LOCALIZATION AND DELOCALIZATION OF EIGENVECTORS FOR
HEAVY-TAILED RANDOM MATRICES

CHARLES BORDENAVE AND ALICE GUIONNET

ABSTRACT. Consider an n x n Hermitian random matrix with, above the diagonal,
independent entries with a-stable symmetric distribution and 0 < a < 2. We establish
new bounds on the rate of convergence of the empirical spectral distribution of this
random matrix as n goes to infinity. When 1 < a < 2 and p > 2, we give vanishing
bounds on the LP-norm of the eigenvectors normalized to have unit L?-norm. On the
contrary, when 0 < a < 2/3, we prove that these eigenvectors are localized.

1. INTRODUCTION

We consider an array (X;;)i<i<; of i.i.d. real random variables and set, for i > j,
Xij = Xji. Then, for each integer n > 1, we may define the random symmetric matrix:

X = (Xij)i<ij<n-

The eigenvalues of the matrix X are real and are denoted by A, (X) < --- < A\ (X).
In the large n limit, the spectral properties of this matrix are now well understood as
soon as X;; has at least two finite moments see e.g. [?, 7, d [, ?, ?] for reviews, or
[15], 12, 13, 18, 19] for recent results on universality. The starting point of this analysis is
the Wigner’s semi-circular law, which asserts that if the variance of X;; is normalized to
1, then the empirical spectral measure

1 n
- Z_; (X0 VA

converges almost surely for the weak convergence topology to the semi-circular law po
with support [—2,2] and density fo(z) = %\/4 — 22. As already advertised, many more
properties of the spectrum are known. For example, if the entries are centered and have
a subexponential tail, then, see [I0] 1], for any p > 2 and € > 0,

max {||v]|, : v eigenvector of X with ||v|s = 1}

3=

is O(!P-1/24%), where [Joll, = (X7, [ul?)*.
strongly delocalized.

This implies that the eigenvectors are

When the second moment is no longer finite, much less is known and the picture is
different. Let 0 < a < 2 and assume for simplicity that

P(|X1| > 1) ~ioo 7 (1)
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Then, we are not anymore in the basin of attraction of Wigner’s semi-circular law: now
the empirical spectral measure
1 n
=D O oymise
n“
i=1

converges a.s. for the weak convergence topology to a new limit law p,, see [3] and also
[2], [5]. Tt is known that p, is symmetric, has full support, a bounded density f, which is
analytic outside a finite set of points. Moreover, f,(0) has an explicit expression and as
x goes to 00, fa(z) ~ (a/2)|z|27. Finally, as o goes to 2, i, converges for the weak
convergence topology to us. One of the difficulty of this type of random matrices is the
lack of an exactly solvable model as in the Gaussian Unitary Ensemble or the Gaussian
Orthogonal Ensemble in the finite variance case.

In the present paper, we give a rate of local convergence to u, and investigate the
behavior of the eigenvectors of X. In a fascinating article [7], Bouchaud and Cizeau
have made some prediction for the eigenvectors of X. They argue that the situation is
different for 0 < @ < 1 and 1 < a < 2. They quantify the localized nature of a vector
v with [|v|l2 = 1 by two scalars: ||v][4 and ||v||y. If ||v|ls+ = o(1) the vector is said to be
delocalized, if ||v]|4 # o(1) but |[v]]; > 1 then v is weakly delocalized (we might also say
weakly localized), while if ||v||; = O(1) then the vector is localized. Now suppose that v is
an eigenvector of n~'/*X associated to an eigenvalue A. For 1 < o < 2, we have proved
that all but o(n) of the eigenvectors were delocalized (this disproved the prediction of [7]).

For 0 < a < 1, Bouchaud and Cizeau predict that with high probability, if |A\| < E,
then v is weakly delocalized, while |A\| > E,, v is localized. It is reasonable to predict
that E, goes to 0 as a | 0 and goes to infinity as a 1 2. It is not clear whether this
threshold E, depends on the choices of the norms L' and L* to quantify localization
and delocalization. We are far from proving the existence of such a threshold within the
spectrum. Nevertheless, for 0 < a < 2/3, we have proved that there exists F, > 0 such
that if [\| > E, then a localization occurs : the mass of v is carried by at most n!'=%
entries, for some ¢, > 0.

This heavy-tailed matrix model is in some sense similar to the adjacency matrix of
Erd6s-Rényi graphs with parameter p/n since its entries are of order one only with prob-
ability of order 1/n. In the regime where p is going to infinity faster than n?®, this
adjacency matrices were shown to belong to the university class of Wigner random ma-
trices [8],[9]. If pn/(logn)® goes to infinity for some constant ¢, the delocalization of
eigenvectors was also proved in these articles. In the related model of the adjacency
matrix of uniformly sampled d-regular graphs on n vertices, the delocalization of eigen-
vectors has been studied in Dumitriu and Pal [?] and Tran, Vu and Wang [?]. It was also
conjectured by Sarnak that as soon as d > 3, this model also belongs to the university
class of Wigner random matrices.

1.1. Main results. Let us now be more precise. Throughout the paper, the array
(Xij)1<i<j will be real i.i.d. symmetric a-stable random variable such that for all ¢ € R,

Eexp(itX11) = exp(—wq|t|*),

for some 0 < a < 2 and w, = 7/(sin(ma/2)'(«)). With this choice, the random vari-
ables (X;;) are normalized in the sense that holds. The assumption that the random
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variables follow an a-stable law should not be a crucial for our results, it will however
simplify substantially some proofs. We define the hermitian matrix

A, = a;lX with @, =n'/?.

The eigenvalues of the matrix A are denoted by A,(A) < --- < A(A). The empirical
spectral measure of A is defined as

1 ¢ 1 ¢
MA: 525)\1(14) = EZ(S}\i(X)/nl/a.
i=1 =1

The resolvent of A will be denoted by
R(Z> = (A - Z)_17

where z € C; = {z € C : Im(z) > 0}. The Cauchy-Stieltjes transform of p, is easily
recovered from the resolvent:

9a(2) = [ i) = La(RE). )

r—z

From [3, [5], for any fixed interval I C R, a.s. as n — o0,

pa,(I) — pall)

o Y 9
where || denotes the length of the interval /. As in [I2] [13], the opening move for
proving statements about the eigenvectors of A is to reinforce the convergence for
small intervals whose length vanishes with n. We will express our main results in terms

of a scalar p depending on «a:

% if §§a<2
p: 87a3a ].f 1<OZ<§

o .

5a if O<a<l.

The scalar p depends continuously on « and is non-decreasing. Roughly speaking we are
able to prove that the convergence holds for all intervals of size larger than n=r*(),
A precise statement is the following.

Theorem 1.1 (Local convergence of the empirical spectral distribution). Let 0 < o < 2.
There exists a finite set £, C R such that if K C R\&E, is a compact set and 6 > 0, the
following holds. There are constants cy,c; > 0 such that for all integers n > 1, if I C K
is an interval of length |I| > cin~"(logn)?, then

wa(l) = pa(1)| < 611,
with probability at least 1 — 2 exp (—cond?|I]?).

In the forthcoming Theorem [3.5], we will give a slightly stronger form of Theorem [L.1} we
will allow the parameter 0 to depend explicitly on n and |I| and the logarithmic correction
in front of n=” will be reinforced. The proof of Theorem [I.1] will be based on estimates
of the diagonal coefficients of the resolvent matrix R(z) as z = E + in gets close to the
real axis with n = n =7+t For technical reasons, we have only been able to establish
for intervals outside the finite set £, which contains 0. The same type of result should
hold for all sufficiently large intervals. In Proposition [2.1, we will give an upper bound
on pia(I) (i.e. a Wegner’s estimate) which will be valid for all intervals of size larger than
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n~(@+2/4 " The threshold p < % may be optimal, eventhough for Wigner’s matrices it

is simply one, since the spectral measure of heavy tails random matrices fluctuates like
O(n~%/2) rather than like O(n~') for Wigner’s matrices (see [?, ?]).

Theorem will have the following corollary on the delocalization of the eigenvectors.

Theorem 1.2 (Delocalization of eigenvectors). Let 1 < o < 2. There exist a finite set
€y C R and a constant ¢ > 0 such that if K C R\E, is a compact set, with probability
tending to 1,

max{||vglloo : 1 <k <, A\(A) € K} < n_p(l_i)(log n)<, (4)

where vy, - -+, v, 1S an orthogonal basis of eigenvectors of A associated to the eigenvalues

AM(A), - An(A).

Notice that for p > 2, ||v]|, < ||v||§/p||v||;2/p. Hence, Theoremimplies that the LP-
norm of any eigenvector associated to an eigenvalue in K goes in probability to 0 as soon
as p > 2. Similarly, from [|v]|2 < ||v]l1]|v]|s, we have a lower bound of order n(=a)+e()
on the L'-norm of the eigenvectors. Note that our estimate becomes trivial as o | 1 and
give upper bound of order n=4+°(M) as o 1 2. For any x > 0, in the proof of Theorem
1.2] we will see that by increasing suitably ¢, the probability that the event holds is

K

at least 1 — n™".

We now present our result on localization of eigenvectors. We are not able to prove
localization for all eigenvectors but only for "typical” eigenvectors associated to an eigen-
value in a small interval. More precisely, we consider vy, --- ,v, an orthogonal basis of
eigenvectors of A associated to the eigenvalues Aj(A), -+, A\, (A). If I is an interval of
R, we define A as the set of eigenvectors whose eigenvalues are in I. Then, if A; is not
empty, for 1 <17 < n, set

W) = == S (v, e)’,
| I’ vEAT
where, throughout this paper,
|Ar| =npa(l) = Ni (5)

is the cardinal of A;. Wi (i)/n is the average amplitude of the i-th coordinate of eigenvec-
tors in A;. By construction, the average amplitude of W7 is 1:

1 & ,
E;Wl(z):l.

If the eigenvectors in A; are localized and I contains few eigenvalues, then we might
expect that for some 4, Wy(i) > 1, while for most of the others W;(i) = o(1). More
quantitatively, fix 0 < 0 < 1 and assume that for some 0 < k <l and 0 <e <1

then, setting J = {i : Wy (i) > ((5*15)*ﬁ}, we find
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In particular, all but a proportion ¢ of the mass of W7 is carried by a set J of cardinal at
1

most |J| < n(d~te)T—=. If € goes to 0 with n, this indicates a localization phenomenon.

With this in mind, we can state our result.

Theorem 1.3 (Localization of eigenvectors). Let 0 < a < 2/3, 0 < k < /2 and p be as
above. There exists E, . such that for any compact K C [—E, s, Eq x|, there are constants
co,c1 > 0 and for all integers n > 1, if I C K is an interval of length |I| > n="(logn)?,

1 ¢ o
=3 Wi(i)E < alIlf,
n“
i=1
with probability at least 1 — 2exp (—con|I[*).

This result is interesting when I = [E —n~*°W E 4 n=r+°W] is a small neighborhood
around some large E. Then it shows that for any 0 < k < «/2, the mass of the eigenvectors

around F is concentrated around order n!=2%/(2=%) entries as long as |E| is large enough.
The proof of Theorem [1.3] will be done by showing that

I a
- > (ImR(E + in);)? (6)
i=1
vanishes to 0 if n = n=?+°(1) even though that
1 n
n
i=1

stays bounded away from 0. This phenomenon will have an interpretation in terms of a
random self-adjoint operator introduced in [5] which is, in some sense, the limit of the
matrices A. We will prove that the imaginary part of its resolvent vanishes at £+ in, with
n = o(1) and |E| large enough, while its expectation does not, see Theorem [5.1] Note that
if 0 < < n!, then we necessarily have that for almost all £, ImR(FE + in); converges
to 0. The fact that our estimate |I| > n™" gets worse as a goes to 0 is an artifact of
the proof : our rate of convergence of R(E + in);; to its limit gets worse as « gets small.
It is however intuitively clear that the localization should be stronger when « is smaller.
However, in the forthcoming Theorem @, we will prove that, for any 0 < a < 2/3,
the expression @ goes to 0 if n = n~6. Finally, it is worth to notice that computing
the fractional moments of the resolvent matrix as a way to prove localization is already
present in the literature on random Schrodinger operators, see e.g. [?].

The remainder of the paper is organized as follows. In Section [2] we establish general
upper bounds on N; defined by . Section |3| contains the proof of Theorem . Section
[is devoted to the proof of Theorem [I.2] The arguments developped in these two sections
are based on ideas from the seminal work of Erdés, Schlein, Yau (see e.g. [10, 11l [12])
concerning Wigner’s matrices with enough moments, as well as on the analytic approach
of heavy tailed matrices as initiated in [3, 2]. However, there was a technical gap due to
the lack of concentration inequalities, as well as of simple loop equations, that hold for
finite second moment Wigner matrices. A few of the required new estimates due to the
specific nature of heavy tailed matrices are contained in the appendix on concentration
inequalities and stable laws. In Section [5] we prove Theorem [1.3] which is based on the
representation of the asymptotic spectral measure given in [5] and a new fixed point
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argument which allows to prove the vanishing of the imaginary part of the resolvent in
the regime a € (0,2/3).

The whole article is quite technical, but hopefully shall be useful for further local study
of the spectrum of random matrices which do not belong to the universality class of
Wigner’s semi-circle law.

2. UPPER BOUND ON THE SPECTRAL COUNTING MEASURE

Forn >0 and E € R, we set I = [E —n, E +n|. The goal of this section is to provide
a rough upper bound on N; when 7 is large enough, where N; was defined by . Let

11\
=(=+—- : 7
v=(3+3) )
Proposition 2.1 (Upper bound on counting measure). Let 0 < o < 2. There exist

¢, > 0 depending only on o such that if n > n_aTH, then, for all integers n, for allt > c,

P(N; > tnn") < cexp(—c’tﬁ) +2n exp(—c’tﬂ%).

This bound will later be refined in the forthcoming Proposition |3.6, The upper bound
on the eigenvalues counting measure implies an upper bound for the trace of the resolvent.

Corollary 2.2 (Trace of resolvent). Let 0 < o < 2 and z = E +in € C,. There exists
¢ > 0 depending only on « such that if n > n’aTH, then, for all integers n,

4

EtrR(z)R*(z) < c(logn) 5" nny~=+a.

Proof. By the spectral theorem

n

trR(2)R*(2) = Y [A(A4) — 2|2

Jj=1

Let 1 be the imaginary part of z. Define Iy = [E — 1, E + 1| and for integer k& > 0,
Iy = [E — 2M 1y, E + 2" Ig\[E — 2*n, E + 2*n]. By construction, if A\;(A) € I; then
I\ (A) — 2|72 < 272FF1p=2 Therefore, if Ny, = nua(lx) is the number of eigenvalues in
Iy, then
trR(z)R*(2) < Y 272N, (8)
k>0
We write [, = I} U I, where Il;t = Ry N I;. To estimate E[NI;:] we apply Proposition

. Namely it yields that for each interval I of length n > n’aTH, for any 7 > ¢

E[N;] = / P(N;>t)dt
0
< Ttnn'+ nnv/ P(N; > tnn?)dt
< nn! <T +/ (exp(—c’tﬁ) +2n exp(—c’tﬁa))> dt

< nn’ (7‘ + co(1+ nexp(—c’ﬂi))) ,
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for some finite constant ¢y > 0. Therefore, taking 7 of order (log n)HTa, we deduce that
there exists some finite constant ¢; > 0 such that

E[N] < ci(logn) i nn
Therefore, we deduce from . ) that

EtrR(2)R*(z) < 2¢4 logn ZQ k=20 (n2F)7 < 2¢1(logn) g Tia 22 e,

k>0 k>0

The rest of this section is devoted to the proof of Proposition [2.1].

2.1. A geometric upper bound. In this paragraph, we recall a general upper bound
for N; that is due to Erdés-Schlein-Yau [12], namely if we let A®) be the principal minor
matrix of A where the k-th row and column have been removed, W) be the vector space
generated by the eigenvectors of A®) correponding to eigenvalues at distance greater than
n from E, we have

Ny < 4n?al ) dist(Xy, WH)=2 (9)
k=1

Let us prove @[) We start with the resolvent formula,
R(2)ik = — (2 — a; X + ;2 (Xi, RO X)) (10)
where X;, = (Xi1, -, Xeke1, Xika1r -+ > Xpn) € RPand RK) = (AK) — 2)~1,
Identifying the real and imaginary part, we get, using the fact that z and the eigenvalues
of R® are in C,

-1

ImR(2) ks (Im (2 —a, "Xk + a,, <Xk7 R(k)Xk>))
a

<
< a2(Xy, ImR® X))

Let (/\5’“))19-91_1 and (ul ))1§i§n_1 be the eigenvalues and eigenvectors of A®). Choosing
z = E +1in, we have the spectral decomposition

n—1

ImR%) = 7 ugk)ugk)*.
OBy

1t A\ — E| <7, then > 1/(2n). Therefore, we deduce

__n__
(Ni—E)24n?

-1
ImR(2) < 2na? (le 0.8 §)>> .

We rewrite the above expression as
ImR(2)me < 2na’dist™2( Xy, WH), (11)

where
W(k)zvect{ul(-k):1§i§n—1a>\§k) ¢ [E_W’E+77]}‘
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Since I = [E — n, E + 1], the inequalities and

n Ni
trImR(z) = ——————a(dx) > ———————qp(dz) > —
rImR(z) n/(E N sha(dr) n/[(E—AV—i‘T]QMA( x) > 2

give @ We set
NP =ji<i<n—1: A" el =n—1-dim(W®) = (n — 1w ).
From Weyl interlacement theorem,

Ny —1<N® =pn—1—-dim(W®) < N, + 1. (12)

2.2. Proof of Proposition We note that up to increasing the constant ¢ and 1/¢,
it is sufficient to prove the proposition only for all n > cln_aT+2 for some ¢; (indeed,
Np < Npif I' € I and if Ny < tn|I|Y then Ny <tn|l'|"(|I|/|I'])7).

In the sequel we denote in short disty = dist(Xy, W®). From (9)-(12), we write

2 2 s 12
N < lNISLtmﬂJtnn'y +4n°a;, ZdlStk ].N}k)z\_
k=1

We have dist} = (X, P.X}), where P, is the orthogonal projection on W®*). We note that
X, is independent of W®*). From Lemma , there exists a positive a/2-stable random
variable S; and a standard Gaussian vector Gy, independent from Sy, such that

dist? = HPkaH2Sk.

Note that n > en” s equivalent to m7 o > e By Corollary |A.2| (applied to A = Py),

there exists universal constants C, 9 so that if N[( ) >t Iy > tnl_% for t > C'c7, with
probability at least

(13)

tnnY |’

1— 2exp(—5n(tn)%/2) >1- 26Xp(—00t2+%) (14)
we have,
1
[1PeGlla = 0 (tnn)e

Hence, if F), denotes the event that N; > [tnn?| and for all k, || PyG|la > ¢ (tnn’*)i, we
have from

Nilp < 4n?6~2 Z St
With our choice of v, 2 — 2v/a =, hence, with ¢; = 4(5 2 we deduce
n
Nilp, < enp't™a (l ZSk1> '
"=
The variables (Sk)i<k<n, have the same distribution but are correlated. Nevertheless,

note that the function z + exp(z°) is convex on [bs, +00) with bs = 0 if § > 1, and
= (1/6 —1)Y/9if 0 < § < 1. Hence from the Jensen inequality,

5 5
1 < 1 1«
exp (5 5 Sk_1> < exp (E E Sty b5) < - g exp(S7° Vv B5).
k=1 k=1 k=1
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In particular for every ¢y > 0,

L& T e
Eexp < ¢ (— Z Sk1> < csEexp {cg (Sl 2’“) } ,
n
k=1

where c3 = exp(czbzf ; z ). By Lemma [B.3] for ¢ small enough, the above is finite. Thus,

from the Markov mequahty, for some constants c4, c5 > 0,

P(N/lg, > tny) ( ZS >cllt >§c4exp(—c5t22a).

Therefore, by , we deduce
P(N;>tnn’) < P{N;>tny)}NF)+P(Nilg, > tny)
< 2nexp(—cot?=) + cqexp(—cstTa)

which completes the proof of the proposition.

3. LOCAL CONVERGENCE OF THE SPECTRAL MEASURE

To prove the local convergence of the spectral measure, we shall prove that an observable
of the resolvent satisfies nearly a fixed point equation, which also entails an approximate
equation for the resolvent. Such an equation was already derived in [3, 2] but the error
terms are here carefully estimated. This step will be crucial to obtain, in the second part
of this section, a rate of convergence of the Stieltjes transform of the spectral measure
toward its limit. The range of convergence will be first derived roughly, and then improved
for a > 1 thanks to bootstraps arguments.

3.1. Approximate fixed point equation. The observables we shall be interested in
will be

Y (2) :=E[(=iR(2)11)2] and X (2):=E[-iR(2)1]. (15)
(For 1 < k,¢ < n, we will write indifferently Ry¢(z) or R(2)ge). For g € [0, 2], we define
Ks ={z € C: |arg(z)| < %} By construction —iRy;(z) € K for z € C,4, so that
Y(2) € Kyoy2 and X(2) € Ky. On K, /2, we may define the entire functions

1 5-1 ztz F(l—ﬂ)t%x
900472'(37) = o / 2 2 dt
() Jo

and

Vo (7) = / 7 T=518e gy
0
For further use, we define, with the notation of ,
1
M,(z) = —Etr{R 2)(RW(2))*}. (16)
n

Note that, writing explicitly the dependence in n, Ry = (Ag) —z)7! and % A has
the same distribution than A, ;. We may thus apply Corollary to R (1t can be
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checked the difference between a, and a,_; is harmless). For some constant ¢ > 0, we
a+2

therefore have the upper bound for all z = F +ipand n>n="1 ,
M, (2) < c(logn) 5y 7, (17)
The main result of this paragraph is the following approximate fixed point equations.

Proposition 3.1 (Approximate fixed point equation). Let 0 < o < 2 and z = E +in €
C.. There exists ¢ > 0 such that if n= < n <1 and

1N«
logn)1,= M, (z
E = ﬁal\ln"‘lﬂ—i‘(gn++ (77 1 T()> (1 + (lOg n)11<a§4/3 —+ (log n)210<a§1) ,

(18)
then, for any integer n > 1,

N[}

‘Y(Z) - Soa,z(Y(Z))‘ < 0777%5 + cnfgn* ,

and

Q

1X(2) = Yan(Y ()] < e+ on 3n 1,

We note that we could use the bound to get an explicit upper bound on €. In the
forthcoming Proposition we will however improve this bound for some range of 7.

In the first step of the proof, we compare Y (z) with an expression which gets rid of the
off-diagonal terms of RV in . More precisely, with the notation of , we define

I(z):==E ( —iz) ZX >_ € Kay2,

R

and similarly,

J(z) =E ( —iz) ZX szk ) € K.

We start with a technical lemma.

Lemma 3.2 (Off-diagonal terms). Let B be an hermitian matriz with resolvent G =
(B—2)"'. For any 0 < a < 2, there exists a constant ¢ = c(a) > 0 such that for n > 2,

]P’(a_2

and if 1 < a < 2,

tr(GG¥)

n2

Z X1 X10Gre| >

2<k£l<n

t) <ct ™“log(n(2Vt))log(2Vi),

tr(GG*
S C % (1 + 11<a§4/3 lOg TL) .

> XX G

2<k#0<n
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Proof. Let 0 < o < 1. We use a decoupling technique : from [?, Theorem 3.4.1], there
exists a universal constant ¢ > 0 such that

P ( a? zt) < P ( a0, > XuX{G

2<k£l<n

Z X1 X10Gre

2<k£0<n

> t/c) (19)

< c]P’(aQ2 Z X1 X1 Re(Gre) 215/20)
2<k#l<n

+cP < a? > t/QC) ,

where X is an independent copy of X;. From the stable property of X, we deduce that

S XuX{Re(Gre) £ X7, (Z ) ' , (20)

2<k#A0<n ¢
and similarly for the imaginary part. From the stable property of X,

2.

14

> XX {Im(G)

2<k£0<n

Z XlkRe(GM)
k#£L

[0}

L3780 S [Re(Gr) |7, (21)

¢ kA

Z XlkRe(Gkg)
k#£L

where (X;), is a random vector whose marginal distribution is again the law of X1; (note
however that the entries of (X;), are correlated). Let po = >, [Re(Gre)|* and p = 3=, py.

For s > 2 to be chosen later, we define Y, = Xg1(|Xg| < sa,) and Y! = X1;1(|X14] < ).
It is straightforward to check that

E|Yy|* < clog(s®n) and E|Y]|* < clog(s).

Hence, from —
st (Sira) =1) < v (zmm

¢ ¢
+P <maX]Xg] > san +P (X} > s>

cplog(s®n)log(s)

-«
< s 74 o ,

where we have used the Markov inequality and the union bound

P(m?X 1 X, > san) < nP(|X11| > san) < cs™°.

We choose s = 2V (t/p"/®), we find that

1
A ° clog((2Vit)n)log(2 Vvt
. |X11,<Z|XM> i | < Clog(2V ) log(2 v 1)
l

tOé
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The same statement holds for Im(G). To sum up, we deduce from that

]P <
Then, the first statement of the lemma follows Hélder’s inequality which asserts that
: !
9 1/a _2 o _2 2_ tr(GG*)
ot <t (zz Gud ) <nd (zz w) Y LISy
¢k ¢k

(recall that G, = Gyy).

Now, assume « > 1. By integrating the above bound, we find easily

_ / P

0
(In fact, with slightly more care, we may replace logn by (log n)é log(logn)). It remains
to check that we can remove the term logn for a > 4/3. It will come easily from the

bound a
IP’( 2t>gc(@)“. (23)

n2t?
Let s > 1 to be chosen later. We now set Yy, = X1,1(| X1x| < say)/a,. We write

2

= Z Yk1 Yv& Ykz }/52 Gk121 Gz2g2'
k1#£81 kaFLlo

a,> > XuX1Gr

> afp”%) <ct ™“log(n(2Vit))log(2Vt).
2<kAl<n

tr(GG¥)

n2

E logn.

a,” Y XuX1Gr

2<k#L<n

a,” Y XuX1Gr

2<k#L<n

2t>dt§c

a,” Z X1k X10Gre

2<k#l<n

> MYiGi

2<k£0<n

The variables Y} are iid and by symmetry EY; = EY?® = 0. Hence, since G, = Gy,
taking expectation we obtain

2
E =2 E[Y?]’GuGy, < 2EYPGG".

kA

Z Y. Y G

2<k#0<n

It is routine to check that, for p > «, E[|Y1]P] < ¢(p)s?P~*n~!. Hence, arguing as above,

we find
2(2—a)t GG*
P ( a;z Z XllegGkg Z t) S C% + cs™ .
2<kAl<n n
We conclude by choosing s = 1V (n?t?/trGG*)'/(4=), O

We may now compare [(z) and J(z) to Y (z) and X (z).

Lemma 3.3 (Diagonal approximation). Let 0 < o < 2 and z = E +in € C,. There
exists ¢ > 0 such that if € is given by then

Y(2) = I(2)| <en2e¢ and |X(2) = J(2)| < enle.
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Proof. Define
T(Z) = —CLY_LIXH + CLT_L2 Z XlleéR](glg)- (24)
2<k#(<n
We notice that for any, z,2’ € C, and o > 0,

|(i2)77% = (i) 7*?| < %Iz — 2/|(Im(z) ATm(2")) /21,

With the notation of (10]), we also note that Im(>";_, X2 RY) >0 and Im(—a;, ' X1, +
1, 1,) = 0. Hence, from , Tor any event {2,
(X1, RVX,)) > 0. Hence, f for any Q
O _a_ _a c
Y(z) = 1) < o0 2 'E[T(2)[1a] + 7 2 P(Q°). (25)

Applying the same argument with X (z), J(z), we get
O _a _
Y(E) —I1G) <02 DG),  [X() = JE)| <n'D()
with

D(z) = n"E[|T(2)[1q] + P(2°). (26)
We may bound D(z) by using that by Lemma since RW is independent of X which

gives
[ My, _
P ( > 775) <ct ™“log(n(2Vt))log(2Vt). (27)
a;Q Z X1k X10Gre

and for 1 < a < 2,
| M,
S CA\| — (1 + 11<a§4/3 IOg n) . (28)
2<k#L<n n

e Let us first assume that 1 < a < 2, then taking Q¢ = () in and using , it
shows that for some constant ¢ > 0,

| M,
D(z) < en? (n_clv + o (1+ Lica<ass logn)) -

o Assume that 0 < a < 1, we take in (26))

a,” Z X1£X10Gre

2<k£l<n

E

Q:{anl\X11|§t;an2 > XlkXMR,gﬂgt}.

1<k#0<n

Then, we have
t

t
BIT(:)1e) < [ Pl Xulzody+ [ Bla? 3 XuXuR{) = iy
0 0

1<k£0<n

Assume that 1/n <t < 1. Then, using (27), we find that E[|T(z)|1q] is bounded
up to multiplicative constant (depending on «) by

t'=>  log(n M)\ 2
+ gTI(, )1o¢=1+ (7) (logn)Ztl_a.

n
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(using we may safely bound the terms log(tn/M,) by logn). With ¢t = n we
find

Locr (1 M, \?
D(z)<enpn e 1(logn) +c ( 2) (logn)>.
nn

This yields the claimed bounds. 0
We next relate I and J with the functions ¢, . and 1, . by using the well known
identities

B 1 /°° L ) s _
I — O le=?tdt  and x‘;——/ 0711 — e ™ dt 29
) Jo Mg ), U )

valid for x € K1, § > 0 and 0 < 6 < 1 respectively. We get

1 [ . -
I(z) = m/ﬂ t2 'Eexp {it (z + an2ZX12kR,S€)> } dt .
k=2

2

We may apply Corollary to take the expectation over X; and get

I o 1 o 5
I(z) = F(“)/ t2_leZtZ]EeXp{—wg(2t)zﬁZ<—iR,$€)>2\gk|a}dt,

2/ /0 k=2

I~ om\ e ol
Fo (HZ( ) Eugm)]

where w, > 0 was defined in the introduction and (g;);>1 are iid standard gaussian
variables. Similarly, we find that

= E

n

o0 ) o 1 o
J(z) = / e’tz]EeXp{—wg(Qt)ZﬁZ (-m,@f)Q |gk|a}dt (30)
0 k=2

n a

1 o\ 2 |gl®
Ve (ﬁ > (-im) Engm])

k=2

= E

(31)

The next lemma due to Belinschi, Dembo and Guionnet [2] will be crucial in the sequel.

Lemma 3.4. |2, Lemma 3.6] For any z € C,, the functions ¢, . and 1, . are Lipschitz
with constant ¢ = c(a)|z|™ and ¢ = c(a)|z|~? on Ky jo. Moreover ¢, . maps Koz into
Kaje and v . maps Koz into K.

Proof. The first statement follows from [2, Lemma 3.6] by a change of variable. For
the second, we note that if ¥ € K,/ then z = (—iw)*? with w € C; and from
Ya-(1) = E(iz+iwS) %2 where S is non-negative /2 stable law with Laplace transform,
for # > 0, Eexp(—1x5) = exp(—I'(1 — a/2)z%/?). Similarly, ¥,..(7) = E(iz + iwS)™!. In
particular, v, .(x) € Kqj2 and ¢,.(2) € Kq/o. O

We are now able to prove Proposition [3.1]
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Proof of Proposition[3.1. The point is that the Lipschitz constant in Lemma [3.4] depends

on |z| and not only Im(z). Hence since py = (—z’R&)) R= Ko /2, using exchangeability,
we deduce that

|I(Z) - Qoa,z(EpQ |

IE: ( k:( “’)g l[@?&])]_%’z (ﬁiEK—iRﬁ));])]

k=2
L ¥ 1 < cE|ps]
< cE O‘_E_ o
o ] Pr| 9] n—lzpk‘gﬂ T
k=2 k=2
< Zpk’gk|a_—ZPkE|gk’ +E Zpk—E—Zpk

By the Cauchy-Schwarz inequality and Lemma [C.4] we obtain

11(2) = ¢a2(Eps)| < en”! Z\pk

By applying the Jensen inequality, we also notice that since 0 < a < 2,

1 n
=E[— > IR
k=2 k=2

LN pmpe ) L 1) p*
< _ <
_<E[n_1;mkku < (El—tr {RORV"]]

Hence we obtain an error of

[N]1)

Il

11(2) — pa.:(Ep2)| < enEME +en M7 + en inTE. (32)

In the forthcoming computatlons we shall always consider 7 so that € of ((18]) is smaller

than one so that n='M,? ? vanishes and is neglectable compared to n 2M +. However

Epy and Y (z) are close. More precisely, by equation (91]) (in appendix) applied with
f(z) = (—iz)2 we find that

n n

Z (—iRkk)% - Z < szlk)>g (—zz)%

i=1 =2

@

< 2n(nn)” 2.

Taking the expectation, we get

[Eps = Y (2)] < e(nm) "%,

By Lemma 3.4} the function ¢, . is Lipschitz for some constant ¢ = c(«, |2]) on KCq /2. We
deduce from ([32)) that

1(2) = 0ae(Y(2))] < en 2Mi + e sn5 +c<nn>-%

a(24a)

< c’nfﬂ%n_%(logn) 6+ 2cn”

M\Q
(R
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where we used the upper bound on M, given by . We note finally that the first term
is always smaller for n large enough and n < 1 than the second term. We have thus
proved that there exists ¢ > 0, such that for all n= <7 <1 and all integers,

1(2) = a:(Y(2)] S en”2n 7
The statement of Proposition on Y (z) follows by applying Lemma [3.3} we find
Y(2) = ¢a:(Y(2)| < en 20T +[Y(2) = I(2)]
Finally, we observe that the bound on X (z) follows similarly from (30]):
X (2) =%a:(Y ()| < enin T +[X(2) = J(2)].

We now use Lemma (3.3 and Proposition [3.1]is proved. 0

3.2. Rate of convergence of the resolvent. We will now use Proposition [3.1] as the
stepping stone to obtain a quantitative rate of convergence of the spectral measure p
toward its limit.

By Lemma [3.4] if z = E + iy and |z| is large enough, say Ey, then ¢, . and 1, . are
Lipschitz with constant L < 1 and in particular, it has a unique fixed point
Y(2) = ¢a:((2)), y(z) € Ka.

From [3, Theorem 1.4], the empirical measure p4 converges a.s. to a probability measure
e (for the topology of weak convergence). The Cauchy-Stieltjes transform of the limit
measure [i, is equal to

[ paldz)
a(e) = [ B i y(2),
The above identity characterizes the probability measure .

Theorem 3.5 (Convergence of Stieltjes transform). For all 0 < a < 2, there exists a
finite set £, C R such that if K is a compact set with K N E, = (0 the following holds for
some constant ¢ = c(a, K).

(i) If 1 < a < 2 : for any integer n > 1, z = E +in with E € I, ¢ 1o§nv
(n‘ﬁ(l + 11<a<4/3(10gn)83%)> <n<l,
Egy () — g (2)] < (39

8—3a

where § =~ 5n~% +n w n 2 (14 licacaszlogn) +n7! exp(—fnnz).
(i) If 0 < a < 1, the same statement holds with cn™ 2+ (logn)2+3« < n < 1 and
S=n"tn"%+n 2 n5(logn)2.

Moreover for any interval I C K of length |I| > n (1 V d|log(8)|™1),
Epuall) - pa(D] < el
This result implies Theorem . Indeed the presence of the expectation of p4 () instead

of pa(l) does not pose a problem due to Lemma in Appendix. We start the proof of
Theorem [3.5] with a weaker statement.

Proposition 3.6 (Convergence of Stieltjes transform : weak form). Statement (ii) of
Theorem holds and
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(i) If1 < a < 2 and en™/? (1+11<a§%(logn)%) < n <1 then holds with
S=n"2n" 1 452 1/2 (1 + 1y o<1 log n) .

Proof. Assume first that z = E + in with |E| > Ey and n < 1. If we apply Lemma to
©a,. We find

1
Y(2) —y()] < 7= V(%) = pa:(Y(2))]:
Also, by exchangeability Eg,,(z) = EG11(2) = iX(z). Hence applying Lemma to
Ya,», we deduce

Eghs (2) — 00 ()] < X(2) — s (VD + s V() — sV (34)

Also, the Cauchy-Weyl interlacing theorem implies that the same type of bounds holds
for the minor A instead of A. Indeed applying Lemmato f(x) = (x—2)"", we have

‘g//«A (Z) ~ Ju,m (Z)‘ < 2(?177)71.

We recall that 1, has a bounded density (see [3, 2, 5]). Hence Im(g,,(2)) is uniformly

a+2

bounded. We get for any z = E +in, |E| > Eg,n>n" 1,

EIm (g, 1) () < 1000 (2)) + [Egi ) (2) = G (2)]| < €+ [Bgp ) () = gua ()] (35)
On the other hand, the spectral theorem implies the important identity
1 . _
M, = —Efr {RV(RW)*} =y '"Elm(g,,, (2)).
Then, by ,
_ L
nM, < 2(nn) ™" + e+ [X(2) = Va0 (Y (2))| + =Y (2) = @a (Y (2))].

1-L
We first consider the case 1 < o < 2. Then, by Proposition [3.1, we obtain for n >

nol2e > o172,
| M,
nM, < c+ c7772 - (1 + 11<a§% logn> .

By monotonicity, we find that nM,, is upper bounded by z* where x* is the unique fixed
point of

T=cHonin? (1 + 1 acs logn> V.

It is easy to check that the unique fixed point of x = a + bz”, with a,b > 0and 0 < 8 < 1
is upper bounded by k(/)a if a > b=5. We deduce that, for some constant ¢; > 0 and all

(141, g (logn)?) <n <1,
nMn S 1.
So finally, from Proposition , we find that for all n=1/° <1 + 11<a§%(log n)%) <n<l,

Egu,(2) = g (2)] < cn InTT 4 0277_271_é + czn_%n_% (1 + 11<a§% log n> .

We notice that the middle term is negligible compared to the last for our range of 7.
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Assume finally that 0 < a < 1, then arguing as above for n > n=1/2 > n=1/2,

2

M,
nM, <c+cen? (n_772) (logn)?. (36)

We deduce that, for some ¢; > 0 and all n_ﬁ(log n)ﬁ <n <1, nM, < c¢. We find
that for all n_ﬂ%(log n)2+43a <n<l,

%(

gy (2) = g (2)] < com™ 30~ + o™ =n (1 4 (log m)Lacs) + con” 575" (log m)?.

Again the middle term is negligible compared to the first for our range of 7.

We have proven the proposition if z = E + in and |F| > Ej is large enough. It
remains to prove the statement for all E' outside of a finite set. It is proven in [2] that
Yo (y) = cz7%g(y) where ¢ is an entire function and ¢ is a constant (both depends on
). It follows that the set of 2 € C such that ¢, (y(z)) = 1 is finite (for details see [2
§5.3]). We define &/, as the set of real E such that there exists 0 < n < FEy + 1 with
O prigW(E +1n)) = 1. We set finally &, = {0} U &, This set is finite. Let K be a
compact interval which does not intersect &,. From the implicit function theorem, there
exist 7,co > 0 such that for t >0, 0<n < FEy+1, F € K,

if ly —y(E+1in)| < 7 and |y — @a,51in(y)| <t then |y —y(E +in)| < cot. (37)

Therefore, we may use Lemma and an alternative version of : for any z = E 41
with £ € K and 0 <n < Ey+ 1, if |[Y(2) —y(2)| < 7 then

Egr(2) — 9. ()] < 1X(2) — (¥ ()] + 20

Y (2) = ¢a:(Y(2))].  (38)

|22

To apply Proposition (3.1 we shall use an inductive argument to insure that the hy-
pothesis |V (z) — y(2)| < 7 is satisfied. We set for integer ¢, ng =1, Ney1 = e+ F(1 Anp)?
and zy = E +in,. There exists k such that Ey <, < Ey+ 7. Then ¢, ., is a contraction
and the above argument proves that

[Bgua(2k) = guo ()] < b and  |Y(zk) = y(z)] < o,

(note that ¢ is a pessimistic bound since Im(zy) is bounded away from 0). We notice
that it is sufficient to prove the statement of the proposition in the range, for 1 < a < 2,
kn /5 <1+11<a§%(10gn)%> <np<landfor 0 <a <1, ﬁn_%ﬁ(logn)%%, where

k > 0 is any fixed constant. Hence, up to increasing k, we may assume that scd < 7/3,
where s > 1 is large number that will be chosen later on.

To obtain a priori bounds for Y (2) —y(z) and |Eg,,,(2) — g..(%)| at z = z,_; from those
at z = z; observe that for any probability measure g on R and 0 < 5 <1,

’772 - 77£+1|

. . T
|gu(E + 2776)6 - gu(E + 177£+1)5| < 771—+5 < - (39)
14

p— 3 .
Using the above control with = Y7 (vy, €1)?dy, so that g,(z) = Ri1(z) we deduce by
applying with 5 = «/2 that

. . a . . a T
(=i (B +1ne))? — (—iRu(E +ineg)) 2| < 3
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and thus |Y (zx—1) — y(zk—1)| < 7. We get a similar control for Eg, ,(2x—1) by applying
(39) with 5 =1 so that

_ T _ _
M, (zp—1) <n ! (§ +cd + Sl;p Img,,, (2g)> <n 1(T + sgp Img,, (2)) = c1n L

Therefore, using Proposition [3.1], we find for some constant ¢ > 0.

Y (24 1) = P (V ()Y IX () = s, (Y (25))] <
From what precedes, it implies that |Y (zx—1) —y(zk-1)| < coc’d. We choose s large enough
so that ¢y < sc, so that we have ’cod < 7/3. Also, we may use . We find for some
new constant ¢”’,
BG4 (2k) — Gpua ()] < 76
Finally, if s was also chosen large enough so that ¢’ < sc, then ¢’d < 7/3, and we may
repeat the above argument down to ¢ = 0. 0

When « € (1,2), a bootstrap argument allows to improve significantly Proposition .
The idea is, in the spirit of [I2] that if the imaginary part of <X ,ROX > is a priori bounded
below by something going to zero more slowly than 7, then we can improve the result
of the key Lemma [3.3] Before moving to the proof, we state a classical deconvolution
lemma.

Lemma 3.7 (From Stieltjes transform to counting measure). Let L >0, 0 <e <1, K
be an interval of R and p be a probability measure on R. We assume that for some n > 0
and all E € K, either

Img,(E +in) <L or u ([E - g, E+ g]) < L.

Then, there exists a universal constant ¢ such that for any interval I C K of size at least
n and such that dist(I, K¢) > ¢, we have

1 I
w(l) — = /ImgM(E + z’n)dE‘ <c(LVetYnlog (1 + U) .
TJr Ui
Proof. Let us prove the first statement. We observe that
1 . 1 U
—1 =— | ————u(de) =P,
—Im(g,(y +in) = — /R =) +n2“( x) = Py x pu(y),

where P, is the Cauchy law with parameter 7. We thus need to perform a classical
deconvolution. We may for example adapt Tao and Vu [19, Lemma 64] (see also e.g. [14]
p.15]). Define
1 n
Fy) = = dx = P,(I —y).
) 7T/z(y—ﬂf)2+n2 =)
In particular

'M(I) - %/Jlmgu(EHn)dE‘ = |u(]) —/F(y)u(dy)

Now, the Cauchy law has density, P,(t) %ngitg. It follows that for {y € I}, {y €

I¢,dist(y, I) < |I|} and {y € I¢,dist(y, I) > |I|} we may use respectively the bounds

I C C|I|77
Fy)—1] < F(y)| < d [Fy)l= ‘
| (y) | =1 + dlSt(y, Ic)n_l ) | <y>| -1 + dlSt(y, ]),)7—1 an | (y)| - dlSt(y, I)2
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We write if [ = [a,b], [y =I°N[a—|I|,b+ |[I||NK and I, = I°N[a —|I|,b+ |I]]°N K,

1 c
I)—— |1 E+in)dE| < d
)=+ g, (5 inji] < [ gt

c
+ : d
/11 1 —{—dlst(y,l)nfl'u( v)
c/I|n
————u(d
+/12 dist(y,])Zu( v)
c

dy).
+ /Kc 1 —|—dist(y,])n‘1u( v)

However, by assumption if J = [E — /2, E +n/2] is an interval of size n with F € K,
. n
L > Tmg (E+z77):/—
g k(Y —2)?+n
We deduce that p(J) < 2£p. Now, consider a partition P of R into intervals of size 1. We
get from this last upper bound

() > o).

U=t
c C,U(J) CL?? ! -1
. ——p(dy) < Y —— <) < "Lplog(1+ [I|n).
/1 1+ dist(y, I¢)n 1+ dist(J, I¢) prt 1+k

JePnI

The other terms are bounded similarly. ([l

Proof of Theorem[3.5 In view of Proposition [3.6 and Lemma applied to Eu g and g,
it remains to prove statement (i) of Theorem . We thus assume in the sequel that
1 < a < 2. The proof is divided into five steps. Throughout the proof, we assume
that n > 3 (without loss of generality) and we denote by E;[-] and P;(-) the conditional
expectation and probability given Fj, the o-algebra generated by the random variables
(Xij)izj=2.

Step one : Lower bound on the Stieltjes transform. Let K = [a,b] be an interval which
does not intersect the finite set &,, defined in Proposition 3.6} The limit spectral measure
I, has a positive density on R. In particular, there exists a constant cqg = co( Koy, a) > 0
such that for all 0 <n <1 and z € K,

Img,, (z +1in) > co.
Consequently, if there exists 0 < n < 1 such that for all z € K,
. . Co
[Bgpa(@ +i0) = guo (x + )| < o (40)

then

o)

Elmg,, , (z +in) > EO.

Note that Proposition already proves that holds if n > nyq is large enough and

—€
Th="n -,

for some € > 0. By an inductive argument, we aim at proving that holds for the
same constants ng but for some 1 < njg.
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For some constant § > 0 to be defined later on, we set for 1 < a < 2,

logn . o
Noo = \/g\/ (n =32 (1 4 11<a<as3(log n)s=2e )) ‘

Note that 7 > n=*% for all n large enough (say again ng).

a+2

Step two : Start of the induction. We assume that holds for some 7, € [n™ "7, 1y
and that

. . 7—
Y (x4 im) —y(x +in)| < 3 (41)

where 7 was defined in . Let 0 < 7/ < 7 to be chosen later on. We are going to prove
that — hold also for
ne [m—7nim.

provided that 7, > 1., n > ng and ¢ large enough. As in the proof of Proposition [3.6]
cf. , if 77 is small enough, we note that implies that

. 2
¥ (@ +in) — y(o +in)| < 2% Y (@ tin) —yletim) <. (42)

1

First, by Weyl’s interlacing property holds for AM with ¢,/2 replaced by co/4 (71 >
n~1). Also it follows by Jensen’s inequality that for z = x + in, with x € K,

o n—1 %
(1) 2 Ui (1) 2
(ImRkk (Z)) = <§ : ()\(1) EPRTIE (v, ex) >

= 7' fImR})(2),
where we have used the fact n/(A" — )2 + ) < = which implies (n/((A") — 2)? +
n?))' /2 < /271 Note also that

In — m| < 7!

772 —1_7./'

ImR (2) — ImRY)(E + imy)| <

Hence, if 7/ is chosen small enough so that the above is less that ¢o/8, we find with
Cl = 00/16,

1 n—1 " a 1 n—1 a
En -1 kz; (ImR’IJC (Z)) = En —1 — ((ImR(I)(z)) )kk
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Now, for bounding from below

n—1

n i 1 Z (ImRIE:IIc)(Z>>g > ni 1tr {(ImR(l)(z))O‘/Q} , (43)

k=1

we observe that by Lemma [C.1| since /2 has total variation on [0,77!] equal to n=%/%,
that

P (n i Str {(ImRW(2))**} —E

Applying the above with r = ¢;n'~2 shows that for some § > 0,
P(A(2)9) < e,

! tr {(InRO) ()2} < r) < exp <_M> |

n— 2

where

N]])

A(z) := {n i 1tr{(ImR(1)(Z))%} > et } :

Note that this probabilistic bound is non trivial only if 7, > R i (recall that
l<a<?2).

Step three : Gaussian concentration for quadratic forms. For any z = x 4+ i € C,, we
may bound from below the imaginary part of
Q(2) = a;* Y Ry(2) X7,

k=1

on the event in A(z) € Fi. Indeed, as the ImR,SC), 1 <k <n—1, are non negative, we
can use Lemma to see that conditionnaly on JF,

n—1

ImQ(z) < (L 3 (ImR;Q(z)Gz) ) S—L(»)s. (44)

n—1
k=1

where the equality holds in law and S is a positive «/2-stable law whereas the Gj, are
independent standard Gaussian variables, independent from S. Moreover, if A(z) holds
then from (43)

n—1 o

Z (ImR,&?(z)) C>ean—1)n"2 > e(n—1)n max (ImR,&?(z))
k=1

Hence by Corollary [A.2] for some universal constants ¢, > 0, if A(z) € F; holds, then

Py ((Z I RD ()G < 8((n - 1)771—‘;)1/a> Jp——
k=2

which yields

o
2

P, (L(z)gan%*) < o (45)

Finally, we observe similarly that by Lemma [B.]

d =

Im(Q(2) + T(2)) = (X1, ImRYX,) £ L(2)S,
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where conditonnally on Fy, S is a positive a/2-stable law, independent of L(z). Moreover,
if n > cn~2, the random variable L(z) satisfies if A(z) holds, the probabilistic bound

Py <fj(z) < (57]%’1) < gt
We may thus summarize the last two steps by stating that if n=%/2 <, < 1 holds then
P (I1(2)%) < 3exp(—dnn?).
where z =z 4+, x € K and
T(2) = A(z) N {L(z) > 577%*1} N {z(z) > 57;%*1} .
(recall that 1 < o < 2).

Step four : Improved convergence estimates. We next improve the results of Proposition
for our choice of z = x +in, v € K. We write instead of

Y() 1) < SEET IR [(SAS) TG + 0 PG, (46)

IN

X(2) = J()] < (00 E[(S AS) TG + 0 PII(=)). (47)
Then from Lemma and , there exists p > 1 (depending on «) such that

1 | M,
(]E|T(Z)|p);17 S C (n_i + 7(1 + 11<a§4/3 log n)) .

From Holder’s inequality and Lemma we deduce that for some new constant ¢ > 0,

E [(S’ A g)_2|T(z)|] <c (n_}x + @(1 + Lica<a3 logn)> .

From —, it follows that for n=%/2 <1, < 1 and some new constant ¢ > 0,
Y (2) = 1(2)| V[X(2) = J(2)]

| M,
< cn_Q(%_l) (n_}l + 7(1 + 1ica<a/slog n)) + 3~ L exp(—dnn?).

Note that n 2@ Vp=a < 1if p > n T > 12 while n~lexp(—dnn?) < 1 if
(26n/logn)~'/2 < 5 . Note also that this last expression improves upon Lemma
and then Proposition |3.1| can be improved into

Y (2) = 0a,(Y(2))| VX (2) = %0, (Y(2))] (48)
< 07772(%71) <n‘i + 4/ %(1 + Lica<asslog n)) +en inTi 4 enpt exp(—dnn?).

Then, by we may use the bound (38). From (35]), we thus obtain, for (26n/logn) /2 <
771 S 1a

8—3«a

[ M, _88a 1
nMn(Z) S C+C77_2(%_1) 7(1+11<a§4/3 log n) = C+C77 2a M é nMn(1+1l<a<4/3 10g n)
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We deduce that, for some constant ¢ > 0, if n,, <n; <1,

nM, < c.
So finally, from —, we find that for 7, <n; <1,
BG4 (2) = Gua (2)] (49)

< e T e n 3 (14 Licacysslogn) + cantexp(—dni?).

Step five : End of the induction. From —, we deduce that if tn,, < n; <1 and ¢t
large enough, then

Co
Egua(2) = gua(2)] = 5 and - [Y(2) —y(2)] <
We have thus proved that — holds also for our choice of 7.

The argument is completed as follow. Let K = [a,b] be a compact interval that does
not intersect &,. Starting for 79 = n™%, by applying m times the induction, we deduce that
holds for 1,, = 1,1 —7'n?%,_,. Since this sequence vanishes as m goes to infinity, and,
for some m, we have tn. < N, < 2. We deduce that for all n large enough (say ng),
holds for z = = + in, with tn., <7 <1 and K = [a,b]. The statement follows. [

Wl

4. WEAK DELOCALIZATION OF EIGENVECTORS

Following Erdds-Schlein-Yau [12], from local convergence of the empirical spectral dis-
tribution (Theorem , it is possible to deduce the delocalization of eigenvectors. Using
the union bound, Theorem follows from the next proposition.

Proposition 4.1 (Delocalization of the eigenvectors). For any 1 < o < 2, there exist
d,¢ >0 and a finite set £, C R such that if I is a compact interval with INE, = 0, then
for any unit eigenvector v with eigenvalue X € I and any 1 <1 <mn,

(v, e5)| <g Zn "1 (log n),

where p is as in Theorem[1.1] and Z is a non-negative random variable whose law depends
on (a, I) and which satisfies
Eexp(Z°) < oo.

Proof. Let &, be as in Theorem [I.1} The density of p, is uniformly lower bounded on I
by say 4e > 0. We set

logn o a
n=c ( & V (n_@(l + 11<a<4/3(10gn)823‘”)>> )

n

where the constant c; is large enough to guarantee that for any interval J of length at
least n in I we have |Epa(J) — pa(J)| < 2¢]J|. Then, we partition the interval I = Uyl,
into con~! intervals of length 1. From what precedes we have for any 1 < ¢ < cyn™t,

E/LA(IZ) > 2€|]g|
Now, by Lemma [C.1], the event F), that for all 1 < ¢ < cyn™!,
pra(Le) > Epa(le) —e|le| > €|,



EIGENVECTORS OF HEAVY-TAILED RANDOM MATRICES 25

has probability at least 1 — con~t exp(—ne2c2n?/2) > 1 — cexp(—cn?) for some constants
c,0 > 0.

Let v be a unit eigenvector and A € I such that Av = Av. Set v; = (v,e;). We recall
the formula

vf = (14 a, (X, (A = 0)72X0)) 7,

with X; = (X19,---, X1,) € R" ! and AY is the principal minor matrix of A where the
first row and column have been removed. We may now argue as in the proof of Proposition
: for some 1 < ¢ < con™t, A € I, and it follows

-1

2 2 2 2 (1)\2
vy < a,c3m E (X1, u;77) )
inWer,

where ()\(1) u(l)), 1 <i <n—1 denotes the eigenvalues and an eigenvectors basis of AW,

i 0

We rewrite the above expression as
v? < d2ntdist A X, WW) = a2 (X, PLX,) 7 (50)

where W) = vect {u(l) 1< <n—1, /\El) ¢ ]g} , and P is the orthogonal projection

i

on the orthogonal of W™ . The rank of P; is equal to
NV =H1<i<n-1:A"Y e} =n—1—dimW®).
From Weyl interlacement theorem, we get
npa(l) —1 < NV <npa(l) + 1. (51)

From Lemma , there exists a positive «/2-stable random variable S and a standard
Gaussian vector G such that

dist? (X1, W) £ || P,G|2S.
By Corollary and (51)), if n is large enough, on the event F,, with probability at least
2
1 —2exp (—5%) > 1 — 2exp(—cn®)
Nna
the lower bound
1
|PGlla = 6 (ecsnn)®

holds. Let us denote this enlarged event by F,,. Hence, for some ¢ > 0, on F},, we have
from ([50))

’U% < Cn2(171/a)571.

In summary, we have shown that

|U1| S C?’]l_l/aS_l/Q—’—lFﬁ,
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where ¢ has probability at most cexp(—cn?), for some ¢ > 1. For 0 < ¢ < 1, it yields,

|v1] g —6'/2 §'(1/a—1)
Eexp{(cnll/a < Eexp{S +n 1@}

\/E62s—6’/2Ee2n5’(1/a—1)lpﬁ

< \/E@QS?g//Q(l + 62”5//206—0”5),

IA

where we have used that 7 > 1/n and o < 2. Using, Lemma , if ¢’ is small enough,
the above is uniformly bounded in n. This gives our statement for any §” < ¢§'. OJ

5. ANALYSIS OF THE LIMIT RECURSIVE EQUATION

We next turn to the analysis of the limiting equation describing the resolvent, in case
a < 1. Let H be the set of analytic functions h : C, — C, such that for all z € C,,
|h(2)] < Im(z)~!. We also consider the subset H, of functions of H such that for all
z € Cy, h(—2) = —h(2) . For every n and 1 < i < n, the function z + R(z); is in
H. It is proved in [5] that R; converges weakly for the finite dimensional convergence to
the random variable Ry in Hy which is the unique solution of the recursive distributional
equation for all z € C,,

Ro(z) £ — (z + ZﬁkRk(z)> , (52)

k>1

where {&;}r>1 is a Poisson process on R, of intensity measure %x%’ldx, independent
of (Rp)k>1, a sequence of independent copies of Ryg. In [B], Ro(z) is shown to be the
resolvent at a vector of a random self-adjoint operator defined associated to Aldous’
Poisson Weighted Infinite Tree. We define C, = {z € C : Im(z) > 0} = C, UR. In the
following statement, we establish a new property of this resolvent.

Theorem 5.1 (Unicity for the resolvent recursive equation). Let 0 < o < 2/3. There
exists B > 0 such that for any z € C, with |z| > E,, there is a unique random variable
Ro(z) on C which satisfies the distributional equation and E|Ry(2)|2 < +o00. More-
over, for any 0 < k < «/2, there exists Eo, > Eo and ¢ > 0, such that for any z € C
with |z| > Eq

EImRy(2)? < c¢Im(z)".

In particular, if Im(z) = 0, Ry(z) is a real random variable.

The main part of this section is devoted to the proof of Theorem We will then
analyze its consequence on our random matrix and prove Theorem in section 5.4l As
usual, it is based on a fixed point argument. However, as Ry is complex-valued, it is not
enough to get a fixed point argument for the moments of Ry as was done previously in
[3, 2]. Instead, we prove that moments of linear combinations of Ry and its conjuguate
satisfy a fixed point equation. We then show that this new fixed point equation is well
defined and for sufficiently large z, has a unique solution.
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5.1. Proof of Theorem We shall give the proof of Theorem in this section,
but postpone the proofs of technical lemmas to the next subsection. By construction
H(z) = —iRy(z) € K, as well as H(z) = iRy(z) € K; (recall that for 3 € [0,2] ,
Ks={z€C:larg(z)| < %}) For ease of notation, we define the bilinear form h.u for
h € Candue K] =K, NC, given by

h.u = Re(u)h + Im(u)h.
Note that if h € Ky then h.u € ;. We set
vo(u) = T(1 — %)E(H<z).u)% € Kao.
We let C,, (resp. C.,) denote the set of continuous functions g from K to Koo (resp. C)
such that g(Au) = A*/2g(u), for all A > 0. Then, for /2 < 8 < 1, we introduce the norm

lglls = max|g(u)] + max 9 =9l
uest

. . /j_ﬂ
.Ul A\ |1.u 2
max, S (il Al

where S} = {u € K{,|u| = 1}. We then define Hz (resp. H};) as the set of functions g
in C, (resp. C/,) such that ||g||s is finite. Note that ||g||s contains two parts : the infinite
norm and a weighted S-Holder norm which get worse as the argument of u or v gets close
to 7/4. Notice also that HJ; is a real vector space and Hg is a cone.

The starting point of our analysis is that -, belongs to Hg.

Lemma 5.2 (Regularity of fractional moments). Let 0 < a < 2 and z € C,,

- Let Ro(2) be a solution of such that E|Ry(2)|2 < +o0o. Then forall0 < 8 < 1,
all z € C,\{0}, E|Ry(2)|? < c|Re(2)|™# for some constant ¢ = c(a, 3).

- Let H be a random variable in K, such that E|H|% is finite. If we define for
u € K, y(u) = E(H.u)>, then v € Hg for all a/2 < B < 1 and ||v||s < cE|H|>
for some universal constant ¢ > 0.

Let h € K; and g € Hg. We define formally the function given for v € St by

g e & e o0 « 7 g 7 g 2
Fi(g)(u) = / df(sin 29)5_1 / dy y_Z_l/ drrilemrhe’ <e‘“29(6 ) e_yrh'“e_r29(59+y“)> )
0 0 0

We next see that F_;, is closely related to a fixed point equation satisfied by 7.,.

Lemma 5.3 (Fixed point equation for fractional moments). Let z € C,, 0 < o < 2 and
Ro(2) solution of such that E|Ry(2)|> < +oo. Then for allu € K,

'Yz(u) = CaF—iz('VZ)(a)7

where
o

Co = 25T (a/2) T (1 — a/2) and @ = Im(u) + iRe(u).

To prove this lemma, we will properly define and study the function F}, at least for
some values of (h, a, ). We shall prove that

Lemma 5.4 (Domain of definition of F},). Let h € Ky with |h| > 1,0 < o < 1 and

such that
o

[0
— <<l ——
2 b 2
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Then Fy, defines a map from Hg to Hj, and there exists a constant ¢ = c(«) such that
1Ew(9)lls < clnl =2 (llglls + 1)-

We could not prove unfortunately that Fj, is a contraction for ||.||s but for a weaker
and less appealing norm on Hj; which is given for ¢ > 0 by :

: l9(u) —g(v)] . e
= max |g(u)||i.u|* + max ————— (|i.u| A |i.v .
gl = maxloCullial® + max, Fe =8 (il Aliv)
It turns out that the map F}, is Lipschitz for this new norm if « is small enough.

Lemma 5.5 (Contraction property of Fy). Let h € Ky with |h| > 1, 0 < a < 2/3,
a2 < f<1l—a/2and0 < e < (1 —3a/2) AN (B — «/2). Then there exists a finite
constant ¢ = c(«, B, €) such that, for all f,g € Hp,

1R (f) = Fn(@)llge < el (L + [ flls + lglla)lf = glls.e-

We can now turn to the proof of Theorem To this end define the map G, on Hg
G,:g— (u— coF_i.(9)(n)). (53)

Then by Lemma , if |z| is large enough, any fixed point g of G, satisfies ||g||s < ¢o/2
for some constant ¢y = co(ev, ). By Lemma [5.5] for any 0 < e < 1 —3a/2, if |2| > E,.
is large enough, GG, satisfies

L+ [1flls + llglls

1G.(f) _GZ(Q)HB,E < 1+ 2

Thus, by Lemma , 7. is the unique solution in Hg of the fixed point equation v, =
G.(7.). However, by Lemma [5.8) below, the law of Ry(z) which satisfies is uniquely
characterized by its fractional moments .. Therefore, there is a unique solution to this
recursive distributional equation.

1f = glls.e-

To prove the estimate on E[ImRy(2)*/?], we start by proving that ImRy(E) vanishes
almost surely. Indeed, we first note that when z = E # 0 is real, there is a real solution
of the fixed point equation 7, = G,(7.). Let us seek for a probability distribution Pg
in R such that holds. We recall that if y; are non-negative i.i.d. random variables,

independent of {&;}x>1, then Y, yxy is equal in law to (]Eylg)% Ypbeand S =5, & is
a non-negative «/2-stable law. Thus, using the Poisson thinning property, by definition

Pg has to be the law of
. (E + a2/aS . b2/aS/)_1
if S and S’ are independent a/2-stable positive laws and a = [ max(z,0)*2dPg(x),
b= [ max(—z,0)*2dPg(z). We find the system of equations
a/2

a = E((E+a2/as_b2/a8/)fl) ’

a/2

b = E((E+d**S—p"5)")T,
(where we have used the notation (z); = max(z,0), (x)- = max(—=z,0)). Notice that
aS — bS’ is an a//2-stable variable, it has a bounded density. Hence, for any 0 < o < 2,
|E + a®/2S — b*/28'|7%/2 is perfectly integrable. Thus, by construction jz(u) = I'(1 —

9) [(—iu.z)2dPg(z) belongs to Hg and it is a fixed point of G. This insures the existence

of a,b > 0 and also the fact that Pg is the law of Ry(F) as soon as E is large enough so
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that G is a contraction. To consider 7, with small imaginary part, we need the additional
lemma

Lemma 5.6 (Continuity of the maps F}). Let 0 < o < 2/3, a/2 < < 1 — /2,
0<e<p—%and0 <k < a/2. There exists a constant c = c(a, B,k) > 0, such that for
any h,k € Ky, |h|,|k| > 1, and g € Hp

1Eu(9) = Fi(9)lls.e < c(|Al A kD)2 h — kI"(L + [|g]l)-

Set z = E +in with |E| > E, . and let 0 < 5 < /2. Then, by Lemma [5.6] we have
e = :llse = 1Ge(ve) — Ga(3:)| < |Ge(vE) — Go(vE) |5 + 1G=(7E) — G=(7:) 5.
< cETTT (14 o)yt + %IIVE — Yzll.e-
Hence, for some ¢ = (o, 5, k), we deduce

lve — Y=l < ™.

Then, since yg(e'T) = 0 as g is real, for any u € S,

o a i iT
M- DEmMA)E = hale's) — (')

) = )]+ Prp(e) = ()] + () = 1 (w)]

ST

2 e = ellselioul ™

c”]u—eiﬂ% —|—c”fr]“|u—ei%\*€.

RAC
clu—e

IAIAIA

Choosing u such that |u — €| is of order nﬁ, we deduce that for all z = E + in with
|E| > E,., EImRy(2)? is bounded by na+2 up to a multiplicative constant. Since & > 0
can be arbitrarily small, this concludes the proof of Theorem [5.1]

5.2. Proofs of technical lemmas. We collect in this part the proofs of a few technical
results used in the proof of Theorem [5.1}

5.2.1. Proof of Lemmal5.9 (Regularity of fractional moments). If Re(z) = E,
[Ro(2)| < |B = _ &Re(Ri(2))[™

where Y Re(Ri(z)) is equal in law to a.S — bS’ for two non-negative constants a, b and
two independent stable laws S, S’. Assume for example that £ > 0. By conditioning on
S’ and integrating over S, we deduce from Lemma that there exists a finite constant
¢ = c(a, B) so that

E|Ry(2)|]° < E|E —aS +bS'|7? < cE|E+bS'|7° < cE~P.
In particular, as 1 goes to 0, any limit point Ry(E) of Ry(E +1n), solution of , satisfies
the above inequality. The conclusion of the first point follows.

To prove the second point, we notice that it is straightforward that v belongs to C,.
Moreover, for any § € [§,1], there exists a constant ¢ = c(a, ) such that for any z,y in

]Cla
22 —y3| < clz —y|® (Ja| Aly)Z ", (54)
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Also, we have, for u € K and h € K1,
li.u||h| < |h.u| < V2ul|h]. (55)

Indeed, if u = s +it, s,t > 0, then |h.u|* = Re(h)?(s + t)* + Im(h)?(s — t)?. This last
expression is bounded from below by |h|*((s + t)? A (s — t)?) = |h|*(s — t)? = |i.ul?|h]?.
While it is bounded from above by |h|?((s + t)? + (s — t)?) = 2|h|*|u|?.

Now, using Jensen inequality and , we find
E(Hu)®| <E[(Hu)®| < (V2|ul)2E|H|?,
whereas and imply
|E(H.u)? —E(H.v)?|

IN

E|(Hu)? — (Huv)?|
< cE|H.(u—v)]® (|Hu| A|Hv|)2 ™"
< 28 lu— | (Jiu| A liv))2 P E|H|5.

This completes the proof with ||v|/s < (\/5% + 02§> E|H|z.

5.2.2. Proof of Lemma (Fized point equation for fractional moments). Write u =
uy + iug and —iz = h € Ky. By definition

I N
V(u) = F<1 2)E<h+zk§ka+h+Zk§ka>

_ F(l—g>E ah+zk£kgku :
2 h+ &t )

We use the formulas, for all w € Ky, v > 0,

el 7= (@)@ = PO [ dadyar e
0,00

- F(’Y)2217/2 d@sin(29)71/ dr 27— 1e—rew

0 0
and for 0 < v < 1,

oo
w? = ~T'(1 —7)_1/ drz™ 771 —e ™).
0
Formally, we find that +,(u) is equal to

: sy [T a_q

ca/ df sin(20) 2~ / deax™ 2~
0 0
% / dr T,afl]E <€frew.hfzk Epre’ Hy 67(r6i9+ml).hfzk §k(rei9+xﬂ).H;€> )
0

If we perform the change of variable x = ry and apply Levy-Kintchine formula : we
obtain the stated formula. The exchange of expectation and integrals is then justified by

invoking Lemmas [5.2] and [5.4]
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5.2.3. A key auxiliary lemma. The next lemma will be used repeatedly.

Lemma 5.7 (Consequences of [2 Lemma 3.6]). Let 0 < a <2, v >0 and 0 < k < 1,
there exists a constant ¢ = c(«,7y) > 0 such that for all h € Ky and x € K,

o [0
— — —r2
/ rY 1e rhe T2z .
0

For all b,k € Ky and x,y € Ks,

o0 h a a
y— —r ( —r2x —r2 y) l
0

(&3
1 —r7 _ _
‘/ T’yleraz(erh €Tk>d’f’
0

For all x1,29,y1,92 € Kg,

(o7 (e} (e}
_ — 7 —r2 —r2 —r2
‘/ = 1 rh r2x e " y1> (6 r2xo e " yg)) dr

<C |h| - 2|951—$2—y1~|-y2|+|h| - O‘(|931—$2|+|y1—?J2|)(|931—?Jl|+|i’32—y2|))-

< c|h|™. (56)

< clh| 2z —y), (57)

and

< c([M A TRD ™7 B — K" (58)

(59)

Moreover, for all h,k € Ky, z,y € Ka, for 0 < rx <1, we have

o h k 3 3
r’T (e’T —e " ) <6’T T —e " y) dr
0

and finally, for all 0 < K1,k < 1, hy, k1, ho, ko € Ky, with N = |hy| A [k1| A |ho| A k2],

< c(|hl AR T2 = k|l —yl, (60)

0 (07
— — — — — —r2
/ rY 1 (6 rhy e rhy e rk1 te T‘kg) e 2% dr
0

<N Ry — hg — ky + ko™ + eNTTTRTR(hy — ho| + |k — E2|)™(|ha — k1| + |he — ko| )™

(61)

Proof. The bound is [2, Lemma 3.6]. The bound follows from by taking
derivative and using the convexity of Ka. For (58), assume for example that [k < |k].
From (56), we may assume that |h — k| < |h|/2. Then taking derivative, we find

/ T'y—le—r%m (e—rh o e—rk:) dr
0
where N = min{|th + (1 —t)k| : 0 <t < 1}. Since |h — k| < |h|/2 then N > |h|/2 and
‘ / T'y—le—r%m (e—rh _ e—rk) dr
0

To prove ((59)), and , we need to take derivatives and use the first inequalities.
Namely, for (59), we define the function on [0, 1],

(P(t) — /OO r'yflefrh (efr%x(t) . efr%y(t)> d?”,
0

< eNHh— k|,

< BT R — k| < e|h| TR R — k|
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with z(t) = tx; + (1 —t)x2 and y(t) = ty1 + (1 — t)y2. We are looking for an upper bound
on |p(1) — ¢(0)]. A straightforward computation yields

gol(t) = / T’YJF%*lefrh <(SC1 _ x2)€7r%z(t) _ <y1 . y2>€7T7y(t)> dr
0
— (21— ) /"O pIts—1,-rh (e—r%x(t) _ e_r%y(t)> dr
0

+(r1 — 22 — Y1 + yz)/ s lerhe=r ) gy,
0
By convexity, we note that z(t), y(t) are in Ka. Hence using and (57)), we may upper
bound |¢'(t)], up to a multiplicative constant, by
P77y — @ol |2 (t) — y(B)] + 7% |21 — 22 — y1 + o
< Ry = @l lwy — | V[ — yol + [T R my — o — 1 + 0.

This completes the proof of (59). For , we first first notice that splitting A and &
and arguing as for the proof of (58)), it is sufficient to prove the statement for |h — k| <
(|h|A|k|)/2 and k = 1. Then, with h(t) = th+ (1 —t)k, we consider this time the function

P(t) = / P lemmh®) (e’r%x — e””%y) dr,
0

and take the derivative. We find that it is proportional to (h — k)(¢(1) — ¢(0)) with the
previous function ¢ with ~ replaced by v+ 1 and 1 = 29 = x,y = y; = y». The bound is
therefore clear. The proof is identical for the third statement for Ky = ko = 1. As above,
we then generalize it to any 0 < k1, ko < 1 by using the rough bound given by . U

5.3. Properties of the map F'.

Proof of Lemma[5.4 We start by proving that for all u € S}, for h € Ky, |h| > 1,

[Fu(g)(w)] < elhl~2(llglls +1). (62)
By Lemma for h € Ky, the map on Ka given by

a S
a_1 —r2
X > / d?“?“2 16 The x,
0

is bounded by c|h|~*/? and Lipschitz with constant ¢|/h|~®. Let 7' > 0 to be chosen later
on. From and (B6), for 6 € [0, 5] and h € K1, u € Sf, g: K1 = Ka, we have

2
0 oo »0 o ~0 (07 .9
/ dy y—%—l / dr T%—le—rh.el (e—rfg(el ) e—yrh.ue—r‘?g(eZ +yu))‘
T 0

S/ dyyfgfl (’/ drr%fle—rh.eweﬂn%g(ew)
T 0
o0 yia

51 00 y—%—l
SC d ﬁﬁ—C/ d . X ]
/T YinElieeE T Y IREL (e 1 yu)[E

T _% «
6 — —) 7%
e, (63)

+

0o
/ dr rgflefrh.(ele+yu)efr% g(e?+yu)
0

< |72
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where we have used the fact that |i.e?| = | cos§ — sin@| > c|f — 7 /4| and the control, for
any real ta 57 T > 07 any v < 2, M 7é O (here Yo =—"N = 04/2),

o0 y’Yl—l N , oo x’yl 1 , . - .
_J — 1—Y2 |+|—7 e L1 51—z S,
/T lyt — o dy = || It| /Tltl o + 1|72 x < c(T8]771,, <0 + |0| 1t 1, 50)

(64)
where the sign depends on whether or not ¢, have a different sign.

For the integration over y in the interval [0, T, we find similarly by that

A = / dyy 2! / S (e_’"fg(e“‘)) — e"”7g(619+yU)>‘
0 0

R |
< o[ avt W\g( ) = gle” + ).

i
Recalling that g(2) = |2|2 g( ) and using (54))-(55) we find that there exist finite constants
/

C,C" so that for all z, 2 € IC
B r\ 28
a o a z .z
gl <||z\2 L el DR - (|@| NA;@W) )

< Cllgls (A A DEP + (a2l Aliz)ETP) |2 =27
< lglls(fizl Ali2]) 270z = 27, (65)
Using the fact that |e? + yu| > 1 as u,e?? € S;",y > 0, we find with that

) T P51 T yB=5-1
A < clh|7i.e” |« /d — a‘i‘/dﬁ)
il ([t [

—a T, _ 5 _«a _a
L 773 gl 77, (66)

l9(2) — 9(z)]

IN

where we have used that § > «/2 to obtain a convergent integral.

In the integration over y on the interval [0, 7], we have left aside the term

T o)
/ dyy 3! / dr 3t g=r ol (1 _ gmvrhar)
0 0

We shall use this time the third statement (58) of Lemma with k = 1. We choose
T = |i.e?]/2 so that for all y € [0, 7] from (55))

. . 1 .
h.(e® + yu)| > |hlli.e?| — V2|h|T > (1 — —=)|hl|]i.e?|.
|h.( yu)| > |hl|i.e”] AT > ( \/5)| |Ji.e”]

For this choice of T, we get

T (o]
/ dyy 27"
0

T y‘f _a_
d — < /d|n” 67
Finally, using our ChOlce of T, we deduce from ,, that

0 S (i S (010

—-S— - g —r2g(et — —r2g(et

/ dyy 2! / d”f’?“2 16 rhee (6 r2gle )—6 yrh'ue r2gle +yu)>‘
0 0

00
/ dTT‘2 -1 —rh et? —r2g(ew+yu) (1 o e—yrh.u)
0

o
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is bounded by c|h|72|6 — Z|=*(1 + ||g||5) for |h| > 1. We obtain since
10 — £|_“(sin 20)5 1

is integrable over [0, 7/2].

The proof of the lemma will be complete if we prove that for all u,v € S},
|Fi(9)(w) = Fa(g)(0)] < clu— vl (liu| Aliw))22(1+ [gllg) k]2, (68)

To do so, we fix § € [0,7/2] and assume for example that [|i.(e? + yu)| < |i.(e” + yv)|.
We first use the Lipschitz bound , together with , and write

/ dyy 2!
0
_a_1

o Y2 i i0
gc/’@ v (e + yu) — e + yv)|
o VI + gu)e

00
/ dr T%—le—rh.e“9 <€—yrh.ue—r%g(ei‘9+yu) . e—yrh.ue—r%g(eig—i-yv)) '
0

yime !

< c|h| % —v|? / d : =
—a T . o
< hl = ollglls |0 = 5| il ALl 37, (69)

where we have used with vy =08 —a/2>0and v, =k > 7.

Now, in our control of
o0 a o o 0 S (0 F (i
/ dy y—i—l / dr rg—le—rh.e (e—yrh.ue—r 2g(e+yu) e—yrh.ve—r 2g(e +yv)>
0 0

we have so far left aside

0 0

where |i.(e? + yu)| < |i.(e? + yv)|. By applied to k = f3,

o0 [e% .
/ dr T%—le—rh.(ei9+yu)e—r7 g(e?+yv) (1 i e—yrh.(v—u)) ‘
0
is bounded up to multiplicative constant by
[P 7Pl + yu) |72 P o — uf”.

Using again (64) with 0 < = f — /2 < 75 = 4+ «/2 yields

/ dyy 2!
0

oo o .
/ dr T%—le—rh.(ew—i-yu)e—r?g(e“g—i-yv) (1 i 6—yrh.(v—u))
0

< elh|75 Pl — 0P8 |iu| 2P + Jiv]2 7P (70)
We may conclude the proof of by noticing that the bounds given by — and
mutliplied by (sin 26)2~! are uniformly integrable on [0, 7/2]. O

We can now build upon the proof of Lemma [5.4] to get proofs for Lemmas [5.5 and [5.6]
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Proof of Lemmal[5.5. We shall now use the norm ||.||s. for which we have the following
analogue of : if0<e<pB—g, forallzz e K,

7 < Il ()
b= BT e
) (2] v |2/]) 2t "B
_ < — B
We start by showing that for any u € St,
[Fn(g)(w) = FR(f)(w)] < clb|~ (L +[|flls + lgllp)[If — glls.eli-ul = (73)

The proof is similar to the argument in Lemmal[5.4 We notice that F,(g)(u) — Fj(f)(u)

is equal to
/Qde(smze)%‘—l/ dyy—‘z“l/ drr>='Z(r,y,0),
0 0 0

where, with g, = g(e? +yu), f. = f(® +yu), h, = h.(e? + yu),
7 = e Tho (efr%go _ e—r%f()) — e (efr%gu _ efr%fu>

h h Pl Pl h bl bl g Pl
= (e_" 0O —e™" “) (e_r Ju 7" f“) + e (e_T 9 _ 2o _ o2 9u 4 7T f”) )

We set § = —i.e?? and t = i.u. On the integration interval [T, 00) of y we use the first
form of Z and treat the two terms separately. As in Lemma , we use and to

find
5—1 —rh, —7 2g —r2 —rh —7 zg —7r?2
drrz <6 O(e °—e fo)—e "(6 “—e f“))
0

‘/idyygl
T

) —a«_1 00 a1 Qe
y 2 f —gllse l/ y 2y VIAf —gllse
< c/ dy ~+c dy :
T |h||6]ate T |h|o|ty — §|o+e

< AT = gllp(T7207 + 67t 7).

The above computation requires the hypothesis € > 0 to insure that the control of the
integrals hold following with 1 # 0.

For the integration interval [0,7) of y we use the second form of Z and choose T' =

|i.e|/2 = |8]/2. We use (60)), and kK = /2 + ¢, we find
T k—5—1 _
SC/dyy IS = 9lls.e
0

T o0 o @
-2 21 ( —rh —rhy —r2gy -2 fy
/0 dyy~ 2 /0 drr? (e rho _ =T )(e e 7T ) [Jarr|glatte

_Ba__ o _3a__
< AhT2 702 TELf = gllsee-
Similarly, by and , and , our choice of T' gives

T I g g g g
dyy 2~ drrz""e "™ (e_r 9o _ gm0 __eTrgu 4 o7 f“)
0 0

Ty N — gllgeld| P Lyt U Nl + gl =L — g
g C dy o o +C dy 3a 3a
0 |h]*[d] 0 |h| = |0] =
ol B3a_ a3
< A0 TE S = gllpe + TR 1017275 ((1f s + Nlglls)I]Lf = glls.e-
Since 3a/2 + ¢ < 1, we may integrate our bounds over # and obtain ([73]).

B,f-:|5|_8
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The proof of the lemma will be complete if we show that for any u # v € S;", with
li.u| < |iv],
[Fn(g)(uw) — Fin(f)(u) — Fi(g)(v) + Fi(f)(v)] (74)
< el (U4 s+ Nls) 1S = glacliaal o,

The proof is simpler than in the previous case as we do not need to consider separatly
the cases where y are small or large. We set § = —i.e”, t = i.u, t' =i, [t| < |¢'|. Using

(60) with k = 5 and , we find
/ dyy 2! / drre=t (e7m — e (e*’"%gu _ ergfu)‘
0

0
—a— _3a_ a_ |yl —B—
< AP lu = oIl f = gllg(16]7= ~[¢]277 + o]~ [t 777).

Moreover, using again , , and we find
/ dyy 2! / drrs~temhe <e’T%9’J S E e e’r%f“)
0 0
N C/""dy ' u— oty = 315 P(IIflls + llgllp) I f — gllpe(LV ya )ty — o]~
: %ty - )%
—« _3a_ a_ ol —B—
< A = o7 (1 + ([ flls + glla) 1 f = alls(10]7= 75t 277 + [a]7[¢]77%).

Now, by assumption, 3a/2 + ¢ < 1 and we may integrate our bounds over # and obtain

(74). O

Proof of Lemmal[5.0. The proof is very close to the previous one, and we simply outline
it. We assume for example |h| < |k|. By Lemmal5.4} we can also assume that |h—k| < |h|
and in particular |k| < 2|h|. We first prove that for any u € S%,

|[F(9) (1) = Fi(g) ()] < elhl™ 27" h = k|*(1 + |lglls)- (75)
The expression Fj,(g)(u) — Fi(g)(u) is equal to

/d@(sinze)‘é‘—l/ dyy—‘i—l/ drr:='Z(r,y,0),
0 0

0
where, with g, = g(e? + yu), hy, = h.(e? +yu), k, = k.(e? + yu),

7 = e—r%go (e—Tho o e—rko) o e—r%gu (e—rhu . e—rku)

o o (e}
—r2 —r2 — — —r2 — — — —
_ (6 r2go e r gu> (6 rho e rko) e T2 gy (6 rho e rko e The, e rku) )

Let T > 0. We set 6 = —i.e” and ¢t = i.u. On the integration interval [T, 00) for y, we
use the first form of Z. Then, from in Lemma we find

[e%e] oo a a
/ dy y—%—l / dTT’%_l (e—r2g0 (e—rho . e—rko) i e—r2gu (e—rhu i e—rku)>’
T 0
<c

>y 2 b — k" * oy IV yS)|h — k|
/dyy2a!a!+c/dyy2a( y")lh — k|
R R T [z |ty — o2

< [T = K|F(|8] 72T 4 0|2 TR,




EIGENVECTORS OF HEAVY-TAILED RANDOM MATRICES 37

where we have used that x < «/2. On the integration interval [0,7") for y, we use the
second form of Z. We choose T = |i.e®?|/2 = |§]/2. For the first term, by in Lemma

.1
T 00 o o
/ dy y_§_1 / dr T§_1 <6_7"290 _ 6_7"29u> (6—7"}10 _ e—TkO)
0 0

<o [[ay LR
= EEREE

< RO = M glls-

The second term is easily bounded by with k1 = k and ks = 0. Integrating our
bounds over 6, we obtain (75]). The proof that for all u # v € S}, with |i.u| < |i.v].

[Fh(g)(u) — Fi(g)(u) — Fi(g)(v) + Fi(g)(v)] (76)
< clu—vlliul 2T (L lgllg) Al F [ — kI

is easier as it does not require to consider separatly small and large y; we leave it to the
reader. 0

5.3.1. Computation of characteristic function. With the notation of proof of Theorem

, we define for z € C, u € K,

Xz(u) = Eexp(—u.H(z)).

We note that the distribution of Ry(z) is characterized by the value of y, on any open
neighborhood in K. The next lemma asserts that the distribution of Ry(z) is also
characterized by the value of 7, on Kf (that is on ST by homogeneity).

Lemma 5.8 (From fractional moment to characteristic function). Let z € C4, 0 < a < 2
and Ry(z) solution of such that B|Ry(2)|2 < +o0. For all u = uy + iuy € K,

_(mizs? Gt (s 2
Xz(u) = / Ji(s)Ji(t)e T Aee 72(4“1+24Z‘2)d8dt
R2

- ~ERE r-g) () - ~CE r1-$)nlidy)
—/ Ji(s)e” e 2720 s —/ Ji(t)e Tz e 2w dt + 1.
0 0

2

where J1 () = 5 150 % is a Bessel function of the first kind.

Proof. We use the formulas for w € Ky,

(see [?]) and for z, 2’ € C,

e * % = (I—e7?)(1— e_zl) —(1—-e7)—(1- e_zl) + 1.
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Then, it follows from that

efulH ug H = exp|— : Uy — "2 —
—1z+ Zk21 §pHy, iz + Zk>1 Se Hy
im0 3, g ((Hest L Bat?
Ji(s)Ji(t)e T Aeme = k( B g >dsdt
=

o0 _(—iz)s? Hys? oo _ (i5)t? Hy,t?
—/ Ji(s)em e 2k ur —/ Ji(t)e ™z e "Xk g 4 1.
0 0

Since J; is bounded on R, we may safely take expectation. The conclusion follows from
Levy-Khintchine formula. U

II=

5.4. Proof of Theorem [1.3] We start with a simple lemma which relates W; (i) to the
diagonal of resolvent.

Lemma 5.9 (From eigenvectors to diagonal of resolvent). Let o > 0 and I = [E—n, E+7)
be an interval. Setting z = E +1in € C,, we have

- Z Wi(i)? < (%) : % zn: (ImR(2)ii)? -

=1

Proof. From the spectral theorem, we have

(v, €;)? 1 |As]
ImR(z Z - > — ) (v,e;)* = —W;(3).
’UGA] + ?7 27] vEAS 2”7]
It remains to sum the above inequality. 0

At this stage, it should be clear that the proof of Theorem will rely on Theorem
and on an extension of the previous fixed point argument to finite n system. The
bottleneck in the proof will be on the lower bound of |A;|/nn which in particular requires
according to Lemma [3.7] that p4(I) < L|I|. This last control is difficult when o < 1 as
in this case n =2 Y1 (ImR(2);;)%/? goes to zero like n°/? so that arguments such as those
used in the proof of Theorem [3.5] do not hold. It will be responsible for the restrictive
condition 7 > n=?*t°(M in the statement of Theorem For completeness we will also
prove in this subsection a vanishing upper bound on

-3 (R,

for n of order n=/% for all a > 0. More precisely, we have

Theorem 5 10 (Vanishing fractional moment for the resolvent). Let 0 < a < 2/3,
2
0<e<gig P= 4(2310; and ¢y = %. There exist ¢; = ¢1(a), ¢ = c(a,g) > 0 such

that ifn > 1, 2= E+in € Cy, |z| > ¢, n =" (logn)® <n < 1,

1 - 04(54'04) [ @
E= ImR i < o —5tcie 27¢
2 2 (AT < oS08y o

[N]1)
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Moreover, if n="(log n)2+43a <n<l1,

—ZImR )ii)? < en?E
n_

)—l

Q

Theorem [I.3] is a consequence of the second statement of Theorem together with
Theorem [3.5] Lemma [5.9 and Lemma [C.4] wich asserts that

X n-
=1 =1

]. i o ]. i o @ 4e 1
Pl = ImR(2);)? > E= ImR(2);)2 +tnz° | < —nn*"ata).
(an (2)i)? 2E=> (ImR(2);)? + tn® >_eXp( nn )

We consider for u € K,

n
(%

() =T - S)E

w[R

1
n

(—m(z)kk.u)‘%‘] —T(1- %)E [(—iR(z)u.u)

k=1

Lemma 5.11 (Bound on fractional moments of the resolvent). Let 0 < a/2 < [ <
2a/(4 — «) and p',cy as in Theorem |5.10. There exists ¢ > 0 such that if n > 1, z =
E+ineC., |z| >1,n>n"*(logn)o, then

V2 lls < e (77)

The proof of Theorem [5.10| provides also the local convergence of the fractional moments
7: for the norm |[|.[[2 .. Indeed it is based again on an approximate fixed point argument
for these quantities.

Lemma 5.12 (Approximate fixed point for fractional moments of the resolvent) Let
0<a<2/3andp, coasin Theorem|5.10 and G, as in (53). For all0 < e < )
exists ¢ = c(a, ) > 0 such that if n > 1, 2 = E+in € C,, |z| > ¢, n" (logn)® g n<Il,

a(3+a)

177 = Go(V )l g4ee S e 7o m

, there

o
4 .

Moreover, if n="(log n)ﬁ <n<l,

ot

«

H'V? - Gz(7§)||%+6,6 <n 4n

e

We now check that the above two lemmas imply Theorem [5.10 Note in the proof below
that they also imply the convergence of 47 to v, for n > n=" (logn).

Proof of Theorem[5.10. We prove the first statement. Let 0 < ¢ < and 0 =

_a(3+ta) «

n~ ze n~ 4. Now since [|77||s 1. and [[7.[|2 . are uniformly bounded, we have by Lemma
and Lemma [5.12]

2
2(4—a)

[ 'VZH%-&-a,a < clz["yT - 72”%4-8,8 +co

as long as |z| > ¢ with imaginary part n=* (logn)® < 1 < 1. Hence, if |2| is large enough,
clz|7* is less than 2 and it follows that

||/y,? - 72‘”%-{—575 S 265
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Now, we may argue as in the proof of Theorem . By Theorem , for |z| large enough,
17.(e7)] < c’n%’s, for some constant ¢ > 0. Then, for any u € S}, using Lemma
and Lemma

[(1 - S)EmR()f, = hi(e)|

< 2 T) = A2 (u)] + 72 () = s ()] + (€)= v (u)] + [ra(e'))]
< M= e 4 s = 32l + (e )

—€

< u— €2+ "lu— €| 4 3
Choosing u such that |u — e'i] is of order 517 | we deduce that for all z = E + in with

|E| > E,., EImR(2)% is bounded up to a multiplicative constant, by

_ a3+
77 2+a n_%"’_O( ) + 7]%_5_

Since € > 0 can be arbitrarily small, this concludes the proof for the case n=* (logn)® <
1 < 1. The proof for n="(log n)ﬁ < n <1 is identical : we find,

o

E~ Z ImR u 5 <c ) n=1t0E +C77%7€-

It remains to notice that for ¢ small enough, in our range of 7, the second term dominates
the first term. O

Proof of Lemmal[5.11. As in the proof of Lemma 5.2 it is sufficient to check that for some
constant ¢ = ¢(a, ),
E[Ru (E + i) < c|E[77. (78)
As usual, from , we have
[R(2)u| = [(2 = a," X1 +a,* (X, RYX))|

-1

We first get rid of the non-diagonal term in the scalar product (X;, RYX;). We perform
this as in the proof of Lemma . Using the definition and with a/2 = (3, we
find

-B

E|R(E + in)ul® ~E|= +a, ZR“>X2 < o PEIT(:))

In particular, since 2| < |Re(2)|~?, we find
-8
+ ey E|T(2))”

E|R(E +in)y|’ <E|E +a; ZRe Nhx2

=2

Now, we decompose the sum into a positive and a negative part

ZRe 1) )XE = zn: <Re(R§il))>+Xl2i - Zn: <R‘e<R§il)))_ X7

1=2 1=

Note that, conditioned on R, the two sums are independent. We invoke Lemma

;2> Re(RY)XE = aS - bS',
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where, conditioned on R, a,b, S, S’ are independent non-negative random variables,
S, 8" being «/2-stable random variables. Hence from what precedes,
E|R(E + in)u|® <E|E +aS — bS'| " + ey E|T(2)|°.

Assume for example that E > 0. Let F be the filtration generated by (R, a,b, S) and
E’ = E[-|F]. Using Lemma conditionnaly to F yields that for some constant ¢ > 0,

E|E+aS—bS| " =E [JE' B+ aS — bs’rﬁ] < E|E+aS|? < B,

If E < 0, we repeat the same argument with the filtration generated by (R™", a,b,S").
Now, if 0 < 8 < 2a/(4 — ), using the tail bound (23), we find

E|T(2)° < ¢ <n§ + (%) > . (79)

We now use the bound given by on M, which is valid for all n > n*aTH,

B(2+a)

nPR|T(2)|° < cn_Qﬁ_%n_Q(logn) g

N1

, (24
This concludes the proof of the lemma, since for n > n=* (logn)166+=)  the above expres-

sion is uniformly bounded. 0

Note that in the proof of Lemma we have used the bound instead of the bound
M,, < cn~! given by the proof of Proposition because it is valid for a wider range of 7.

Proof of Lemma[5.13, Set h = —iz € Ky, Hy(h) = —iRW (ih); and define
n -1
Mu) = T (1 - %) E <h +a? ZkaHk> .u
k=2

_ F<1 a)E hoi+ a;® Soh_y X Hi(h).a ) *
2 [t a2 4 XD Hil ’

=1
2

where we recall that @ = Im(u) + iRe(u).
Step one : Diagonal approzimation. In this first step, we generalize Lemma [3.3] We will
upper bound the expression ||V}, — I}|| .. Using the definition (24]), we find that for any
u € Sf, with n = Re(h) > 0,
i (w) = I (W) < en™E[|T(2)| ],
where we have used with 8 = 5. Using for = /2, we deduce that
M\ 7
i ) — T ()] < e <n“2 v (%) ) .

n

Whereas using to bound M,,, we find for n=F <n <1 that

a(3+a) a(2+a)

[in () = I (w)] < en” G~ 25" (logm) 5 (80)

To bound
Al (u,v) = [y (u) — v, (v) = I () + I (v)]
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we first observe that for x1, s, y1,y2 € Ky, by using the standard interpolation trick, for
K1, ke, B € [0, 1], we have if N = |z1| A |za| A|y1] A |ye|, and k1 + kg > /2
o —f —y? +ys | < N5 g (g — ol g gl ™) + NPy g+l
We use this inequality with
. ha+a,?y o X3 Hi(h).a—i(j — 1)T(2).a
T e S, X H — (G — DT (h)[

and in y;, v replaces u. For j € {1, 2}, one can check that, with D; = (h+a,? > ,_, X3 H—
i(j = DT(2) 7,

[z =yl < |Dillu—v|, |o1 = 2| Vg1 — yo| < |D1l|Da|[T(2)],

9

and

|21 — 22 — y1 + 2| < [D1|Daffu — v[|T(2)].
Moreover, using (55), we find N > ([i.u| A |i.v])(]D1] A|Ds|). Recall finally that |D;| and
|D,| are bounded by n~'. Hence, choosing k1 = f3, ks = ¢ + ¢ (with e small enough so

that & 4+ ¢ < &) we deduce that,

A (u,v) < 7775 ([l Aliv]) ™ u = o "B T ()2 + 077
We naturally choose § = ¢ +¢ < 2%, From (23), T(z) € L” and

@

=lu — o E[|T(2)]7].

8
8 5
2 -5

M, 4 a
E[|T(2)|°] < e+ <7> <c <n2ian(log n)’%) ,

where we have finally assumed that n~ 1 < n < 1 and used . This gives for n=ut <
n<1

_g_a_28 _B B(2+a)
1% = Tillgee < en™ P2 2an 2 (logn) s
. _ 24« _B_f_i B _aBta) o
Now it easy to check that for n > n 26+a) we have n” 7 2 2tan™2 < n 2ta n 1. It
follows for n="" <71 < 1 and a new constant ¢ > 0, depending on ¢, that
_aBty) _a
1Vih = Il gee < en”2re n74 (81)

If instead we assume that n="(log n)ﬁ < n <1, then, from the proof of Proposition
3.6, we may use the stronger bound M,, < ¢t if |z| large enough. We find instead

3B _«a B8 S5a «

v = Iillg4ee Sen” 2 72n72 <epanTa (82)

(where, for the last inequality, we have used the fact that n > n=%/3 for n=?(logn) i <
n <1 and n large enough).

Step two : approrimate fixed point equation. Next, we extend the proof of Proposition|3.1|
We denote by E;[-] and P;(-) the conditional expectation and probability given Fi, the o-
algebra generated by the random variables (X;;);>;>2. We assume that /2 < f < 1—a/2
and 0 < & < 1—3a/2. We first remark that by arguments similar to the proof of Lemma
.3l and by Corollary we have

Iy (u) = E[G.(Zn)(u)],

where, conditionned on Fy, Z,(u) = gZZZQ(Hk.u)%]ng, gr are ii.d standard nor-
mal variables and £ = I'(1 — «/2)/E|g:|*. Note that, from Lemma .2 ||Z,|ls <
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Y s |Hy|2 |gi|* which belongs to LP for any p > 0. Therefore, we can use Lemma
.5 and the Holder inequality to insure that,

n p1/p
K £ o n 1/
k=2

(83)

115 =G-(v0)llse < clh™* | 1+ [1n2]ls + E

where 1/p+1/¢ =1 and
Elll? = Zall§ )" <E[E[Z] = Zall§ )" + 172 — E[Za)ll5.c -
From the triangle inequality,
E[|E[Z,] — Zall3, 0" < El[E[Z,) — Ea[Za][I5 ]V + E[E[Z0] — Zall5, V7.
But, using Lemma from the appendix,

n q

= > (Hyw) (Jgel” — Elgil®)

k=2

E[[E1[Z] — Znl[§ ] <E

B
< c(q)(logn)*(n*n) "=,
Similarly, by Lemma [C.5]

n n q

E% S (Hyu) — % S (Hyu)?

k=2 k=2

qo

< (q)(logn) T (n*n) "%
B.e
Whereas using as we did in the proof of Proposition we have, with ¢g = 2I'(1 - %),

172 = EZnl|pe < colnm)™ 2.

Hence, there exists a new constant ¢(q) such that

n 1 a —a
E [|72 = Zall5.]"" < c(g)(logn) % (Pn) 5.

Similarly, using the triangle inequality at the first line, at the second line and the
Jensen inequality at the third,

18 P
(—Zrmwgkra) ]
n
k=2

E[|E[Zn]—Eq[Z0]||5,] < “E

1/p

E

1 p71/p 1 p71/p
<E <5ZIHkI3E|gkl°‘> +E || 3 [HilF (g6l — Elgil”) ]
k=2 k=2
1 p71/p
< E|g|"E (gZ!Rkﬁ) + co(nn) ™2 + c(p) P (n"n)
k=2

n 1/p
1 P _a a -1
< E|g,|* (EZE|Rk|z> + co(nn) =% + c(p)/P(n°n) 2.
k=2

We choose p > 1 such that pa/2 < 2a/(4 — «) and we finally use and Lemma
.11l Then, for our range of n, the right hand side of the above inequality is of order 1.
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Putting these estimates in (83)), we find finally that for any a/2 < § < 2a/(4 — «), any
0<e<1—3a/2and n=*(logn)® < n < 1, there exists a constant c(a, 3, ¢) such that

17 = Go(v)llp.e < clz|™*(logn)* (n°n) 5.

Putting this together with , this conclude our proof (the above term is negligible
compared to the right hand side of or (82)). 0J

APPENDIX A. CONCENTRATION OF (GAUSSIAN MEASURE

In this paragraph, we recall a well-known concentration phenomenon of the Gaussian
measure. The following classical result is contained in Ledoux [16]. It is a consequence of
the Logarithmic Sobolev inequality for the Gaussian measure and the Herbst argument.

Theorem A.1 (Concentration of Gaussian measure). Let F' be a 1-Lipschitz function on
the Euclidean space R™ and G be a standard Gaussian vector in R™ N(0, 1,), then for
every r > 0,

[N

T

P(F(G) -E[F(G)] zr)<e 7,
where mp is the median of F' for N(0,1,).

For p,q > 0, we define for x € R"

n P
]I, = (Z Ixil”) ,
i=1

[Allp—q = sup Az,

llzllp=1

-

and for a matrix A

(this is a norm for p, ¢ > 1) The usual operator norm is denoted by
[A]] = [|All2—2 = sup |s;]

where the s;’s are the singular values of A. Recall that if 0 < p < 2,

1

1
[[nllop = mr 2.

Corollary A.2. Let A be a n X n non-negative matriz, 0 < p < 2 and G be a standard
Gaussian vector in R™ N(0,1). There exist positive constants c,§ > 0 depending only on

p, such that if (trAp)% > cHAHn%_% then
|AG], > 8 (tx4?)>

1 2
P)p
[Allnr—2

Proof. We first consider the case 1 < p < 2. We define F(z) = ||Az|[,. From the triangle
inequality (valid for all p > 1)

|F(z) = Fy)l < F(z —y) = [[Alz = 9)llp < llz = yll2l| All2-p-

with probability at least



EIGENVECTORS OF HEAVY-TAILED RANDOM MATRICES 45

Since ||All2—p < |All2=2|| L5 l2—p, we deduce that F' is Lipschitz with constant

o = [|A|n> "2,

It follows by Theorem that for every r > 0,
r2 2

P(|AG], — EIIAG], <7) < e T < ¢ AT, (84)

The corollary will follow by applying the above inequality to r = E|AG||,/2 and by
showing that, for some constant ¢y > 0,

E|AG]|, > co (trA7)7 . (85)
From 7 for some ¢; > 0,
E[|AG], — EJAG], " < (ci0)".
Hence
E[|AG, > (EJAGI2)" — cro. (86)

Now, let (g, ur)1<k<n be the eigenvalues and normalized eigenvectors of A. We note that

(AG) £ 3 Nelu, €:)Gi.
k=1

In particular, (AG); has distribution N (0, >, AZ(u, €;)?) and for some ¢y > 0,

P

p n 2

= ¢y Z (Z A2 (g, ei)2>

=1 =

E|[AG[;=> E

i=1

Z A (g, €) Gy,
1

For 0 < p < 2and Y ,_ (ug,e)* =1 forall i € {1,...,n}, we may use the Jensen
inequality:

EIIAGID > ¢2 ) > " M(ug, €;)* = cotr AP, (87)
i=1 k=1
Then, from and the value of o, we deduce that holds with ¢y = c;/ P/2if ¢ is
chosen large enough so that cé/ Pe > 2¢.

We next consider the case 0 < p < 1. We denote, for R = (gtrAp)l/p with some positive
constant k to be chosen later, ¢ a non-negative Lipschitz function which is lower bounded
uniformly by |z[?, is equal to |z|? on |z| > R, and Lipschitz constant bounded by RP~.
In particular, the R® — R, function z — ). ¢(x;) is Lipschitz with constant bounded
by /nRP~1. It follows that the R® — R, function F(z) = >, ¢((Ax);) is Lipschitz with
constant bounded by [|A]|/nRP~. Hence, by Theorem for any r > 0,

2

P (Z SAG. e)) — B p((AG, e) < _r> .

Now, we observe that

[AGI = 3" 6((AG, €0)
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and also,
S 6((AG, ) = BIAG]E - ktr(A7),
i=1

Therefore from , if we choose Kk < ¢3/4,

EY0((AG ) > “tr (A7),

i=1

Finally, we set 7 = cotr(AP)/4 and conclude that

tr(AP) )%

¥ (HAG% = %tr(Ap)> <P (; o((AG, €;)) < %tr(Ap)) < o~ (A

O

Remark A.3. Consider the special case where A is the projector on a vector space W of
dimension d. Then AP = A for allp > 0. Corollary[A.3 gives a lower bound for || AG||, of

1 . : .
order d» when d > c®n*~P/2. However, if (u1,--- ,uq) is an orthonormal basis of W such

that (uy,e;)* > €2/n then for p < 1 we have a lower bound for |AG||, of order enr 2d3
which can be significantly larger. Hence, we expect that Corollary[A.3 is sharp if W has
a localized basis and not sharp if W has a delocalized basis.

APPENDIX B. STABLE DISTRIBUTIONS

In this paragraph, we give some properties of stable distributions.

Let 0 > 0,0 < a < 2and f € [—1,1]. A real random variable X has a-stable
distribution Stab, (8, o) if its Fourier transform is given for all t € R, by

Eexp(itX) = exp [—o®[t|* (1—ifsgn(t)uy) | (88)
where sgn(t) is the sign of ¢ and u, = tan(ra/2) for all « except o« = 1 in which case
uy = —(2/m)log|t].

If 0 < o< 1and =1, the distribution Stab,(1,c) has support R, and its Laplace
transform is conveniently given for all t € R, by

Eexp(—tX) = exp [-0%t%v, |, (89)

with v, = 2sin (22) I'(1 — a)I'(«).

Lemma B.1 (Decomposition of quadratic form). Let X = (X;)1<;<,, be iid symmetric
a-stable random variables with distribution Stab,(0,0). Let A be a n x n positive definite
matriz, then

(X, AX) £ ||AYG2S,
where G is a standard gaussian vector N(0,1) independent of S, a positive a/2-stable
_2
Staba (1,20%v, ).
2 2
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Proof. We use the identity, for y € R",
t2
exp(—4(y,y)) = Eexp(it(y, 9)).
Applied to y = AY2X, we get, for t > 0,
Eexp(—t(X, AX)) = Eexp(iv2t{A2 X, G)) = Eexp(iv2t(X, AY2G)).
Then, since X is stable vector, (X, AY2G) has distribution Stab, (0, o||AY2G]||,). From

, it follows
Eexp(—t(X, AX)) = Eexp(—(20)0° [ A2G]2).

Then, we conclude by applying . O

Corollary B.2 (Sum of weighted squares). Let X = (X)1<k<n be iid symmetric a-stable
random variables with distribution Stab,(0,0) and let (wy)1<k<n € C. Then

E exp (@ Z ka,f> =Eexp (—(—21’)30‘l Z wg|gk|a> :
k=1 k=1
where G = (g1, ,gn) 1S a standard gaussian vector N(0,I).

Proof. We set pp = —iwy,, we shall prove that

E exp (— ZM&) — Eexp (—ﬁw > ok |gk|a> : (90)
k=1 k=1

We write p, = i(ay — bg) + ¢k, where ag, by, are the negative and positive parts of Re(wy,)
and ¢, = Im(wy) > 0. We set py(t,s) = tay + sby + ¢, D = {z € C: Re(z) > 0} = —iC,
and D. = {z € C : Re(z) > —¢,|Im(2)| < 2}, where 26 = min(cy/(ag + b)). Then, the
D? — D function (t,s) — > ._, pr(t, s)X} is analytic in each of its coordinates. Since the
function z — exp(—=z) is analytic and bounded on D, from Montel’s Theorem, we deduce
that the D? — C function

@ :(t,s)— Eexp <— Zpk(zﬁ, s)X,f)

is analytic in each of its coordinates in D.. However, for s,t € R,, we notice that
pr(s,t) € R,. Hence by Lemma applied to a diagonal matrix, we have

o(t, s) = Eexp (—2%‘“ Zpk@,tﬁrgm) .
k=1

The D — D function z — 2%/? is analytic. We may thus again apply Montel theorem
and deduce that the right hand side of the above identity is analytic in (s,¢) on D% So
finally, the above equality holds true for all (s,t) € D?. Applied to (s,t) = (i, —i), we

obtain precisely (90). O

The next lemma looks at the behavior of a positive stable random variable near 0.
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Lemma B.3 (Tail of inverse positive stable variable). Let 0 >0, 0 < a <1 and S be a
positive a-stable Stab, (1, o) random variable. There exists a positive constant cy(a) such
that for all 0 < ¢ < oTaco(a),

Eexp(cS™Ta) < oo,

while the above is infinite for ¢ > o™a co(a).

Proof. From the identity, for m > 0, z > 0,

we deduce that, for p > 0,

Ck

P) = " pe=tgetgy
expler™) ZF(kp)P(kH)/o ‘

k>0

1/

In particular, from (89)), with & = ova/”, and Fubini’s theorem,

Ck 00 A
—-Pp — kp—1 _—t%6®
Eexp(eS™P) g TpTk 1) /o """ e dt

k>0

-1 k ~—kp F(%)
= o) % T(kp)T(k + 1)

k>0

The conclusion follows easily from Stirling’s formula, I'(x) ~; o 27” (f)x O

Lemma B.4 (Negative fractional moments of smooth random variable). Let o > 0 and
S be a real-valued random wvariable with law which has a uniformly bounded density on
[—1,1] and is bounded by c|z|~*' on [—1,1]¢ for some finite positive constant c. Then,
for any 0 < B < 1, there exists a finite constant C' so that for any x € R, any o > 0, we
have

E[lz — oS|7?] < Cla| 7.

Proof. Let us first assume that o > 2|z|. If C'is a bound on the density of the law of S
on [~1,1], for T > (2/0)?,

E[lz — S|P < T + / P(lz—oS| <t V) dt <T+C(1—p8) T 55",
T

Choosing T = (2/0)? < |x|7" provides the desired estimate. In the case o < 2|z| and
t=1/8 <|z|/2, we have

—a—1 1
P(jz— 0S| <t/f) <C (f) o
o
Therefore if o < 2|x| and T = (2/|x])?,
E[lz —oS|7°] < T+ Caax’a’l(l—ﬁ)’lTl_% < C'a| P+ Clo%x|7*7F < C'(1+2%) x|,

which completes the proof of the lemma. O



EIGENVECTORS OF HEAVY-TAILED RANDOM MATRICES 49

APPENDIX C. CONCENTRATION OF RANDOM MATRICES WITH INDEPENDENT ROWS

The total variation norm of f: R — R is

1fllry o= sup [ f(zea) — fzi)l,

kEZ

where the supremum runs over all sequences (xy)rez such that zy,; > xy for any k € Z.
If f =1(_ for some real s then || f||ry = 1, while if f has a derivative in L'(R), we get

£ llrv =/|f/(t)|dt.

Lemma C.1 (Concentration for spectral measures [6]). Let A be an n x n random Her-
mitian matriz. Let us assume that the vectors (A;)1<i<n, where A; := (Aij)1<j<i € C', are
independent. Then for any f : R — C such that ||f|lrv < 1 and E| [ fdua| < oo, and

every t > 0,
nt?
P(‘/fdﬂA_E/fdﬂA 2t> < 2exp (—7)

The next lemma is an easy consequence of Cauchy-Weyl interlacing Theorem. It is an
ingredient of the proof of Lemma [C.1}

Lemma C.2 (Interlacing of eigenvalues). Let A be an n x n hermitian matriz and B a
principal minor of A. Then for any f : R — C such that || f||rv < 1 and limg f(2) =
0,

n n—1
D FuA) =Y F((B))
i=1

=1

<1

The Lipschitz norm of f: C — C is

= sup L) =10
T#y |z =y
Lemma C.3 (Concentration for the diagonal of the resolvent). Let A be an n xn random
Hermitian matriz and consider its resolvent matriz R(z) = (A — 2)7', 2 € C,. Let us
assume that the vectors (A;)i<i<n, where A; == (Aij)1<j<i € C?, are independent. Then
for any f: C — R such that || f||L <1, and every t > 0,

o 2 ) o ()

Proof. The proof is close to the proof of Lemma as done in [6] and relies on the method
of bounded martingale difference. We start by showing that for every n x n deterministic
Hermitian matrices B and C' and any measurable function f with ||f||; <1,

U3 ARG~ B Y f(R()

< 2 (nIm(z)) " rank(B — O), (91)

D UACIEED SHEEN
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where Rp = (B — 2)™! and R¢ = (C' — z)~! are their resolvent matrices. Indeed, by
assumption

Z f(RB(Z)kk> - Z f(RC(Z)kk) < Z |RB(Z)kk - RC(Z)kk\ .

The resolvent identity asserts that
M = RB - Rc = R3<C - B)RC

It follows that r = rank(M) < rank(B — C). We notice also that |[M]] < 2Im(z)~'.
Hence, in the singular value decomposition of M = UDV, at most r entries of D =
diag(siy, -+, s,) are non zero and they are bounded by ||M||. We denote by uy,--- ,u,
and vy, -+ , v, the associated orthonormal vectors so that

,

*

M = E 8;U;0;
i=1

and

r

R (2)ik = Re(2)l = [Mu| = | Y silui, ex) (vi, en)| < IMIFY us, e[ (vis ex)].

i1 i=1
We obtain from Cauchy-Schwarz,
S SN E I WSV SN ED ST ES it
n - , n v n v
k=1 i—1 k=1 k=1
= 7r||M|n".

Equation (91)) is thus proved.

Next, for any x = (z1,...,2,) € X := {(2;)1<i<n : i € C! xR}, let B(z) be the nxn

Hermitian matrix given by B(x);; = z;; for 1 < j < i < n and R,(z) = (B(z) — 2)™".

We thus have R(z) = R, .. a,)(2). For all z € X and 2} € C'~' x R, the matrix

/
B(.’L’l, ey i1, Ty, iL'Z'+1, Ce ,l’n) — B(Hfl, N S I xi,$i+1, Ce ,.’L'n)
has only the i-th row and column possibly different from 0, and thus
/
rank (B(Z1, ..., Tim1, Tiy Tig1y - oy Tn) — B(T1, 0y Ty, Ty Tig1y - o, X)) < 2.

Therefore from (91)), we obtain, for every f: R — R with | f|, <1,

k=1

The desired result follows now from the Azuma-Hoeffding inequality, see e.g. [I7, Lemma
1.2]. 0

Lemma C.4 (Concentration for the diagonal of the resolvent). Let A be an nxn random
Hermitian matriz and consider its resolvent matriz R(z) = (A — z)™', z € C,. Let us



EIGENVECTORS OF HEAVY-TAILED RANDOM MATRICES 51

assume that the vectors (A;)i1<i<n, where A; = (Aij)i1<j<i € C', are independent. Then
for any v € [0, 1], there exists a positive constant ¢ so that for every t > 0,

DILCIIEE WL

k=1

> t) < 2exp (—cnlm(z)Qt%> : (92)

Proof. Let € be a positive real number and ¢. : C — C be equal to one on |z| > 2¢,
vanishing on |z| < e and growing linearly with the modulus in between. Thus, ¢, is
Lipschitz with constnat bounded by 1/e. We decompose z7 as

2 =27 (x) + 27 (1 — ¢-(2)) .

By definition, 27(1 — ¢.(x)) has modullus uniformly bounded above by (2¢)” so that if
we choose € > 0 so that (2¢)” = t/4 then with f(z) = 27¢.(z) we have

| )
zt/2>.

On the other hand, f is Lipschitz with constant bounded by 27! = = 25" . Hence,

LS R~ B S (R

Lemma [C.3] yields
1 & nlm(z)%t?
_E E )| > < e
IP( nkl( E kk t) ~ 26Xp( 84%*’7152(1*%)

84577

This concludes the proof. 0

We conclude this appendix by deviations inequalities for the norm || - || introduced
in Section [Bl

Lemma C.5 (Deviation of the f-norm). Let 0 < a < 1, ¢ >0, a/2 < < 1 and
assume that /2 + B+ e < 1. Let (gx),1 < k < n, be iid standard Gaussian variable and
(i), 1 <k <n e Ky with |hy| < 07" Define, y(u) = 3 370 (hiw)? (|gx]* — Elge|*)-
Then there exists constant cg, ¢y, such that for allt > 1, all n > 2,

t 2
Pl = - | < cine exp(—cot?).
" (non)e

Stmilarly, let A be an n X n random Hermitian matriz and consider its resolvent matriz
R(z) = (A — z) 12 =F+in € Cy. Let H, = —iRy(2) be as above and ~'(u) =
LS (Hpw)? —ELS (Hypw)?, forallt >1, alln > 2,

t (63
P (H’Y/”g,g > W) < Clnexp(—cot4/ ).
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Proof. Set L = 2570 ||gk|* — E|gg|®|. We first use a net argument. For any u,v € S,
from (54)), for some constant ¢ = ().

%(IM AL % < Ly 5.
In particular, setting, for integer m and 1 < k < m, u;, = €2™*/™ we find

[y(u)] < eL(mn) ™% + max |y (uy)].
Notice also that if |u — v| < 4/m, then, with ' =a/2+ f+¢e <1,

cLn™2 ju — v|? (Jiu| A liv])2 =

M(u,m A Jiv])?+ u— v]P

ju —vl?

IN

(Ji.u] A Jiv])P+

< 4eL(mn)~%.

While if [u—v| > 4/m, we denote by u, and v,, the element of {u;, : 1 < k < m} at distance

at most 1/m of w and v and with |i.u.| > |i.u|, |i.v.| > |i.v]. We get |u — v| > 2|u, — v

and

L2 ju — w, % (Jiu| A Jiw])2 =%
ju —w]?

‘7(“) - V(U*)| <|’LU’ A |’i.’UD'B+E S

. . 5+5
P (|i.u] A |iv])

< dL(mn)"%.

We deduce that, for some constant ¢y > 1,

_a Ur) — y\u . . _a
V15 < coL(mn) ™ + comax [y(w)| + co max k) =20l A Jiagl)?5. (93)

k£ ug — ugl?

On the other hand, since 0 < o < 1, the random variable |gi|* is sub-gaussian. It follows
from Hoeftding’s inequality, that for any s > 0,

P(L > EL + s) < exp(—cns?),
and for any u,v € S},

P (|y(u)| > s) < 2exp(—cns’n®)  and

() — ()
P( |

w o (Jiu| A Jiv])P~2 > 3) < 2exp(—cns®n®).

From the union bound, we get from (93)),

t o
P (nyHB’6 > ¢ ((nan + + (EL + 5)(mn)2>> < exp(—cns?) + m? exp(—ct?).

~—
N

We take m = [n'/*((EL 4+ 5))?/*t~%/] and s = t, we find for all t > 2/cy,
2cot
Be 2 & 1> < ¢n?* exp(—ct?).

P (H’Y| o)

This prove the first statement. For the second statement, the proof is similar. First, the
above net argument gives that holds for v with L = 1. Also the proof of Lemma
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implies that for any u,v € S3,

P |y (u)] > s) < 2exp(—cnnsa)  and
p (=0

P (Ji.u| A |iv])P~3 > s) < Qexp(—cmfs%).

From the union bound, we deduce that for all s > 0,
IP<HVWM£ 2<m(5——(nnﬂ’%)) §7n2exp(—cnnzs§)

Taking s = t/(n*n)% and m = /nt=2/%(2¢)?/*, this concludes the proof. O
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