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ABSTRACT
Plane waves are a special class of Lorentzian spaces with a parallel lightlike vector field. They are of great importance in Geometry (e.g.,
Lorentzian holonomy) and in Physics (General Relativity as well as alternative gravity theories). Our contribution in the present paper aims at
a rigorous mathematical treatment focusing on completeness of Killing fields, and globality of coordinates. Equivalence of different approaches
to plane waves is by no means easy to handle. We use here cohomogeneity one Heisenberg actions to introduce a point of view from which
one can see plane waves as a deformation of Minkowski spacetime. We determine the identity component of the isometry group of a 1-
connected non-flat homogeneous plane wave, which establishes a correspondence between these spaces and certain 1-parameter groups of
automorphisms of the Heisenberg group. The extendibility of spacetimes (when incomplete) is a natural, important and delicate question.
One of our main results is the proof of the C2-inextendibility of non-flat homogeneous plane waves. We also prove that they are geodesically
complete if and only if the lightlike parallel vector field is preserved by the identity component of the isometry group. Finally, we show that a
1-connected homogeneous plane wave admits global Brinkmann coordinates.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0214986

I. INTRODUCTION
A Lorentzian manifold is called a Brinkmann manifold if it admits a parallel lightlike vector field. They appear in the general context

of Lorentzian manifolds with special holonomy, i.e., for which the action of the restricted holonomy group is reducible (having invariant
subspaces) and indecomposable (the metric is degenerate on the invariant subspaces). We denote a Brinkmann manifold by a triple (X, g, V),
where g is the Lorentzian metric, and V the parallel lightlike vector field.

Since V is parallel, its orthogonal distribution V� is invariant by the Levi–Civita connection and is then integrable, hence tangent to a
foliation F having lightlike geodesic leaves (i.e., the induced metric is degenerate). Each leaf of F inherits an induced connection. A special
class of Brinkmann spacetimes are known as pp-waves: they are defined by the fact that all the F-leaves are flat with respect to the induced
connection.

Plane waves are pp-waves which are “almost symmetric”: ∇XR = 0, for any X tangent to V�, where R is the Riemannian tensor. In the
so-called local Brinkmann coordinates, the metric takes the form

2dudv + Sij(u)xix jdu2
+

n

∑
i=1
(dxi
)

2, (1)

where S(u) = (Sij(u)) is a symmetric matrix.
The global metrics on R2

×Rn of the previous form, with S not depending on u and non degenerate (with non-zero determinant), define
what we call Cahen–Wallach spaces. They are indecomposable (globally) symmetric plane waves, introduced by Cahen and Wallach.4
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So pp-waves and plane waves are special classes of Brinkmann spacetimes, obtained with conditions on the curvature. In the opposite
direction, (locally) Kundt spacetimes are generalizations of Brinkmann manifolds, defined as Lorentzian manifolds having a codimension one
lightlike geodesic foliation.

Plane waves can also be defined by the fact that they admit local Rosen coordinates in which the metric takes the form

2dvdu + gij(u)dxidx j , (2)

where [gij(u)] is a symmetric definite positive matrix. In both Brinkmann and Rosen coordinates, V = ∂v is the parallel lightlike vector field.

A. Plane waves as a deformation of Minkowski space
The (2n + 1)-dimensional Heisenberg group Heis2n+1 = Rn

⋉Rn+1 is the subgroup of Aff(Rn+1
) defined by

Heis2n+1 = {(
1 α
0 In

)∣ α ∈ Rn
} ⋉Rn+1.

This representation of Heis2n+1 in Aff(Rn+1
) will be referred to as the usual representation. Denote by A+ ≃ Rn the Abelian subgroup of

unipotent matrices, and by A− the subgroup {0} ×Rn of the translation part. Let Z be the subgroup of translations R × {0} determined by
the fixed vector of A+; this subgroup forms the center of the Heisenberg group. Denote their Lie algebras by a+, a−, and z, respectively.

Notations 1.1. The Lie algebra heis2n+1 of the Heisenberg group equals heis2n+1 = a
+
⊕ a− ⊕ z with Lie brackets

[A, B] = ω(A, B)z,

where z is a basis for the center z, and ω is the standard symplectic form on a+ ⊕ a− ≅ R2n. Denote by X1, . . . , Xn (resp. Y1, . . . , Yn) a basis of a+

(resp. a−), such that all Lie brackets are zero but [Xi, Y i] = z, for i = 1, . . . , n.

1. The Heisenberg action on the flat Minkowski space
The (flat) Lorentzian space (Rn+2, g0 = 2dudv +∑n

i=1 dx2
i ) is called the Minkowski space and denoted by Mink1,n+1. The group of

isometries of Mink1,n+1 is the Poincaré group O(1, n + 1) ⋉Rn+2. Let SPol(n) be the subgroup of O(1, n + 1) ⋉Rn+2 preserving a lightlike
constant vector field (this group is introduced in Ref. 11, Sec. 2 and called the special polarized Poincaré group). Up to conjugation by
an element in the Lorentz group O(1, n + 1), we can assume that this (constant) lightlike vector field is given by V = ∂v . It has the form
SPol(n) = L(SPol(n)) ⋉Rn+2, where the linear part is a semi-direct product L(SPol(n)) = O(n) ⋉Rn. In the basis (v, x1, . . . , xn, u) it takes
the following form

L(SPol(n)) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

1 β⊺ −
∣β∣2

2
0 A −Aβ
0 0 1

⎞
⎟
⎟
⎟
⎠

RRRRRRRRRRRRRRRRRRR

A ∈ O(n),β ∈ Rn

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

.

The subgroup of SPol(n) preserving each leaf of the foliation tangent to V�, given by the level sets u = cst, is L(SPol(n)) ⋉Rn+1
≅ (O(n) ⋉

Rn
) ⋉Rn+1

⊂ SPol(n), which contains the Heisenberg group Heis2n+1 = Rn
⋉Rn+1. So this subgroup acts by preserving individually all the

lightlike hyperplanes Rn+1
× {u}, u ∈ R. We introduce the following groups, which are essential in developing the point of view used here for

describing plane waves.

Definition 1.2. Let Rn+1 with coordinates (x0, x1, . . . , xn) be endowed with the degenerate quadratic form q0 ∶= x2
1 + ⋅ ⋅ ⋅ + x2

n.

(1) The group of affine isometries of q0 is given by

L(n) : = {(
λ α⊺

0 A
)∣ λ ∈ R∗+,α ∈ Rn, A ∈ O(n)} ⋉Rn+1

≅ ((R ×O(n)) ⋉Rn
) ⋉Rn+1.

It will be called the affine lightlike group. The linear subgroup (R ×O(n)) ⋉Rn can be identified with the subgroup of the Lorentz group
O(1, n + 1) preserving a lightlike direction.

The affine lightlike group can also be seen as the group of diffeomorphisms of Rn+1 preserving q0 and the (natural) flat affine
connection of the affine space.

(2) The subgroup Lu(n) ∶= (O(n) ⋉Rn
) ⋉Rn+1 of L(n) preserving the lightlike constant vector field ∂x0 will be called the affine unimodular

lightlike group.
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A manifold modeled on (L(n),Rn+1
) (resp. (Lu(n),Rn+1

)) will be said to have an affine lightlike geometry (resp. affine unimodular
lightlike geometry).

Using the vocabulary in Definition 1.2, we see that Heis2n+1 acts on each hyperplane Rn+1
× {u} of the Minkowski space by preserving

the induced affine unimodular lightlike geometry. So for every u ∈ R, this action defines a faithful representation

θu : Heis2n+1 → Lu(n) ∶= Aut(Rn+1,∇,
∂

∂v
, dx2

1 + ⋅ ⋅ ⋅ + dx2
n),

where∇ denotes the affine flat connection of Rn+1.
Let us take a closer look at this action. At the level u = 0, Heis2n+1 = Rn

⋉Rn+1 acts through the usual action, where Rn+1 acts by trans-

lations and λ ∈ Rn acts linearly by a unipotent transformation (1 λ

0 In
). At the level u, Rn+1

⊂ Heis2n+1 acts by translations and λ ∈ Rn+1 acts

with an affine transformation A(λ) + Tu(λ) depending on u, where

A(λ) = (
1 λ
0 In

) and Tu(λ) =
⎛
⎜
⎝

−
∣λ∣2

2
u

−λu

⎞
⎟
⎠

.

So the Rn+1-action by translations is constant with respect to u, but the Rn-action depends on u. In fact, one can write the θu-action of Heis2n+1
on Rn+1

× {u} as a deformation of its θ0-action on Rn+1
× {0} by means of an automorphism of Heis2n+1 that depends on u. Namely,

θu = θ0 ○P
Mink
u ,

wherePMink
u ∈ Aut(Heis2n+1) belongs to the automorphism group of Heis2n+1 and is given by

d0P
Mink
u = exp (uL), L =

⎛
⎜
⎜
⎝

0 0 0
In 0 0
0 0 0

⎞
⎟
⎟
⎠

,

where the derivation L ∈ Der(heis2n+1) is written in the decomposition heis2n+1 = a
+
⊕ a− ⊕ z. And the global action of Heis2n+1 on the

Minkowski space can be written as follows:

a
P

Mink : Heis2n+1 ×Rn+1
×R→ Rn+1

×R

(h, (v, x, u))↦ (θ0 ○P
Mink
u (h)(v, x), u).

The deforming curvePMink
u is a 1-parameter group in Aut(Heis2n+1).

2. Plane waves as curves in Aut(Heis2n+1)

Plane waves can be thought of as a generalization as well as a deformation of the Minkowski space. As explained above, the Minkowski
space Mink1,n+1 admits an isometric action of Heis2n+1, acting transitively on the leaves of some codimension 1 foliation by (parallel) affine
lightlike hyperplanes Rn+1

× {u}, u ∈ R. It acts on a fixed hyperplane Rn+1
× {u} ≅ Rn+1 by an affine transformation that depends on u (in

particular, this is not a product action). This determines a curve of affine maps of Rn+1 depending on u, that can be naturally parameterized
by some curve in Aut(Heis2n+1). We will use this point of view of cohomogeneity one Heis2n+1-actions through parametrizing curves in
Aut(Heis2n+1) to give another description of plane waves, which make them appear as a deformation of the Minkowski space. This will be
precised in the following paragraph. Let us however note that the computations leading to the equivalence between this point of view and the
original definition are not trivial.

Plane wave case. The leaves of the F-foliation of a plane wave (and more generally, of a pp-wave) are flat and lightlike, with a parallel
lightlike vector field V tangent to them. Hence, they inherit a unimodular affine lightlike geometry. As a result, the Lie algebra of Killing fields
tangent to the F-foliation and commuting with V is (faithfully) represented in o(n) ⋉ heis2n+1, the Lie algebra of Lu(n). What is the image of
this representation? It turns out that, in the case of plane waves, the image contains the full heis2n+1 algebra, and this property characterizes
plane waves among pp-waves (see Sec. II). This is a consequence of the well known fact (at least in the indecomposable case) that plane waves
admit an isometric infinitesimal action of the Heisenberg algebra, whose action preserves individually the leaves of F (see for instance Ref. 8
in dimension 4, and Ref. 2 in the indecomposable case). This infinitesimal action of the Heisenberg algebra does not necessarily extend to a
global action of the Heisenberg group (see the discussion in the next paragraph).
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We will see in Sec. II that similarly to the Minkowski case, for which the Heis2n+1-action determines some 1-parameter group
P

Mink
u ∈ Aut(Heis2n+1), a plane wave determines certain curves in Aut(Heis2n+1) that encode the Heis2n+1-local action. We formulate the

following question, which we answer in Sec. II:

Question 1.3. Let I ⊂ R be an interval, and consider Y = Rn+1
× I. Define an action of Heis2n+1 on Y as follows

aP : Heis2n+1 ×Rn+1
× I → Rn+1

× I
(h, (y, u))↦ (θ ○Pu(h)(y), u),

where

● P : I → Aut(Heis2n+1) is some curve,
● and θ : Heis2n+1 → Lu(n) is some faithful representation into the affine unimodular lightlike group.
● Assume the aP-action preserves a Lorentzian metric on Y, which Lorentzian metrics do we obtain?

In the question above, we allow P to be any curve. This aP-action of Heis2n+1 is a deformation of the a
P

Mink -action obtained in the
case of Minkowski space. As we will see, not every such action preserves a Lorentzian metric on Y. However, when it does, the metric turns
out to be a plane wave. A natural question then arises: how can we characterize all such curves that arise from plane wave metrics on Y? This
characterization is provided in Sec. II. Moreover, Heis2n+1 acts locally isometrically on a plane wave via the restriction of such an aP-action.

Plane waves in standard form. When Brinkmann coordinates exist globally on a plane wave X ∶= Rn+1
× I, for an open interval I ⊂ R

parameterizing the space of F-leaves, we refer to it as a plane wave in standard form (this definition appears for instance in Ref. 12, Sec. 1).
In Sec. II, we will see that a plane wave in standard form admits a global isometric aP-action of Heis2n+1 as above. We write explicitly the
Heis2n+1-action in the (global) Brinkmann coordinates in the Appendix. In particular, we will be able to describe a plane wave in standard
form as a single curve in Aut(Heis2n+1).

B. Isometry groups of 1-connected homogeneous plane waves
Recall that the Lie algebra of Killing fields of an indecomposable plane wave contains the Heisenberg algebra, whose action is locally

transitive on the F-leaves. Actually, it turns out that the result remains true in the decomposable case (this is considered in Sec. II). Thus,
general plane waves have already local cohomogeneity 1.

In the homogeneous case, Blau and O’Loughlin2 determine the full isometry algebra of an indecomposable homogeneous plane wave.
They start with a plane wave in local (Brinkmann or Rosen) coordinates, and ask when it is (infinitesimally) homogeneous. Through a direct
analysis of the Killing equations in these coordinates, they identify the isometry algebra as being generated by Killing fields satisfying specific
bracket relations, and prove that it contains a Heisenberg algebra. It appears then that the Killing algebra contains an R-extension of the
Heisenberg algebra, though the action of the one-parameter group of (infinitesimal) automorphisms on the Heisenberg algebra is not visible.
To explicitly describe 1-connected homogeneous plane waves as Lorentzian homogeneous spaces, which is the aim of Theorem 1.5 below,
one has to determine their isometry groups. This problem in general requires understanding which local isometries extend globally. This is
achieved here by analyzing the globalization of local isometries generated by the Heisenberg algebra, and deducing the full isometry group
relying on two key points: first, that the foliation F carries a unimodular affine lightlike structure (see Definition 1.2) along its leaves, and
second, that it also admits an affine transverse structure (Sec. III), both of which are preserved by the isometries preserving F .

Studying whether the action of heis2n+1 integrates into an action of the Heisenberg group (i.e., whether the local isometries extend
globally) amounts to studying the completeness of Killing fields tangent to the F-foliation, which in turn involves the (geodesic) completeness
of the F-leaves of such manifolds. This is investigated in Sec. IV. For this, we use the fact that the leaves of the F-foliation of a pp-wave inherit
a unimodular affine lightlike geometry. It is a well known fact that if M is a (G, X)-manifold such that the model space X is complete for some
G-invariant connection, the completeness of M as a (G, X)-manifold is equivalent to its geodesic completeness for the connection it inherits
from X. In the homogeneous case, we prove the following:

Proposition 1.4.

(1) The F-leaves of a non-flat homogeneous plane wave (X, g, V) of dimension n + 2 are (Lu(n),Rn+1
)-complete, hence geodesically

complete.
(2) A homogeneous pp-wave (possibly flat) such that V is complete has complete F-leaves.

As a consequence, it follows that the infinitesimal action of the Heisenberg algebra on a 1-connected homogeneous plane wave integrates
into a Lie group isometric action of Heis2n+1. Moreover, as in the flat case, Heis2n+1 acts on F by preserving each individual leaf of F , and the
action can be parameterized by a 1-parameter group in Aut(Heis2n+1). With this in hand, we are able to determine the identity component
of the isometry groups of 1-connected homogeneous plane waves (without using the Killing equation). It turns out that these groups contain
an R-extension of the Heisenberg group. The one-parameter groups of automorphisms on the Heisenberg group are described explicitly;
they fall into two families: one for which the plane wave is complete, and one for which it is incomplete. Finally, we show that if (X, g, V)
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is a 1-connected non-flat homogeneous plane wave and G is the identity component of its isometry group, then any G-invariant Lorentzian
metric on X is isometric to g. This is stated in the following theorem

Theorem 1.5. Let (X, g, V) be a 1-connected non-flat homogeneous plane wave. Then

(1) Isometry group. The connected component of Isom(X) (which is of finite index in Isom(X)) is isomorphic to Gρ = (R × K) ⋉ Heis2n+1,
with the R-action given by ρ(t) = etL, where L ∈ Der(heis2n+1) is such that

(a) L =
⎛

⎝

F B 0

I F 0

0 0 0

⎞

⎠
, or

(b) L =
⎛

⎝

I + F B 0

I F 0

0 0 1

⎞

⎠

with respect to the decomposition heis2n+1 = a
+
⊕ a− ⊕ z, where F is antisymmetric and B is symmetric. Moreover, K is the con-

nected (closed) subgroup of O(n) with Lie algebra k = {E ∈ o(n), [E, F] = [E, B] = 0}, acting on Heis2n+1 trivially on the center
and by the standard action on A+ and A−.

Finally, X identifies with Xρ = Gρ/K ⋉ A+. Moreover, the codimension 1 foliation F tangent to V� is given by the (left) action of K ⋉
Heis2n+1, and is preserved by the action of Gρ.

(2) Homogeneous plane waves vs 1-parameter groups in Aut(Heis2n+1). Let Gρ be as in item (1), and consider the homogeneous space
Xρ = Gρ/I, with I = K ⋉ A+. Then Xρ admits a unique (up to isometry of Xρ) Gρ-invariant Lorentzian metric, which is necessarily a
plane wave metric (which may be flat).

(3) Completeness. If the R-action is as in case (a), the plane wave is geodesically complete. Otherwise, i.e., case (b), they are incomplete.

Remark 1.6 (The flat case). As shown in Ref. 7, a 1-connected flat homogeneous Lorentzian space is isometric to either the whole Minkowski
space or a half-Minkowski space bounded by a lightlike hyperplane P, i.e., with a degenerate induced metric. Both spaces are homogeneous flat
plane waves, with S = 0 in Brinkmann coordinates. The isometry group in the first case is the Poincaré group. In the second case, it is given by the
subgroup of the Poincaré group that preserves the boundary lightlike hyperplane P and the connected components of Rn+2

/P, or, equivalently, it is
the subgroup preserving a lightlike direction tangent to P�. This group is nothing but the affine lightlike group L(n) introduced in Definition 1.2;
it has the form of the groups obtained in Theorem 1.5 above.

As already mentioned in Subsection I A, a similar description as in Item (2) of Theorem 1.5 can be done with non-homogeneous plane
waves in standard form, but this time, the action of Heis2n+1 is parameterized by a curve in Aut(Heis2n+1) (which is a 1-parameter group if and
only if the space is homogeneous). Let us observe that the assumption of being in standard form ensures that the heis2n+1-action integrates
into an action of the Lie group. Otherwise, one can ask the following questions for general 1-connected plane waves.

Question 1.7 (Global Heis2n+1-action vs F-completeness). Is there an equivalence between the two following properties?

(a) The infinitesimal action of the Heisenberg algebra integrates to a global Heis2n+1-action.
(b) The leaves of F are complete.

Question 1.8. One then also asks whether 1-connected plane waves with complete F-leaves are exactly the plane waves in standard form.

We do not have an answer to the above questions yet. However, establishing a positive answer to Question 1.7 would allow to extend the
picture in item (2) to the family of 1-connected plane waves with complete F-leaves.

C. Existence of global Brinkmann coordinates
In Ref. 2, assuming the existence of global Brinkmann coordinates, Blau and O’Loughlin classified homogeneous plane waves in standard

form. However, it is not clear whether any 1-connected homogeneous plane wave necessarily admits such coordinates. Theorem 1.9 below fills
this gap. Indeed, as an application of Theorem 1.5, we prove the existence of global Brinkmann coordinates on a 1-connected homogeneous
plane wave (Sec. VI), providing an affirmative answer to Question 1.8 in the homogeneous case. The spaces we obtain coincide with those
found in Ref. 2.

Theorem 1.9. Let X be a 1-connected homogeneous plane wave. Then X has global Brinkmann coordinates.

J. Math. Phys. 66, 052501 (2025); doi: 10.1063/5.0214986 66, 052501-5

Published under an exclusive license by AIP Publishing

 02 M
ay 2025 20:49:08

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

D. C 2-inextendibility
The question of the extendibility of a spacetime is an important and difficult question, which arose from the resolution of Einstein

equations in general relativity. Choquet-Bruhat and Geroch6 proved that if a globally hyperbolic spacetime M is a solution to the Cauchy
problem for Einstein equations, then there is a (unique) maximal extension of M as a solution of the Einstein equations, which is globally
hyperbolic. On the other hand, Penrose’s strong cosmic censorship conjecture states that “generically,” this extension is also maximal as a
Lorentzian spacetime. Plane waves are not in general globally hyperbolic, and they do not care natural foliations by Cauchy hypersurfaces.
Instead, they are foliated by lightlike hypersurfaces (the F-foliation). It turns out that in dimension 3, all plane waves are conformally flat,
and that their conformal development in the Einstein universe is a non-trivial conformal extension. The question of conformal extendibility
is considered in Ref. 13, where they mention that some plane waves admit conformal extensions and others may not. Here, we are interested
in the metric extendibility of plane waves. It turns out that the lightlike foliation of a plane wave has geodesic leaves, so, the extendibility
question can be raised first along the foliation F . One then asks

Question 1.10. Let X be a 1-connected plane wave. Can we always embed X in a plane wave which is F-complete? F-maximal?

In the homogeneous (non-flat) case, we show that the F-leaves are complete. Moreover, as mentioned in Theorem 1.5, a 1-connected
homogeneous plane wave for which the parallel lightlike vector field is preserved by the (identity component of) isometry group is complete.
Otherwise, it is incomplete. In the latter case, we prove that it is C2-inextendible.

Theorem 1.11. Let X be a 1-connected non-flat homogeneous plane wave, then X is C2-inextendible, i.e., there is no C2-embedding of such
a plane wave as a proper open subset of some Lorentzian manifold.

Organization of the paper. In Sec. II, we write the Heis2n+1-action explicitly in Brinkmann and Rosen coordinates, following a com-
putation performed in the Appendix, and we describe plane waves as curves in Aut(Heis2n+1). In Sec. III, we see that the space of F-leaves
of a 1-connected Brinkmann manifold has an affine structure, inducing a representation of the identity component of the isometry group in
Aff(R). In Sec. IV, when the space is 1-connected and homogeneous, we study the kernel of this representation, consisting of all the isometries
acting trivially on the space of F-leaves. We prove Proposition 1.4, and obtain that Heis2n+1 is contained in the kernel. Section V is devoted
to give the full form of the identity component of the isometry group (Theorem 1.5). As an application, we show in Sec. VI that such spaces
admit global Brinkmann coordinates (Theorem 1.9). Finally, Sec. VII is devoted to the Proof of Theorem 1.11 on C2-inextendibility.

II. SYNTHETIC DESCRIPTION OF PLANE WAVES
In the first part of the section, we explicit the Heis2n+1 local action on a plane wave, in both Rosen and Brinkmann coordinates. In both

cases, when the coordinates exist globally on the plane wave, there is a global isometric Heis2n+1-action on it, and the metric determines some
curve in Aut(Heis2n+1) that encodes this action; we will write this curve explicitly in both cases. The second part of this section is devoted to
Question 1.3.

A. Local Heis2n+1-actions
1. In Rosen coordinates

In this subsection, θ0 : Heis2n+1 → Aff(Rn+1
) is the action of Heis2n+1 = Rn

⋉Rn+1 on Rn+1, in which Rn+1 acts by translation and λ ∈ Rn

acts linearly by a unipotent transformation (1 λ

0 In
).

Consider Y = Rn+1
× I with coordinates (v, x = (x1, . . . , xn), u), equipped with the following metric

g = 2dvdu + gij(u)dxidx j. (3)

The vector field V = ∂v is parallel, and g is the metric of a plane wave in Rosen coordinates. Suppose 0 ∈ I, and denote by Q(u) the symmetric
positive definite matrix (gij(u)).

The Heisenberg group Heis2n+1 = Rn
⋉Rn+1 acts isometrically on (Y, g) as follows:

● Rn+1 acts by translation on the (v, x)-coordinates, and trivially on the u-coordinate.
● Rn acts linearly by unipotent transformations, namely, λ = (λ1, . . . , λn)

⊺
∈ Rn acts as follows

λ ⋅
⎛
⎜
⎜
⎝

v

x
u

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

(
1 λ⊺

0 In
)(

v

x
) +

⎛
⎜
⎜
⎝

∫

u

0
α

∫

u

0
β

⎞
⎟
⎟
⎠

u

⎞
⎟
⎟
⎟
⎟
⎠

,

where α, β are given by
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β(u, λ) ∶= −Q(u)−1
(λ) and α(u, λ) ∶= −

1
2
λ⊺Q(u)−1λ.

So the Rn-factor acts trivially on the u-coordinate, and the action on each subspace Rn+1
× {u} is affine, with the translation part

depending on u.

Observe that on the level u = 0, the Heis2n+1-action on Rn+1
× {0} coincides with the θ0 action given in the beginning of this paragraph.

On another u-level, the Heis2n+1-action on Rn+1
× {u} can be seen as a deformation of the θ0 action by applying an automorphism of Heis2n+1.

More precisely, define a curveP : I → Aut(Heis2n+1) in the following way

Pu
∣A−×Z
= Id

Pu(λ) = (λ,∫
u

0
α,∫

u

0
β) ∈ A+ × Z × A−, for λ ∈ A+

For every u ∈ I, the mapPu extends uniquely to an automorphism of Heis2n+1. Then the action of Heis2n+1 on Y = Rn+1
× I can be written as

aP : Heis2n+1 ×Rn+1
× I → Rn+1

× I
(h, (y, u))↦ (θ0 ○Pu(h)(y), u).

2. In Brinkmann coordinates
In this subsection, we use another common realization of Heis2n+1 = Cn

×R as a central extension of the Abelian group A = R2n by Z = R
defined by

(a, z) ⋅ (a′, z′) = (a + a′, z + z′ +
1
2
ω(a, a′)),

for z, z′ ∈ Z and a, a′ ∈ A, and where ω is the standard symplectic form on R2n. This induces another representation θ1 : Heis2n+1 → Aff(Rn+1
)

for which the center Z = R acts on Rn+1 by translation along the v-coordinate, and (λ′, λ) ∈ R2n acts through the unipotent affine

transformation ((1 λ′

0 In
),(

⟨λ, λ′⟩
2
λ
)) ∈ SLn+1(R) ⋉Rn+1. Define the subspaces A+ ∶= Rn

× {0}, A− ∶= {0} ×Rn of A.

Consider Y = Rn+1
× I with coordinates (v, x = (x1, . . . , xn), u), equipped with the metric

g = 2dvdu + x⊺S(u)x du2
+ Σn

i=1dx2
i , (4)

where S(u) is a symmetric matrix. This is the metric of a plane wave in Brinkmann coordinates, and V ∶= ∂v is a parallel lightlike vector field.
Let S : u ∈ I ↦ S(u) be the curve of symmetric matrices defining the metric g. We denote by CO(n)(S) the subgroup of O(n) consisting

of elements that commute with S(u) for all u ∈ I.

Proposition 2.1. Let (Y, g, V) be a plane wave in standard form (4), and G0 the subgroup of Isom(Y, g) acting trivially on the u-coordinate.
Then G0 is isomorphic to CO(n)(S) ⋉ Heis2n+1, where CO(n)(S) acts on A− and A+ by its standard action, and trivially on the center Z of
Heis2n+1. Moreover, the vector field V is a generator of the center z of heis2n+1.

The action of an element φ ∈ G0 = CO(n)(S) ⋉ Heis2n+1 is computed in the Appendix. It has the following form

φ
⎛
⎜
⎜
⎝

v

x
u

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

v − ⟨α′(u), Ax +
1
2
α(u)⟩ + c

Ax + α(u)
u

⎞
⎟
⎟
⎟
⎠

(5)

=

⎛
⎜
⎜
⎜
⎝

(
1 −α′(u)⊺

0 In
)(

1 0
0 A

)(
v

x
) +
⎛
⎜
⎝

−
1
2
⟨α′(u),α(u)⟩

α(u)

⎞
⎟
⎠
+ (

c
0
)

u

⎞
⎟
⎟
⎟
⎠

(6)

where c ∈ R, α is a solution of the differential equation

α′′(u) = S(u)α(u), ∀u ∈ I, (7)

and A ∈ O(n) is a constant orthogonal matrix that commutes with S(u) for every u ∈ I.
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Denote by E the 2n-dimensional vector space of solutions of (7). Let {e1, . . . , en} be the canonical basis of Rn. Let u0 ∈ I, and denote by
αi (resp. βi) the solution such that

αi(u0) = 0 and α′i(u0) = ei (resp. βi(u0) = ei and β′i(u0) = 0).

This identifies E to R2n by sending α ∈ E to (α′(u0),α(u0)) ∈ R2n.

Observation 2.2. Let h ∶= (λ′, λ, c) ∈ Heis2n+1, and fix u0 ∈ I. Let φ ∈ G0 be the map for which A = In and α is the solution of (7) satisfying
α′(u0) = λ′,α(u0) = λ. Then, the action of φ on the level Rn+1

× {u0} is nothing but the θ1-action of h on Rn+1.

Proof of Proposition 2.1. Denote by H the subgroup of elements of G0 with A = I. We will prove that H is isomorphic to the Heisenberg
group of dimension 2n + 1. First, observe that since G0 acts trivially on the space of u-leaves, the action of an element in it is completely
determined by its action on some u-level. Fix some level u0, and define H̄ ∶= {φ∣{u=u0},φ ∈H}. So H is isomorphic to H̄. Now define a
correspondence from Heis2n+1 = Cn

×R to H̄ that sends an element h ∶= (−λ′, λ, c) ∈ Heis2n+1 to the affine map φu0 : Rn+1
→ Rn+1,

φu0(v, x) =
⎛
⎜
⎝
(

1 −λ′⊺

0 In
)(

v

x
) +
⎛
⎜
⎝

−
1
2
⟨λ′, λ⟩

λ

⎞
⎟
⎠
+ (

c
0
)
⎞
⎟
⎠

.

Clearly, φu0 is the restriction to the u0-level of an element in H, namely the map φ for which α is the solution of (7) satisfying α′(u0) = λ′,
α(u0) = λ. This correspondence is one-to-one, and is clearly a group morphism by Observation 2.2. Now, the structure of G0 can be seen by
composing two elements of the form (5). And the fact that V generates the center z of heis2n+1 follows from Observation 2.2. ◻

Here again, the Heis2n+1-action on the level Rn+1
× {u} can be obtained by deforming a θ1-action on some level Rn+1

× {u0}, u0 ∈ I, by
applying an automorphism of Heis2n+1 depending on u. Namely, define a curveP : I → Aut(Heis2n+1) by

Pu∣Z = Id

Pu(λ′, λ, 0) = (−β′(u),β(u), 0) ∈ A+ × A− × Z, for (λ′, λ) ∈ A+ × A−,

where β is the solution of Eq. (7) satisfying β(u0) = λ,β′(u0) = λ′. For every u ∈ I, the map Pu extends uniquely to an automorphism of
Heis2n+1. Then the action of Heis2n+1 on Y = Rn+1

× I can be written as

aP : Heis2n+1 ×Rn+1
× I → Rn+1

× I
(h, (y, u))↦ (θ1 ○Pu(h)(y), u).

Remark 2.3. P is a (local) 1-parameter group in Aut(Heis2n+1) if and only if the differential equation (7) is autonomous, i.e., u↦ S(u) is
constant, which amounts to saying that (Y, g, V) is a Cahen–Wallach space.

B. Plane waves as curves in Aut(Heis2n+1)

Any plane wave admits local Rosen and Brinkmann coordinates. Thus, by the previous paragraphs, given a plane wave X of dimension
n + 2, for any point p ∈ X, there exists a neighborhood U of p with an embedding i : U → Y ∶= Rn+1

× I such that the local action of Heis2n+1
on U corresponds to the restriction to i(U) of an aP-action of Heis2n+1 on Y, as described above. The aP-actions given above are deformations
of the a

P
Mink -action on the Minkowski space described in Sec. I A 1.

We consider here more general aP-deformations of the a
P

Mink -action. Let Y ∶= Rn+1
× I, with 0 ∈ I. Assume that Heis2n+1 acts on Y

such that, on a level Rn+1
× {u}, for u ∈ I, this action is given by a faithful representation

θu : Heis2n+1 → Lu(n) = O(n) ⋉ Heis2n+1

of Heis2n+1 into the lightlike unimodular group Lu(n) (see Definition 1.2), depending on u.

Lemma 2.4. Let φ : H → Lu(n) = O(n) ⋉ Heis2n+1 be a morphism with a discrete kernel, with H a nilpotent Lie group of dimension 2n + 1.
Then φ(H) = Heis2n+1 (in particular φ is faithful).

Proof. Denote by p the projection from O(n) ⋉ Heis2n+1 to O(n). Let k ∶= dim p(φ(H)). Since φ(H) is nilpotent, and the dimension
of a maximal Abelian subgroup of O(n) is ⌊ n

2 ⌋, we have k ≤ ⌊ n
2 ⌋. Computing the brackets [(A, h), h′], where (A, h) ∈ φ(H) and h′ ∈ φ(H)

∩ Heis2n+1, together with the fact that φ(H) is nilpotent, shows that the action of p(φ(H)) on φ(H) ∩ Heis2n+1 is trivial. It follows that
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p(φ(H)) embeds in O(E�), where E ∶= (φ(H) ∩ Heis2n+1)
○. But dim E = 2n + 1 − k; as a consequence, k ≤ ⌊ k

2 ⌋, which is a contradiction unless
k = 0.

◻

By Lemma 2.4, for every u ∈ I, we have θu(Heis2n+1) = Heis2n+1. It follows that θu = θ0 ○Pu for somePu ∈ Aut(Heis2n+1). This defines a
curveP : u ∈ I ↦ Aut(Heis2n+1), such that the action of Heis2n+1 on Y is given by

aP : Heis2n+1 ×Rn+1
× I → Rn+1

× I
(h, (y, u))↦ (Pu(h) ⋅ y, u)

(8)

where ⋅ is the θ0-action on Rn+1
× {0}. This motivates the following question:

Question 2.5 (Question 1.3). Fix a (faithful) representation θ0 : Heis2n+1 → Lu(n) = O(n) ⋉ Heis2n+1. Let I ⊂ R be an interval such that
0 ∈ I. Define a curve P : u ∈ I ↦ Aut(Heis2n+1). And consider aP the Heis2n+1 action on Y ∶= Rn+1

× I given by (8) . For which curves Pu the
aP-action preserves a plane wave metric on Y?

The rest of this paragraph is devoted to answering the above question. Denote the coordinates ((v, x), u) ∈ Rn+1
× I.

Proposition 2.6. A Lorentzian metric on Y preserved by aP is a plane wave metric. Moreover, a vector field V generating the action of the
center z of heis2n+1 is lightlike and parallel, and the F-leaves tangent to V� are given by the u-levels.

Proof. Let pu = (0, u) ∈ Y. For the θu-action of Heis2n+1 on Rn+1
× {u} ⊂ Y, the isotropy group of pu is Is(pu) = θ−1

u (A+), where

A+ = {(
1 λ⊺

0 In
)∣ λ ∈ Rn

}.

It acts on Rn+1
× {u} through its representation θu(Is(pu)) = A+. Denote by e0 ∈ TpuR

n+1 the fixed vector of A+. A quadratic form on
Rn+1

× {u} invariant under the θu-action of Heis2n+1 corresponds to a scalar product q on TpRn+1 invariant under the action of the isotropy
representation. It is easily seen that such q satisfies q(e0, e0) = 0 and e�0 = R

n+1. Denote by V the vector field generating the center z of heis2n+1
such that V(p) = e0. Since the z-action commutes with the heis2n+1-action, the vector field V is everywhere lightlike on Rn+1

× {u}. Assume
now that the aP action preserves a Lorentzian metric on Y. It follows from the observations above that the induced metric on Rn+1

× {u} is
degenerate for every u ∈ I, and that V is everywhere lightlike on Y.

Now, fix u ∈ I. The subgroup θ−1
u (A− × Z) of the Heisenberg group is Abelian, and acts freely in some neighborhood of any point in the

level Rn+1
× {u}, generating n + 1 commuting (local) Killing vector fields that span the lightlike distribution in this neighborhood. It follows,

using Ref. 9, Theorem 3, that the metric in this neighborhood is that of a plane-wave, and the lightlike vector field V is parallel. ◻

Notation 2.7. Denote by X1, . . . , Xn (resp. Y1, . . . , Yn) the canonical basis of a+ (resp. a−), where Xi ∶= ((
0 e⊺i
0 0n

), 0) and Yi = (0n+1, ei)

(0k is the zero matrix of size k × k). All Lie brackets are zero but [Xi, Y i] = z, for i = 1, . . . , n.

The next proposition characterizes aP-actions preserving a Lorentzian metric on Y. Fix pu ∶= (0, u) ∈ Y, u ∈ I. The isotropy at pu is given
by Is(pu) = P

−1
u ○ θ−1

0 (A
+
). Let λ ∈ A+, thenP−1

u ○ θ−1
0 (λ) ∈ Is(pu) acts on Rn+1

× {u + ε}, ε ≥ 0, via an affine map

θ0 ○ Pε ○ θ−1
0 (λ) = ((

1 aε(λ)
0 In

),(
cε(λ)
bε(λ)

)) ∈ Heis2n+1, (9)

where Pε ∶= Pu+ε ○P−1
u ∈ Aut(Heis2n+1). Of course this map also depends on u, but since u is fixed, we indicate only the dependence on ε in

the matrices, for simplicity.
Note that for any ε ≥ 0, bε(λ) is linear in λ, so it determines a 1-parameter family of linear maps L : ε ≥ 0↦ L(ε) = bε ∈ Hom(A+, A−).

Moreover, using that Pε ∈ Aut(Heis2n+1) for all ε ≥ 0, one shows easily that the matrix L′(0) represented in the canonical basis (X1, . . . , Xn)

and (Y1, . . . , Yn) of a+ and a− respectively, is symmetric (this can also be seen directly by Lemma 5.5). Set D ∶= L′(0). Finally, we denote by
C the vector C ∶= c′(0), where c : ε ≥ 0↦ (cε(X1), . . . , cε(Xn)).

Proposition 2.8. aP preserves a Lorentzian metric g on TY∣Rn+1×{u} if and only if D is definite. Moreover, g = f (u)g0, with f (u)
∶= g(∂u, V), and g0 is determined by D up to choosing the scalar product ⟨∂u,∂u⟩(0,u), and satisfies g0(∂u, V) = 1.

Proof. Since Heis2n+1 has transitive action on the level Rn+1
× {u}, aP preserves a Lorentzian metric g on TY∣Rn+1×{u} if and only if the

isotropy at pu = (0, u) preserves some Lorentzian quadratic form q at the tangent space Tpu Y. Let θ−1
u (λ) ∈ Is(pu), with λ ∈ A+. Write its action
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as

ϕ
⎛
⎜
⎜
⎝

v

x
u + ε

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

(
1 aε(λ)
0 In

)(
v

x
) + (

cε(λ)
bε(λ)

)

u + ε

⎞
⎟
⎟
⎠

.

Then

dpuϕ =
⎛
⎜
⎜
⎝

1 λ c(λ)
0 In b(λ)
0 0 1

⎞
⎟
⎟
⎠

, (10)

where c(λ) ∶= d
dε ∣ε=0

cε(λ) and b(λ) ∶= d
dε ∣ε=0

bε(λ). Let q be a quadratic form at Tpu Y preserved by dpuϕ. Set e0 = ∂v , e1 = ∂1, . . . , en = ∂n, en+1

= ∂u at pu. Then necessarily

● q(e0, e0) = 0
● q(e0, ei) = 0 for any i = 1, . . . , n
● H(b(λ)) = −q(e0, en+1)λ, where H ∶= (q(ei, ej))i,j , which gives

H = −q(e0, en+1)D−1

● D⊺A = −q(e0, en+1)B, where A = (q(ei, en+1))i (i = 1, . . . , n) and B ∶= C − 1
2(Dii)i.

We see that q = q(e0, en+1)q0, where q0 is determined by D, up to choosing q(en+1, en+1). It is Lorentzian if and only if D is positive
(resp. negative) definite and q(e0, en+1) < 0 (resp. >0).

To finish the proof, we will show that g factorizes through g(∂u,∂v), and that the latter only depends on u. First, observe that by
Proposition 2.6, the vector field ∂v is everywhere lightlike for g, and ∂�v = Vect{∂v ,∂1, . . . ,∂n}. Now, the scalar product at another point
(x, v, u) of Rn+1

× {u} is the push-forward of the scalar product q at Tpu Y by means of an element in θ−1
u (A− × Z). This element acts on

Rn+1
× {u} via some affine map as in (9), whose differential has then the same form as (10). It then sends ∂v to ∂v , and ∂u to ∂u + X, with

X ∈ Vect{∂v ,∂1, . . . ,∂n}. So the scalar product g(∂v ,∂u) is constant on a fixed u-level, as stated. ◻

Remark 2.9. We proved that a Lorentzian metric preserved by the aP-action is a plane wave. One can ask whether plane waves obtained
this way admit global Brinkmann coordinates, i.e., coincide with the plane waves in standard form. As mentioned in Questions 1.7 and 1.8 of the
introduction, one may ask even a more general question: whether existence of a global isometric action of Heis2n+1 on a 1-connected plane wave
implies existence of global Brinkmann coordinates.

III. AFFINE STRUCTURE ON THE SPACE OF LEAVES
A. Affine structure on the space of leaves of a Brinkmann manifold

Let (X, g, V) be a 1-connected Brinkmann spacetime. Let F be the foliation determined by V�. Let G = Isom○(X, g,RV) be the identity
component of the subgroup of the isometry group of X preserving the line field RV (since G is connected, it actually preserves the direction
field defined by V). This means that for any f ∈ G, the push-forward f ∗ sends V to aV , for some positive function a. Since V is parallel, a
must be a constant in R∗+.

The action of G is uniquely determined by its infinitesimal action

σ : g→ Γ(TX)

Y ↦ YX, with YX(p) =
d
dt
∣
t=0

exp (tY) ⋅ p

where g = Lie(G) identifies then with the Lie algebra of complete Killing fields of X preserving the line field RV , i.e., those whose flows send
a leaf of V to a leaf of V .

Proposition 3.1. Let X be a 1-connected Brinkmann spacetime. The space of leaves ξ ∶= X/F is a one-dimensional (non necessarily
Hausdorff) manifold, with an affine structure preserved by any element of G.

Proof. The foliation F is defined by the non-singular closed 1-form ω = g(V , .), so is clearly transversely affine (we can refer to Ref. 3,
which defines the more general transversally homogeneous foliations). Let p ∈ X, one can write ω = du, where u : X→ R, u(p) = 0, is a sub-
mersion defining the leaves of F . The local sections of u give local charts on ξ, and define a one-dimensional manifold structure on it. The
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map u induces a local diffeomorphism from ξ to an interval I of R (which is a global diffeomorphism when ξ is Hausdorff), and defines a
global affine parameter on ξ.

Now, for any f ∈ G, u ○ f : X→ R is another submersion defining another affine parameter on ξ that can be deduced from u by an affine
transformation of R. Indeed, since f preserves RV , there exists a ∈ R∗+ such that df (V) = a−1V . This yields f ∗ω = aω, hence d(u ○ f ) = adu.
So for any f ∈ G, there exists (a, b) ∈ R∗ ⋉R such that u ○ f = au + b, where b = u( f (p)) (in particular, the linear part of the induced affine
transformation is determined by the action of f on V). This means that the transverse affine structure on F is preserved by G. ◻

Notation 3.2. In all this section, u denotes the submersion (defined up to translation) u ∈ C∞(X,R) such that du = ω, defining the
transverse affine structure of F (it is introduced in the Proof of Proposition 3.1 above).

It follows that G acts as an automorphism of the affine space ξ. So we have a representation

π : G→ Aff(ξ) = AffI(R),

where AffI(R) is the subgroup of Aff(R) preserving I. And we have an exact sequence:

1→ G0 → G→ π(G) < Aff(ξ)→ 1 (11)

where G0 = ker π is a normal subgroup of G that acts trivially on the space of leaves ξ, with Lie algebra

g0 = {Y ∈ g, g(YX, V) = 0}. (12)

The real line has three non-isomorphic affine structures:

(1) The real line R with automorphism group R∗ ⋉R,
(2) The half line ]0,+∞[ with automorphism group the subgroup of homotheties R∗+,
(3) ] − 1, 1[ with automorphism group {±Id}.

In the first two cases, the automorphism group acts transitively on the manifold, but not in the third case. We deduce the following fact:

Fact 3.3. If X is G-homogeneous, then the space of F-leaves ξ is Hausdorff, and its affine structure is either of type (1) or (2). Moreover:

In case (1), the subgroup of G consisting of isometries preserving V is mapped surjectively by π onto the translation subgroup of
Aff(R). Furthermore, it contains G0, the kernel of π, which consists exactly of the isometries preserving V and fixing a leaf of F .
In case (2), the kernel G0 coincides with the subgroup of isometries preserving V .

B. The action of Killing fields
Let X be a 1-connected locally homogeneous Brinkmann manifold. A classical result14 says that any locally defined Killing vector field

extends coherently to X. Let ḡ be the Lie algebra of Killing fields of X preserving the line field RV . The Killing fields need not be complete,
hence the use of a notation different from that of the previous paragraph. Given a Killing field K, K ∈ ḡ is equivalent to [K, V] being collinear
to V , or, since V is parallel, to [K, V] = αV , for some constant α ∈ R.

The flow of V acts isometrically on X: denote by z the Lie subalgebra generating the action of V .

Fact 3.4. z is an ideal of ḡ.

The local flow of a Killing field in ḡ preserves the affine structure of ξ, and induces therefore a (local) 1-parameter group of affine
transformations of I, hence an element in aff(R). So we have a representation

π : ḡ→ aff(R). (13)

To write this explicitely, let {X, T} be the standard basis of aff(R), with [X, T] = T. Let etX (resp. etT) be the 1-parameter group of homotheties
u↦ etu (resp. translations u↦ u + t) of R. Recall the submersion u ∈ C∞(X,R) such that du = ω, defining the transverse affine structure of F
(see Notation 3.2). The invariance of the transverse affine structure by K ∈ ḡ yields the existence of (α,β) ∈ R∗ ×R such that K ⋅ u = αu + β,
and π maps K to αX + βT ∈ aff(R). Indeed, since ω is closed, using Cartan’s formula, one can see that [K, V] = αV for some α ∈ R if and only
if LKω = αω, if and only if K ⋅ u = αu + β, for some β ∈ R, which yields the element αX + βT ∈ aff(R) associated to K. The latter also reads
g(K, V) = αu + β.
C. The homogeneous case

Let X be a 1-connected homogeneous Brinkmann manifold, admitting a unique parallel lightlike vector field V up to scale (this is the
case for instance when X is indecomposable). Then X is G-homogeneous, with G = Isomo

(X, g,RV).

Notations 3.5. Throughout the paper, the Lie subgroup of G tangent to z will be denoted by Z. It is a closed subgroup of G contained in the
center of G0. This is consistent with the notation Z of the center of the Heisenberg group, since when X is a plane wave, Z corresponds exactly to
the center of the Heisenberg group (Proposition 2.1).
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Proposition 3.6. Let X be a 1-connected homogeneous Brinkmann manifold, admitting a unique parallel lightlike vector field V (up to
scale). Then

(1) If dim π(G) = 1, then G = R⋉ρG0, for a morphism ρ : R→ Aut(G0). In this case, the affine space ξ is complete exactly when Z is in the
center of G.

(2) If dim π(G) = 2, then G = R ⋉ (R ⋉G0). Let G1 be the normal subgroup of elements preserving V. If the action of G0 on the leaves of F
is not transitive, the G1-orbits in X define a codimension 1 foliation of X by Brinkmann submanifolds.

Proof.

(1) If X is homogeneous, ξ is Hausdorff, affinely equivalent to either R or R∗+. Suppose dim π(G) = 1. If ξ = R, then π represents G in
Aff(R), and π(G) is a Lie subgroup of Aff(R) that acts transitively on R. Such a Lie subgroup must contain the 1-parameter group of
translations [generated by T ∈ aff(R)]. Let K ∈ g such that deπ(K) = T. Then KX is a complete Killing field acting transitively on ξ. Its
flow is a 1-parameter subgroup of G that defines a splitting of the exact sequence 1→ G0 → G→ R→ 1. We get G = R ⋉G0 for some
ρ : R→ Aut(G0). Furthermore, [K, V] = 0, so Z is in the center of G. Now, if ξ = R∗+, then π : G→ R∗+ is surjective, i.e., π(G) is the
group of homotheties R∗+. As before, we get G as an extension of G0 by a 1-parameter group of Aut(G0). Here, Z is not in the center of
G.

(2) Now suppose dim π(G) = 2. Since G1 is the inverse image by π of the normal subgroup of translations of Aff(R), it is normal in G, and
we have an exact sequence 1→ G1 → G→ R→ 1. Hence G = R ⋉G1. On the other hand, G0 is a normal subgroup of G1 and we have
G1 = R ⋉G0. Finally G = R ⋉ (R ⋉G0) as stated.

◻

Let K ∈ g be the Killing field on X, transverse to V�, generated by the action of the R factor in G. Let ϕt be the global flow of K. We have
a global diffeomorphism ψ : R × N 0 → X, ψ(t, p) = ϕt

(p), where N 0 is a leaf of F . The G-action on X reads as a R⋉ρG0 action on R × N 0
as follows:

(R⋉ρG0) ×R × N 0 → R × N 0 (14)

((u, h), (t, p))↦ (t + u, ρ(−t)(h) ⋅ p) (15)

where ⋅ is the action of G0 on {0} × N 0. Indeed, denote this action by ∗ and write for h ∈ G0, h ∗ (t, p) = h ○ ϕt
(0, p) = ϕt

○ ϕ−t
○ h ○ ϕt

(0, p)
= ϕt
○ ρ(−t)(h)(0, p) = ϕt

(0, ρ(−t)(h) ⋅ p) = (t, ρ(−t)(h) ⋅ p).

D. dimπ(ḡ) = 2: Case of plane waves
Let (M, g, V) be a locally homogeneous plane wave, and ḡ the Lie algebra of Killing fields preserving the line field RV . Then, as in

Paragraph 3.2, we have a representation π : ḡ→ aff(R) [see (13)]. In Ref. 9, Proposition 4.3, the authors show that if dimπ(ḡ) = 2, then M is
decomposable. In fact, it appears from their proof that under this assumption, M is actually flat. To do so, they use the Killing field equations
in local Brinkmann coordinates. In this paragraph, we give a coordinate-free proof of this fact. The key idea is that the existence of a “boost”
in the isotropy of a locally homogeneous pp-wave implies that the metric is flat.

Lemma 3.7. Let (M, g, V) be a locally homogeneous pp-wave. Let p ∈M, and I = Stab(p). Let α : I → GL(TpM) be the isotropy
representation. If α(I) contains an element of the form

⎛
⎜
⎜
⎝

λ 0 0
0 λ−1 0
0 0 A

⎞
⎟
⎟
⎠

(16)

with λ2
≠ 1 and A ∈ O(n), then M is flat.

Proof. This forces all sectional curvatures to vanish at p, and hence everywhere by local homogeneity.
Since the leaves of F are flat and V is parallel, it is sufficient to show that R(U, Xi, U, Xi) = 0 for all i. We have

R(U, Xi, U, Xl) = λ
2
∑
j,k

AjiAklR(U, Xj , U, Xk).

Define a matrix S whose entries are Sjk = R(U, Xj, U, Xk); it is a symmetric matrix. Then the above equality reads S = λ2A⊺SA. We also have
Sk
= λ2kA⊺SkA for all k ∈ N. Since λ2

≠ 1, we have det(S) = 0, so that the kernel of S is non-trivial. We claim that S is nilpotent. Indeed, either
Sm
= 0 for some m ∈ N, or ker Sk

= ker Sk+1 for some k ∈ N. In the latter case, Im(Sk
) is supplementary to ker Sk, and both subspaces are

preserved by A. This allows to reduce the problem to a smaller dimension, and gives by induction that S is nilpotent. Since S is also symmetric,
we must have S = 0. ◻
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Corollary 3.8. Let (M, g, V) be a locally homogeneous plane wave, and ḡ the Lie algebra of its Killing fields preserving the line field RV.
Consider the representation π : ḡ→ aff(R). If dimπ(ḡ) = 2, then M is flat.

Proof. If dimπ(ḡ) = 2, there exists K ∈ ḡ whose local flow fixes the leaf F(p) through p, and acts by homotheties on the space of leaves
M/F . Let f be a local isometry of the flow. The induced action dp f : Tp(M/F)→ Tp(M/F) has eigenvalue λ ≠ 1, for otherwise f would have
trivial action on the space of leaves. Remember that M admits an infinitesimal action of the Heisenberg algebra, that acts trivially on M/F . We
can compose f by an element in heis2n+1 to get a new local isometry f that fixes p, without altering the eigenvalue λ. So now we also suppose
f (p) = p. This λ is also an eigenvalue of f , i.e., there exists U ∈ TpM transverse to V� such that dp f (U) = λU. We can suppose g(U, V) = 1.
Then necessarily, V is an eigenvector with eigenvalue λ−1. Define E = Vect{(U, V)� : it is a Riemannian subspace of TpM preserved by dp f .
Choose an orthonormal basis X1, . . . , Xn of E: the matrix of dp f in the basis {U, V , X1, . . . , Xn} has the form:

⎛
⎜
⎜
⎝

λ 0 0
0 λ−1 0
0 0 A

⎞
⎟
⎟
⎠

(17)

with A ∈ O(n). We conclude using Lemma 3.7. ◻

Remark 3.9. This proof doesn’t work in the case of a locally homogeneous pp-wave which is not a plane wave. Indeed, since heis2n+1 does
not act locally transitively on a leaf of F , one does not obtain a boost in the isotropy as was done in the previous proof. In Ref. 9, Example 4.1,
the authors provide an example of a three-dimensional homogeneous pp-wave, where dimπ(ḡ) = 2, which is not flat.

IV. ISOMETRIES WITH TRIVIAL ACTION ON THE SPACE OF LEAVES
Let (X, g, V) be a 1-connected homogeneous plane wave of dimension n + 2. In this section, we begin the investigation of the Lie sub-

group of Isom(X,RV) acting trivially on the space of leaves. This amounts to studying the completeness of Killing fields tangent to the
F-foliation. A first step is then to study the (geodesic) completeness of the F-leaves of such manifolds. In particular, we show that the
infinitesimal action of the Heisenberg algebra in the non-flat case integrates into a global isometric action of the Heisenberg group Heis2n+1.

A. Completeness along the F-leaves
Even if we are interested in the isometry group of 1-connected homogeneous plane waves, we also deal with homogeneous pp-waves in

the study of completeness of F-leaves in this paragraph.
Let (X, g, V) be a pp-wave of dimension n + 2. Recall that the F-leaves have a unimodular affine lightlike geometry (see Definition 1.2

and Paragraph 1.1.2 “Plane wave case”), i.e., a (Lu(n),Rn+1
)-structure (in the sense of geometric structures, see Ref. 15, Chap. 3), where

Lu(n) = O(n) ⋉ Heis2n+1.

Definition 4.1. Let X be a 1-connected manifold with a (G, X)-structure, and d : X→ X a developing map. We say that X is homogeneous
under the action of a group L preserving the structure if there is a morphism θ : L→ G such that d is θ-equivariant.

If X is a 1-connected non-flat homogeneous plane wave, the F-leaves are homogeneous under the action of a group preserving the
(Lu(n),Rn+1

)-structure (see the Proof of Corollary 4.5 for the details). On the other hand, if X is a pp-wave (possibly flat), the F-leaves are
not necessarily homogeneous under the action of a group preserving the (Lu(n),Rn+1

)-structure, but in this case, they are homogeneous
under the action of a group preserving the (L(n),Rn+1

)-structure.

Proposition 4.2. Let F be an n + 1 dimensional 1-connected manifold with a (Lu(n),Rn+1
)-structure. If F is homogeneous under the action

of a group preserving the structure, then it is complete.

Proposition 4.3. Let F be an n + 1 dimensional 1-connected manifold, having a (L(n),Rn+1
)-structure. Then F is naturally equipped with

a Riemannian degenerate metric g. If F is homogeneous under the action of a group preserving the structure, then it is either complete, or the
incompleteness occurs along the one-dimensional foliation defined by the kernel of g.

The following lemma is needed in the Proof of Propositions 4.2 and 4.3.

Lemma 4.4. Let M and N be two smooth manifolds, with a local diffoemorphism d : M → N. Assume that M is G1-homogeneous and N is
G2-homogeneous, and there is a morphism θ : G1 → G2 such that d is θ-equivariant. Then the map d is a covering from M to d(M).

Proof. Let γ : R→ d(M) be a (continuous) curve, and let x0 ∈M such that d(x0) = γ(0). We will show that there is a unique curve
(lift) γ̃ : R→M such that d ○ γ̃ = γ. We have that d(M) is θ(G1)-homogeneous, so γ(t) = gtγ(0), where gt is a curve in θ(G1). We claim
that gt can be chosen continuously. To see this, set for t ∈ R, Ft ∶= {g ∈ θ(G1), gγ(0) = γ(t)}. Set G ∶= θ(G1), and consider the subgroup
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H ∶= Stab(γ(0)). Define the map ψ : R→ G/H, ψ(t) = [gt], where gt ∈ Ft . This map is continuous. Consider the pullback of the bundle map
π : G→ G/H by ψ. It has fibers Ft . Since R is contractible this bundle has a global section, and the claim follows. Now, θ : G1 → θ(G1) is a
covering map (G1/ ker θ ≅ θ(G1), where the kernel is discrete), so there is a unique lift (at the identity) of gt to a continuous curve lt in G1,
such that θ(lt) = gt . Using the equivariance, we can write γ(t) = gtγ(0) = θ(lt)d(x0) = d(lt(x0)). Hence the lift of γ is given by the curve
γ̃(t) = lt(x0). ◻

Proof of Proposition 4.2. We have a developing map d : F → Rn+1 which is θ-equivariant, where θ : G0 → Lu(n) is a representation, and
G0 acts transitively on F. By Lemma 4.4, d is covering map from F to d(F) ⊂ Rn+1, so to prove Proposition 4.2, it is enough to show that d
is surjective onto Rn+1. We have Lu(n) = Aut(Rn+1, g0 = ∑

n
i=1 dx2

i ,∂x0). Let g (resp. V) be the pullback of g0 (resp. ∂x0 ) by d. Let V be the
foliation defined by V .

The space of leaves F/V has a (Hausdorff) manifold structure. Indeed, it is homogeneous under the action of G0, and the stabilizer of
any V-leaf is a closed subgroup of G0. The latter follows from the fact that the leaves are closed: a V-leaf is a connected component of the
inverse image of a ∂x0 (closed) leaf in Rn+1 by d, hence closed. So F/V identifies with G0/I, where I is a closed subgroup of G0. We claim that
the space F/V is mapped bijectively to the space of ∂x0 -leaves of Rn+1. Indeed, the induced local diffeomorphism d̄ ∶= d∣F/V is a local isometry
from F/V, equipped with the Riemannian metric induced by g, to (Rn, g0). And since F/V is homogeneous, it is complete, so the map d̄ is a
covering, hence a diffeomorphism. On the other hand, the restriction of d to a leaf of V is a global diffeomorphism into a leaf of ∂x0 . We claim
that d maps this leaf surjectively to a ∂x0 -leaf. To see this, let D0 be the leaf of ∂x0 through the origin, and let H = Stab(D0) in Lu(n). We have
H = (O(n) ⋉Rn

) ⋉R, where O(n) ⋉Rn acts trivially on D0 and R acts by translation. Let V0 be a leaf of V whose image by d is in D0 (note
that D0 is indeed in the image of d by the fact that d̄ is a diffeomorphism onto Rn). Since F is homogeneous, Stab(V0) acts transitively on V0,
so θ(Stab(V0)) ⊂ H acts transitively on θ(V0) ⊂ D0. But a subgroup of H either acts trivially on D0 or has transitive action. We deduce that
θ(V0)must be D0. Now, if D is any leaf of ∂x0 , the Stab(D)-action on D is conjugate to the H-action on D0, hence the same conclusion holds
for the V-leaves mapped to D. ◻

Proof of Proposition 4.3. We have a developing map d : F → Rn+1 which is θ-equivariant, where θ : G0 → L(n) is a representation, and
G0 acts transitively on F. We have L(n) = Aut(Rn+1, g0 = ∑

n
i=1 dx2

i ,R∂x0). Let g (resp. the line field l) be the pullback of g0 (resp. R∂x0 ) by d.
We denote by L the foliation defined by l. Here again, d is a covering map from F to d(F) which induces a diffeomorphism from F/L to
Rn
∶= Rn+1

/R∂x0 . Let now D0 be the leaf of ∂x0 through the origin, and let H ∶= Stab(D0) in L(n). We have H = ((R ×O(n)) ⋉Rn
) ⋉R, where

O(n) ⋉Rn acts trivially on D0 and Aff(R) acts by its usual action. Let L0 be a leaf of L whose image by d is in D0. Then θ(Stab(L0)) ⊂ H
acts transitively on d(L0) ⊂ D0. And a subgroup of H which does not act trivially either acts transitively, in which case d(L0) = D0, or
d(L0) is half a line. The same conclusion holds for any leaf of L, and they are moreover either all complete or all incomplete. Hence the
proposition. ◻

Corollary 4.5. A homogeneous non-flat plane wave (X, g, V) has complete F-leaves.

Proof. One may suppose that X is connected, and 1-connected up to taking the universal cover. Let G = Isomo
(X,RV). Since X is non-

flat, V is the unique parallel lightlike vector field of X (up to scale), hence Isom(X, g) = Isom(X, g,RV), and then X is homogeneous under
the action of G. The stabilizer of a leaf preserves the induced flat connection, the induced degenerate Riemannian scalar product together with
the lightlike direction RV , hence represents in the affine lightlike group L(n). On the other hand, we have dim θ(G) = 1 by Corollary 3.8. Due
to homogeneity of X, the 1-parameter group with non trivial θ-projection acts transversely on the F-leaves. Therefore, the subgroup of G
preserving a leaf of F is contained in the kernel of θ, i.e., represents in the subgroup Lu(n) of L(n). It follows that a leaf of F is homogeneous
under the action of a group preserving the (Lu(n),Rn+1

)-structure, hence the completeness by Proposition 4.2. ◻

Corollary 4.6. A homogeneous pp-wave (flat or non-flat) such that V is complete, has complete F-leaves.

Proof. We keep the same notation as in the previous proof. Here again, the stabilizer of a leaf of F in G has a representation in
L(n), and then a leaf of F is homogeneous under the action of a group preserving the (L(n),Rn+1

)-structure. The conclusion follows from
Proposition 4.3. ◻

Example 4.7 (Homogeneous pp-wave with incomplete F-leaves). (Ref. 1, Example 7.113) Consider the Minkowski plane Mink1,1

∶= (R2, 2dudv). There is a subgroup Aff(R) of O(1, 1) ⋉R2 acting transitively on the half Minkowski space U = {(v, u) ∈ R2, v > 0} as fol-
lows (v, u)↦ (eav, e−au + b), where (a, b) ∈ R ⋉R. Here, V = ∂v is a parallel lightlike vector field, so U is a (homogeneous) pp-wave. And the
V�-leaves given by the u-levels are incomplete.

B. Global Heis2n+1-action
As a consequence of Corollary 4.5, we obtain that for a 1-connected non-flat homogeneous plane wave, the (global) Killing fields tangent

to the F-foliation are complete, hence the infinitesimal isometric action of the Lie algebra g0 [see Eq. (12)] integrates into a Lie group action
of the universal cover of G0.
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Corollary 4.8. Let X be a 1-connected non-flat homogeneous plane wave of dimension n + 2. The (global) Killing fields tangent to the F-
foliation are complete. Hence X admits a Heis2n+1 global isometric action, preserving individually the F-leaves, and acting transitively on each
leaf of F .

V. ISOMETRY GROUP OF 1-CONNECTED HOMOGENEOUS PLANE WAVES
Let X be a 1-connected non-flat homogeneous plane wave. In this section we compute the identity component of the isometry group of

X (Theorem 5.13), and obtain a description of such spaces as 1-parameter groups in Aut(Heis2n+1). Note that in the non-flat case, X admits
a unique parallel lightlike vector field V (up to scale). Indeed, if we assume the existence of another parallel lightlike vector field V1, then,
the plane wave locally decomposes as an orthogonal product P × X0, where P is the flat Lorentzian surface tangent to span (V , V1), and X0
is a Riemannian space orthogonal to P, and thus to V . In particular, due to the curvature conditions on plane waves (and more generally,
on pp-waves), X0 must necessarily be flat. This implies that X is also flat. It is worth mentioning that these curvature conditions exclude,
for instance, the possibility of having the product of a Cahen–Wallach space (or a Minkowski space) with a non-flat Riemannian space as a
pp-wave; such products instead fall within the broader class of Brinkmann manifolds.

So, for a 1-connected non-flat homogeneous plane wave X, we have Isom(X) = Isom(X,RV). Define Ĝ ∶= Isom(X).
The notations used in this section for the subgroups of Heis2n+1 are given in the introduction (Subsection I A). Let us recall them here.

The standard action of Heis2n+1 = Rn
⋉Rn+1 on Rn+1 is the one in which A− × Z = Rn+1 acts by translation and A+ = Rn acts linearly by

unipotent matrices. We use the usual decomposition heis2n+1 = a
+
⊕ a− ⊕ z as a vector space, where z is the center of heis2n+1, a+ and a− the

Lie algebras of A+ and A− respectively. Denote by X1, . . . , Xn (resp. Y1, . . . , Yn) a basis of a+ (resp. a−), such that all Lie brackets are zero but
[Xi, Y i] = z, for i = 1, . . . , n.

A. Isometry group
Throughout this section, X is a 1-connected non-flat homogeneous plane wave of dimension n + 2. In the following we give the form of

the identity component of the isometry group of X.

Proposition 5.1. Let X be a 1-connected non-flat homogeneous plane wave. Let Ĝ = Isom(X) and G its identity component. Then

(1) The index [Ĝ : G] is finite.
(2) G ≅ (R × K) ⋉ Heis2n+1, where K is some closed connected subgroup of O(n) acting on Heis2n+1, trivially on the center and by the

standard action on A+ and A−.
And X identifies with the homogeneous space (R × K) ⋉ Heis2n+1/K ⋉ A+.

The R-action on Heis2n+1 and the compact group K will be characterized in Theorem 5.13.
Before proving Proposition 5.1, let us make some observations. Remember that we have an exact sequence [see (11) in Sec. III]:

1→ G0 → G→ π(G) < Aff(R)→ 1.

Since X is non-flat, the projection to the affine group is one dimensional (Corollary 3.8). Hence, by Proposition 3.6, we get G as a semi-
direct product R ⋉G0, where G0 is a Lie group with a (necessarily faithful) representation θ : G0 → Lu(n) = O(n) ⋉ Heis2n+1, and R acts on it
through a 1-parameter group in Aut(G0). So G is isomorphic to R ⋉ θ(G0), where the R action on θ(G0) is the conjugation of the R action
on G0 by θ : G0 → θ(G0). Moreover, by Corollary 4.8, G0 contains a subgroup H isomorphic to the Heisenberg group. By Lemma 2.4, we have
that θ(H) = Heis2n+1. It follows in particular that θ(G0) contains Heis2n+1, hence it itself splits as K ⋉ Heis2n+1, where K ∶= θ(G0) ∩O(n) is
some subgroup of O(n). Finally, G is isomorphic to R ⋉ (K ⋉ Heis2n+1).

Next, we identify X as a homogeneous space of the Lie group R ⋉ (K ⋉ Heis2n+1). In Sec. III, we wrote a diffeomorphism X ≅ R × N 0,
where N 0 is a fixed leaf of F (which is necessarily 1-connected). The G action on X is then equivalent to a R ⋉G0 action on R × N 0 given
by (14). Now, by the previous section, we know that the F-leaves are complete, so we have a developing map d : N 0 → Rn+1 which is θ-
equivariant, where θ is the representation given above. Thus, for g ∈ G0, we have θ(g) ∗ d(p) = d(g ⋅ p), where ∗ is the standard action
of θ(G0) = K ⋉ Heis2n+1 ⊂ Lu(n) = O(n) ⋉ Heis2n+1 on Rn+1. And the stabilizer at the origin for this action is K ⋉ A+. So X identifies with
R ⋉ (K ⋉ Heis2n+1)/K ⋉ A+.

Observation 5.2. Since Heis2n+1 is the nilradical of θ(G0), it is preserved by any automorphism of θ(G0). Hence the R-factor normalizes
Heis2n+1 ⊂ θ(G0), and G contains the subgroup R⋉ρHeis2n+1, where ρ : R→ Aut(Heis2n+1), ρ(t) = etL, and L ∈ Der(Heis2n+1). Replacing L by
L + adh for a suitable h ∈ heis2n+1 (which amounts to taking another 1-parameter group in G as a splitting of the exact sequence above), we can
suppose that L preserves the decomposition heis2n+1 = Cn

⊕ z as a vector space.

To get the form of G given in Proposition 5.1, we need the following lemma.
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Lemma 5.3. Let Q be the semi-direct product Q = R ⋉ K where K is a compact connected Lie group. Then Q is isomorphic to the product
R × K.

Proof. Let c be the Lie algebra of K. Then c has a unique decomposition as the sum of two ideals, one of which is a (maximal) Abelian
ideal r and the other is a semi-simple ideal s. To see this, consider the Levi-decomposition c = s⊕ r, where r is the radical of c and s is a Levi
factor. The Lie subgroup R with Lie algebra r is closed in K, for otherwise one can consider its closure, whose Lie algebra is then a solvable Lie
algebra strictly bigger than r, contradicting the fact that r is maximal. As a consequence, r is a solvable Lie algebra of a compact group, hence
necessarily Abelian, and R is isomorphic to a torus Tn. The uniqueness amounts to proving that s is unique. Let s′ be another Levi factor.
Consider the projection c = s⊕ r→ r. Since s′ is semi-simple and r is Abelian, the image of s′ by the projection is trivial, hence contained in
the kernel s. This implies s′ = s. Now, let K̃ be the universal cover of K. It follows from the previous discussion that K̃ is isomorphic to Rn

⋉ S̃,
where S̃ is semi-simple. The R action on K is given by some 1-parameter group in Aut(K), denote it by ϕt , and let ϕ̃ t be its lift to K̃. First, it
follows from the first part of the proof that for any t ∈ R, ϕ̃ t

(Rn
) = Rn and ϕ̃ t

(̃S) = S̃. In particular, ϕt preserves R, which is a torus in K, and
the induced action on it is trivial since the automorphism group of a torus is discrete. So ϕ̃t

∣Rn is also trivial. Now, since S̃ is semi-simple, any
derivation is inner, so we can assume that the ϕ̃ t-action on it is trivial up to conjugacy by a 1-parameter subgroup of S̃, say f (t). And we have
f (t)ϕ̃ t f (t)−1

= IdK̃. Conjugation by f (t) passes to the quotient (since π1(K) is in the center of K̃), and allows to get a 1-parameter group
with trivial action on K. ◻

Proof of Proposition 5.1.

(1) We can make a general argument as follows. Let I be the full isotropy of a point in X, and I○ = I ∩G its identity component. Since
X is homogeneous, and its Killing fields are integrable, a standard fact from Gromov’s rigid transformation groups theory (Ref. 10,
Theorem 3.5.A) states that the image of I inside O(n + 1, 1) by the faithful representation is an algebraic group, hence has finitely many
connected components. It follows that G has finite index in Ĝ (in fact has the same index as I○ in I).

(2) From the discussion after the proposition, we have G ≅ R ⋉ (K ⋉ Heis2n+1). We will first show that K is closed in O(n). Let I be the
isotropy of some point in X, we have that θ(I) is algebraic (from Gromov’s rigid transformation groups theory), hence closed in
O(n) ⋉ Heis2n+1 and decomposes as θ(I) = K′ ⋉ A, with K′ a subgroup of O(n) and A ⊂ A+. In particular, K′ = (K′ ⋉ A) ∩O(n) is
closed in O(n). But K′ = K, and the claim follows.

Now, we will show that the R action on K ⋉ Heis2n+1 preserves K. For this, it is sufficient to show that the ad-action of L preserves c.
Let A ∈ c. It follows from the identity ad[A,L] = [adA, adL] and the fact that L and k preserve the decomposition heis2n+1 = Cn

⊕R as a vector
space that the ad-action of [A, L] preserves the decomposition too. On the other hand, we have [A, L] ∈ c⊕ heis2n+1, since c⊕ heis2n+1 is an
ideal. By looking at the action of adU on heis2n+1, for U ∈ c⊕ heis2n+1, we see that necessarily [A, L] ∈ c⊕ z. So the action of the R-factor sends
K into K × Z. But since K is compact, the image must be in K, since an element (c, z), with z ≠ 0, generates an unbounded sequence in K × Z
(here K acts trivially on Z). So far we proved that K is preserved by the R-action. Now applying Lemma 5.3, we can replace the R-action by
changing the 1-parameter group in the product R ⋉ K, to have a product structure. ◻

B. Homogeneous plane waves vs 1-parameter groups in Aut(Heis2n+1)

Let (X, g, V) be a 1-connected homogeneous non-flat plane wave of dimension n + 2. We know from Proposition 5.1 that the connected
component of the isometry group is isomorphic to Gρ = (R × K)⋉ρHeis2n+1, where K is some connected closed subgroup of SO(n), and that
X identifies as Xρ = Gρ/I, with I = K ⋉ A+. This motivates the following question, whose answer is given in Theorem 5.13.

Question 5.4. Let Gρ = (R × K)⋉ρHeis2n+1 such that

● K is a connected compact group acting on Heis2n+1 trivially on the center, and by preserving the decomposition A+ ⊕ A−,
● R acts on Heis2n+1 through a representation ρ : R→ Aut(Heis2n+1), ρ(t) = etL, with L ∈ Der(heis2n+1). Suppose that L preserves the

decomposition heis2n+1 = C⊕ z as a vector space.Consider the homogeneous space Xρ = Gρ/I, where I = K ⋉ A+.
(1) Which spaces Xρ admit a Lorentzian metric g invariant under the left action of Gρ? We know that if such a metric exists, it is necessarily

a plane wave metric (Proposition 2.6).
(2) If such a metric exists, is it unique (up to isometry of Xρ)?

1. G ρ-invariant Lorentzian metrics on X ρ up to isometry
Gρ preserves a Lorentzian metric on Gρ/I if and only if the Ad(I)-action on g/i preserves a Lorentzian scalar product q. Equivalently,

adh is skew-symmetric with respect to q for any h ∈ i. Let T be a basis of the R-factor. We have adh(T) = L(h), for any h ∈ heis2n+1. We have
gρ/i ≅ R⊕R⊕ a− with basis (T, z, Y1, . . . , Yn). We write q with respect to this basis. Denote by Sρ the set of all adi-invariant Lorentzian inner
products on gρ/i.

Action of Aut1
i (gρ) on Sρ. Denote by AutI(Gρ) [resp. Auti(gρ)] the automorphism group of Gρ (resp. gρ) preserving I (resp. i). Let f ∈

AutI(Gρ), and denote by f̄ the induced diffeomorphism on Xρ. Let q0 and q1 ∈ Sρ. And let g0 and g1 be the Gρ left invariant Lorentzian metrics
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on Xρ determined by q0 and q1 respectively. If de f ∈ Auti(g) induces an isometry from (g/i, q0) to (g/i, q1), then f̄ : (Xρ, g0)→ (Xρ, g1) is an
isometry. Let Aut1

i (gρ) ⊂ Auti(gρ) be the subgroup of elements that are a lift of a Lie group isomorphism. Then elements in Sρ in the same
Aut1

i (gρ)-orbit (for the pullback action) give rise to isometric metrics on Xρ.
Let gρ = (R⊕ k) ⋉ heis2n+1. As mentioned in Observation 5.2, we can suppose without loss of generality that L preserves the

decomposition heis2n+1 = Cn
⊕ z as a vector space. Hence

L =
⎛
⎜
⎜
⎝

A B 0
D C 0
0 0 δ

⎞
⎟
⎟
⎠

(18)

is the matrix representing L in a+ ⊕ a− ⊕ z.

Lemma 5.5. The matrix L above is a derivation of heis2n+1 if and only if B and D are symmetric, and C + A = δIn, where L(z) = δz.

Proof. This is a straightforward computation. ◻

The following proposition gives a necessary condition on the R-action for the existence of g.

Proposition 5.6. If Xρ = Gρ/I admits a Gρ-invariant Lorentzian metric, then D is a definite symmetric matrix. In particular, this implies
that L(a+) ∩ (a+ ⊕ z) = 0.

The following well known lemma will be used in the Proof of Proposition 5.6 above. We didn’t find a reference for the proof, so we give
a proof here.

Lemma 5.7. A nilpotent non-zero endomorphism f of a vector space E is an infinitesimal isometry of some Lorentzian scalar product q
if and only if its nilpotency order equals 3, and E = E1 ⊕ E2, where E1 is a three-dimensional subspace on which f is 3-nilpotent, and E2 is
q-orthogonal to E1, with f ∣E2 = 0.

Proof. Let f be nilpotent of degree 3. By Jordan decomposition, f is conjugate to a matrix containing 3-nilpotent blocs Ji of dimension 3,
with Ji(ei

0) = 0, Ji(ei
1) = ei

0 and Ji(ei
2) = ei

1. Suppose that f is skew-symmetric for some quadratic form q. Then q( f (ei
1), ej

0) + q(ei
1, f (ej

0)) = 0.
This yields q(ei

0, ei
0) = q(ej

0, ej
0) = 0, and q(ei

0, ej
0) = 0. For q to be of Lorentzian signature, we must then have i = j, hence only one 3-nilpotent

bloc J. It follows that f acts on a three-dimensional subspace E1 by a 3-nilpotent matrix J as above, and is zero on a supplementary E2. Then
define q such that q(e0, e0) = 0, q(e0, e1) = 0, q(e2, e1) = 0, E2 is q-orthogonal to E1, and qE2 is any Euclidean quadratic form. Then q is a
Lorentzian quadratic form, and f is skew-symmetric for q. Conversely, if f is nilpotent of degree n ≠ 3, it is easy to see that any quadratic form
q for which f is skew-symmetric has a totally isotropic subspace of dimension ≥2. ◻

Proof of Proposition 5.6. Remember that G preserves a Lorentzian metric on G/I if and only if the Ad(I)-action on g/i preserves a
Lorentzian scalar product q. In particular, adh is skew-symmetric with respect to q, for any h ∈ a+. For any X ∈ heis2n+1, ad2

h(X) = 0, and
adh(T) ∈ heis2n+1. So ad3

h = 0. The action of adh on g/i has exactly degree 3 if and only if ad2
h(T) = [L(h), h] ≠ 0, for any h ∈ a+. But

[L(h), h] = [D(h), h] = −⟨D(h), h⟩z.

And this is equivalent to D being definite. By Lemma 5.7, this gives a necessary condition for the existence of q. ◻

Reductions: Let Gρ1 = (R × K)⋉ρ1 Heis2n+1 and Gρ2 = (R × K)⋉ρ2 Heis2n+1 be two isomorphic split extensions of R × K by Heis2n+1. Let
f : Gρ1 → Gρ2 be the isomorphism between the two extensions, and suppose that f (I) = I. Let q1 ∈ Sρ1 and q2 ∈ Sρ2 , and suppose that f induces
an isometry from (g1/i, q1) to (g2/i, q2). Then f : (Xρ1 , g1)→ (Xρ2 , g2) is an isometry, where g1 (resp. g2) is the left invariant Lorentzian
metric on Xρ1 (resp. Xρ2 ) determined by q1 (resp. q2). This allows to make reductions of type: “up to considering an isomorphic split extension,
we can suppose that the matrix derivation (18) has a given shape.” Let us introduce a special case of extension isomorphism that will be used
repeatedly in the sequel. Let ϕ ∈ Aut(Heis2n+1) preserving A+, and consider

(R × K)⋉ρ Heis2n+1 → (R × K)⋉ρ′Heis2n+1

(t, k, h)↦ (t, k,ϕ(h))
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where in Gρ′ , both R-action and K-action are conjugated by the automorphism ϕ of Heis2n+1. This is a Lie group isomorphism preserving I.

Reduction 1. As a consequence of Proposition 5.6 above, when dealing with Question 5.4, one can reduce to Gρ for which the
representation ρ(t) = etL is given by a derivation of the form

L =
⎛
⎜
⎜
⎝

A B 0
In δIn − A⊺ 0
0 0 δ

⎞
⎟
⎟
⎠

, (19)

with δ ∈ R. Let us justify this fact. Let Gρ such that the matrix D in the derivation L is definite. Since D is symmetric definite, there
exists P ∈ O(n) such that PDP⊺ = Diag(λ1, . . . , λn), where the coefficients λi ≠ 0 are either all positive or all negative. Define also Λ ∶=

Diag(
√
∣λ1∣, . . . ,

√
∣λn∣), and finally PΛ = ΛP ∈ GLn(R). The matrix (PΛ 0

0 (P⊺Λ)−1) ∈ Sp2n(R), so it lifts to a (Lie algebra) automorphism

J =
⎛

⎝

PΛ 0 0

0 (P⊺Λ)−1 0

0 0 1

⎞

⎠
of heis2n+1 preserving a+. Let also J0 =

⎛

⎝

In 0 0

0 −In 0

0 0 −1

⎞

⎠
∈ Auta+(heis2n+1). Then J0JL(J0J)−1

=
⎛

⎝

A′ B′ 0

In C′ 0

0 0 δ

⎞

⎠
. From this we

deduce that up to isomorphism, when D is definite, the derivation L represented in a+ ⊕ a− ⊕ z in (18) can be taken with D = In.
Recall that gρ/i ≅ R⊕R⊕ a− with basis (T, z, Y1, . . . , Yn). We write q with respect to this basis.

Proposition 5.8. Let Gρ = (R × K) ⋉ Heis2n+1 with ρ(t) = etL as in (19), and let I = K ⋉ A+. Then Xρ = Gρ/I admits a Gρ-invariant
Lorentzian metric if and only if K is the (connected) Lie subgroup of SO(n) with Lie algebra k = {F ∈ o(n), [F, A] = [F, B] = 0}. It acts on
Heis2n+1 trivially on the center and by its standard action on A+ and A−. Moreover, this metric is unique (up to isometry of Xρ).

Proof. Existence: Writing the fact that adh is skew-symmetric for a quadratic form q on g/i for any h ∈ a+ yields:

● q(z, z) = 0
● q(z, Y i) = 0 for all i = 1, . . . , n
● q(T, Y i) = 0 for all i = 1, . . . , n
● H = −q(z, T)In, where H = (q(Yi, Yj))i,j

If q has Lorentzian signature, then necessarily q(z, T) < 0. Moreover, we see that q is completely determined, up to choosing q(z, T)

and q(T, T). On the other hand, adh, for h ∈ k, acts on heis2n+1 via the derivation matrix
⎛

⎝

−F⊺ 0 0

0 F 0

0 0 0

⎞

⎠
, with F ∈Mn(R). A straight-

forward computation shows that the R action and K action commute if and only if [F, A] = [F, B] = 0. Now we write the fact that
adh is skewsymmetric for q. Using the scalar products already determined above, and the fact that adh(T) = 0, the only non-trivial
condition is q(adh(Yi), Yj) + q(Yi, adh(Yj)) = 0 for any i, j. This means that F is skewsymmetric for the Euclidean scalar product,
hence an element of o(n). If follows that Xρ admits a Gρ-invariant Lorentzian metric if and only if k = {F ∈ o(n), [F, A] = [F, B] = 0}.

Uniqueness: To finish the proof, we will show that all such scalar products q on gρ/i define isometric metrics on Gρ/I. Fix such q. And
consider the Lie algebra isomorphism

ϕ :R ⋉ heis2n+1 → R ⋉ heis2n+1

ϕ(T) = T +
1
2
αz,

ϕ(z) = ∣β∣z, ϕ(Yi) =
√
∣β∣Yi, ϕ(Xi) =

√
∣β∣Xi,

where β ∶= q(T, z) and α ∶= q(T, T). It preserves a+, and induces an isometry from (R ⋉ heis2n+1/a
+, q) to (R ⋉ heis2n+1/a

+, q0), with q0 =

⎛

⎝

0 −1 0

−1 0 0

0 0 In

⎞

⎠
. Let φ ∈ Aut(R ⋉ Heis2n+1) be the Lie group isomorphism that corresponds to ϕ: it acts by an homothety on Heis2n+1. Then

consider the map ψ : (K ×R) ⋉ Heis2n+1 → (K ×R) ⋉ Heis2n+1, ψ(k, g) = (k,φ(g)). Since the action of K on Heis2n+1 commutes with the
homotheties of Heis2n+1, ψ is a Lie group automorphism. Furthermore, the induced map ψ : (Gρ/I, g)→ (Gρ/I, g0) is an isometry, where g
(resp. g0) is the Gρ-invariant metric on Gρ/I defined by q (resp. q0). ◻

Remark 5.9. One can check in the Proof of Proposition 5.8 that replacing L by αL, for α ≠ 0, gives a metric isometric to that determined by
L. So the metric does not depend on the choice of the derivation L generating the 1-parameter group ρ(t) = etL.
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Corollary 5.10 (Statement without compact factor). Let Rρ = R⋉ρHeis2n+1 with ρ(t) = etL, L ∈ Der(heis2n+1), and set I = A+. Then Rρ/I
admits a Rρ-invariant Lorentzian metric if and only if the matrix D appearing in L is definite.

Proof. The “only if” part is proved in Proposition 5.6. The “if” part follows from Proposition 5.8 and Reduction 2 just before. ◻

Observation 5.11. In Sec. II, we established a correspondence between plane wave metrics on X ∶= Rn+1
× I, I ⊂ R an open interval, whose

F-foliation is given by Rn+1
× {u}, u ∈ I, and some curves in Aut(Heis2n+1). It appears from this section that the homogeneous ones correspond

exactly to those curves which are 1-parameter groups in Aut(Heis2n+1)!

Reduction 2. By Remark 5.9, we can suppose that L(z) = δz, with δ ∈ {0, 1}. The reduction in Lemma 5.12 below will be useful in Sec. VI,
when proving the existence of global Brinkmann coordinates.

Lemma 5.12. Let Gρ with ρ(t) = etL as in (19). Up to isomorphism of Gρ, the derivation L takes the form L =
⎛

⎝

δI + F B 0

I F 0

0 0 δ

⎞

⎠
with respect to

the decomposition heis2n+1 = a
+
⊕ a− ⊕ z, where F is antisymmetric, B is symmetric and δ ∈ {0, 1}.

Proof. The matrix (In P

0 In
), with P ∶= δIn −

A+A⊺
2 , is in Sp2n(R). Let ψ be the corresponding (Lie algebra) automorphism of heis2n+1. One

can check that for L as in (19), ψLψ−1 has the given form. ◻

From the study carried out in this section, we deduce the following theorem characterizing completely the identity component of the
isometry group of a 1-connected non-flat homogeneous plane wave.

Theorem 5.13. Let (X, g, V) be a 1-connected non-flat homogeneous plane wave. Then

(1) Isometry group. The connected component of Isom(X) (which is of finite index) is isomorphic to Gρ = (R × K) ⋉ Heis2n+1, with the
R-action given by ρ(t) = etL, L ∈ Der(heis2n+1), such that

(a) L =
⎛

⎝

F B 0

I F 0

0 0 0

⎞

⎠
, or

(b) L =
⎛

⎝

I + F B 0

I F 0

0 0 1

⎞

⎠

with respect to the decomposition heis2n+1 = a
+
⊕ a− ⊕ z, where F is antisymmetric and B is symmetric. Moreover, K is the con-

nected (closed) subgroup of O(n) with Lie algebra k = {E ∈ o(n), [E, F] = [E, B] = 0}, acting on Heis2n+1 trivially on the center
and by the standard action on A+ and A−.

Finally, X identifies with Xρ = Gρ/K ⋉ A+. Moreover, the codimension 1 foliation F tangent to V� is given by the (left) action of
K ⋉ Heis2n+1, and is preserved by the action of Gρ.

(2) Homogeneous plane waves vs 1-parameter groups in Aut(Heis2n+1). Let Gρ as in item (1), and consider the homogeneous space
Xρ = Gρ/I, with I = K ⋉ A+. Then Xρ admits a unique (up to isometry of Xρ) Gρ-invariant Lorentzian metric, which is necessarily a
plane wave metric (which may be flat).

(3) Completeness. If the R-action is as in case (a), the plane wave is geodesically complete. Otherwise, i.e., case (b), they are incomplete.

Proof. Items (1) and (2) are a summary of the previous results of Sec. V. Item (3) follows from Remark 6.6. ◻

Remark 5.14. In the notations of Theorem 5.13, Cahen–Wallach spaces are characterized by the fact that B is non-degenerate and FB = BF.
On the other hand, Xρ can be flat, and the flat case occurs exactly when B = 0.

Example 5.15. According to Remark 5.14, it enough to choose BF = FB with B non-degenerate to get a Cahen–Wallach space, i.e., an
indecomposable symmetric plane wave. Setting B = I2 and F to be a rotation of angle π

2 , Theorem 5.13 implies that K = SO(2) in this case. This
gives a clear evidence that the more symmetric the plane wave is, the larger K becomes.

VI. GLOBAL BRINKMANN COORDINATES
In this section, we show the existence of global Brinkmann coordinates for a 1-connected non-flat homogeneous plane wave. We

distinguish two types of spaces, given in the next definition.
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Definition 6.1. Let X be a 1-connected homogeneous non-flat plane wave.
It will be said to be of (a)-type if the action of the derivation L is of type (a). They are geodesically complete.
It will be said to be of (b)-type if the action of the derivation L is of type (b). They are geodesically incomplete.

Let (X, g, V) be a 1-connected homogeneous plane wave. Recall that Heis2n+1 ⊂ Isom(X) acts transitively on the F-leaves. Therefore
X is isometric to X = S/I, where S = R ⋉ Heis2n+1, I = A an Abelian subgroup of Heis2n+1 intersecting the center only in the identity, and
ρ(t) = etL with L ∈ Der(heis2n+1). Denote by a ⊂ heis2n+1 the Lie algebra of A. Replacing L by L + ad(h) for a suitable element h ∈ heis2n+1, we
may assume that heis2n+1 = R⊕R2n as a vector space, where L(R2n

) = R2n and a ⊂ R2n. Then heis2n+1 = heis(ω) and Heis2n+1 = Heis(ω) for
a symplectic form ω on R2n. We write elements of the Heisenberg group as (z, ξ), z ∈ R, ξ ∈ R2n. Elements of the R-factor of S = R ⋉ Heis2n+1
are denoted by u. Let a′ be a vector space complement of a in R2n. We have the following,

Proposition 6.2. The map

ϕ : X Ð→ R × a′ ×R

(u, z, ξ) ⋅ Az→ (v ∶= z +
1
2
ω(x, y), y, u),

where ξ = x + y for x ∈ a and y ∈ a′, is a diffeomorphism.

Proof. The map is well defined. Indeed, let x̂ be in A. Then (u, z, ξ) ⋅ (0, 0, x̂) = (u, z + 1
2ω(ξ, x̂), ξ + x̂), which is mapped to (z +

1
2ω(ξ, x̂) + 1

2ω(x + x̂, y), y, u). Now we use that ξ = x + y and that ω(x, x̂) = 0 since a is an Abelian subalgebra. Thus we get the same image
as for (u, z, ξ). Now, we show that ϕ is a bijective local diffeomorphism. For injectivity, if we assume that ϕ((u, z, ξ)A) = ϕ(u′ ⋅ (z′, ξ′)A) a
straight forward computation we get y = y′, u = u′ and z′ = z − 1

2ω(x − x′, y), so we get that (u′, z′, ξ′) = (u, z, ξ)(0, 0, x′ − x) ∈ (u, z, ξ)A. The
surjectivity is clear since, we can cover the y and u coordinates. For the v coordinates it is enough to choose ξ such that ω(x, y) = 0 so z can
cover the rest. To see that ϕ is a local diffeomorphism we compute the differential at an arbitrary point p ∶= (u, z, ξ)A, where we can assume
that ξ ∈ a′. We have that

γt ∶= (t, 0, 0) ⋅ (u, z, ξ) = ((t + u, z, exp (tL)ξ),

and let p1, p2 be the projection on a, a′ respectively. We compute the image of ∂u by dpϕ. Namely,

dpϕ(∂u) =
dϕ(γt)

dt
∣
t=0

=
d(t + u, z + 1

2ω(p1(exp (tL)ξ), p2(exp (tL)ξ)), p2(exp (tL)ξ))
dt

∣

t=0

= (1,
1
2
ω(p1(Lξ), p2(ξ)) + ω(p1(ξ), p2(Lξ)), p2(Lξ))

= (1,
1
2
ω(p1 (Lξ), ξ)), p2(Lξ)).

Hence, we see that dpϕ(∂u) = ∂u + ⋅ ⋅ ⋅. We do an analogues computation with ∂ξ and ∂z we deduce that the differential has a full rank, the
proposition follows. ◻

Now suppose that x1, . . . , xn are coordinates of a ≅ Rn, y1, . . . , yn are coordinates of a′ and that a′ is chosen such that the symplectic

form on a⊕ a′ ≅ R2n is given by ω((x, y), (x′, y′)) = (x, y)J( x′

y′ ) for J = ( 0 I

−I 0
). We identify the tangent space of X at o ∶= eA ∈ S/A with s/a.

The metric g on X induces an ada-invariant scalar product ⟨⋅, ⋅⟩ on s/a. Recall that a′ = {0} ×Rn. Thus s/a ≅ R⊕ a′ ⊕R = R⊕Rn
⊕R with

coordinates z, y, u. We determine ⟨⋅, ⋅⟩ with respect to these coordinates. The ada-invariance implies that up to isometries of X, ⟨⋅, ⋅⟩ equals

⎛
⎜
⎜
⎝

0 0 1
0 In 0
1 0 0

⎞
⎟
⎟
⎠

.

Theorem 6.3. If X is a 1-connected homogeneous plane wave of (a)-type, then X is isometric to R ×Rn
×R with coordinates (v, ȳ, u) and

metric given by
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2dudv + dȳ 2
+ (euFBe−uF

)
ij

ȳ iȳ jdu2.

Conversely, any such metric on R ×Rn
×R defines a 1-connected homogeneous plane wave of (a)-type.

Proof. Let X be of (a)-type. Then a direct calculation shows

(ϕ−1
)
∗g = 2dudv + 2(Fy ⋅ dy)du + dy2

+ (Fy ⋅ Fy + y ⋅ By)du2,

where “⋅” denotes the standard euclidean product. The coordinate transformation

ȳ ∶= euFy

gives

dy j
= −(Fe−uF

)
j
kȳ kdu + (e−uF

)
j
kdȳ k

= −(Fy)jdu + (e−uF
)

j
kdȳ k.

This implies

(Fy ⋅ dy)du =∑j(Fy)jdy jdu

=∑j(Fy)j
(−(Fy)jdu + (e−uF

)
j
kdȳ k
)du

= −(Fy ⋅ Fy)du2
+∑j(Fy)j

(e−uF
)

j
kdȳ kdu

(dy)2
=∑j(dy j

)
2
= ∑j(−(Fy)jdu + (e−uF

)
j
kdȳ k
)

2

= (Fy ⋅ Fy)du2
− 2∑j(Fy)j

(e−uF
)

j
kdȳ kdu +∑j(e

−uF
)

j
k(e
−uF
)

j
l dȳ kdȳ l

= (Fy ⋅ Fy)du2
− 2∑j(Fy)j

(e−uF
)

j
kdȳ kdu + dȳ 2

since e−uF is an orthogonal matrix because F is antisymmetric. Furthermore,

(y ⋅ By)du2
= (e−uF ȳ) ⋅ (Be−uF ȳ) du2

= (ȳ ⋅ (euFBe−uF ȳ)) du2

since (e−uF
)
⊺
= euF . Consequently,

(ϕ−1
)
∗g = 2dudv − 2(Fy ⋅ Fy)du2

+ 2∑j(Fy)j
(e−uF

)
j
kdȳ kdu

+ (Fy ⋅ Fy)du2
− 2∑j(Fy)j

(e−uF
)

j
kdȳ kdu + dȳ 2

+ (Fy ⋅ Fy)du2
+ (ȳ ⋅ (euFBe−uF ȳ)) du2

= 2dudv + dȳ 2
+ (ȳ ⋅ (euFBe−uF ȳ)) du2

hence the existence of the given coordinates. The converse is straightforward and follows from the fact that there is a Heisenberg action
transitive on each u-level, and a 1-parameter flow of isometries acting transversally to the u-levels, given by: for any s ∈ R, s ⋅ (v, ȳ, u) =
(v, esF ȳ, u + s). ◻

Theorem 6.4. If X is a 1-connected homogeneous plane wave of (b)-type, then X is isometric to R ×Rn
×R>0 with coordinates (v̄, ȳ, ū)

and metric given by

2dūdv̄ + dȳ 2
+ (eln (ū )FBe− ln (ū )F

)
ij

ȳ iȳ j dū 2

ū 2 .

Conversely, any such metric on R ×Rn
×R defines a 1-connected homogeneous plane wave of (b)-type.

Proof. Let X be of (b)-type. As in the Proof of Theorem 6.3, a direct calculation shows
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(ϕ−1
)
∗g = 2dudv + 2(Fy ⋅ dy)du + dy2

+ (2v + Fy ⋅ Fy + y ⋅ By)du2.

The coordinate transformation τ

ū ∶= e−u, ȳ ∶= euFy, v̄ ∶= −euv

gives

dv = e−uv̄du − e−udv̄ = −vdu − e−udv̄,

dy j
= −(Fy)jdu + (e−uF

)
j
kdȳ k,

du = −eudū.

This implies

dudv = du(−vdu − e−udv̄) = −vdu2
+ dūdv̄.

Moreover, as in the Proof of Theorem 6.3,

(Fy ⋅ dy)du = −(Fy ⋅ Fy)du2
+∑j(Fy)j

(e−uF
)

j
kdȳ kdu

(dy)2
= (Fy ⋅ Fy)du2

− 2∑j(Fy)j
(e−uF

)
j
kdȳ kdu + dȳ 2

since e−uF is an orthogonal matrix because F is antisymmetric. Furthermore,

(y ⋅ By)du2
= (e−uF ȳ) ⋅ (Be−uF ȳ) e2udū 2

= (ȳ ⋅ (euFBe−uF ȳ))
dū 2

ū 2 .

We obtain

(τ−1
)
∗
(ϕ−1
)
∗g = 2(−vdu2

+ dūdv̄) − 2(Fy ⋅ Fy)du2
+ 2∑j(Fy)j

(e−uF
)

j
kdȳ kdu

+ (Fy ⋅ Fy)du2
− 2∑j(Fy)j

(e−uF
)

j
kdȳ kdu + dȳ 2

+ (2v + Fy ⋅ Fy)du2
+ (ȳ ⋅ (euFBe−uF ȳ))

dū 2

ū 2

= 2dūdv̄ + dȳ 2
+ (ȳ ⋅ (e− ln (ū )FBeln (ū )F ȳ))

dū 2

ū 2

hence the existence of the given coordinates. The converse again follows from the fact that there is a Heisenberg action transitive on each
u-level, and a 1-parameter flow of isometries acting transversally to the u-levels, given by: for any s ∈ R, s ⋅ (v, ȳ, u) = (sv, elog (s−1)F ȳ, s−1u). ◻

Remark 6.5 (The flat case). As stated in Remark 1.6, a 1-connected homogeneous flat plane wave is isometric to either the whole Minkowski
space or a half-Minkowski space bounded by a lightlike plane. Both spaces have global Brinkmann coordinates.

Remark 6.6. Item (3) in Theorem 5.13 can be deduced from the existence of global Brinkmann coordinates. Indeed, with these coordinates
in hand, the completeness of (a)-type metrics follows from Ref. 5, Proposition 3.5. And the incompleteness of (b)-type metrics follows from the
fact that the geodesic parameter of a geodesic transversal to F coincides with the u-coordinate (up to affine change).

VII. C 2-INEXTENDIBILITY
We say that a pseudo-Riemannian manifold (X, g) is Ck-inextendible (or maximal) if there is no isometric Ck-embedding of (X, g) as a

proper open subset of some pseudo-Riemannian manifold (Y , h).

Theorem 7.1. Let X be a 1-connected non-flat homogeneous plane wave. Then X is C2-inextendible.
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We begin with the following lemma, whose Lemma 2.4 is a special case:

Lemma 7.2. Let φ be a locally faithful representation of the Heisenberg group H ∶= Heis2n+1 in L(n) = (R ×O(n)) ⋉ Heis2n+1. Then
φ(H) = Heis2n+1 ⊂ L(n). In particular, φ is faithful.

Proof. Recall that the R-action on Heis2n+1 in L(n) is given by the derivation

⎛
⎜
⎜
⎝

I + F 0 0
0 F 0
0 0 1

⎞
⎟
⎟
⎠

,

written in the basis (a+, a−, z) of heis2n+1. Let H0 ∶= φ(H). Let p be the projection from L(n) to the R-factor. If p(H0) is trivial, we con-
clude using Lemma 2.4. If not, we could write H0 = R ⋉H1, where H1 ⊂ O(n) ⋉ Heis2n+1 (observe that H1 is connected). From the Proof of
Lemma 2.4, we see that either H1 is contained in Heis2n+1 or dim (H2 ∶= H1 ∩ Heis) = 2n − 1. If n > 1, then 2n − 1 ≥ n + 1, hence z ⊂ H2. But
[L, z] = z, and this implies that H0 is not nilpotent. In the case n = 1, H0 ≅ R ⋉R2, where the R-action is nilpotent and semisimple, hence
trivial, but the algebraic multiplicity of the 0-eigenvalue of L is 1. ◻

Proof of Theorem 7.1. We can suppose that X is simply connected and of type (b) (for otherwise, it is complete). Suppose X is not
maximal, and let ϕ : X→ Y be a C2 embedding into a bigger Lorentzian manifold Y . For simplicity of notation, we identify ϕ(X) with X.

A. Step 1: Extending the codimension 1 foliation
Codimension 1 geodesic “laminations” of pseudo-Riemannian manifolds, and more generally manifolds with an affine connection, satisfy

a general Lipschitz regularity principle. Let U be a convex open subset of a manifold Y endowed with a connection∇, that is geodesic segments
exit uniquely between points of U (and are contained in U). Let Z be a subset of U endowed with a partition F , such that for any x ∈ Z, F(x)
is a geodesic hypersurface, closed in U. In the case dim Y = 2, F(x) is a geodesic, closed in U, and so has its endpoints in ∂U. The same
picture applies in higher dimension. Then, F extends to the closure of Z in U and is locally Lipschitz (see Ref. 16, Theorem 7.1 for details).

In our case, let us apply this fact to U, a convex neighborhood of a point p0 ∈ X/X. We consider the foliation on U ∩X given by the
connected components of the intersection of the F-leaves (defined in X) with U. Actually, we forget the (global) F foliation of X and replace
it by this foliation of X ∩U, and keep the same notation F for it. So it extends as a foliation of X ∩U.

Let F0 be the leaf of p0, and γ : [0, ϵ[→Y , γ(0) = p0, a geodesic transversal to F0. Then, it is transversal to all F-leaves near p0. Let
τ = γ([0, ϵ[ ), then τ′ ∶= τ ∩U is open in τ ≅ [0, ϵ[ . Assume τ′ contains an interval γ( ]0,β[ ), that is a neighborhood of p0 in τ except p0,
contained in X. Then the saturation of γ([0, β[ ) by F will be a codimension 0 submanifold with boundary F0.

Let us show that we can always choose p0 in order to have this property (of a neighborhood in τ except its endpoints, which is contained
in X). For this, consider a connected component of τ′. It has the form γ( ]α,β[ ), α,β ∈ ]0, ϵ[ . It is clear that we if we replace p0 by p′0 = γ(α),
and the geodesic γ by its restriction to ]α,β[ , then γ( ]α,β[ ) ⊂ X, and so near p′0, X ∩U is a regular open set with boundary the F-leaf of p′0.

B. Step 2: Extending small isometries of G ρ

Consider the regular open set X ∩U with boundary the F-leaf of p0, which we denote by F0. The extended foliation will be denoted F .
Here, we prove that the infinitesimal action of gρ on X ∩U extends to F0 by fixing F0. Let f ∈ Gρ in a small neighborhood of the identity.
Let γ0 be a geodesic though p0 transversal to F . Let p ∈ γ0 ∩U. For p close enough to F0, there is an open neighborhood B of γ′0 at p in TpX
such that all geodesics from B intersect F0. Hence they form an open neighborhood of p0 in F0. Let X ∈ gρ. For f t

= exp(tX) close enough to
the identity, f t

(γ) such that γ′(0) ∈ B intersects F0, and we have f t
(γ ∩ F0) = f t

(γ) ∩ F0. This defines a (unique) smooth extension of f t to a
neighborhood of p0. This extension preserves the affine lightlike geometry of F0. Hence we have a representation ψ : gρ = (R⊕ k) ⋉ heis2n+1 →

l = (R⊕ o(n)) ⋉ heis2n+1, where l denotes the Lie algebra of the affine lightlike group. This representation is faithful; indeed, an isometry
acting trivially on a hypersurface (even degenerate) is trivial. Moreover, we have ψ(z) ⊂ z, i.e., ψ sends the center of heis2n+1 ⊂ gρ to the
center of heis2n+1 ⊂ l (indeed, by the above extension process, the lightlike parallel vector field extends to F0 to a lightlike parallel vector field,
necessarily generated by the action of the center of heis2n+1).

C. End of the proof
Let ψ : gρ = (R⊕ k) ⋉ heis2n+1 → l = (R⊕ o(n)) ⋉ heis2n+1 be a faithful representation. We have by Lemma 7.2 that ψ(heis2n+1) =

heis2n+1. In our special situation, we can prove this also using the fact that ψ(z) ⊂ z. Indeed, let L (resp. L′) be a generator of the R-
factor in gρ (resp. in l). Let z (resp. z′) be a generator of the center of heis2n+1 ⊂ gρ (resp. of heis2n+1 ⊂ l). The adjoint action of any
element of k ⋉ heis2n+1 ⊂ gρ (resp. of o(n) ⋉ heis2n+1 ⊂ l) on z (resp. on z′) is trivial, whereas the adjoint action of L′ on z′ is non-trivial.
So ψ(k ⋉ heis2n+1) ⊂ o(n) ⋉ heis2n+1, hence ψ(heis2n+1) = heis2n+1 by Lemma 2.4.
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Let i = k ⋉ a+. So gρ/i, with its adi-invariant Lorentzian scalar product (recall that the latter is unique, up to isometry), is isometric to
ϕ(gρ)/ψ(i), with its adψ(i)-invariant scalar product. We have

L = (
I + F0 B

I F0
) and L′ = (

I 0
0 0
),

in the decomposition heis2n+1 = a
+
⊕ a− ⊕ z, with F0 ∈ o(n). Moreover ψ(L) = L′ + F1 = (

I + F1 0

0 F1
), with F1 ∈ o(n). We claim that ψ(a+) ∩

a− = 0. Before proving the claim, let us see that it leads to a contradiction. Indeed, consider a new decomposition heis2n+1 = ψ(a+)⊕ a− ⊕ z,

where ψ(a+) is a Lagrangian of heis2n+1. Then the matrix of ψ(L) in this decomposition is (I + F1 0

∗ F1
), which is conjugate in Aut(heis2n+1) to

(
I + F′1 0

I F′1
), with F′1 ∈ o(n). But then this means that the space is flat (see Remark 5.14), which contradicts our assumption on X. Let us now

prove the claim. Suppose that there is h ∈ a+ such that ψ(h) ∈ a−. On the one hand, ψ([L, h]) = ψ(L(h)) = ψ(h + F0(h) + h′), where h′ ∈ a−

satisfies [h, h′] = αz, α ≠ 0. On the other hand, using that ψ is a Lie algebra isomorphism and that ψ(h) ∈ a−, we get ψ([L, h]) = [ψ(L),ψ(h)]
= F1(ψ(h)) ∈ a−. It follows that ψ(h + F0(h) + h′) ∈ a−, hence ψ(F0(h) + h′) ∈ a−. As a consequence, ψ([h, F0(h) + h′]) = [ψ(h),ψ(F0(h)
+ h′)] = 0. But we also have [h, F0(h) + h′] = αz, with α ≠ 0, hence ψ([h, F0(h) + h′]) = αψ(z) ≠ 0. This ends the proof. ◻
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APPENDIX: ACTION OF THE HEISENBERG GROUP IN BRINKMANN COORDINATES

Consider X = Rn+1
× I with coordinates (v, x = (x1, . . . , xn), u), equipped with the metric

g = 2dvdu + x⊺S(u)x du2
+ Σn

i=1dx2
i , (20)

where S(u) is a symmetric matrix. This is the metric of a plane wave in Brinkmann coordinates, where the lightlike parallel vector field is
given by V ∶= ∂v . In what follows, we compute the isometries of (X, g) acting trivially on the u-coordinate. Denote this group by G0.

Let S : u ∈ I ↦ S(u) be the curve of symmetric matrices defining the metric g.

Fact .3. An isometry φ ∈ G0 has the following form

φ
⎛
⎜
⎜
⎝

v

x
u

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

v − ⟨α′(u), Ax +
1
2
α(u)⟩ + c

Ax + α(u)
u

⎞
⎟
⎟
⎟
⎠

,

where A ∈ CO(n)(S), and α is a solution of the differential equation
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α′′(u) − S(u)α(u) = 0, ∀u ∈ I.

In the following, we prove the above fact. We know that V = ∂v is a parallel lightlike vector field, and the foliation tangent to V� is given
by the levels of the u-coordinate. Let φ be an isometry of g acting trivially on the u-coordinate. Set φ = (φv ,φ1, . . . ,φn, u). First, since V is the
only lightlike vector tangent to the u-levels, φ preserves the V-direction, i.e., φ∗ (V) = aV for some a ∈ R∗. This gives ∂φi

∂v
= 0 for any i, hence

the φi components do not depend on v.
Now, at each u0-level, φ induces a map from V�/V = Rn to itself given by φ̄u0 = (φ1, . . . ,φn)∣{u=u0}, which preserves the induced

Euclidean scalar product ∑dx2
i . It follows that φ̄u0 is a Euclidean transformation (that depends only on u0), hence the existence for any

u ∈ I of A(u) ∈ O(n) and α(u) ∈ Rn such that φ̄(v, x, u) = A(u)x + α(u).

Step 1. A(u) is a constant curve in O(n).

Proof of Step 1. The equality g(φ∗ ∂u,φ∗ ∂i) = g(∂u,∂i) = 0 reads

∂φv
∂xi
+ ⟨A(u)(ei), A′(u)x + α′(u)⟩ = 0. (21)

Then, writing ∂
∂xk

∂φv
∂xi
= ∂

∂xi

∂φv
∂xk

yields ⟨A(u)(ei), A′(u)(ek)⟩ = ⟨A(u)(ek), A′(u)(ei)⟩ for any i, k ∈ {1, . . . , n}, proving that the matrix
B(u) ∶= A(u)⊺A′(u) is symmetric. But since A(u) is a curve in O(n) we also have that B(u) is antisymmetric, implying B(u) = 0 for any
u, hence the result. ◻

In what follows, A(u) will be then simply denoted by A.

Step 2. From Step 1 we have

φ̄(v, x, u) = Ax + α(u)

for some A ∈ O(n) and some function α depending only on u.
Writing g(φ∗ ∂u,φ∗ ∂v) = g(∂u,∂v) = 1 gives a∂ϕu

∂u = 1, hence a = 1, and then ∂φv
∂v
= 1. On the other hand, it follows from (21) that

∂ϕv
∂xi
= −⟨A(ei),α′(u)⟩. From this one obtains

φv = v − ⟨α′(u), Ax⟩ + l(u), (22)

with l some function depending only on u.
Finally, using g(φ∗ ∂u,φ∗ ∂u) = g(∂u,∂u) together with (22) and the fact that S(u) is symmetric, gives for any x ∈ Rn and u ∈ I

x⊺B(u)x − 2x⊺A⊺Y(u) + L(u) = 0,

with

B(u) : = A⊺S(u)A − S(u),

Y(u) : = α′′(u) − S(u)α(u),

L(u) : = ⟨α(u), S(u)α(u)⟩ + ⟨α′(u),α′(u)⟩ + 2l′(u).

From this, and using that A is invertible, we obtain that for any u ∈ I

S(u) = A⊺S(u)A,

α′′(u) − S(u)α(u) = 0,

l′(u) = −
1
2
(⟨α′,α′⟩ − ⟨α,α′′⟩).

As a consequence, A commutes with S(u) for all u ∈ I, α is a solution of the linear differential equation

α′′(u) − S(u)α(u) = 0, (23)

and l(u) = − 1
2 ⟨α

′,α⟩ + c, with c ∈ R. Finally, we get

φ
⎛
⎜
⎜
⎝

v

x
u

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

v − ⟨α′(u), Ax +
1
2
α(u)⟩ + c

Ax + α(u)
u

⎞
⎟
⎟
⎟
⎠

, (24)
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where A ∈ CO(n)(S), α is a solution of the differential equation (23) and c ∈ R. Conversely, one can check that any application of this form is
an isometry of g.
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