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Visualizing the extra symmetry of the Kepler problem

Jim Morehead?®
120 Holly Court, Mountain View, California 94043

(Received 9 March 2004; accepted 16 July 2004

The extra symmetry of the Kepler problem corresponding to the conservation of the Runge—Lenz
vector can be visualized by studying how entire Kepler ellipses evolve under symmetry
transformations. After discussing the general case, we show that the evolution generated by a
component of the Runge—Lenz vector in the plane of the orbit yields the same family of ellipses in
the plane as the projection onto the plane of a rotation of a certain circle in three
dimensions. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION vector in the plane of the orbit keeps the orbit in the plane.

The sequence of ellipses traced out in the planéwisen
The classical two-body 17 force problem has many spe- drawn centered at the origithe same as the projection onto

cial properties. The best known is that all of its bound orbitsthe plane of the rotation of a certain circle in three dimen-

are closed. The reason is that there is an extra quantity, thgons.

Runge-Lenz vector, conserved by the motion in addition to

the angular momentum, which is conserved by all central

forces. This extra conserved vector has a clear physical in-

terpretation: it points in the direction of the perihelitmlos-  1I. CONSERVATION AND SYMMETRY

est approachand its magnitude is proportional to the eccen- B ]

tricity of the ellipse. The fact that the vector does not change [N addition to conserving angular momentins r Xp, the

along the orbit can be interpreted as there being no prece&epler problem, with the Hamiltonian

sion or change in shape: a closed orfsiee, for example, 1 K

Ref. 1. o H(r,p)=5—(pi+pi+p5)——, (6

Equivalently, the problem has extra symmetry in addition 2m r

to the rotational symmetry common to all central forces. Thegiso conserves the Runge—Lenz vector,

whole symmetry group i©(4), all orthogonal transforma-

tions (rotationg on four-dimensional space. This generaliza- M = ipXL—kE )

tion from the symmetry grou@(3) of rotations of physical m r’

space is somewhat abstract. The fictitious fourth dimensiop oo k= Gm.m- andm is the reduced massa.m /(m

does not behave in a straightforward way. For example, T Il 2 t the orbit be und ’1,[ Zd bl thi

physical rotation has a simple action on phase space: th my). The closing of the orbits can be understood by this

position and momentum are separately and identically ro€xtra conservation. The motion under a general central force

tated. In the extra symmetry the position and momentum ar onserves the Hamllton_lan and the Qngular momentum vec-
Qr, a total of four functions. The trajectory must lie on the

coupled and the symmetry trajectories generated in pha evel set of these four functions in six-dimensional phase

space are complicated. S . . .
How can we obtain a physical intuition for the extra sym- space, which is a two—dlr_nensmnal surface, CO(respondlng to
Eplanar central-force orbits. The Kepler Hamiltonian con-

metry, as we have for the extra conservation law? In thi ih f lus the th s of the R
paper we suggest that the extra symmetry is easy to visuali rves these four pius the three components ot the <unge—

in terms of its action on entire orbits instead of on individual -€"Z Vector. Not all seven functions are independent. Two

points in phase space. The flow generated by a given confonstraints follow from the facts that

ponent of the Runge—Lenz vector takes a given Kepler el- 2HL?

lipse (given values of the major axis, eccentricity, and orien-  L*-M=0, |[M[*=k?| 1+ mic )

tation) through other ellipses of different eccentricities and

possibly different orientations, but with the same length ofEquation(3) leaves five independent constraints in six di-

the major axis. This length is preserved as well as the energyensions, leaving a one-dimensional space for the

because the energy of an ellipse depends on only the lengttajectory—a closed orbit.

of the major axis and not on the eccentricity or orientation. In classical mechanics there is a one-to-one correspon-

The extra symmetry is, in a sense, the independence of trdence between conservation laws and symmetry. A function

energy on the eccentricity. that is a constant of the motion serves as the generator of a
We derive the family generated by any component of thesymmetry of the system. This connection is most easily stud-

Runge-Lenz vector acting on any Kepler ellipse. Althoughied in the Hamiltonian formulation. There the rate of change

the general family is not difficult to characterize, the specialof a function in phase spadgr,p) along a trajectory of the

cases of the symmetry generated by the component of thgamiltonianH(r,p) can be written as

Runge-Lenz vector perpendicular to the plane of the orbit

and by a component of the Runge—Lenz vector in the plane d_A: ﬁ % ﬁ%: ﬁ ﬁ_ ﬁﬁ:{A H}

of the orbit are particularly easy to visualize. For example, dt dx; dt ~ dp; dt 9 dp;  Ip; 9% o

the evolution generated by a component of the Runge—-Lenz 4)

()
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where the sum overfrom 1 to 3 is implicit. The bracket on {MF Lit=exM§, (11b)
the right is the Poisson bracket. R
If the functionA is conserved along the trajectoriestf {M{ M7} = €ji L (119

then If we consider a fictitious fourth dimension and defiklg

=X4Px— XkPa, then the relationg1l) are the angular mo-
EZ{A*H}:Q (5 mentum commutation of rotations in four dimensigns.

] . The symmetry trajectories generated by a component
that is, A and H commute. Conversely, the value bf is  f.Mm* are closedsee the end of Sec.)Vunlike those of the
conserved under the motion generated Ay That is, the  original vectorM. However the trajectories cannot appar-
value of H does not change along a trajectory generated byntly be written down in closed form and are probably not a
A, great help for developing intuition.

dH
@ ~{HAL=0, ©

) . . ] I1l. ACTIONS ON ORBITS
where\ is used instead df to remind us that the evolution

parameter is not a physical time. Equati@himplies thatH It is much easier to understand the flow generated by a
is invariant under the symmetry transformation generated btomponentM’k* by studying how an entire Kepler ellipse
A evolves: take all points in phase space on a given Kepler

A standard example is angular momentum. For any congjlipse and flow each undé; for a “time” \. The Poisson
stant unit vectof, the functionA=1-L generates the motion commutativity ofH andM? implies that the flows of those

dr  odA two functions commute. That is, flow underfor t then flow

a0 (78 underM for A is the same as flow undéf} for A then

flow underH for t. This equivalence implies that an initial
d_p: _ ‘?i‘ —AXp, (7h) Kepler ellipse flows undeMy into another Kepler ellipse of
dx ar the same energy.

The evolution of the ellipses is easy to study because an
ellipse is completely specified by its valuesloandM* . By
alculating the values at the perihelieiosest approaghor

which is a rotation about the axiis Equation(7) implies that
the symmetry of a system under rotations about the faxés

equivalent to the conservation of the component of angula ;
y P 9 %he aphelion(farthest approaghwe can see that the vector

momentum in the directiof. . oy . X
The components of the Runge—Lenz vector generate tra('\-g)fomts to the perihelion. The magnitude kff is [see Eq.

jectories that are much more complicated. Hamilton’s equa-

tions for the general componentM are 2HL? L?
IM|=k\/1+ —5=k\/1- —, (12
ar 1 mk kma
— = —[rX(pXA)—AX(rX
dx m[r (PXM) =AX(rXp)], (83 because the energy of a Kepler ellipse-i&/(2a), wherea

d 1 K is the semimajor axis. The denominakonais the square of
aw__ —pX(AXp)+ —r X(AXTr). (8p)  the maximal angular momentum for an orbit of semimajor
dr m r axis a, because this case is a circular orbit with constant

The position and momentum variables are coupled, implyingadiusr =a and momentunp= yknm/a. The square root in
that the symmetry cannot be thought of as acting on redEq.(12) is the eccentricity of the ellipse. So the magnitude of
space, but rather on all of phase space. The trajectories cait is k times the eccentricityand thus the Runge—Lenz vec-
not be expressed in closed form and are not closed. tor is the eccentric perihelion vecjor

The Poisson brackets of all the generators with each other |f we rescaleM [using Eq.(10) and H=—k/(2a)], we
helps to elucidate the symmetry group. Simple calculation$ind that

reveal that IM*|=\kmae, |L|=kmayl—e€? (13
{Li'Lj}:eijkLK! (9a) ) .. . .
where € is the eccentricity,/1—b?%/a?, andb is the semi-
{Mi,Lj}= &My, (9b) minor axis. Thus the magnitudes of the two vectors deter-
{M;,M}=(=2H(r,p)/m)e;j Ly (90) mine the size and shape of the ellipse. The directions of the

_ . _ _ vectors determine the orientation: the orbital plane is perpen-
Equation(9b) says thaM(r,p) is a vector functionthat is,  dicular toL and the perihelion lies alonigl*. Thus the five
it rotates properly. Equation(9¢) hints that we should res- jndependent components &f and M* [see the discussion

cale the Runge—Lenz vector as after Eq. (3)] determine the ellipse. Any point in the
M* (r,p)=M(r,p)/— 2H(r,p)/m (10) (negative-energy part of thesix-dimensional phase space

can be interpreted in terms of five coordinates determining

on the part of phase space where the energy is negatige Kepler ellipse and a coordinatiike t) that determines
(bound orbits. Because the Hamiltonian commutes with all the position along the ellipsesee Fig. 1

the symmetry generators, the commutation relations of the Thys, the evolution of a Kepler ellipse under the compo-
rescaled Runge—Lenz vector are simply nentM? , for example, is determined by the evolutionlof
{LiLj} =€kl (113 andM* underM3 . By Eqg.(11) this evolution is given by
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M/

Fig. 1. The angular momentum and Runge-Lenz vectors determine the

Kepler ellipse.

dL

ox =1LMz}=2xM*, (143
*

G =M M} =2XL. (14b)

Note that this evolution maintaing-M*=0 and |L|?
+|M*|? constant. It is convenient to rescdleand M* to
make this constant equal to unity by defining

L M*
{3=\/k:ma, m= Tma (15
so that
de¢ dm
ﬁzixm an =2X{, (16)
with
€:m=0, |€|?+|m|?>=1. (17

[The evolution of¢ and m under the original Runge—Lenz

generatorM, is the same, just with period7®—2H/m

instead of 2r, as can be seen from E(Q) compared to Eq.

(12). Entire orbits flow the same undbt andM*, although
individual points do noi.

The system of differential equatiori&6) is easily solved
as

€x(N)=€,(0)cosh —my(0)sinA,
m,(\)=—¢€,(0)sin\ +m,(0)cosA,
€y(N)=€,(0)cosk +m,(0)sinA,
my(\) = €,(0)sin\ +m,(0)cosh,
€:(N)=€,(0), my(N)=m,(0).

(18)

Fig. 2. In the evolution undeM3 , the scaled angular momentum and
Runge-Lenz vectoré andm trace out elliptical cones about tlzeaxis.

The two vectors thus move along elliptical coriese Fig.

2), changing their lengths and directions, while staying per-
pendicular to each other and keeping the sum of the squares
of their lengths equal to onéThese elliptical cones can be
contrasted with the circular cones along which the two vec-
tors move in the pure rotation generated by components of
the angular momentumEor any pair(¢,m), the correspond-

ing Kepler ellipse is perpendicular to the directiontethas

the perihelion along the direction ofi, and has eccentricity
equal tojm|. Hence, we can see how the ellipse flows under
the symmetry transformation generated My .

Particularly easy to visualize are the cases in which the
elliptical trajectories of¢ and m degenerate to lines. From
Eq. (19) this occurs in one of two casegl) For ¢,=0, the
generating component of the Runge—Lenz vector is perpen-
dicular to the angular momentum of the orbit, and thus is in
the plane of the orbit. These are the symmetries of the two-
dimensional Kepler problem and are discussed in Sec2)V.
For m,=0, the generating component of the Runge—Lenz is
perpendicular to the orbit's Runge—Lenz vector, as we dis-
cuss below. In both cases, we adopt a simplification to dis-
play the families of ellipses, that is, we draw the ellipses
centered on the origin and make the families easier to visu-
alize. It is trivial to shift the ellipses back to where a focus is
at the origin.

For case(2) the initial orbit's major axis is in thex-y
plane and we wish to find the family of ellipses generated by
flow underM3; . As a special case, suppose that the initial
orbit is in thex-y plane. In this case the generator is perpen-
dicular to the initial orbital plane. Hence, we take

€x(0)=¢,(0)=my(0)=m,(0)=0,

€,0)=1-m3,

m,(0) =, 20

The motion of both¢ andm are ellipses in planes of a con- wheremy is the initial eccentricity. The evolution unddt;
stantz-component. Some algebra reveals that these two els

lipses are identical, except for being rotated by 90° from
each other. The major and minor semiaxes of each ellipse in

the constanz-component planes are given by

1
rizi[(l—eg—mi)

= [1- (€~ my?I[1— (€, +my)?]]. (19

€(N)=0, £y(N\)=mgsink, €, (\)=+1-m,
my(X)=0, my(\)=0.
Thus the ellipses all have major axes aloqgvith the plane
of the orbit rotating aboux. As the orbits rotate away from

the x-y plane, the ellipses become less eccentric until the
orbit is circular ath = 7/2. Then the plane rotates back to-

m,(\)=mgyCOS\, (21)

The orientation of these ellipses depends on the initial valueward x-y, with the ellipses becoming more eccentric. Yt

of the x- andy-components of andm.

236 Am. J. Phys., Vol. 73, No. 3, March 2005
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Fig. 4. The evolution of an ellipse in they plane undemM} . (Seven
ellipses in the family are shown.

Fig. 3. An ellipse in thex-y plane(major axis along) under the evolution

of M3, drawing the ellipses centered at the origiSeven ellipses in the

family are shown. To an observer looking alorgat the projection onto the  \yith all others zero. This solution is seen as the same solu-

x-y plane, each ellipse in this family looks identical. When the ellipses areion (21) as the special case of initial orbit in tlxey plane

drawn properly with the focus at the origin, this observer sees the eIIipS% . . . A ’

simply move sinusoidally irx. ut with a d|fferent origin forn. He_nce, the family is the .
same as in Fig. 3, but with the original ellipse not the one in
the x-y plane.

with the other focus at the origim(7)=—m(0). The el- V. TWO-DIMENSIONAL KEPLER PROBLEM

lipse undergoes a similar evolution and rotates to the other . . .

side of thex-y plane in the second half of the cycle in ’I(n'th.e other simple speqa} case t'he generating component
The rotation of the ellipse and its change of eccentricityM« 1S in the plane of the initial orbit. Call the plane of the

are correlated such that an observer from above, looking d@rbit thex-y plane and consider the generator to be a com-

the projection onto the-y plane, sees no change as theponent ofM* in this plane. The reason for the change in

ellipse evolvegassuming that we draw the ellipses centerednotation is that the evolution of the ellipse remains insthg

at the origin. To see this, note that the semimajor axis stayglane. So evolution under Runge—Lenz components in the

constant, which we can take a$\)=1 (rescaling later if orbital plane are symmetry operations of the two-
desired. Then the semiminor axis is dimensional Kepler problem. To show that the evolution
stays in the plane, consider the initial ellipse:

fx(O) = O, mx(o) = mea

b(\)=\1-€e2=V1-|m(\)[?=\1-m2cod\. (22

After an evolution for “time” \, the orbital plane has rotated

aboutx by angleys= arctaiit,(\)/¢,(\)]. The projection onto €,(0)=0, m,(0)=my,, (27)
the x-y plane shortens the semiminor axis by the factor €,(0)=¢,, m,(0)=0,
’ €,(N) \/1—m0z 23 with €4= \/1—mx20—my20. Then evolution undeMy yields
osy= = .
VESN) €20 J1-mjcos My(\) =My, My (N)=mygCoS\— €4 Sin\,
Thus the projected value of the semiminor axis is €,(N)=myySin\+ €, COs\, (28)
bproj()\):b()\)COS(p:‘/1_m(2)r (24)  with all other components zero. For notational simplicity,

independent ol (see Fig. 3. [In reality each ellipse has its change the origin ok to the collision orbit( ¢ (0)=0, for
g - > L . hich th i idke( Figs. 4
focus at the origin. The position of the center of the elllpseW ich the two bodies collide(see Figs. 4 and)5

with respect to the focus issam(\)= —Xacos\ in the x
direction. So the projection onto they plane oscillates si- v
nusoidally along the major axis.

Now return to the general cad®): the initial orbit's
Runge—Lenz vector is perpendicular to the generating com-
ponentM3 , but its angular momentum is not necessarily
parallel to the generator. We again take the major axis along
X so that the initial ellipse is

X
my(N)=mg, €,(0)=~€y5, €,(0)={,, (25
with all others zero. From Ed18) the evolution undeM3
is given by
my(N)=—€o SN\ + Mg COSA, (263
€y(N)=~€yoCOSN\+mgsin, (26b)
Fig. 5. The same family as Fig. 4, but with the ellipses drawn centered at the
€,(N)=14,, (260 origin.
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Fig. 6. The family of Fig. 5 is the same as the projection alongzthgis of
a certain circle rotated about tlyeaxis.

my(A)=+1— myzo, my(\)=myq COS\,

€,(N)=mygsin\. (29

The evolution of this ellipse in the-y plane(drawn cen-

V. GREAT CIRCLES ON SPHERES

That the Kepler ellipses in two dimensions can be thought
of as circles in three dimensions seems natural. The symme-
try group for the two-dimensional Kepler problem @3)
(with generatorsM} , My, andL,). This group acts on the
unit sphereS? of directions in three dimensions, and also on
the great circles on the sphere. The line-of-sight projection
onto two dimensions presented in Sec. IV is a very simple
mapping between the two spaces. However, to make this
mapping work, we shifted the ellipses to be centered at the
origin. To shift them back to their foci at the origin, the
required mapping is more complicated than a Cartesian pro-
jection.

Much of the understanding of the symmetry of the Kepler
problem has come from mappings to sphetd® three-
sphereS? in four dimensions for the three-dimensional Ke-
pler problem, although these mappings are different projec-
tions onto different spaces than ours. In 1935 Easflowed
that the degeneracy of the energy levels of hydrogen could
be understood by the symmetry gro04). Heperformed a
stereographic projection frof®® onto momentum space,

_ 2y-2mE 5 _p*+2mE a5
T p—2me” T4 pZomE (35

[The sphere isP2+P2+P3+P2=1. The South Pole
(0,0,0,2 maps top=0 and the North Pole maps to infinity.

In 1970 Mosef constructed a corresponding classical map-
ping and showed that the Kepler motion is geodésar) on

the sphere. Thus on that sphere which maps stereographi-
cally onto momentum space, the orbits are great circles. Li-
gon and Schaffgeneralized the mapping to make it both

tered at the originis exactly the same as the projection onto canonical and have the simple form for the symmetry gen-

thex-y plane of a rotation of a certain circle in three dimen- grators. Cushman and Duisternfashowed that this map-
sions. The rotation is about theaxis and the normal to the ping is essentially unique and is

circle makes an anglé=arcsinfny) with that axis. To dem-
onstrate this, note that the normal to the circle after rotation

1 .
by angle\ about they-axis is Q.=(Q,Q4)= E[Aa(r,p)sm ¢(r,p)

(30) +B,(r,p)cose(r,p)], (36a

What is the projection onto they plane of this circle with

fi=(—sin @ cos\,cosd,sindsin\).

normal A? This circle can be rotated into they plane by

the angle
x=arccos$z-n(\))=arccosgsinfsin\), (31

about an axis in the directiof,q(cosf,singcos\,0).

Thus the projection of this circle on they plane is an

ellipse with a semiminor axis of length,
bproi(N) =cosy=sin# sin\ =m,q Sin\, (32

and its major axis in the direction of this rotation axis is

Nproj (€0SA,sin g cos\,0) = (11— myzo, My COSA ,O).( )
33

This sequence of projections is exactly the faniit@) of

ellipses in two dimensions generated by evolution under

M5 . This family has the semiminor axis

b(M)=V1—€*(N)=1—|m(\)[*=mygsin, (34)

and a major axis in the direction(m,(\),my(\))

=(\/1—my20,myo cos\) (see Fig. 6.

238 Am. J. Phys., Vol. 73, No. 3, March 2005

1
P,=(P,P,y)= W[—Aa(r,p)cow(r,p)

+B,(r,p)sing(r,p)], (36b)

where
(AA)=| k: = (r-pipim, = ZH(r,pmrp|, (373
(B,B4)=(/=2H(r,p)/mrp,rp?/m—k), (37b)
$(r,p)=\=2H(r,p)/m(r-p). (379

[Setting(r,p) to zero essentially gives Fock’s and Moser’s
transformationg.
In these coordinates the symmetry generators are simply

Li=€xQjPr, M =Q4Pi—QiP,. (39)

The fact that the orbits generated bl are closed is made
obvious in this formulationM} conserve®,, Q,, P,, and
P,, in addition to four functions that are immediate from the
group commutation relationsM%, L;, M¥%+L3, and
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M’2‘2+ Lf. Five of these eight relations are independent, find the spectrum of hydrogen, including explaining the “accidental” de-
generacy due to the extra symmetBefs. 3-5.
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