
Département Sciences de la matière
École Normale Supérieure de Lyon
Université Claude Bernard Lyon I

Yohann Faure
May–July 2019

M1 SdM

Development of programming tools for

Protoplanetary Disk Fitting
rxj1615.3-3255

Abstract: In the context of an ever-increasing angular resolution in astronomy, the need for good fit-
ting process and algorithm keeps increasing, especially when dealing with object such as protoplanetary
disks. This internship report is focused on the development of different tools and techniques related
to the fitting of experimental data gathered by Alma, applied to the example of rxj1615.3-3255.

The proposed models for J1615 are obtained by fitting Alma interferometric data using different
methods: Image Plane Fitting, Interferometric Visibilities Fitting and Radiative Transfer Modeling.
All the methods I implemented are based on the Monte-Carlo Markov Chain (mcmc) optimization
process and gradient descent algorithms.

The main results of this internship consist in a set of adaptive and generalist Python procedures,
optimized for highly parallelized computation and human understanding. Several models for the J1615
emission profile are given as an example and as a result of these codes.

Keywords: Astrophysics, rxj1615.3-3255, Alma, Model Fitting, Python.

Internship supervised by
Myriam Benisty, Astronome-Adjointe à l’Observatoire de Grenoble, Unité Mixte Internationale.
Professor Laura Perez, Universidad de Chile.

mailto:Myriam.Benisty@univ-grenoble-alpes.fr
mailto:lperez@das.uchile.cl

Acknowledgements

This Chilean adventure would not have been possible without certain people that I would like to
thank.

I want to express my deepest appreciation to my two advisors, Myriam and Laura, for their helpful
advice and relentless support all through the internship, as well as for the valuable knowledge they
passed on to me. I hope we will meet and work together again.

I would like to extend my sincere thanks to Marion and Nicolás, who faced with me the computer
mess associated with the development of all these tools, and helped me solve them with infinite
patience; and to Léonard, one of the best flatmates I’ve ever had.

Thanks also to all the Calán staff, all the PhD students, all the professors and researchers. You
have been a fantastic team to work and live with, and I sincerely hope we will meet again.

I finally gratefully acknowledge the effort of the internships evaluation committee, as well as
Guillaume Laibe’s commitment and help throughout the past year.

Gracias a tod@s !

Protoplanetary disk fitting: J1615

Contents

1 Introduction and Summary 3

2 Context of this internship 4
2.1 Why Chile? . 4
2.2 Cerro Calán . 4
2.3 ALMA and my data set . 4
2.4 Hardware and Software used . 5

3 Interferometry 5
3.1 Basic principles . 5
3.2 Fourier transform and (u, v) plane . 6
3.3 ALMA’s resolution . 6

4 Protoplanetary disks 7
4.1 What is a protoplanetary disk? . 7
4.2 Protoplanetary Disks Physics . 7
4.3 The need to fit data . 9
4.4 J1615 . 9

5 Image plane Fitting 10
5.1 The issues of the image plane . 10
5.2 Deprojection . 10
5.3 Features extraction . 11
5.4 Model choice . 12

6 Optimization 12
6.1 Model definition . 12
6.2 Classical optimization . 12
6.3 Emcee . 12
6.4 Results . 14

7 (u, v) plane fitting 14
7.1 (u, v) plane data . 14
7.2 Model fitting . 15

8 MCFOST 16
8.1 Principle . 16
8.2 Difficulties . 16
8.3 Modeling results . 16

9 Performance Improvements details 17
9.1 The computational need . 17
9.2 Python Voodoo magic . 17
9.3 The use of a super computer . 18
9.4 Multiprocessing . 18
9.5 CUDA . 18

page 1

Protoplanetary disk fitting: J1615

A Appendix i
A.1 SED point calculation . i
A.2 TiltFinder implementation details . ii
A.3 Implementing a model with Astropy . iii
A.4 Emcee . v
A.5 Emcee numerical results . vi
A.6 MCFOST results . viii
A.7 Other projects . ix
A.8 GitHub repositories . ix

page 2

Protoplanetary disk fitting: J1615

1 Introduction and Summary

Astrophysics, as the branch of physics concerned with the physical nature and behavior of stars and
stellar objects, relies heavily on computer science, and is often particularly resource-hungry. The
study of exoplanets and protoplanetary disks is by no means an exception to that, as I discovered
during my internship.

My main goal was initially set on the study and modeling of a protoplanetary disk around a young
star, rxj1615.3-3255 (short-called J1615). The first images of that disk obtained using Sphere [1]
revealed a fine structure, constituted of multiple intricate levels of rings. The Alma observations,
which I studied during this internship, revealed a similarly complex structure at a different wave-
length, as shown in Figure 1. I specifically focused on the data set that led to the band 7 image
(0, 8− 1, 1mm, on the Left of Figure 1).

The fitting process is based on multiple techniques, using first-order iterative optimization algo-
rithms (gradient descent) as implemented in the Python library SciPy [2, 3, 4], and Markov chain
Monte Carlo optimization methods [5] (sections 5,7). The models have to respect some physical
constraints, and to be both accurate and realistic. I ended up using compound models, composed of
a (Gaussian) core and multiple different rings.

Such methods often require a long running time, and optimization was one of my main objectives.
By using more powerful and cpu efficient methods, as well as gpu parallelization and multiple-nodes
clustering, I achieved a good complexity reduction as well as a significant time optimization in codes
previously used by the research team I worked with. The major gains stem from the replacement
of the Multiprocessing module [6] by the mpi4py implementation of mpi [7, 8, 9], ideal for large
clustering computation, and by the use of cuda acceleration with the Python module Galario [10]
(section 9).

This report presents the J1615 object, the different imaging tools, the fitting and optimization
process, and the side projects I developed during my internship at the Calán observatory.

−202

East-West (arcsec)

−3

−2

−1

0

1

2

3

S
o
u

th
-N

o
rt

h
(a

rc
se

c)

Alma (dust)

−202

Alma (13CO)

−202

Sphere

Figure 1: J1615 images obtained with different methods, the Alma resolution beam is in the bottom left
corner. Left : Alma, band 7 image, associated with dust and pebbles. Middle: Alma millimetre-wavelength
13CO observation, first moment. Right: Sphere 1, 593− 1, 667µm image [1]. Both Left and Middle were
reconstructed from visibilities using casa [11].

page 3

https://www.eso.org/sci/facilities/paranal/instruments/sphere.html
https://www.eso.org/public/usa/teles-instr/alma/

Protoplanetary disk fitting: J1615

2 Context of this internship

2.1 Why Chile?

Chile is one of the leading countries in astronomy and astrophysics, especially as it has one of the
best observation spots in the world. With an average rainfall of 15mm per year, altiplanos 2500m
above sea level, and quasi non-existent light pollution, the Atacama desert is one of the best places to
watch the sky. For that reason, it hosts most of the biggest telescopes in the world, such as the Very
Large Telescope (vlt), the Atacama Cosmology Telescope (act), or the Atacama Large Millimeter
Array (Alma).

Being such a great astronomical observation spot, Chile hosts many astrophysics laboratories,
such as the Europe Southern Observatory (vlt), one of the organizations in charge of the good
operation of Alma.

2.2 Cerro Calán

Figure 2: One of the five domes of the Cerro, 853m
above sea level.

The Cerro Calán national observatory (see Fig-
ure 2), founded in 1852, is one of the oldest
observatories in South America. Located on
the top of a hill near Santiago, it is now a re-
search facility, hosting international meetings ev-
ery Thursday, and offering a workplace to as-
tronomers from all around the world. As the
home of the Unité Mixte Internationale (umi),
it was my workplace for this internship.

2.3 ALMA and my data set

Figure 3: One of the 66 Alma’s radio-antennas,
5000m above sea level, by Iztok Bončina (eso).

The Atacama Large (sub)Millimeter Array
(Alma) is a giant radio-interferometer, built in
the Atacama desert, 5000 meters above sea level.
It is composed of a set of 66 antennas of different
size, capable of independently pointing in every
direction of the observable sky, and therefore cre-
ating a giant interferometer.

Since October 3, 2011 (Alma’s “birth-
day”), this giant telescope has permitted the
(re)discovery of many stellar objects. Its bright-
est achievements are the high definition imag-
ing of HL Tau’s protoplanetary disk [12], highly
detailed observations of Einstein’s rings, and
the observation of spectra related to organic
molecules such as sugars and alcohols in a large
part of the sky [13].

The data I studied during this internship comes from a compilation of Alma observations con-
ducted by Laura Perez and Myriam Benisty, since July 2014.

page 4

http://www.eso.org/public/images/potw1040a/

Protoplanetary disk fitting: J1615

2.4 Hardware and Software used

I had to use different software in this internship. The main programming language I used was
Python 3, with the scientific libraries SciPy and NumPy, Astropy, Emcee, Multiprocessing, mpi4py
and Galario [2, 3, 4, 5, 6, 9, 10, 14]. I also used the casa software to generate images from Alma
data [11] and mcfost for radiative transfer simulation [15].

The machines I had to use to run my computation were my own computer (Intel i7-4710HQ
processor, 16GB ram, nvidia GTX850M gpu), and a local computation server (dual Intel Xeon
E5620, 16GB ram, no dedicated gpu) named Alma. I was also granted an access to up to 120 cpu
cores on the Leftraru cluster (Intel Xeon Gold 6152 and E5-2660), with up to two nvidia Tesla V100
gpus, and up to 2TB of ram.

3 Interferometry

In this section, I will briefly introduce the theoretical concepts associated with astronomical inter-
ferometry.

3.1 Basic principles

−2

−1

0

1

2

Destructive interferences

y

z

y + z

0 π 2π 3π 4π 5π

−2

−1

0

1

2

Constructive interferences

Figure 4: Illustration of destructive and con-
structive interferences.

Let’s consider two identical sine waves, with same
amplitude and frequency. The superposition of
those two waves depends only on the phase shift be-
tween them. For example sin(ωt) + sin(ωt+π) = 0,
while sin(ωt) + sin(ωt + 0) = 2sin(ωt), as shown
in Figure 4. The first is said to be in anti-phase,
the interference is destructive, there is no resultant
wave. The second is said to be in phase, the in-
terference is constructive, the resulting amplitude
is twice as big as the amplitude of the two incident
waves.

In this example, we consider the simplified case
of light waves with the same amplitude and fre-
quency, but natural sources emit radiations at mul-
tiple wavelengths, and with different amplitudes.
When doing interferometry, we need to have rel-
atively close signals in order to measure their inter-
ference. This criteria is the coherence between the
two signals. Coherent waves can be generated by
two sources emitting at the exact same frequency,
or by splitting light coming from a single source.

Astronomical interferometers usually consist in two or more separate telescopes that combine
their signals, as if they were splits in a cosmic Young splits experiment. Assuming that there is no
impact of atmospheric fluctuations on the incoming waves (or limiting them by climbing the Andes),
the difference in travel time comes mostly from the physical distance between the telescopes, that
we know, and from the source itself, that we want to measure.

page 5

http://www.nlhpc.cl/es/cluster2014/

Protoplanetary disk fitting: J1615

3.2 Fourier transform and (u, v) plane

In this section I will enunciate the principles behind interferometry. For more details on the math of
interferometry and Fourier transform, read this paper from Andreas Glindemann [16].

The main interest of interferometric measurements is that combining many telescopes allows us
to have a full map of interferometric complex intensities, called visibilities. Each pair of telescopes
gives one point in a plane, described by the position vector between them. These vectors can be
described in a 2D base with two coordinates called (u, v), hence the name (u, v) plane. The more
antennas there is, the more points in the plane there is, and if n is the number of antennas, the
number of points is

(
n
2

)
= n(n−1)

2
.

Each point in this plane, assuming mathematical perfection or sufficient correction, is actually a
point in the Fourier transform of the image of the object emitting the light. The complete math-
ematical link between the complex visibility ν and the brightness distribution I of the object is a
Fourier transform as follows:

I(α, β) =

¨
R2

ν(u, v) exp (2iπ (αu+ βv)) dudv

where (α, β) correspond to the angular coordinates in the sky, and (u, v) the coordinates of the bases
used to get the point, describing the spatial frequencies of the brightness distribution.

The visibility function can give information on physical properties of the source. For example,
the shape of the source can be deduced directly from the shape of the visibility curve. With an
appropriate algorithm, it is then possible to convert the (u, v) plane into an image plane, but many
precautions have to be taken, such as weighting the points obtained according to the degree of
perturbation they suffered. The reference software for such conversion is casa, which can also
convert simulated images to visibilities, taking Alma’s imperfections into account [11].

3.3 ALMA’s resolution

As they recombine their signal, the antennas of an interferometer fake one single dish telescope
the size of the largest baseline between telescopes.1 The largest separation of individual telescopes
gives the resolution of the telescope, which allows interferometers to have an incredibly high angular
resolution.

Indeed, while the angular resolution ∆θ of a single dish telescope is limited by diffraction, and
therefore by the size of its mirror, ∆θ ∝ λ

D
, with λ the wavelength observed and D the diameter of

the telescope, interferometers are only limited by the distance you can put between two bases (using
the exact same equation). Alma for example can reach baselines of up to 16km.

ALMA consists in 66 high precision antennas that can be arranged in different configurations over
the year. The maximum distance between antennas can vary from 150 meters to 16 kilometers. The
variation of baseline allows ALMA to observe with different spatial resolutions. In the most compact
configuration, resolutions range from 0.5 arc-second (as) at 950GHz to 4.8as at 110GHz, while in
the most extended configuration they range from 20 milli-arc-seconds (mas) at 230GHz to 43mas at
110GHz. These high spatial resolutions are an important step forward to resolve small objects, such
as protoplanetary disks.2

1It is important to note, however, that a single dish telescope of this size would catch countless more photons.
2The Event Horizon Telescope, consisting of an array of interferometers all around Earth, including Alma, allows

for baselines as large as the Earth itself, and has a theoretical angular resolution of up to 25µas.

page 6

https://www.eso.org/sci/facilities/paranal/telescopes/vlti/tuto/tutorial_spatial_interferometry.pdf
https://eventhorizontelescope.org/

Protoplanetary disk fitting: J1615

4 Protoplanetary disks

The birth of a stellar system from a dust and gas cloud is a complex process that can take many
shapes, amongst which are protoplanetary disks. This sections give some insight in the Science of
protoplanetary disks, but doesn’t go deep into theoretical considerations. For more details, you can
refer to Protoplanetary Disks and Their Evolution [17].

4.1 What is a protoplanetary disk?

Prestellar
Core

Class 0 Class I

Class IIClass IIIPlanetary
System

30 000 AU 10 000 AU 300 AU

100 AU100 AU50 AU

Figure 5: The different steps of stellar formation. Con-
sidering as time origin the star formation (Class 0), Class I
usually appears in a rather short time (<0.03Myr). Class II,
corresponding to the J1615 phase, appears at around 1Myr.
Class III appears after 10Myr. Finally the planetary sys-
tem phase (corresponding to our solar system for example)
appears after around 20Myr [18].

All across the galaxy, we can observe gas
and dust clouds of gigantic radius, that
slowly collapse due to their own gravita-
tional pull. When such cloud collapses, it
can create a gas ball large enough to start
hydrogen fusion in its core. The ball starts
shinning and is then called a star.

The conservation of angular momentum
and the dramatic collapse of the ensemble
makes it rotate fast, creating a favored sym-
metry plan, around which a disk structure
can appear, as shown in the Figure 5. This
structure is called a protoplanetary disk.

Those gas and dust disks became clearer
with time as the angular resolution in as-
tronomy increased. Stars that used to be
seen as point sources with a non-standard
light emission revealed much more complex
structures, such as stellar systems, binary
stars of gas and dust disks. The recent
launch of Alma gave us new insight in the
protoplanetary disk structure.

4.2 Protoplanetary Disks Physics

4.2.1 Composition

The composition of a disk is similar to that of the interstellar medium, i.e. small dust grains and
gas. One of the main characteristics of a disk is its gas-to-dust ratio, usually assumed to be roughly
the same as interstellar medium, i.e. 100.3 This assumption is more of a consensus, as it is very hard
to precisely determine such ratio because of optical thickness and chemical composition variation.

The dust grains are usually considered to be small silicate and graphite grains, while the gas is
mainly H2 (not very useful for the observations as it needs to be very hot to emit light, and therefore
very close to the star), with traces of CO and H2O, easier to track. CO is the second most abundant
species after H2, the CO–H2 ratio being about 10−4.

3Even though recent observations show high variation in this ratio [19].

page 7

https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-081710-102548

Protoplanetary disk fitting: J1615

Figure 6: Schematic representation of a protoplanetary disk structure around a 1–5Myr Sun-like star
(from T. Henning and D. Semenov [20]).

4.2.2 Light emission

100 101 102 103

λ (µm)

10−17

10−16

10−15

10−14

10−13

10−12

λ
F
λ

(W
m

−
2
)

Kooistra et al. 2016 [21]

Van der Marel et al. 2016 [22]

My Alma data (figure 1–Left)

Figure 7: J1615 Spectral Energy Distribution (sed).
This plot represents the energy emitted by the disk at
each wavelength. See appendix A.1 for the computa-
tion of one sed point.

The emission from a star with a protoplanetary
disk is due to several sources. First there is the
star emission, depending on the star properties.
Then there is the disk emission, that can be split
into two. The continuum is a black-body radi-
ation due to the disks temperature, emitted by
the dust grains. The gas (mainly H2, 13CO and
H2O) also has specific emission rays. Some mi-
nor effects also come into play, such as light scat-
tering. Scattering induces polarization, which is
also useful in disk characterization.

The sed, shown in Figure 7, shows J1615
emission in a wide panel of wavelengths.

4.2.3 Disk Structure

The protoplanetary disk “geometric” structure is not as simple as just a flat disk (as shown in Figure
6). Under the assumption of an ideal gas disk, the combination of the force equilibrium and the
state equation gives its vertical density. Considering an azimuthally symmetric disk in hydrostatic
equilibrium, with uniform temperature along the z axis, with r the radius and z the vertical height,
we obtain equation 1. Often, H and Σ are given parametric values, described in equation 2. This
allows for simpler fitting but is not a physical result.

The characteristic height H is given by H = cs/Ω, where cs is the sound speed and Ω the angular
rotation speed. Σ(r) is the surface density of the disk, with γ the surface density exponent, usually
negative. H(r) is the scale height, with β the flaring angle, between 1 and 1,25 [23].

ρ(r, z) = ρ(r, 0)× exp

(
− z2

2H2

)
(1)

H(r) = Hout × (r/rout)
β (2)

Σ(r) = Σout × (r/rout)
γ

page 8

Protoplanetary disk fitting: J1615

4.3 The need to fit data

When observing a disk (using Alma for example), complex substructures can appear, such as gaps,
local minimum or maximum in the emission, spirals, etc. In order to measure physical values and to
verify theories, we need a clean modeling of the disk. The idea behind the modeling choice is to use
a relatively simple model that we theoretically created with a physical interpretation, and to fit it
with the data.

Observing the residual values (often called the residuals of a model), one can then deduce the
presence of specific elements in the disk. For example, a gap is often associated with the possible
existence of a protoplanet. An asymmetry in the residuals can also be associated with more complex
non-resolved structures. Fitting allows for both a precise characterization of the structure and
composition of the disk and the discovery of low intensity details that could have a physical meaning.

4.4 J1615

J1615 is a Class II disk located in the constellation of the Scorpius, 600 light-years from earth.
According to the Gaia database, it has a right inclination of 244◦, a declination of -33◦, and a
parallax of 6.34mas. Its near-visible light magnitude is of 11.5, which is far above the human eye
perception limit. A first look at the Figure 1 shows that the structure of the disk is far more
convoluted and complex than the model presented in Figure 6.

The multiple gaps in the structure makes this disk a good candidate for the discovery and obser-
vation of exoplanets, as well as a real fitting challenge that I took on the best I could, both in the
image plane and the interferometric visibilities plane.

−200−1000100200

East-West (au)

−200

−100

0

100

200

S
o
u

th
-N

o
rt

h
(a

u
)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Figure 8: The J1615 Disk image observed by Alma and generated with casa, in mJy/beam. The beam
size is given by the white ellipse on the bottom left corner.

page 9

https://gea.esac.esa.int/archive/
https://en.wikipedia.org/wiki/Magnitude_(astronomy)

Protoplanetary disk fitting: J1615

5 Image plane Fitting

The principle of the image plane fitting is to use a combination of simple mathematical functions to
recreate an image as similar to the observed image as possible. By simple functions, I mean functions
that are easy to compute and known to approximate images generated by gas and dust distributions
around a star, the Gaussian being the most popular choice. This section describes the full image
fitting process, the implementation details being given appendix A.3.

5.1 The issues of the image plane

In order to obtain an image such as the one shown in Figure 8, the Alma interferometric data has
to be transformed using for example casa [11]. This process is a complex computation based on the
Fourier transform, that aims at reducing background noise and measure errors. There is therefore
inherent loss of information. Yet it is an excellent method for both training and having a first idea
of the real disk structure behind the image.

It is also to be noted that when using the image plane, we have to consider the convolution with
the observation beam of Alma. That beam, represented as a white ellipse on Figure 8, corresponds
to the smallest thing we can resolve. In order to take in into account, an image generated from a
model can be convolved with a Gaussian-like profile, the size of the beam. For this first approach, I
decided not to convolve and to fit as if no convolution was made.

5.2 Deprojection

Figure 9: Deprojected J1615 Disk. This deprojec-
tion is obtained using (inc,PA)=(45.98◦, -34.25◦).

The first step in that fitting is to find, if it is rel-
evant, the inclination and position angle of the
disk. The rotation of the disk gives it a refer-
ence symmetry plane, which is generally differ-
ent from the observation plane. To describe the
tilt of this plane to the observation plane, we
only need 2 angles, the inclination (inc) and the
position angle (PA).

To find these angles, the easiest way is to con-
sider the disk as a tilted perfect Gaussian, and to
minimize the difference between this tilted ideal
Gaussian and the real image. I developed a pro-
gram that does that for any disk (appendix A.2).
The idea behind it is to determine a new set of
coordinates for each pixel, in order to determine
accurately a radius map.

The result of the J1615 deprojection is shown in Figure 9. Once the deprojected image is done,
it is easier to determine the structure of the disk, as well as the precise radius of every sub-disk.
Although this operation is not physically accurate (the disk has thickness), it gives us useful insight
for the next step: the features extraction.

page 10

Protoplanetary disk fitting: J1615

5.3 Features extraction

Now that the distance of every pixel to the center is known, it is possible to plot the brightness
intensity in functions of radius, as well as the intensity profile along one precise radius. These
operations allows to get information on the general radial structure, and on the asymmetry of the
disk.

5.3.1 Radial profile

0 50 100 150 200 250

Radius (au)

0.000

0.001

0.002

0.003

0.004

M
ea

n
fl

u
x

(J
y
/
b

ea
m

)

Figure 10: Radial profile of J1615 disk, with a bin
size of ∼2au.

We can see that the structure is quite symmet-
ric, and can therefore as a first approximation
be described by only a radial profile. To extract
this profile, I decided to use binning on the ra-
dius map computed with the deprojection, and
to use as error bars the standard deviation of
each bin. The result is shown in Figure 10, and
can be interpreted as follows. A first model one
could use for J1615, based on that observation,
would be a Gaussian central dot, followed by a
Gaussian ring centered on ∼25au, and two large
Gaussian rings at ∼100au and ∼130au. But a
slight bump around 60au can already be noticed,
and will ultimately have to be tackled.

5.3.2 Angular profile

The angular profile is a scatter plot of all pixels associated with a radius comprised between two
values. It reveals the asymmetries of the disk, as shown in Figure 11, and in this video I made. This
profiling shows that there is up to 20% asymmetry in this disk. It might be due to the beaming
effect, but can also be a physical result that need to be taken into account.

Figure 11: A Screenshot of the video I made showing the angular profiles at different radii.

page 11

https://youtu.be/66iV5zLV_iI
https://youtu.be/66iV5zLV_iI
https://youtu.be/66iV5zLV_iI

Protoplanetary disk fitting: J1615

5.4 Model choice

Considering that profiles, the first model I chose was the sum of a central Gaussian, a large central
Gaussian ring (∼20au), and two external Gaussian rings (∼80au), all concentric and all perfectly
circular. I’ll refer to these structures as G0 for the center and GR1, GR2 and GR3 for the three
rings.

After the first attempt at an optimization (more details in section 6), I had to opt for different
functions and to add degrees of freedom. I mainly replaced the first ring by a different more complex
one based on the literature [24], and gave freedom to the center, the inclination and the position
angle of all rings, for a total of 37 degrees of freedom.

6 Optimization

The optimization of the fitting takes three steps: model definition, classical optimization and Monte
Carlo optimization.

6.1 Model definition

The implementation of the model is based on Astropy’s custom models definition. Using the keyword
custom model, one can turn a “normal” function into a function generator, as explained in appendix
A.3, and then sum them.

The goal of an implementation is both having a clear and clean code, and an effective code, as it
will be called a very high number of time (more than 500 000). For that reason I had to implement
myself the functions instead of using the already existing models available in Astropy. (More details
about optimization are available in section 9.)

Once the model is defined, one can generate an image based on that model, by calling Model

J1615(x,y), where (x, y) is a mesh generated to correspond to the tilt of the disk.

6.2 Classical optimization

To optimize the model I made, I have to define a cost function, quantifying the difference between
the real image and the generated image. The first choice was a trivial absolute value difference of
the two images, but I soon had to refine it to be able to use boundaries for each parameter of the
model. The detailed implementation is available on GitHub.

The process I call classical optimization is the use of a Gradient Descent algorithm to minimize
the difference between the model and the data. The program optimizes the parameters of the model
(angles, center and width of all rings) following the scipy.optimize.minimize implementation of
Gradient Descent. That process gives a starting point for the Emcee optimization [3, 5].

6.3 Emcee

Emcee is an effective and powerful implementation of the Monte Carlo Markov chain minimization
algorithm. This algorithm is based on a semi-random gradient descent, using a set of independent
walkers, moving in the parameter space.

page 12

https://github.com/YohannFaure/DiskFitting.git

Protoplanetary disk fitting: J1615

0.00275

0.00280

−1.25

−1.20

0 25 50 75 100

iterations

−4.4

−4.3

−4.2

−4.1

Figure 12: A typical evolution of 300 walkers in
three parameters during an Emcee optimization.
The parameters shown are the intensity and (x, y)
coordinates of the central Gaussian G0.

A walker is a parameters set, walking in the pa-
rameter space as the algorithm goes on. It goes
by steps, each step being a semi-random modifica-
tion of every walker, toward a minimization of the
minimal walker cost. As the number n of walkers
must be higher than twice the parameter space di-
mension, and the number m of steps higher with
the complexity of the image, the number of model
and cost evaluation, n × m (one per iteration and
per walker), increases rapidly with the complexity
of the model used.

On the right, in Figure 12, is represented the evo-
lution of three dimensions in the parameter space. It
is to be noted that the walkers evolve as an extended
cloud in this space, and can therefore define average
and percentiles in the parameters value. For more
details on the use of Emcee, please refer to appendix
A.4.

−1000100

−100

0

100

Fitting model

−1000100

−100

0

100

10×Residual

−1000100

East-West (au)

−100

0

100

S
o
u

th
-N

o
rt

h
(a

u
)

Original image

−1000100

−100

0

100

Residual

absolute value

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Results of the Emcee optimization, comparing the image with the model, and showing the
residual multiplied by 10. The background noise standard deviation is around 2% of the maximum of the
image, while the maximum of the residual is around 10%.
The numerical values obtained by emcee are given in Appendix A.5.1.

page 13

Protoplanetary disk fitting: J1615

6.4 Results

The final optimization I made for the image plane had 37 parameters, with 4 rings and a center, all
entirely free. I ran it on the local computer Alma, with 300 walkers, in 40 batches of 1000 steps,
with trimming of the walkers every 5 batches.4 As this was done before the optimization process (it
actually triggered it), each batch of 1000 steps took approximately 2 hours, giving a total cumulative
run-time of 4 days. The definitive convergence value was obtained after 35 batches, and is shown in
Figure 13.

The interpretation of this result is complex as the residual is not perfectly symmetric. The residual
ring shows that the central disk GR1 is not ideally shaped, and has to be reconsidered. The use of a
more flared disk, described by different functions, might be needed. The flower shape of the residuals
can also be due to the beam shape and size, and using a direct visibilities fit might get around this
issue. There is finally an issue with GR3, as this outer ring ended up fitting a very faint yet quite
circular background emission, at a level 3 orders of magnitude smaller than its inner counterpart
GR2.

That being said, the residual are lower than 10% of the maximum of the image. It is scientifically
significant, as it is around 5 times the background noise standard deviation of the image, but it is
still a good result giving useful insight in preparation of the visibilities fitting.

7 (u, v) plane fitting

As the image plane fitting depends on the image generation, as well as on the beam convolution, it
is natural to fit the data using the original data set instead. To do so, we need to consider a (u, v)
plane fitting using Galario [10].

7.1 (u, v) plane data

When observing with Alma (or any interferometer), each pair of bases used to measure a value is
defined by a 2D vector in the observation plane. This vector can be described in a 2-vector base, with
coordinates named (u, v). The output data is therefore indexed on that plane, making the visibilities
a Fourier transform of the image data.

The visibilities data come with an other indicator: the weight. This indicator is a way for the
observer to rate the quality of an observed data point, giving it an error value. It is very useful when
fitting a model, because it allows the cost function to consider some points as more important as
others. The full data format is shown in Figure 14.

1 #u [m], v [m], Re [Jy], Im [Jy], weights

2 -1.5590e+02 2.3435e+02 1.8103e-02 1.3799e-01 2.0006e+02

3 9.2907e+00 3.6298e+02 -5.8268e-02 2.8202e-02 2.1695e+02

4 9.5235e+01 1.0923e+02 6.3143e-02 -1.6727e-01 1.6719e+02

5 ...

Figure 14: Data structure of the Alma output. In order the values given are u, v, the real part of the
visibility, its imaginary part, and finally its weight.

4The trimming process consist in a simple manual elimination of the ”lost” walkers, and a change in the boundaries
if needed.

page 14

Protoplanetary disk fitting: J1615

χ2 =
∑
u,v

(
(= (Modelu,v −Datau,v))2 + (< (Modelu,v −Datau,v))2) ∗ wu,v

1 def chi2compute(ModelVal ,Re ,Im ,w):

2 return(np.sum (((np.imag(ModelVal)-Im)**2.+(np.real(ModelVal)-Re)**2.)*w))

Figure 15: The formula used to compute the χ2 from the data.

7.2 Model fitting

The process is the same as for the image plane fitting, but using the knowledge section 5 gave me, and
choosing to work with a perfectly symmetric model, I was able to reduce the number of parameters
down to 13, making the optimization process shorter in terms of Emcee iterations. More details
about the (heavy) computing requirements are given in section 9.

The main difference with the image plane fitting is that the incomplete (u, v) coverage (that
resulted in a beam convolution in the image plane) is perfectly taken into account using Galario [10].
That led the inner Gaussian to become a very point-like source and the inner ring to become thinner.
The model choice is still a debate matter at the time I’m writing this line. The fitting result is shown
in Figure 16

0.0 0.2 0.4 0.6 0.8 1.0

Radius (arcsec)

109

1010

M
o
d

el
fl

u
x

(a
rb

it
ra

ry
u

n
it

)

Model computed using Emcee

Position of the rings found in the image plane.

Position of the rings found in the (u, v) plane.

Figure 16: Emcee fitting result, comparing in red the ring positions found using the image plane, and in
green the positions found in the (u, v) plane. The dashed lines correspond to the 15% and 85% percentiles
of the Emcee optimization, and are mostly hidden behind the solid lines.

The numerical values of the fitting, as well as a discussion about the image plane coherence, are
given in Appendix A.5.2.

page 15

Protoplanetary disk fitting: J1615

8 MCFOST

After the model fitting, I decided to use the mcfost [15] software to find a physical model for the
J1615 disk. The motivation behind this project is to shift the approach from a geometrical description
to a physical description, based on that geometric properties extracted from the Alma data.

8.1 Principle

The idea behind mcfost is to create a dust distribution based on the usual theories applied to
protoplanetary disks. Then, based on the properties of the star, the software creates a specified
number of photons and generates a temperature distribution in the disk, and propagates the photons.
This method is called radiative transfer.

The output is two fits files: one containing an actual image of the model, at a specified wavelength,
and the other the sed curve of the full stellar system.

8.2 Difficulties

To create such gas and dust distribution, one needs not only the radius of every disk, but also their
flaring exponents, characteristic distances and heights, and compositions. With the properties of
the star, it sums up to more than 50 free parameters, 30 of them not given by the literature nor
the previous studies. That, and the fact that one mcfost run takes about one minute, makes it
impossible to consider an mcmc optimization. It has to be done by hand, at least partially.

8.3 Modeling results

100 101 102 103

λ (µm)

10−17

10−16

10−15

10−14

10−13

10−12

λ
F
λ

MCFOST data.

Kooistra et al. 2016 [21]

Van der Marel et al. 2016 [22]

My alma observation (figure 1)

Figure 17: Experimental sed compared to the mc-
fost model I fitted.

To model J1615 with mcfost I decided to fit si-
multaneously the sed curve and the image result,
and more specifically the radial profile. To do
so I designed a small bash script that makes the
convolution with the beam and the light extinc-
tion automatic. I also designed a tool that probes
the parameters space around a position, to find a
probable direction in which the fit might be bet-
ter.

Combining these tools and a lot of patience,
I achieved an almost proper sed fitting, as shown
in Figure 17. On that sed, the main difficulty is
to reduce the 1µm bump without losing it com-
pletely, and without loosing the 3mm value, which
is an excellent constraint on the mass of the outer
disks.

The details of the model used can be found in
the GitHub repository. The mcfost parameters
file used to compute this sed is given in Appendix
A.6.

page 16

https://github.com/YohannFaure/mcfost_scripts

Protoplanetary disk fitting: J1615

9 Performance Improvements details

9.1 The computational need

Galario [10] is a tool used to work with visibilities and fit them. The main specificity of this tool is
that it can compute visibilities from an image or a radial profile, and can therefore be used to compute
the difference between a model and interferometric data. To do so, it needs a lot of computing power,
as the data set I used is 640MB large on disk and composed of millions of points. Each point needs to
be computed every time the model is changed, and optimizing a fitting consists of many evaluations
of the model.

Running Galario on my laptop’s cpu was very slow (around 20 seconds for a full evaluation,
using one core), and the memory usage was too high to consider the emcee default multiprocessing
computation. On the Alma computer, it was not much better, the cpu being ancient compared to
mine. The two solutions I came across where to use of a powerful and more versatile multiprocessing
method, and to use cuda graphics card computation. I also had an access to Leftraru, which
happened to be more than helpful.

9.2 Python Voodoo magic

This first point I want to make here is that Python is a very rich programming language, that happens
to be very easy to learn, but also very easy to learn wrong, as I experienced when I first tried to learn
it, back when I was 16. Many tools have already been developed as standalone modules to import,
and many shortcuts have been implemented, but some cost time, as I painfully experienced in this
internship.

The main shortcut implemented in Python that happens to be computationally very expensive is
the type changing routine. Types in Python are very flexible and one can replace almost any float
by an int, yet converting full NumPy arrays can be very expensive. When combining that with the
fact that some mathematically equivalent formulations are implemented differently, one can end up
with a time difference, as shown in Figure 18.

1 >>> t=time()

2 >>> for i in range(int(1e7)):

3 ... x=np.random.random ()

4 ... a=np.sqrt(x)

5 >>> print(time()-t)

6 9.321187019348145

7

8 >>> t=time()

9 >>> for i in range(int(1e7)):

10 ... x=np.random.random ()

11 ... a=math.sqrt(x)

12 >>> print(time()-t)

13 4.087422132492065

14

15 >>> t=time()

16 >>> x=np.random.random(int(1e7)) ; a=np.sqrt(x)

17 >>> print(time()-t)

18 0.11801743507385254

Figure 18: Time comparison between different Python methods. Optimizing such things led to a major
performance improvement (run-time divided by 2).

page 17

Protoplanetary disk fitting: J1615

9.3 The use of a super computer

What is called a super computer is (generally) a cluster of many “normal” computers5 connected
and set up so they can work together as one huge computing machine, shared between users all
across the world. It is a very expensive installation that requires permanent technical support, and
has a power draw sufficient to heat up a whole Manhattan-like skyscraper. For that reasons, its use
comes at a cost. The advantages of such computing methods make it worth paying for, especially in
astrophysics. Indeed, the task submission system (SLURM in Leftraru) allows a lot more flexibility
than the use of a local computer.

The main need I had was to be able to let a computation running overnight (thus making my
laptop a no-go), and without any influence from other persons (Alma for example was a shared
machine, and every user had the same cpu priority). The fact that Leftraru had many cpu cores
(120 for my account), virtually unlimited ram (2TB), and V100 gpus also revealed to be a step up
in my program development.

9.4 Multiprocessing

100 101

Number of CPUs n

100

101

t 1
/t
n

Perfect scaling

With MPI

With Multiprocessing

Execution time scaling for Emcee

Figure 19: Scaling comparison of mpi and Multiprocessing.

The multiprocessing distribution of
the computation consists in sharing
the walkers on multiple instances of
Galario. It can be done very simply
using the Python module Multipro-
cessing, but that module scales badly
with the number of cores, so that af-
ter 20 cores, you gain nothing adding
more.

The alternative to this module is
to use mpi, a more complex and lower
level implementation of multithread-
ing. Doing that was a pain, as it
required phone calls to the Leftraru
staff, so they could install the required
C++ libraries.

It ended up not working on Leftraru due to a dependency problem that I could do nothing about.
On my PC though, it worked fine and made the Galario process capable of running with 4 cores
without memory error. For the image plane fitting, I could use Alma’s 16 cores without any problem.
The scaling of the run time is shown in Figure 19.

9.5 CUDA

cuda is an nvidia parallel computing platform. It allows using a gpu in general purpose computing,
taking advantage of the very high number of cores available in a gpu. To use a gpu with Python,
you need to design a program specifically, and Galario happens to be optimized for the use of cuda.
The run-time was divided by about 5 using cuda on Leftraru with my data set.

5If a computer with 44 cores in a 4000$ cpu, more than a terabyte of ram and two state of the art gpus can be
considered as ”normal”.

page 18

Protoplanetary disk fitting: J1615

Conclusions and prospects

The program development and performance improvements I made came with the creation of de-
tailed methods and tutorial on how to implement them. That should allow anyone to apply those
performance improvements, to make any fitting process using Galario or Emcee faster. The work I
conduced during these three months will be used again and improved, and is already being applied
to the fitting of an other disk by a PhD student of the research team. It should lead to a publication
mainly focused on J1615, describing and analysing the structure of this disk.

the next steps of the project will be (1) to pursue the radiative transfer modeling (joint analysis
of sphere and Alma that trace different dust grain population), (2) to interpret the results with
the help of hydrodynamic simulations of planet-disk interactions in order to constrain the properties
of the planets likely embedded in the disk of J1615.

This internship was very instructive for me, as it allowed me to discover and to have firsthand
experience in astrophysics and research in general, and was both a scientific and a human experience
that I deeply enjoyed, and would be glad to repeat.

page 19

Protoplanetary disk fitting: J1615

References

[1] J. de Boer, G. Salter, M. Benisty, A. Vigan, A. Boccaletti, P. Pinilla, C. Ginski, A. Juhasz, A. L.
Maire, and S. Messina, “Multiple rings in the transition disk and companion candidates around
RX J1615.3-3255. High contrast imaging with VLT/SPHERE,” Astronomy and Astrophysics,
vol. 595, p. A114, Nov 2016.

[2] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands, 1995.

[3] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for Python,”
2001–.

[4] T. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[5] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,”
Publications of the ASP, vol. 125, p. 306, Mar. 2013.

[6] M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. A. G. Aivazis, “Building a framework
for predictive science,” CoRR, vol. abs/1202.1056, 2012.

[7] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed computing using
python,” Advances in Water Resources, vol. 34, no. 9, pp. 1124–1139, 2011.

[8] L. Dalcin, R. Paz, M. Storti, and J. D’Elia, “Mpi for python: Performance improvements and
mpi-2 extensions,” Journal of Parallel and Distributed Computing, vol. 68, no. 5, pp. 655–662,
2008.

[9] L. Dalcin, R. Paz, and M. Storti, “Mpi for python,” Journal of Parallel and Distributed Com-
puting, vol. 65, no. 9, pp. 1108–1115, 2005.

[10] M. Tazzari, F. Beaujean, and L. Testi, “GALARIO: a GPU Accelerated Library for Analysing
Radio Interferometer Observations,” Mon. Not. Roy. Astron. Soc., vol. 476, no. 4, pp. 4527–4542,
2018.

[11] J. P. McMullin, B. Waters, D. Schiebel, W. Young, and K. Golap, “casa Architecture and
Applications,” vol. 376, p. 127, Oct 2007.

[12] Alma Partnership, C. L. Brogan, L. M. Pérez, T. R. Hunter, W. R. F. Dent, A. S. Hales,
R. E. Hills, S. Corder, E. B. Fomalont, and C. Vlahakis, “The 2014 Alma Long Baseline Cam-
paign: First Results from High Angular Resolution Observations toward the HL Tau Region,”
Astrophysical Journal, Letters, vol. 808, p. L3, Jul 2015.

[13] J. K. Jørgensen, C. Favre, S. E. Bisschop, T. L. Bourke, E. F. van Dishoeck, and M. Schmalzl,
“Detection of the simplest sugar, glycolaldehyde in a solar–type protostar with alma,” The
Astrophysical Journal, vol. 757, p. L4, aug 2012.

[14] The Astropy collaboration, “The Astropy Project: Building an Open-science Project and Status
of the v2.0 Core Package,” Astronomical Journal, vol. 156, p. 123, Sept. 2018.

[15] C. Pinte, F. Ménard, G. Duchêne, and P. Bastien, “Monte Carlo radiative transfer in protoplan-
etary disks,” Astronomy and Astrophysics, vol. 459, pp. 797–804, Dec 2006.

[16] A. Glindemann, Optical interferometry. Cambridge University Press, 2012.

page 20

Protoplanetary disk fitting: J1615

[17] J. P. Williams and L. A. Cieza, “Protoplanetary disks and their evolution,” Annual Review of
Astronomy and Astrophysics, vol. 49, no. 1, pp. 67–117, 2011.

[18] M. V. Persson, “Current view of protostellar evolution (eng),” Aug 2014.

[19] M. Ansdell, J. P. Williams, N. van der Marel, J. M. Carpenter, G. Guidi, M. Hogerheijde, G. S.
Mathews, C. F. Manara, A. Miotello, and A. Natta, “ALMA Survey of Lupus Protoplanetary
Disks. I. Dust and Gas Masses,” Astrophysical Journal, vol. 828, p. 46, Sep 2016.

[20] T. Henning and D. Semenov, “Chemistry in protoplanetary disks,” Chemical Reviews, vol. 113,
no. 12, pp. 9016–9042, 2013.

[21] R. Kooistra, I. Kamp, M. Fukagawa, F. Ménard, M. Momose, T. Tsukagoshi, T. Kudo, N. Kusak-
abe, J. Hashimoto, and L. Abe, “Radial decoupling of small and large dust grains in the tran-
sitional disk RX J1615.3-3255,” Astronomy and Astrophysics, vol. 597, p. A132, Jan 2017.

[22] N. van der Marel, B. W. Verhaar, S. van Terwisga, B. Meŕın, G. Herczeg, N. F. W. Ligterink,
and E. F. van Dishoeck, “The (w)hole survey: An unbiased sample study of transition disk
candidates based on Spitzer catalogs,” Astronomy and Astrophysics, vol. 592, p. A126, Aug
2016.

[23] J. E. Pringle, “Accretion discs in astrophysics,” Annual Review of Astronomy and Astrophysics,
vol. 19, no. 1, pp. 137–160, 1981.

[24] S. Facchini, E. F. van Dishoeck, C. F. Manara, M. Tazzari, L. Maud, P. Cazzoletti, G. Rosotti,
N. van der Marel, P. Pinilla, and C. J. Clarke, “High gas-to-dust size ratio indicating efficient
radial drift in the mm-faint CX Tauri disk,” Astronomy and Astrophysics, vol. 626, p. L2, Jun
2019.

This work has made use of data from the European Space Agency (ESA) mission Gaia (https:
//www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium
(DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has
been provided by national institutions, in particular the institutions participating in the Gaia Mul-
tilateral Agreement.

page 21

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium

Protoplanetary disk fitting: J1615

A Appendix
A.1 SED point calculation

To compute a sed point from an image I used the following algorithm, and the associated functions.
The first steps is to open the data. Then I need to determine which pixels are relevant, for that
I compute the standard deviation of the background noise and only keep pixels that are at least
three times bigger than that value. Then I sum all this pixels and divide them by the size of the
observation beam, as the image is in mJy per beam. I finally convert this value to SI, multiplying
by the wavelength and converting the units.

Python pseudo-code:

1 def ComputeLimitSignal(image):

2 std = image background noise standard deviation

3 return (3* std)

4

5 def ComputeSEDImage(location):\ textbf{Python pseudo -code :}

6

7 header , image = openimage(location)

8

9 lim = ComputeLimitSignal(image)

10 Flux = sum(pixels in image if pixel > lim)

11

12 beam_area = beam_area from header

13 lambda = wavelength from header

14 sed = Flux * lambda / beam_area

15 err = lim/3 * lambda / beam_area

16

17 sed , err = sed * conversion , err * conversion * number of pixels

18 return(sed ,err)

Real implementation:

1 def ComputeLimitSignal(image):

2 """ Computes the background noise of an image ,

3 and return 3* standard deviation of s\textbf{Python pseudo -code :}

4 uch noise """

5 l1 ,l2=image.shape

6 i=image[:l1//10 ,:l2 //10]

7 return (3*np.std(i.flatten ()))

8

9 def ComputeSEDImage(location):

10 """ Computes the SED point of an XP image """

11 header ,image=openimage(location)

12 # Do not sum the background noise

13 lim=ComputeLimitSignal(image)

14 FluxTot=np.sum (((image >lim)*image).flatten ())

15 # Compute the beam area to get the real SED

16 beam_area = np.pi/(4*np.log(2)) *

17 header[’BMAJ’]/ header[’CDELT2 ’]* header[’BMIN’]/ header[’CDELT2 ’]

18 Flux=FluxTot/beam_area

19 sed=Flux*header[’RESTFRQ ’]*1e-26

20 err=lim/beam_area*header[’RESTFRQ ’]*1e-26*np.sum(image >lim)/3

21 return(sed ,err)

For this implementation I supposed that the 10% first pixels in the top left corner are represen-
tative of the background noise of the image, which will not always be the case. I also assumed the
image to be in milli Jansky per beam, which is one of the standard output of the casa software.

page i

https://en.wikipedia.org/wiki/Jansky

Protoplanetary disk fitting: J1615

A.2 TiltFinder implementation details

This is a short explanation of the TiltFinder program, used to determine the inc and PA of a
protoplanetary disk. The main requirement for the program to work properly is that the disk must
be relatively Gaussian. To have a better fitting, I decided to blur the image with a large σ.

The basic principle is to define a cost function between a generated image and the real image,
and to minimize it. The method I chose to minimize it is a simple gradient descent from SciPy [3].

Python pseudo-code:

1 ##### Opening the image properly

2 header ,image=openimage(location)

3 ##### Resizing it around the interesting part

4 image=resizedimage(image)

5 ##### Blurring image and evaluating the cost

6 blur = blurimage(image)

7 def Function_to_Minimize(params):

8 model = gaussianfit(params)

9 return(cost(blur ,model))

10 ##### Optimize

11 Optimized_params = minimize(Functions_to_Minimize)

12 return(params)

−2000200

−300

−200

−100

0

100

200

300

Gaussian fit

−2000200

−300

−200

−100

0

100

200

300

Blurred image (σ=20 pixel)

−2000200

East-West (au)

−300

−200

−100

0

100

200

300

S
o
u
th

-N
o
rt

h
(a

u
)

Original image

−2000200

Inclination: 45.98. Position angle: -34.25. (deg)

−300

−200

−100

0

100

200

300

Residual absolute value

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20: TiltFinder image output, showing a comparison between the original image and the optimized
tilted Gaussian.

page ii

Protoplanetary disk fitting: J1615

A.3 Implementing a model with Astropy

It is possible to create function generators using Astropy. By function generator, I mean a tool
taking parameters as input and a function as output, based on those parameters. For example,
I could use the GaussianGenerator tool to generate a Gaussian function, using a syntax such as
Gaussian=GaussianGenerator(amp,sigma). Then using Gaussian(x) would give the value of a
Gaussian of amplitude amp and width sigma.

Here is a minimalist example, creating a parabolic function with three parameters.

1 >>> from astropy.modeling import models , fitting

2

3 >>> x=np.arange (1. ,2. ,0.0001)

4

5 >>> @models.custom_model

6 ... def Model1(x, a=1., b=1., c=1.):

7 ... return(a*x**2.+b*x+c)

8 ...

9

10 >>> function1=Model1(a=4.,b=-14.,c=12.)

11

12 >>> function1

13 <Model1(a=4., b=-14., c=12.)>

14

15 >>> function1(x)

16 array ([2.00000000e+00, 1.99940004e+00, 1.99880016e+00, ...,

17 -5.99640000e-04, -3.99840000e-04, -1.99960000e -04])

The actual implementation of my fitting functions are as follow. First a Gaussian ring, then a
ring based on Facchini et al. [24], and then a central Gaussian.

1 @models.custom_model

2 def GaussianRing(xx , yy , amplitude =1., xc=0., yc=0.,

3 width =1., a=1., b=1., theta =0.):

4 """

5 This makes a Gaussian ring centered on (xc ,yc), elliptic with semi -axis a and

b,

6 and rotation theta.

7 """

8 c=math.cos(theta)

9 s=math.sin(theta)

10 # centering the mesh

11 x=xx -xc

12 y=yy -yc

13 # compute distance to the ellipse

14 u=np.sqrt (((x*c+y*s)/a)**2.+((y*c-x*s)/b)**2.) - 1.

15 # compute Gaussian

16 return(amplitude * np.exp((-.5*(a*b)*(width)**-2.) * (u**2.)))

page iii

Protoplanetary disk fitting: J1615

1 @models.custom_model

2 def FFRing(xx , yy , i0=1., i1=1., sig0=1., sig1=1.,

3 gam=1., xc=0., yc=0., a=1., b=1., theta =0.):

4 """

5 Facchini Ring , refer to eq 1 in arXiv 1905.09204.

6 """

7 c=math.cos(theta)

8 s=math.sin(theta)

9 x=xx -xc

10 y=yy -yc

11 u=np.sqrt (((x*c+y*s)/a)**2.+((y*c-x*s)/b)**2.)

12 f = (i0 * ((u / sig0)**gam)) * np.exp(-(u**2.) / (2. * sig0 **2.))

13 f += i1 * np.exp(-(u**2.) / (2. * sig1 **2.))

14 return(f)

1 @models.custom_model

2 def Gaussian2D(xx , yy , amplitude =1., x_mean =0., y_mean =0.,

3 x_stddev =1., y_stddev =1.,theta =0.):

4 """

5 Redefining the Gaussian2D Model of astropy module ,

6 for it to be faster in terms of computation.

7 Please refer to the documentation of astropy.modeling.models.Gaussian2D

8 """

9 c=math.cos(theta)

10 s=math.sin(theta)

11 x=xx -x_mean

12 y=yy -y_mean

13 c2=math.cos (2.* theta)

14 s2=math.sin (2.* theta)

15 csq=c**2.

16 ssq=s**2.

17 a=.5*(csq * (x_stddev)**-2. + ssq * (y_stddev)** -2.)

18 b=.5*s2*(y_stddev **-2.- x_stddev ** -2.)

19 c=.5*(ssq*(x_stddev **-2.) + csq*(y_stddev ** -2.))

20 return(amplitude*np.exp(- (a*x**2.+b*(x*y)+c*y**2.)))

1 ring1=FFRing ()

2 ring2=GaussianRing ()

3 ring3=GaussianRing ()

4 ring4=GaussianRing ()

5 centralgauss=Gaussian2D ()

6

7 Model_J1615=centralgauss+ring1+ring2+ring3+ring4

page iv

Protoplanetary disk fitting: J1615

A.4 Emcee

Emcee [5] is an implementation of the mcmc minimization algorithm. It is based on the idea of
partially randomly probe a multi-dimensional space in order to find the minimum of a function. To
do so, it creates an ensemble of walkers, i.e. an ensemble of moving points in the space, and moves
them following specific rules.

To implement it, we need to define a cost function to minimize, an initial set of positions, and
boundaries in the space. The real implementation needs to take other details into considerations,
such as the number of cores to use in the process, or the type of multi-threading used. To have a
look into my implementation, see the ModelingEmcee.py file in my GitHub repository.

Python pseudo–code:

1 p0=initial position

2 p0_list =[randomize n positions around p0]

3 def cost(p):

4 model=Model_J1615(p)

5 return (||model -image ||)

6 def boundaries(p):

7 if p is into the boundaries:

8 return (0)

9 else:

10 return (+ infinity)

11 def FullCost(p):

12 return(boundaries(p)+cost(p))

13 emcee_optimize(FullCost ,p0_list)

The walkers can define a discreet probability distribution. The zones where most walkers are
stuck in corresponds to the highest probability, and therefore the lowest value of the cost function.
To evaluate the success of an Emcee optimization, the corner plot tool is useful. It represents the
correlation between each pair of parameters, plotting the joint probability distribution. It has to
look as sharp as possible, and gives us important information about local minimum and redundancy
in parameters.

0.0026

0.0027

−1.05

−1.00

−0.95

0 20 40 60 80 100

iterations

−3.7

−3.6

−1
.0
5

−1
.0
2

−0
.9
9

−0
.9
6

−3
.7
2

−3
.6
8

−3
.6
4

−3
.6
0

−3
.5
6

15
.0
50

15
.0
75

15
.1
00

15
.1
25

15
.1
50

11
.2
4

11
.2
8

11
.3
2

11
.3
6

11
.4
0

0.
00

26
1

0.
00

26
4

0.
00

26
7

0.
00

27
0−0

.1
11

−0
.1
08

−0
.1
05

−0
.1
02

−0
.0
99

−1
.0
5

−1
.0
2

−0
.9
9

−0
.9
6

−3
.7
2

−3
.6
8

−3
.6
4

−3
.6
0

−3
.5
6

15
.0
50

15
.0
75

15
.1
00

15
.1
25

15
.1
50

11
.2
4

11
.2
8

11
.3
2

11
.3
6

11
.4
0

−0
.1
11

−0
.1
08

−0
.1
05

−0
.1
02

−0
.0
99

Figure 21: A typical converged Emcee partial output. The parameters are restrained in a very small and
stable area, and the corner plot is sharp. These values are extracted from the 3 ad 6 first parameters of my
image plane fitting process.

page v

https://github.com/YohannFaure/DiskFitting.git

Protoplanetary disk fitting: J1615

A.5 Emcee numerical results

In this section I will present two table per optimization. One will only be a simpler per ring properties
description, while the other will be a full parameters description.

A.5.1 Image plane fitting

The rings I ended up using for this fitting are a central Gaussian G0, a Gaussian ring multiplied by
a power law FR1, and three Gaussian rings GR2–4.

Layer Radius (au) Amplitude (mJy/beam) Gaussian width (σ, au)
Central Gaussian G0 – 2.610e-3 6.2291
Power law ring F1 15.814 6.141e-4 –
Gaussian ring GR2 23.340 2.959e-3 9.7004
Gaussian ring GR3 106.25 3.073e-4 31.360
Gaussian ring GR4 (faulty) 186.23 3.925e-5 42.861

Table 1: Summary of the emcee results for the image fitting process using Emcee. σ corresponds to the
Gaussian standard deviation. GR4 is not representative as it fits background noise.

A.5.2 (u, v) plane fitting

For this fit, I decided to use 4 Gaussian rings, and to reduce their freedom, especially fixing their
center, inclination and position angle.

Layer Radius (au) Amplitude (arbitrary unit, log scale) Gaussian width (au)
Central Gaussian G0 – 11.026 0.7465
Gaussian ring GR1 1.5826 9.9739 68.715
Gaussian ring GR2 25.408 10.278 14.619
Gaussian ring GR3 97.045 8.5007 3.6525
Gaussian ring GR4 116.11 8.4624 7.0975

Table 2: Summary of the Emcee results for the (u, v) plane fitting.

The most notable difference is that the outer rings are much sharper in this fitting. That might
be due to the fact that we made no beam convolution in the image plane fitting.

page vi

Protoplanetary disk fitting: J1615

Parameter name 15% percentile Median 85% percentile
Central Gaussian G0
amplitude 0 2.610e-3 2.615e-3 2.618e-3
xc 0 -1.04728 -1.03924 -1.03570
yc 0 -3.70907 -3.69838 -3.69434
xstd 0 15.05814 15.06351 15.06645
ystd 0 11.26137 11.27178 11.27677
theta 0 -0.10922 -0.10854 -0.10818
Power law ring FR1
i0 1 5.716e-4 5.735e-4 5.7465e-4
i1 1 7.830e-4 7.882e-4 7.913e-4
sig0 1 1.28183 1.28842 1.28980
sig1 1 0.44824 0.44950 0.45021
gam 1 4.67338 4.67820 4.68007
xc 1 0.33112 0.33457 0.33613
yc 1 0.24303 0.24574 0.24725
a 1 33.07245 33.14110 33.16868
b 1 33.65266 33.72201 33.74980
theta 1 -0.04395 -0.04318 -0.04261
Gaussian ring GR2
amplitude 2 2.969e-3 2.970e-3 2.971e-3
xc 2 -0.80081 -0.79834 -0.79701
yc 2 -0.46515 -0.46306 -0.46196
width 2 20.49650 20.50571 20.50915
a 2 48.35268 48.35669 48.35961
b 2 50.31715 50.32187 50.32394
theta 2 0.06083 0.06152 0.06179
Gaussian ring GR3
amplitude 3 6.4956e-4 6.4964e-4 6.4968e-4
xc 3 0.59396 0.60192 0.60592
yc 3 -1.49655 -1.48652 -1.48063
width 3 66.28178 66.29217 66.29768
a 3 221.03183 221.04322 221.05016
b 3 228.43998 228.45219 228.45790
theta 3 0.01641 0.01722 0.01767
Gaussian ring GR4
amplitude 4 8.293e-5 8.298e-5 8.300e-5
xc 4 -4.86612 -4.81012 -4.78337
yc 4 13.19933 13.26826 13.30691
width 4 90.51086 90.60467 90.64812
a 4 387.42063 387.54946 387.60922
b 4 399.81574 399.84269 399.85641
theta 4 -0.41073 -0.40366 -0.40063

Table 3: Value of every parameter of the J1615 model in image plane fitting. The “ n” refers to the
number of the ring

page vii

Protoplanetary disk fitting: J1615

Parameter name 15% percentile Median 85% percentile
Central Gaussian G0
f0 0 10.95160 11.02614 11.06120
sigma 0 0.00472 0.00473 0.00474
Gaussian ring GR1
amplitude 1 9.95791 9.97398 9.98054
width 1 0.42908 0.43577 0.43838
center 1 0.01001 0.01004 0.01007
Gaussian ring GR2
amplitude 2 10.27771 10.27804 10.27818
width 2 0.09231 0.09271 0.09280
center 2 0.16022 0.16113 0.16129
Gaussian ring GR3
amplitude 3 8.47161 8.50068 8.51255
width 3 0.02152 0.02316 0.02520
center 3 0.61354 0.61543 0.61736
Gaussian ring GR4
amplitude 4 8.43635 8.46239 8.47069
width 4 0.04500 0.04501 0.04502
center 4 0.73343 0.73634 0.73876

Table 4: (u, v) plane fitting detailed results. The amplitude has a logarithmic scale. The width and
center correspond to the standard deviation of the Gaussian and the radius of each ring in arcsec.

A.6 MCFOST results

The bare file used to generate the sed presented in figure 17 is available on GitHub, this is just a
basic description of the rings I found.

Layer Inner diameter Outer diameter
Central ring CR1 0.412 5.178
Ring R2 17.84 61.88
Ring R3 65.54 94.49
Ring R4 127.2 138.7

Table 5: mcfost results. These results appear to be coherent with the (u, v) plane fitting.

page viii

https://github.com/YohannFaure/mcfost_scripts/blob/master/optipar.para

Protoplanetary disk fitting: J1615

A.7 Other projects

During this internship, I had many minor objectives, tools to develop, codes to analyse, clean and
optimize, etc. This section briefly describes two of these side projects.

A.7.1 Point and click localisation

When fitting a spiral disk, one of the key information to get is the spirals opening rate. To find it,
multiple automatic methods exist, but I wanted a tool that could help me getting that information
just by clicking on the image. I developed a tool that allows the user to open a fits file and to point
and click on it, recording the coordinates of the pointing. It can be used to determine distances, or
spirals angles.

A.7.2 FitsSlider

The main tool used to plot fits images is casa, but it’s a Mac OS X and Red Hat only program.
Using Debian, I needed a tool to plot these images in a fast and useful method, with sliders adjusting
for the maximum and minimum of the image.

The program I developed is named FitsSlider. It’s a very simple Python tool, designed to be a
fast observation tool, as shown in Figure 22.

Figure 22: FitsSlider display, called by FitsSlider J1615.fits --function ’lambda x : x**.5’.

A.8 GitHub repositories

The code I produced during this internship is available in the following GitHub repositories:

Fitting the image plane: DiskFitting

Fitting the visibilities plane: GalarioFitting

Using mcfost: mcfost scripts

Plotting fits images: FitsSlider

page ix

https://github.com/YohannFaure/FitsSlider
https://github.com/YohannFaure/DiskFitting
https://github.com/YohannFaure/GalarioFitting
https://github.com/YohannFaure/mcfost_scripts
https://github.com/YohannFaure/FitsSlider

	Introduction and Summary
	Context of this internship
	Why Chile?
	Cerro Calán
	ALMA and my data set
	Hardware and Software used

	Interferometry
	Basic principles
	Fourier transform and (u, v) plane
	ALMA's resolution

	Protoplanetary disks
	What is a protoplanetary disk?
	Protoplanetary Disks Physics
	The need to fit data
	J1615

	Image plane Fitting
	The issues of the image plane
	Deprojection
	Features extraction
	Model choice

	Optimization
	Model definition
	Classical optimization
	Emcee
	Results

	(u,v) plane fitting
	(u,v) plane data
	Model fitting

	MCFOST
	Principle
	Difficulties
	Modeling results

	Performance Improvements details
	The computational need
	Python Voodoo magic
	The use of a super computer
	Multiprocessing
	CUDA

	Appendix
	SED point calculation
	TiltFinder implementation details
	Implementing a model with Astropy
	Emcee
	Emcee numerical results
	MCFOST results
	Other projects
	GitHub repositories

