given by

r 6
2 5

1

2
†~12,z

22mz
2!

6A@12~,z2mz!
2#@12~,z1mz!

2#‡. ~19!

The orientation of these ellipses depends on the initial values
of the x- andy-components of, andm.

The two vectors thus move along elliptical cones~see Fig.
2!, changing their lengths and directions, while staying per-
pendicular to each other and keeping the sum of the squares
of their lengths equal to one.~These elliptical cones can be
contrasted with the circular cones along which the two vec-
tors move in the pure rotation generated by components of
the angular momentum.! For any pair~,,m!, the correspond-
ing Kepler ellipse is perpendicular to the direction of,, has
the perihelion along the direction ofm, and has eccentricity
equal toumu. Hence, we can see how the ellipse flows under
the symmetry transformation generated byMz* .

Particularly easy to visualize are the cases in which the
elliptical trajectories of, and m degenerate to lines. From
Eq. ~19! this occurs in one of two cases:~1! For ,z50, the
generating component of the Runge–Lenz vector is perpen-
dicular to the angular momentum of the orbit, and thus is in
the plane of the orbit. These are the symmetries of the two-
dimensional Kepler problem and are discussed in Sec. IV.~2!
For mz50, the generating component of the Runge–Lenz is
perpendicular to the orbit’s Runge–Lenz vector, as we dis-
cuss below. In both cases, we adopt a simplification to dis-
play the families of ellipses, that is, we draw the ellipses
centered on the origin and make the families easier to visu-
alize. It is trivial to shift the ellipses back to where a focus is
at the origin.

For case~2! the initial orbit’s major axis is in thex-y
plane and we wish to find the family of ellipses generated by
flow underMz* . As a special case, suppose that the initial
orbit is in thex-y plane. In this case the generator is perpen-
dicular to the initial orbital plane. Hence, we take

,x~0!5,y~0!5my~0!5mz~0!50,
~20!

,z~0!5A12m0
2, mx~0!5m0 ,

wherem0 is the initial eccentricity. The evolution underMz*
is

,x~l!50, ,y~l!5m0 sinl, ,z~l!5A12m0
2,

~21!mx~l!5m0 cosl, my~l!50, mz~l!50.

Thus the ellipses all have major axes alongx, with the plane
of the orbit rotating aboutx. As the orbits rotate away from
the x-y plane, the ellipses become less eccentric until the
orbit is circular atl5p/2. Then the plane rotates back to-
ward x-y, with the ellipses becoming more eccentric. Atl
5p, the orbit has the original shape and orientation, but

Fig. 1. The angular momentum and Runge–Lenz vectors determine the
Kepler ellipse.

Fig. 2. In the evolution underMz* , the scaled angular momentum and
Runge–Lenz vectors, andm trace out elliptical cones about thez-axis.
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with the other focus at the origin,m(p)52m(0). The el-
lipse undergoes a similar evolution and rotates to the other
side of thex-y plane in the second half of the cycle inl.

The rotation of the ellipse and its change of eccentricity
are correlated such that an observer from above, looking at
the projection onto thex-y plane, sees no change as the
ellipse evolves~assuming that we draw the ellipses centered
at the origin!. To see this, note that the semimajor axis stays
constant, which we can take asa(l)51 ~rescaling later if
desired!. Then the semiminor axis is

b~l!5A12e25A12um~l!u25A12m0
2 cos2 l. ~22!

After an evolution for ‘‘time’’ l, the orbital plane has rotated
aboutx by anglec5arctan@,y(l)/,z(l)#. The projection onto
the x-y plane shortens the semiminor axis by the factor

cosc5
,z~l!

A,y
2~l!1,z

2~l!
5

A12m0
2

A12m0
2 cos2 l

. ~23!

Thus the projected value of the semiminor axis is

bproj~l!5b~l!cosc5A12m0
2, ~24!

independent ofl ~see Fig. 3!. @In reality each ellipse has its
focus at the origin. The position of the center of the ellipse
with respect to the focus is2am(l)52 x̂a cosl in the x
direction. So the projection onto thex-y plane oscillates si-
nusoidally along the major axis.#

Now return to the general case~2!: the initial orbit’s
Runge–Lenz vector is perpendicular to the generating com-
ponent Mz* , but its angular momentum is not necessarily
parallel to the generator. We again take the major axis along
x so that the initial ellipse is

mx~l!5m0 , ,y~0!5,y0 , ,z~0!5,z0 , ~25!

with all others zero. From Eq.~18! the evolution underMz*
is given by

mx~l!52,y0 sinl1m0 cosl, ~26a!

,y~l!5,y0 cosl1m0 sinl, ~26b!

,z~l!5,z0 , ~26c!

with all others zero. This solution is seen as the same solu-
tion ~21! as the special case of initial orbit in thex-y plane,
but with a different origin forl. Hence, the family is the
same as in Fig. 3, but with the original ellipse not the one in
the x-y plane.

IV. TWO-DIMENSIONAL KEPLER PROBLEM

In the other simple special case the generating component
Mk* is in the plane of the initial orbit. Call the plane of the
orbit thex-y plane and consider the generator to be a com-
ponent ofM* in this plane. The reason for the change in
notation is that the evolution of the ellipse remains in thex-y
plane. So evolution under Runge–Lenz components in the
orbital plane are symmetry operations of the two-
dimensional Kepler problem. To show that the evolution
stays in the plane, consider the initial ellipse:

,x~0!50, mx~0!5mx0 ,

,y~0!50, my~0!5my0 , ~27!

,z~0!5,0 , mz~0!50,

with ,05A12mx0
2 2my0

2 . Then evolution underMx* yields

mx~l!5mx0 , my~l!5my0 cosl2,0 sinl,
~28!,z~l!5my0 sinl1,0 cosl,

with all other components zero. For notational simplicity,
change the origin ofl to the collision orbit@,(0)50, for
which the two bodies collide# ~see Figs. 4 and 5!:

Fig. 3. An ellipse in thex-y plane~major axis alongx) under the evolution
of Mz* , drawing the ellipses centered at the origin.~Seven ellipses in the
family are shown.! To an observer looking alongz at the projection onto the
x-y plane, each ellipse in this family looks identical. When the ellipses are
drawn properly with the focus at the origin, this observer sees the ellipse
simply move sinusoidally inx.

Fig. 4. The evolution of an ellipse in thex-y plane underMx* . ~Seven
ellipses in the family are shown.!

Fig. 5. The same family as Fig. 4, but with the ellipses drawn centered at the
origin.
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mx~l!5A12my0
2 , my~l!5my0 cosl,

~29!
,z~l!5my0 sinl.

The evolution of this ellipse in thex-y plane~drawn cen-
tered at the origin! is exactly the same as the projection onto
thex-y plane of a rotation of a certain circle in three dimen-
sions. The rotation is about they-axis and the normal to the
circle makes an angleu5arcsin(my0) with that axis. To dem-
onstrate this, note that the normal to the circle after rotation
by anglel about they-axis is

n̂5~2sinu cosl,cosu,sinu sinl!. ~30!

What is the projection onto thex-y plane of this circle with
normal n̂? This circle can be rotated into thex-y plane by
the angle

x5arccos„ẑ"n̂~l!…5arccos~sinu sinl!, ~31!

about an axis in the directionn̂proj}(cosu,sinu cosl,0).
Thus the projection of this circle on thex-y plane is an
ellipse with a semiminor axis of length,

bproj~l!5cosx5sinu sinl5my0 sinl, ~32!

and its major axis in the direction of this rotation axis is

n̂proj}~cosu,sinu cosl,0!5~A12my0
2 ,my0 cosl,0!.

~33!

This sequence of projections is exactly the family~29! of
ellipses in two dimensions generated by evolution under
Mx* . This family has the semiminor axis

b~l!5A12e2~l!5A12um~l!u25my0 sinl, ~34!

and a major axis in the direction„mx(l),my(l)…
5(A12my0

2 ,my0 cosl) ~see Fig. 6!.

V. GREAT CIRCLES ON SPHERES

That the Kepler ellipses in two dimensions can be thought
of as circles in three dimensions seems natural. The symme-
try group for the two-dimensional Kepler problem isO(3)
~with generatorsMx* , M y* , andLz). This group acts on the
unit sphereS2 of directions in three dimensions, and also on
the great circles on the sphere. The line-of-sight projection
onto two dimensions presented in Sec. IV is a very simple
mapping between the two spaces. However, to make this
mapping work, we shifted the ellipses to be centered at the
origin. To shift them back to their foci at the origin, the
required mapping is more complicated than a Cartesian pro-
jection.

Much of the understanding of the symmetry of the Kepler
problem has come from mappings to spheres~the three-
sphereS3 in four dimensions for the three-dimensional Ke-
pler problem!, although these mappings are different projec-
tions onto different spaces than ours. In 1935 Fock6 showed
that the degeneracy of the energy levels of hydrogen could
be understood by the symmetry groupO(4). Heperformed a
stereographic projection fromS3 onto momentum space,

P5
2A22mE

p222mE
p, P45

p212mE

p222mE
. ~35!

@The sphere is P1
21P2

21P3
21P4

251. The South Pole
~0,0,0,1! maps top50 and the North Pole maps to infinity.#
In 1970 Moser7 constructed a corresponding classical map-
ping and showed that the Kepler motion is geodesic~free! on
the sphere. Thus on that sphere which maps stereographi-
cally onto momentum space, the orbits are great circles. Li-
gon and Schaaf8 generalized the mapping to make it both
canonical and have the simple form for the symmetry gen-
erators. Cushman and Duistermaat9 showed that this map-
ping is essentially unique and is

Qa5~Q,Q4!5
1

k
@Aa~r ,p!sinf~r ,p!

1Ba~r ,p!cosf~r ,p!#, ~36a!

Pa5~P,P4!5
1

A22H~r ,p!/m
@2Aa~r ,p!cosf~r ,p!

1Ba~r ,p!sinf~r ,p!#, ~36b!

where

~A,A4!5S k
r

r
2~r "p!p/m,A22H~r ,p!/mr "pD , ~37a!

~B,B4!5~A22H~r ,p!/mrp,rp2/m2k!, ~37b!

f~r ,p!5A22H~r ,p!/m~r "p!. ~37c!

@Settingf(r ,p) to zero essentially gives Fock’s and Moser’s
transformations.#

In these coordinates the symmetry generators are simply

Li5e i jkQj Pk , Mi* 5Q4Pi2Qi P4 . ~38!

The fact that the orbits generated byMk* are closed is made
obvious in this formulation.M3* conservesQ1 , Q2 , P1 , and
P2 , in addition to four functions that are immediate from the
group commutation relations,M3* , L3 , M1*

21L2
2, and

Fig. 6. The family of Fig. 5 is the same as the projection along thez-axis of
a certain circle rotated about they-axis.
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M2*
21L1

2. Five of these eight relations are independent,
leaving a one-dimensional space left for the trajectory. How-
ever, it appears from the form of these functions that this
trajectory cannot be written down in closed form.
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