Require Import Setoid Morphisms.
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries bij reduction open_confluence transfer.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries bij reduction open_confluence transfer.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Section s.
Variable A: Type.
Notation term := (pttdom.term A).
Notation nterm := (nterm A).
Notation test := (test (tm_pttdom A)).
Notation tgraph := (graph (pttdom_labels (tm_pttdom A))).
Notation tgraph2 := (graph2 (pttdom_labels (tm_pttdom A))).
Notation graph := (graph (flat_labels A)).
Notation graph2 := (graph2 (flat_labels A)).
Notation step := (@step (tm_pttdom A)).
Notation steps := (@steps (tm_pttdom A)).
(* local confluence of the additive, packaged system (Proposition 8.1) *)
Proposition local_confluence G G' H H':
step G G' -> step H H' -> G ≃2p H ->
exists F, steps G' F /\ steps H' F.
Proof.
(* by transferring local confluence of open steps *)
move => GG HH [GH].
apply ostep_of in GG as [U [[sGU] [UG']]].
apply ostep_of in HH as [V [[sHV] [VH']]].
apply oiso_of in GH.
destruct (ostep_iso sGU GH) as [W [sHW UW]].
destruct (fun HF => local_confluence HF sHV sHW) as [T [sVT sWT]]. by apply GH.
have gT: is_graph T. by eapply osteps_graph, sWT; apply UW.
have gU: is_graph U. by apply UW.
have gV: is_graph V. by apply VH'.
have gW: is_graph W. by apply UW.
apply (steps_of gV gT) in sVT.
apply (steps_of gW gT) in sWT.
exists (pack T); split.
- transitivity (pack W)=>//. apply iso_step.
etransitivity. apply openK. apply iso_of_oiso.
eapply oiso2_trans. apply oiso2_sym. eassumption. assumption.
- transitivity (pack V)=>//. apply iso_step.
etransitivity. apply openK. apply iso_of_oiso.
by apply oiso2_sym.
Qed.
Definition measure (G: tgraph2) := #|vertex G| + #|edge G|.
Lemma step_decreases G H: step G H -> measure H < measure G.
Proof.
rewrite /measure.
case; intros=>/=; by rewrite ?card_option ?card_sum ?card_unit ?card_void ?addSnnS ?addnS ?addn0.
Qed.
Lemma iso_stagnates G H: G ≃2p H -> measure H = measure G.
Proof. case. move=>[l _]. by rewrite /measure (card_bij (iso_v l)) (card_bij (iso_e l)). Qed.
(* confluence, via appropriate variant of Newman's lemma *)
Proposition confluence F: forall G H, steps F G -> steps F H -> exists F', steps G F' /\ steps H F'.
Proof.
induction F as [F_ IH] using (well_founded_induction_type (Wf_nat.well_founded_ltof _ measure)).
move=> G H S.
move: G H S IH => _ H [F G FG|F__ F0 G' G FF0 FG GG] IH FH.
- exists H; split=>//. by rewrite -(inhabits FG: _ ≃2p _).
- move: H FH IH FF0=> _ [F H FH|F F1 H' H FF1 FH HH] IH FF0.
exists G; split=>//. rewrite -(inhabits FH: _ ≃2p _). eauto using cons_step.
destruct (local_confluence FG FH) as [M[GM HM]]. by rewrite -(inhabits FF0: _ ≃2p _).
destruct (fun D => IH G' D _ _ GG GM) as [L[GL ML]].
rewrite /Wf_nat.ltof -(iso_stagnates (inhabits FF0)). apply /ltP. by apply step_decreases.
have HL: steps H' L by transitivity M.
destruct (fun D => IH H' D _ _ HL HH) as [R[LR HR]].
rewrite /Wf_nat.ltof -(iso_stagnates (inhabits FF1)). apply /ltP. by apply step_decreases.
exists R. split=>//. by transitivity L.
Qed.
(* graphs of normal forms are in normal form (i.e., can't reduce) *)
Lemma normal_steps s: forall H, steps (tgraph_of_nterm s) H -> tgraph_of_nterm s ≃2p H.
Proof.
suff E: forall G H, steps G H -> G ≃2p tgraph_of_nterm s -> G ≃2p H.
by intros; apply E=>//; reflexivity.
destruct 1 as [G H I|G' G H H' I S _]=>//L.
- exfalso. setoid_rewrite (inhabits I: _ ≃2p _) in L.
clear -S L. destruct L as [[L Li Lo]]. generalize (card_bij (iso_e L)).
destruct s; destruct S; simpl in *; (try by rewrite !card_option ?card_sum ?card_unit ?card_void); rewrite /unl in Li, Lo; move=>_.
* generalize (card_bij (iso_v L)). rewrite card_sum !card_unit addnC.
have H: 0 < #|G|. apply /card_gt0P. by exists input.
revert H. case #|G|; discriminate.
* revert Li Lo.
suff E: input=output :>G by congruence.
apply (card_le1 (D:=predT))=>//.
apply iso_v, card_bij in L. rewrite !card_sum !card_unit addnC in L.
by injection L=>->.
* have E: forall y, L (inr tt) <> L (inl y) by intros y H; generalize (bij_injective (f:=L) H).
case_eq (L (inr tt)); case.
generalize (E input). simpl in *. congruence.
generalize (E output). simpl in *. congruence.
* generalize (endpoint_iso L false None). generalize (endpoint_iso L true None).
have H: L.e None = None by case (L.e None)=>//; repeat case.
rewrite H. case L.d; simpl; congruence.
Qed.
(* isomorphisms on graphs of normal forms give back equations *)
Lemma normal_iso (s t: nterm):
tgraph_of_nterm s ≃2p tgraph_of_nterm t ->
term_of_nterm s ≡ term_of_nterm t.
Proof.
case s=>[a|a u b];
case t=>[c|c v d]=>/=; move=> [[h hi ho]].
- symmetry. by apply (vlabel_iso h tt).
- exfalso.
generalize (bijK' h (inl tt)). generalize (bijK' h (inr tt)).
case (h^-1 (inr tt)). case (h^-1 (inl tt)). congruence.
- exfalso.
generalize (bijK h (inl tt)). generalize (bijK h (inr tt)).
case (h (inr tt)). case (h (inl tt)). congruence.
- generalize (vlabel_iso h (inl tt)).
generalize (vlabel_iso h (inr tt)).
simpl in *.
rewrite hi ho /=.
generalize (elabel_iso h None).
generalize (endpoint_iso h (h.d None) None).
have H: h.e None = None by case (h.e None)=>//; repeat case. rewrite H.
case (iso_d h None)=>/=. by rewrite hi.
intros. symmetry. apply dot_eqv=>//. apply dot_eqv=>//.
Qed.
(* transferring isomorphisms on letter-labeled graphs to term-labeled graphs *)
Lemma tgraph_graph (u: term): tgraph_of_term u ≃2 relabel2 (fun _ => tst_one _) (@pttdom.tm_var _) (graph_of_term u).
Proof.
have Hmon0: eqv_test (tst_one (tm_pttdom A)) (tst_one (tm_pttdom A)) by [].
have Hmon2 (a b: unit): (tst_one (tm_pttdom A)) ≡ (1 ⊗ 1)%lbl by symmetry; apply dotx1.
induction u=>/=.
- etransitivity. apply (dot_iso2 IHu1 IHu2). symmetry. apply relabel2_dot=>//.
- etransitivity. apply (par_iso2 IHu1 IHu2). symmetry. apply relabel2_par=>//.
- etransitivity. apply (cnv_iso2 IHu). symmetry. apply relabel2_cnv=>//.
- etransitivity. apply (dom_iso2 IHu). symmetry. apply relabel2_dom=>//.
- symmetry. apply relabel2_one=>//.
- symmetry. apply relabel2_var=>//.
Qed.
(* Lemma 5.3 *)
Lemma tgraph_graph_iso (u v: term):
graph_of_term u ≃2p graph_of_term v -> tgraph_of_term u ≃2p tgraph_of_term v.
Proof.
intros [h]. exists.
etransitivity. apply tgraph_graph.
etransitivity. 2: symmetry; apply tgraph_graph.
apply relabel2_iso=>//.
case=>//=??/=->//.
Qed.
(* main completeness theorem *)
Theorem completeness (u v: term): graph_of_term u ≃2p graph_of_term v -> u ≡ v.
Proof.
move=>/tgraph_graph_iso h.
pose proof (reduce u) as H.
have H' : steps (tgraph_of_term u) (tgraph_of_nterm (nt v))
by rewrite h; apply reduce.
case (confluence H H')=>F [/normal_steps HF /normal_steps HF'].
rewrite-> (nt_correct u), (nt_correct v).
apply normal_iso. by rewrite HF'.
Qed.
(* actually an iff since graphs from a 2pdom algebra *)
Theorem soundness_and_completeness (u v: term): graph_of_term u ≃2p graph_of_term v <-> u ≡ v.
Proof.
split. apply completeness.
intro E. apply E. (* implicit call to g2_pttdom *)
Qed.
End s.
Print Assumptions soundness_and_completeness.